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Abstract—The integration of an ever growing proportion of 

large scale distributed renewable generation has increased the 

probability of maloperation of the traditional RoCoF and vector 

shift relays. With reduced inertia due to non-synchronous 

penetration in a power grid, system wide disturbances have 

forced the utility industry to design advanced protection schemes 

to prevent system degradation and avoid cascading outages 

leading to widespread blackouts. This paper explores a novel 

adaptive nonlinear approach applied to islanding detection, 

based on wide area phase angle measurements. This is 

challenging, since the voltage phase angles from different 

locations exhibit not only strong nonlinear but also time-varying 

characteristics. The adaptive nonlinear technique, called moving 

window kernel principal component analysis is proposed to 

model the time-varying and nonlinear trends in the voltage phase 

angle data. The effectiveness of the technique is exemplified using 

both DigSilent simulated cases and real test cases recorded from 

the Great Britain and Ireland power systems by the OpenPMU 

project.  

 
Index Terms—Islanding detection, kernel principal component 

analysis, moving window, phase angle measurements, wide area 

protection. 

I. INTRODUCTION 

lectrical energy is one of the cornerstones of our economy 

and our modern society has become heavily dependent on 

its continuous availability. Driven by a desire to deliver an 

affordable, secure and clean energy supply, the UK and the 

Republic of Ireland (RoI) are working towards achieving 15% 

and 40% energy generation from renewable sources by 2020, 

respectively. As presented in the annual global status report 

[1], as of early 2014 targets were in place in 144 countries 

worldwide for the increased deployment of renewable energy. 

The ever increasing penetration of distributed renewable 

generation brings many technical challenges for the safe 

operation, protection and stability of the power grid. Power 

grids were historically designed assuming active power flows 

from high voltage to low voltage grids. This assumption is 

often not valid for systems with significant distributed 

renewable generation and consequently existing protection 

systems may no longer be appropriate. At the same time, the 

system has reduced system inertia due to increased penetration 
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of non-synchronous generation sources (such as wind power 

generation, DC interconnectors and domestic PV installations) 

resulting in increased risk of frequency instability [1]. Taking 

the combined Northern Ireland (NI) and Republic of Ireland 

power grid as an example, the system operator often operates 

with an instantaneous wind penetration as high as 50%. 

Frequency stability is a significant issue in a small island grid 

due to low system inertias, where large frequency deviations 

after a disturbance are more likely to occur and may cause 

cascading trips of anti-islanding relays (such as RoCoF and 

vector shift protection) [2], and subsequently uncontrolled 

islanding operation. To reduce nuisance tripping, the RoCoF 

threshold is often increased [2], with an inevitable increase in 

the ‘non-detection zone’.  
In the literature, numerous islanding detection techniques 

have been explored. A detailed review can be found in [3] and 

our previous work [4]. From an anti-islanding protection and 

system security perspective, a reliable and fast islanding 

detection algorithm without nuisance tripping and non-

detection zone, is still recognized as an ongoing challenge 

since reported techniques are not entirely satisfactory [5].  

Since the first prototype phasor measurement units (PMUs) 

were developed by Virginia Tech in 1988, system-wide 

networked PMUs have been rapidly deployed in the last few 

years. As a consequence, a vast amount of GPS-based time-

stamped data is being collected 10 to 60 times per second. The 

potential for real-time tracking of system dynamics afforded 

by synchronized phasor measurements [6], together with 

advanced communication and data analysis techniques, offers 

a novel opportunity to improve wide area protection and 

islanding detection performance for the evolving power grid.  

Multivariate statistical approaches, including principal 

component analysis (PCA) and its non-Gaussian extension, 

independent component analysis (ICA), have been extensively 

applied in various fields, including image processing, 

statistical process control, data compression, signal 

processing, and fault detection. In recent years, these 

techniques are  increasingly being considered in the electric 

power research area, due to the availability of synchronized 

PMU data and the desire to extract useful information from 

these data efficiently. Applications of these techniques in 

power systems involve islanding detection [4], [7], [8], 

dimensionality reduction for event analysis [9] and wind 

power production [10], disturbance detection [11], system 

coherence identification [12], [13], and oscillation monitoring 

[14]. 
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Our previous paper [4] presented a linear PCA-based 

approach to islanding detection using wide area frequency 

measurements as a powerful tool for identifying and 

distinguishing between islanding events and non-islanding 

events. It provides a comprehensive interpretation of how and 

why different statistical indices derived from the PCA model 

represent different types of event, and offers a solid 

foundation for further exploration of frequency-based event 

analysis using recursive PCA [8], moving window PCA [15], 

and probabilistic PCA [7]. Unfortunately, the frequency based 

method suffers from a non-detection zone, making it ill-suited 

for islanding detection when the frequency difference between 

the islanding site and the other sites is small. The phase angle, 

as the decisive indicator of a phasor, is a vital variable for 

determining the state and operation of a power system [6] and 

may provide an alternative and complementary solution to a 

frequency-based approach [7]. In contrast to the frequency 

variable, which is a universal system parameter and exhibits 

Gaussian and linear characteristics, phase angle variables 

exhibit significant localized, nonlinear and time-varying 

characteristics [4], [7].  

To handle the nonlinearity in process monitoring, numerous 

studies on nonlinear extensions of PCA have been investigated 

in the literature. Examples include principal curves based [16], 

multi-layer auto-associative neural network based (ANNs) 

[17], and the kernel function approach [18], [19]. Nonlinear 

extensions of the PCA, which rely on multi-layer ANNs and 

principal curves require solutions to nonlinear optimization 

problems and are prone to local minima. It has been well 

recognized that Kernel PCA is a popular nonlinear extension 

of linear PCA and a powerful tool for handling nonlinear 

system dynamics. For adaptive time-varying process 

monitoring, a recursive or a moving window approach is often 

adopted. Recursive approach [20], [21], which updates the 

model for a growing data set that includes new samples 

without excluding the old ones, may have difficulties to 

implement in practice. 

To capture the nonlinear and time-varying characteristics 

simultaneously and achieve enhanced anti-islanding 

protection, this paper proposes the use of an adaptive 

nonlinear method, called moving window kernel principal 

component analysis (KPCA), to investigate multiple phase 

angle measurements across the whole power system. As the 

window slides along the data, a new nonlinear model is built 

by including the newest sample and removing the oldest one. 

While a number of algorithmic developments have been 

reported to update and downdate the models efficiently [22], 

[23], their computational accuracy may be compromised. To 

present the basic concept of adaptive KPCA, which is 

promising for islanding protection, the traditional moving 

window approach is used in this paper. 

To summarize, although PCA-based approaches for 

islanding detection utilizing frequency measurements have 

been successfully applied to islanding detection, some 

significant issues remain and deserve further investigation: (1) 

frequency-based passive approaches inevitably introduce a 

non-detection zone; (2) PCA assumes linear interrelationships 

between variables, which hampers its application if the 

examined relationships are nonlinear and time-varying.  

This paper addresses the first issue by analyzing phase 

angles measured from multiple different locations across a 

wide area simultaneously. When a system is islanded, the 

phase angle of the islanded system drifts away from the main 

power system. The phase angle difference approach between 

two different locations for islanding detection has been proved 

effective in the literature [6], [25], [26], [27]. However, issues 

may arise with the existing approach due to its critical 

dependence on the reference phase angle, as well as a fixed 

pre-set threshold. In this paper, multiple locations are 

employed in case the reference site fails or becomes islanded 

itself. The concept of utilizing multiple PMU locations to 

improve the tracking capabilities of power system dynamics 

has been published recently for power system inter-area 

oscillation monitoring [24]. To the best of our knowledge, 

analyzing the phase angle difference from multiple locations 

simultaneously, with an ‘adaptive multiple cross-reference’ 
approach, has not been studied previously in the islanding 

protection domain. It is worth noting that references [5] and 

[33] proposed an accumulated phase angle drift approach with 

a predetermined threshold setting, and demonstrated its 

sensitivity to small active power imbalance conditions. Again, 

the reliability of this approach is affected by generator inertia, 

power imbalance and the frequency estimation method 

employed, thus a pre-set threshold may not be adequate to 

describe a complex phase angle increase. 

The second issue is addressed through the development of a 

nonlinear adaptive kernel PCA based multiple phase angle  

analysis technique for islanding detection. This is motivated 

by the fact that phase angle measurements possess significant 

nonlinear and time-varying characteristics, due to the evolving 

power grid generating unpredictable fluctuations and 

dynamics. More specifically, changes can occur in the mean 

and variance of individual variables and also in the correlation 

structure among variables across different locations [7]. Thus, 

the reliability of a traditional islanding detection methodology, 

using a fixed model, a pre-set threshold, and a ‘single 
reference’ is questionable. It may lead to undesired miss 
detection or false operation of islanding protection relays.  

The objective of this paper is to present the first application 

of an adaptive nonlinear technique to synchronized wide area 

phase angle measurements for anti-islanding protection. The 

proposed ‘adaptive protection’ methodology makes several 
contributions and its novelty is multi-fold: (1) the nonlinear 

and time-varying characteristics of phase angles are captured 

and reflected by a nonlinear model - Kernel PCA; (2) the 

threshold for islanding detection is adaptively changing; (3) 

the threshold is determined by statistical inference with 

confidence limits derived from the proposed nonlinear model; 

(4) multiple locations with ‘cross-reference’ are examined 
simultaneously; (5) the effectiveness of the proposed 

methodology is validated through simulated synthetic data as 

well as real industry data collected from two independent real 

power systems, representing different penetration levels of 

distributed renewable generation. To highlight, the ability to 

adaptively tune the islanding detection threshold based on the 

moving window kernel PCA is novel. 
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Although various data-mining based pattern recognition 

techniques have been extensively studied in the literature, such 

as support vector machines [28], Bayesian methods [29], 

probabilistic neural networks [28], fuzzy-rule based method 

[30], and decision trees [31], [32]. These studies focus on 

classifying events based on supervised learning on numerous 

simulated event data and relying on accurate labelling in order 

to train the classifier. Unfortunately, it is very hard to 

guarantee different types of event data are available for 

training due to their low probability of occurrence, e.g. 

islanding events. The advantage of the proposed method is 

that it introduces a one-class unsupervised learning for 

islanding detection, where the model is trained only based on 

abundant normal data. In addition, the existing data-mining 

methods for threshold settings often rely on a mixture of input 

parameters (e.g. up to eleven in [31]) feeding into a classifier, 

including the frequency, the voltage variations, rate of change 

of frequency and rate of change of power etc. This mixture of 

input parameters and the black-box nature of the classifier 

makes it difficult to interpret the physical meaning of the 

methodology. Besides, other power system events, such as 

generator trips also produce disturbances in the voltage, 

frequency, and angles similar to those generated by islanding 

events. Unlike the above, the proposed method focuses on 

phase angle alone, providing a simple physical interpretation 

for differentiating islanding and non-islanding events. 

The remainder of the paper is organized as follows. In 

Section II, the moving window kernel PCA algorithm used to 

detect an islanded system and the implementation procedure 

of the proposed scheme is explained. Section III provides 

details of the case study phase angle measurements obtained 

from multiple locations on the Great Britain (GB) and Ireland 

power networks, and also results from simulated synthetic 

data. A comparative analysis of different islanding protection 

methodologies is also given. Then in Section IV an analysis of 

‘cross reference’ phase angle data with and without islanding 

events from the two power networks is presented to 

demonstrate the effectiveness of the proposed method. 

Discussions and conclusions are summarized in Section V. 

II. METHODOLOGY OF ADAPTIVE NONLINEAR APPROACH 

A.  Moving Window Kernel Principal Component Analysis of 

Phase Angle Difference Data 

The main idea of KPCA is to first construct a nonlinear 

mapping from an input space to a higher-dimensional feature 

space and then apply linear PCA in the feature space [19]. A 

key advantage of KPCA over other nonlinear PCA techniques 

(e.g. neural network based PCA) is that it does not require the 

solution of a nonlinear optimization problem. Instead, it is 

obtained as the solution to an eigenvalue problem. 

Additionally, since KPCA can use different types of kernel 

function, it can handle a wide range of nonlinearities [19].  

 Let �̂�𝑖 ∈ ℛ𝑛 denote a sample vector storing 𝑛 phase angle 

difference variables across different sites at the 𝑖𝑡ℎ sample 

instant and let 𝑀 > 𝑛 be the number of samples. KPCA maps �̂� ∈ ℛ𝑛 into a high-dimensional feature space 𝚽(�̂�) ∈ ℱ  and 

performs linear PCA in that space. The sample covariance 

matrix in the feature space can be written as [27] 
 𝚺𝚽 = 1𝑀−1 ∑ (𝚽(�̂�𝑖) − 𝐦𝚽)(𝚽(�̂�𝑖) − 𝐦𝚽)𝑇𝑀𝑖=1 = 1𝑀−1 �̅�(𝚯)�̅�𝑻(𝚯), (1) 

 

where 𝐦𝚽 = 1𝑀 𝚽(𝚯)𝚰𝑀, 𝚰𝑀 is an 𝑀 dimensional vector of 

ones and 𝚽(𝚯) = [𝚽(�̂�1), 𝚽(�̂�2), … , 𝚽(�̂�𝑀)]. �̅�(𝚯) = 𝚽(𝚯) −1𝑀 𝚽(𝚯)𝐄𝑀, 𝐄𝑀 = 𝚰𝑀𝚰𝑀𝑻, is the mean centered feature matrix 

and the phase angle difference matrix  𝚯 = [�̂�1, �̂�2, … , �̂�𝑀] ∈ℛ𝑛×𝑀. Thus, an eigenvalue de-composition of 𝚺𝚽 is given by 
 𝚺𝚽𝐮𝑘 = 1𝑀−1 �̅�(𝚯)�̅�𝑻(𝚯)𝐮𝑘=λ𝑘𝐮𝑘 , 𝑘 = 1,2, … , 𝑀,  (2) 

 

where λ𝑘 and 𝐮𝑘 are the 𝑘𝑡ℎ eigenvalue-eigenvector of 𝚺𝚽.  

Given that the mapping function 𝚽(�̂�) is unknown, KPCA 

solves the eigenvalue problem of the centered Gram matrix 𝐆 = �̅�𝑻(𝚯)�̅�(𝚯)  ∈ ℛ𝑀×𝑀, 
 �̅�𝑻(𝚯)�̅�(𝚯)𝐯𝑘 = 𝛓𝑘𝐯𝑘, (3) 

 

where 𝛓𝑘 ∈ ℛ and 𝐯𝑘 ∈ ℛ𝑀 are the 𝑘𝑡ℎ eigenvalue and 

eigenvector of 𝐆. Multiplying (3) with �̅�(𝚯) produces: 
 λ𝑘 = 𝛓𝑘M−1 ,    𝐮𝑘 = �̅�(𝚯)𝐯𝑘‖�̅�(𝚯)𝐯𝑘‖ = �̅�(𝚯)𝐯𝑘√𝐯𝑘𝑇 �̅�𝑇(𝚯) �̅�(𝚯)𝐯𝑘 (4) 

 

Defining the kernel function 𝐾(�̂�𝑖,�̂�𝑗) = 𝚽𝑻(�̂�𝑖)𝚽(�̂�𝑗), the  

centered Gram matrix 𝐆 can be computed as 
 𝐆 = 𝐊 − 1𝑀 𝐊𝐄𝑀 − 1𝑀 𝐄𝑀𝐊 + 1𝑀2 𝐊𝐄𝑀𝐊 , (5) 

 

where the kernel matrix 𝐊 = 𝚽𝑻(𝚯)𝚽(𝚯)  ∈ ℛ𝑀×𝑀, with its 𝑖, 𝑗𝑡ℎelement defined as 𝐾(�̂�𝑖,�̂�𝑗). This approach is based on the 

assumption that the scalar products 𝐾(�̂�𝑖,�̂�𝑗) can be 

approximated by kernel formulations, such as polynomial, 

RBF and sigmoid kernel functions. After constructing the 

PCA model in the feature space, the KPCA score vector 𝐭 ∈ ℛ𝑟, for a new sample �̂� is:  
 𝐭 = 𝐔𝑇�̅�(�̂�) = 𝐀𝑇 [𝐤(𝚯, �̂�) − 1𝑀 𝐊𝐄𝑀]. (6) 

 

where �̅�(�̂�) = 𝚽(�̂�) − 𝐦𝚽, 𝐔 = [𝐮1,𝐮2, … , 𝐮𝑟 ]  ∈ ℱ, 𝑟 is the 

number of retained principal components (PCs),𝐤(𝚯, �̂�) ∈ ℛ𝑀 

is the kernel vector, and 𝐀 = [𝐈 − 1𝑀 𝐄𝑀] 𝐕 ∈ ℛ𝑀×𝑟, 𝐕 = [ 𝐯1√𝛓1 , 𝐯2√𝛓2 , … 𝐯𝑟√𝛓𝑟 ] ∈ ℛ𝑀×𝑟 ,  
 𝐤(𝚯, �̂�) = [𝐾(�̂�1,�̂�), 𝐾(�̂�2,�̂�), … , 𝐾(�̂�𝑀,�̂�)]𝑇

.  
 

For islanding detection purposes, KPCA relies on 

evaluating a Hotelling’s 𝑇2 and a residual 𝑄 statistic 
 𝑇2 = 𝐭𝑇𝚲−𝟏𝐭                    𝑄 = 𝐾(�̂�, �̂�) − 2𝑀 𝟏𝑀𝑇 𝐤(𝚯, �̂�) +  1𝑀2 𝟏𝑀𝑇 𝐊𝟏𝑀 − 𝐭𝑇𝐭  (7) 

 

where 𝚲 is a diagonal matrix storing the variances of the score 

variables. The confidence limits for the Hotelling’s 𝑇2 and 𝑄  
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Fig. 1. A flowchart of the proposed Moving Window KPCA method for islanding protection 

statistics can be calculated based on [34]. The Hotelling's 

statistic represents a significant variation of the phase angle 

difference in the KPCA model plane and the 𝑄 statistic 

represents a model mismatch. If either of these two statistics is 

above the confidence limits, then it indicates the observed 

phase angle difference goes beyond a normal condition. 

Although a powerful tool, a fixed KPCA model may lead to 

excessive false alarms, since power systems are time-varying 

in nature, influenced by load fluctuation, uncertainty in power 

flow, network topology and intermittency of certain types of 

renewable generation. To tackle this problem, a moving 

window approach is adopted to update the KPCA model. 

B. Implementation 

The implementation of the moving window KPCA-based 

islanding protection method is summarized in Fig. 1. It 

involves two steps:  

1) Phase angle data is collected and sent to a central control 

centre or a substation, where an offline KPCA model is 

constructed using the angle difference data across different 

sites to obtain the initial PCs and initial control limits; and  

2) Online updating of the KPCA model and evaluation of  𝑇2 and 𝑄 for each new data point to determine if control limits 

are exceeded, necessitating the triggering of islanding 

protection relays.  The detection time for the proposed method 

is calculated as 𝑇 = 𝑇𝑐𝑎𝑙 + 𝑇𝐷 + 𝑇𝑐𝑜𝑚, where 𝑇𝑐𝑎𝑙  is the 𝑂(𝑁3) computation time of the proposed algorithm, where 𝑁 

is the window size; 𝑇𝐷 is a time delay of a few hundred 

milliseconds to avoid false operation introduced by 

measurement error etc.; and 𝑇𝑐𝑜𝑚 is the latency of two-way 

communication, which is normally between 20 and 200 

milliseconds [35]. In general, a response time of less than 2 s 

is achievable to meet the IEEE standard [36]. If the 

communication link is down or communication latencies are 

high, conventional islanding protection methods, which rely 

only on localized measurement, can be used as a backup. 

It should be noted that the number of retained kernel PCs  𝑟 may vary over time and need to be adaptively determined. 

Numerous methods have been proposed in the literature to 

determine 𝑟, such as the cumulative percent variance [37], 

scree test [38], average eigenvalues, imbedded error function 

[38], and Akaike information criterion [39]. In this paper, the 

intuitive cumulative percent variance approach was used to 

determine the number of PCs.  

III. EVALUATION USING SIMULATED SYNTHETIC DATA 

In order to test the proposed islanding detection approach 

for different types of power system event the IEEE Nine-bus 

System, described in [40], is used as a test network for 

dynamic simulation. Fig. 2 shows the single line diagram of 

the network, which is modelled and available in the DigSilent 

PowerFactory Version 15.2.1. Consider a PMU is installed at 

each bus, and records data with a sampling rate of 10 Hz.  

 

 
 

Fig. 2. IEEE Nine-bus System test network 
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The generators G1, G2 & G3 use both the TGOV1 steam 

turbine governor model, and the standard IEEET1 AVR 

model. The loads A, B & C are modified to incorporate a 

Gaussian noise component to mimic the real system load. 

Load A ramps up, while loads B & C remain constant. 

A. Determination of a KPCA model  

The construction of a moving window KPCA model 

involves the selection of a kernel parameter, σ, the window 
length, N, the initial number of principal components, r, and 

the delay for applying the adaptive KPCA model, l [23]. 

As recommended in reference [19], a Gaussian kernel 

function is used for model construction. From the above Nine-

bus System, a data set of 1500 samples with normal conditions 

was generated. Fig. 3(a) upper plot shows the number of non-

zero eigenvalues 𝑝 versus the kernel parameter σ. The larger 

the σ, the fewer retained KPCs are required to reconstruct the 
kernel matrix. Fig. 3(a) lower plot shows the variance captured 

versus the retained KPCs. With σ=20 for example, for window 
size N =200, only 100 out of 200 eigenvalues are non-zero  

[Fig.3(a) upper plot] and only 20 out of 100 non-zeros are 

significant, which captured about 80% variance of the kernel 

matrix [Fig. 3(a) lower plot]. Inspecting the adaptation 

performance of the proposed approach, revealed that a 

window size of N=200 was able to adapt the changes in the 

phase angle. A small window size led to an increase in the 

false detection, while a larger window size resulted in an 

increase in the missing alarms [Fig. 3(b)].  
(a)  

   
(b)  

 
 

Fig. 3. (a) Kernel parameter 𝜎 with the number of non-zero eigenvalues 𝑝 

(upper plot); variance captured with retained initial KPCs r, for σ=20 (lower 

plot); (b) adaptive Q statistic for normal data, with window size 50 (red 

dashed line), 200 (blue dashed line) and 1000 (solid line). 

 

Other parameters are set to be σ=20, initial r =20, and delay 

l =40 for a 99.9% confidence limit. 

B. Detection Results for the Simulated Nine-Bus System 

Three different classes of events are simulated for 

evaluation: Case 1 – Generator Trip; Case 2 – Islanding with 

large frequency change; and Case 3 – Islanding with small 

frequency change.  

1) Generator Trip 

 In Case 1, Generator G1 trips from 51 MW at t=500 

samples resulting in a lower steady state frequency. 

Generators G2 & G3 increase output corresponding to a 4% 

droop. Fig. 4 upper plot shows how the phase angles for bus 5, 

bus 7 & bus 9 change during the disturbance. No islands are 

created in Case 1. Fig. 4 lower plot shows the detection result 

for this event, where only 4 samples are above the 99.9% 

confidence limit at t=503-506 samples, lasting 400 ms. In 

practice, a 500 ms delay is deliberately introduced, to avoid 

false triggers. 

    

Fig. 4. Case 1 Generator G1 Trip at 500 samples 

2) Islanding with large frequency change 

Fig. 5 depicts Case 2 in which Bus 1, Bus 4 and Bus 6 

separate from the rest of the network and form an island. Line 

6-9 is already open at Bus 6 (typical for circuit breaker 

maintenance, etc.) and then Line 4-5 disconnects from Bus 5 

at t=400 samples. Line 4-5 has a Flow of 20 MW towards bus 

4 immediately prior to the island forming.  

    

Fig. 5. Case 2 Islanding with Large frequency change 
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The voltage angle of the island at Bus 4 (Fig. 5, upper right 

plot) deviates quickly from the main network and continually 

drifts due to the large difference in system frequencies. An 

island is clearly evident in both frequency and phase angle. 

Fig. 5 lower plot shows the detection result for Case 2. The Q 

statistic detects the islanding event successfully after the 403 

samples (i.e. 300 ms after the islanding event occurred). 

3) Islanding with small frequency change 

Fig. 6 depicts Case 3 in which Bus 1, Bus 4 & Bus 6 again 

separate from the rest of the network and form an island. Line 

6-9 is open at Bus 6 and Line 4-5 disconnects from Bus 5 at 

t=400 samples. In this case there is only a small flow of 

1 MW towards bus 4 immediately prior to the island forming. 

After the island forms the frequency of G2 and G3 do not 

substantially deviate from the frequency of G1 in the island. 

Fig. 6 upper right plot shows how the phase angle of the island 

does, however continually drift from the main network 

indicating a change in topology. Clearly, Fig. 6 lower left plot 

shows how examination of frequency only, proposed in [4], is 

insufficient to identify islands in this case. Specifically, the 𝑄𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦  only detects the event at the t=419-423 samples, 

i.e. 1.9 s delay after the event occurred, and only for a duration 

of 400 ms. Again, the Q statistic of the proposed approach 

detects the islanding event successfully after the 403 samples 

(i.e. 300 ms after islanding event occurred). In comparison, the 

change of angle difference approach proposed in [6], which 

sets the threshold of the change of angle difference to be 30 

degrees, can only detect the events after the 431 sample, with 

a delay of 3.1 s. It is clear that both methods proposed in [4] 

and [6] fail to detect the islanding event successfully within 2 

s to meet the IEEE standard 1547-2003[36]. 

 

Fig. 6. Case 3 Islanding with small frequency change. 

IV. INDUSTRIAL MULTIVARIATE PHASE ANGLE DATA 

A. Wide Area Phase Angle Difference Data from the GB and 

the Irish Power System 

The proposed method is demonstrated using data collected 

between 2012 and 2015, from the GB and the Irish (NI & RoI) 

power grid through the OpenPMU project [35]. The GB 

system is linked with the Irish power system via a 500 MW 

HVDC link to NI & a 500 MW HVDC link to RoI. The 

French system is linked to the GB system via a 2000 MW  
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Fig. 7.  OpenPMU layout in the GB and Irish networks. The number of PMUs 

installed at the various locations is represented by the number in the circles. 

The Green one belongs to the Irish system and the yellow one the GB system. 
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Fig. 8.  Variation of phase angle difference under normal operation: (a) across 

5 sites for the GB system; (b) across 3 sites for Irish system.  
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TABLE I 

COMPARATIVE ANALYSIS OF PHASE ANGLE BASED METHODS, CONVENTIONAL ROCOF, VECTOR SHIFT 

  

 

For the GB system, phase angle data measured from 5 sites 

were analyzed, including 𝛉1 (Southern England), 𝛉2 

(Manchester), 𝛉3, 𝛉4, 𝛉5 (Orkney Islands). This results in 10 

phase angle difference variables, 𝛉𝑗𝑖 = 𝛉𝑗 − 𝛉𝑖 , where 𝑖, 𝑗 ∈ {1, 2, … ,5}, 𝑖 ≠ 𝑗. For the Irish system (including NI and RoI), 

the analyzed data set consists of phase angles from 3 sites, 

with 𝛉6, 𝛉7  (Donegal), and 𝛉8 (QUB), which produces 3 

phase angle difference variables, 𝛉76, 𝛉86, and 𝛉87. All the 

data studied in this paper have a sampling rate of 10 Hz.  

Seven days of synchronously recorded angle data under 

normal operating conditions were arbitrarily chosen to 

illustrate the variation of the angle difference, across different 

sites. Fig. 8(a) and Fig. 8(b) represent the GB system, 

including local area I (Orkney Island) and II (Manchester, 

Southern England) and the separate Irish system, including 

local area III (Donegal), and IV (Belfast), respectively. 

B. Comparative Analysis of Angle Difference Based Methods, 

Conventional RoCoF and Vector Shift 

Before demonstrating the effectiveness of the proposed 

scheme for islanding protection, the advantages and 

disadvantages of different methodologies based on angle 

difference, conventional RoCoF and vector shift, are discussed 

with regard to their reliability, sensitivity and computational 

cost, and presented in Table I. Angle difference based 

approaches can be divided into the following categories: 
 

(1) ‘Single reference approach’: This is well established in 

the literature [6], [9], [27]. However, it is worth noting that the 

angle difference variation depends on the location of the 

chosen ‘single reference’. If the angle signals belong to the  

 

same local area, the variation of the angle difference is small  

(e.g. Fig. 8(a), the red lines 𝛉43,𝛉53, 𝛉54 representing reference 

signals at the same local area), otherwise, the variation of the 

angle difference is large (e.g. Fig. 8(a), the black lines 𝛉31,𝛉41,𝛉51,𝛉32,𝛉42,𝛉52 represent reference signals at different 

local areas). In this context, the ‘single reference approach’ 
can be further classified as a ‘local area’ or a ‘wide area’ 
based method (Table I). 

 

(2) ‘Local area multiple references approach’:  In this paper, 

the use of multiple local references within the same area is  

referred to as a ‘local area’ based ‘multiple cross reference’ 
approach. For example, in Fig. 8(a), the red lines 𝛉43,𝛉53,𝛉54 

represent reference signals at the same local area. However, 

the concept of ‘local area’ needs to be carefully examined and 
may require prior network knowledge. This is rather complex 

and deserve further investigation in a full paper. 
 

(3) ‘Wide area multiple references approach’: This refers to a 

‘multiple cross reference’, ‘wide area’ based methodology, 
where the references are across a wide area.  

 

The methodology of the proposed ‘wide area multiple  
references approach’ will be explored and examined in detail 
in the next section. More specifically, the 10 signals in Fig. 

8(a) or the 3 signals in Fig. 8(b) will be analysed 

simultaneously to provide an adaptive threshold, with the aid 

of a moving window Kernel PCA approach. It is worth 

mentioning that the traditional RoCoF and vector shift 

approaches essentially rely on local data and ignore the 

valuable information in a wider area.  

Single 

Reference 

 Local Area based Wide Area based 

Characteristic Small variation Large variation 

Advantages Low computation cost; fast operation 

Disadvantages o Relying on a single reference and ill-suited if the reference signal is problematic, e.g., nosiy signal, loss of 

communication, or also become islanded.  

o Location of reference requires careful consideration. 

o Fixed threshold results in large non-detection zone or false operation. 
 

 

 

 

 

 

 

Multiple 

References 

Characteristic Small variation Large variation 

Advantages o More robust in comparison to single reference. 

o Easy to integrate with multivariate statistical analysis, capable of handling noisy data. 

o For a fixed threshold method, have a tighter 

control limit and may be more sensitive 

compared with the wide area based approach. 

o Ultimately making use of the information available in a 

systematic wide area; more robust in comparison to single 

reference based and ‘local area’ based approach. 
o No prior network knowledge is required. 

Disadvantages o Unaware of the situation in a wider area.  

o Ill-suited if the local area is synchronously 

islanded. 

o The concept of local area needs to be carefully 

examined. 

May require prior network knowledge. 

o Significant time-varying characteristic and large variation 

magnitude requires sophisticated model. 

o High computation and communication cost. 

 

ROCOF 

 

Vector Shift 

Advantages Low computation cost; fast operation N/A 

Disadvantages o Unaware of the situation in a wider area.  

o Prone to false operation during large network 

disturbances, especially for low inertia systems 

N/A 
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V. ISLANDING DETECTION RESULTS  

A. Construction of a Moving Window KPCA Model 

As before, the construction of a moving window KPCA 

model involves the selection of a kernel parameter, σ, the 
window length, N, the initial number of principal components, 

r, and the delay for applying the adaptive KPCA model, l. 

Varying the window size from 𝑁 = 1 hour to 𝑁 = 24 hours 

suggested that 𝑁 = 2 hours could adapt to the time-varying 

characteristics in the variable interrelationships within the 

reference angle difference data set. A tradeoff between the 

window size and algorithm sensitivity has to be carefully 

balanced. Parameters of the KPCA models for both the GB 

and Irish systems are selected as shown in Table II. 

 
TABLE II 

MOVING WINDOW KPCA MODEL PARAMETERS FOR GB AND IRISH SYSTEMS 

 𝜎 𝑁 𝑟 𝑙 
GB System 400  2 hours 3 40 

Irish System 20 2 hours 2 40 

 

B. Comparison with Other Islanding Detection Methods 

In order to demonstrate the performance of the proposed 

scheme and its effectiveness, it is compared with other 

islanding detection methods, including RoCoF, angle 

difference, linear PCA, and nonlinear Kernel PCA. The angle 

difference data under normal operation conditions, shown in 

Fig. 8(a), were used for analysis. The first six-days data were 

used as reference, and the seventh-day for testing. Table III 

summarizes the false alarm rates from the five different 

methods. A 95% confidence level (CL) was used for the angle 

difference, PCA, Kernel PCA, and moving window KPCA 

models. The result implies that the false alarm rates for the 

PCA, Kernel PCA, and angle difference approach for (𝛉21) are 

significantly higher than expected (5%). This would imply 

oversensitivity  for detecting islanding. 

 
TABLE III 

FALSE ALARM RATES FOR REFERENCE DATA BY ROCOF, ANGLE DIFFERENCE, 

PCA, KERNEL PCA, MOVING WINDOW KPCA. 

Method Model Parameter 
False Alarm 

Rates 

RoCoF (over 50 cycles) threshold =0.125 Hz/second 0% 

Angle 

Difference 
𝛉21 threshold = 24  Based on 

2 �̅� rule,  �̅� 

is standard 

deviation 

18.97% 𝛉31 threshold = 44  0% 𝛉43 threshold = 7 1.12% 

PCA 𝑟 = 1 PC 74.46% 

Kernel PCA 𝜎=20,  𝑟 =5 PCs 15.14% 

Moving window KPCA As shown in Table I 8.23% 

 

C. Detection Results for Inter-connector trip and Islanding 

Events in the GB system 

On the morning of 28 September 2012, an inter-connector 

trip event occurred on the HVDC link between GB and 

France, resulting in disconnection of a 1 GW infeed. The 

resulting rate-of-change of frequency, -0.186 Hz/second 

(calculated over 50 cycles) at one particular GB site, exceeded 

the RoCoF setting of -0.125 Hz/second, and triggered the 

associated islanding protection, even though local islanding 

had not occurred. This highlights the limitations of 

conventional islanding protection techniques and the inability 

to discriminate between real islanding conditions and wide 

spread power system disturbances. This is clearly a concern 

for safety and system stability which is likely to escalate in 

future with the much anticipated greater levels of HVDC 

interconnection.  

 
(a) 

 
(b)  

 
(c)  

 
 
Fig. 9. 28 September 2012 case study: (a) Phase angle difference across 5 

different sites in the GB system; (b) detection results using moving window 

KPCA with a 95% confidence limit; (c) magnified view of detection results at 

02:48 and 18:17. 

 

The phase angle difference among 5 sites is illustrated in 

Fig. 9(a) for this event. When the GB-France inter-connector 

tripped at 02:48:38, the phase angle of an islanded site, 

relative to the main grid, drifts for approximately 5 hours. A 

similar event occurred in the evening, when the GB-France 

inter-connector tripped again at 18:17:15, and an island 

occurred and existed for more than 1 hour. The 28 September 
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2012 islanding events have been well documented in the 

literature [4],[7],[9],[33] and in National Grid publications. It 

provides a useful benchmark case study. Therefore, the event 

is presented here again, facilitating comparison with the PCA 

frequency-based islanding detection approach presented in [4]. 

Fig. 9(b) illustrates the application of the adaptive kernel 

PCA-based detection technique to the phase angle difference 

data set. The islanding events can be clearly detected by the 𝑄 

statistic from 02:48:39 and from 18:17:16. The magnified 

view in Fig. 9(c) indicates that at 02:48:39 the threshold of 

angle difference is 21 degree, while at 18:17:16 the threshold 

has adaptively changed to be 25 degree for effective islanding 

detection. The case study reveals that the proposed method is 

more reliable than conventional RoCoF which triggered 

inappropriately. Unlike the PCA method for wide-area 

frequency analysis presented in [7], the proposed method  

does not have a non-detection zone, though this comes at the 

expense of greater computation complexity. 
 

D. Detection Results for Generation Trip and Inter-connector 

Trip Events in the Irish system 

In 2012, an RoI-GB inter-connector trip event occurred at 

21:14:50, and the Irish power system frequency went from 

49.85 Hz to 50.43 Hz in 10 seconds. In the same evening, a 

generator tripped at 23:10:12, causing a low frequency event, 

with a frequency nadir of 49.85 Hz.  

The 24-hour frequency and phase angle difference 

variations across different sites in the Irish system are shown  
 

(a) 

(b) 

  
 

Fig. 10.  (a) Frequency variation indicating generation trip and interconnector 

trip events (upper plot); Phase angle difference across different sites in the 

Irish system (lower plot); (b) detection result using moving window KPCA 

with two different window sizes and confidence limits. 

in Fig. 10(a) upper plot and lower plot, respectively. Fig. 10(b) 

illustrates the detection results of the phase angle difference 

data for a window size of 10 hours with a 99.5% CL (upper 

plot), and a window size of 2 hours with a 99.9% CL (lower 

plot), respectively. It is clear in each case when the inter-

connector and generator trips occur and that for a window size 

of 𝑁 = 2 hours with a 99.9% CL incorrect triggering of 

islanding protection relays is avoided. 

The proposed method has been further examined and 

validated for other test cases randomly selected from the GB 

and Ireland power systems, as reported in Table IV. As shown, 

the sensitivity of the propose method can be adjusted by 

changing the confidence limit level.  

VI. DISCUSSION AND CONCLUSIONS 

This paper presented a novel technique for anti-islanding 

protection based on analyzing the phase angle difference from 

multiple locations simultaneously. The effectiveness of the 

proposed method using adaptive kernel PCA was verified by 

both DigSilent simulated cases and real cases recorded from 

two independent power systems. Comparative analysis 

between the proposed and existing state-of-the-art methods, 

including RoCoF, phase angle difference between two 

locations, PCA, and Kernel PCA based methods revealed that 

the proposed method has superior reliability due to the 

adaptive protection strategy. This approach provides a 

powerful tool for analyzing phase angle measurements from 
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TABLE IV 

ISLANDING DETECTION RESULSTS FOR SAMPLE TEST CASES OF ISLANDING 

AND NON-ISLANDING EVENTS FROM THE GB AND IRELAND POWER SYSTEMS 

 

 Test Cases 
Year 

/System 

Frequency 

(Hz) 

Missing/ 

False alarm rates 

1 Interconnector 

trip&islanding 

 

2012 

/GB 

 

49.97-49.6  

Missing alarm: 

 

0% & 80% for 

95% & 99.9%  

confidence limit 

2 Trip&islanding 49.93-48.7 

3 Islanding  

2014 

/GB 

49.8 vs 

50.0 

4 Islanding 49.83 vs 

50.05 

5 Islanding 49.9 vs 50 

6 High frequency  

 

2014 

/GB 

 

49.97-50.3  

False alarm: 

 

8.2% & 2.1% for 

95% & 99.9%  

confidence limit 

7 High frequency 49.9-49.7 

8 Low & high 

frequency 

49.9-49.66-

50.22 

9 High frequency 50-50.3 

10 Normal 

operation 

49.8-50.2 

11 Unit trip  

 

 

 

2012 

/Ireland 

 

50-49.5  

 

False alarm: 

 

4.4% & 1.6%  for 

95% & 99.9%  

confidence limit 

12 Unit trip 50-49.88 

13 Unit trip 50-49.85 

14 Interconnector 

trip 

49.85-50.2 

15 High & low 

frequency 

50.09-

50.27-49.76 

16 Unit trip 50.1-50.3-

49.75 

17 Normal 

operation 

49.85-50.15 

 



Submitted to IEEE Transactions on Power Delivery Special Issue on ‘Frontiers of Power System Protection’ 

 

10 

multiple locations simultaneously, enabling the development 

of a systematic, system-independent adaptive protection 

scheme for wide area anti-islanding protection. 

By combining the frequency-based method presented in our 

previous work [4], with the proposed phase angle based 

approach, the speed and reliability of islanding detection can 

be substantially improved. In particular, the non-detection 

zone issue associated with the frequency based approach is 

mitigated as phase angle difference between islanded systems 

drifts even when the frequency mismatch is very small. 

The limitation of this approach is if the phase angles in the 

islanding system are well matched with those of other sites, it 

will fail to detect islanding successfully. In addition, it would 

be useful to investigate an extended KPCA algorithm to 

improve detection robustness with respect to noise, incorrect 

measurements and outliers. This will be addressed in future 

work. 
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