
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 52, NO. 10, OCTOBER 2004 2545

Wide-Band Slot Antennas With CPW Feed Lines:
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Abstract—In microwave and millimeter wave applications, slot
antennas fed by coplanar waveguide (CPW) lines are receiving in-
creasing attention. These antennas have several useful properties,
such as a wider impedance bandwidth compared to microstrip
patch antennas, and easier integration of solid-state active de-
vices. In this paper novel CPW-fed wideband slot antennas are
presented. The design procedure of CPW-fed hybrid slot antennas
(HSA) having impedance bandwidths (VSWR 2) up to 57%
is described. Theoretical and measured results are shown. We
also describe the design procedure of a CPW-fed log-periodic
slot antenna (LPSA). The impedance matching and the radiation
characteristics of these structures were studied using a method of
moment technique. Simulated and measured results for different
dielectrics are presented.

Index Terms—Coplanar waveguide (CPW)-fed, slot antennas,
wide-band antennas.

I. INTRODUCTION

NUMEROUS advantages have been obtained by feeding
a radiating element with coplanar waveguide (CPW)

feeds; such as lower radiation leakage and less dispersion than
microstrip lines. CPW-feed lines also facilitate parallel as well
as series connection of both active and passive components
on one side of the planar substrate thereby eliminating via
hole connections. Many slot antenna elements suitable for
a CPW-fed configuration have been reported in literature.
Open-end CPW-fed microstrip antennas have been studied ex-
perimentally [1], [2]. Similar geometries of microstrip antennas
inductively and capacitively coupled to CPW have also been
investigated [3]. The conventional CPW-fed slot antenna is a
one-wavelength center-fed slot antenna (Fig. 1). Antennas of
this type have been reported in literature for various applications
and have impedance bandwidth between 15 to 20% [4]–[8].
An alternative to this design is an open-end CPW structure
[Fig. 2(a)], which can be modified to a so-called half-wave ca-
pacitively coupled slot antenna [Fig. 2(b)] giving an impedance
bandwidth of 10% to 15%. Note that this type of structure has
been modeled as a radiating element and is referred to as a
CPW-fed slotline dipole antenna in [9]. Unfortunately, no rig-
orous study of there structures has been formally documented.
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Fig. 1. CPW-fed standard one-wavelength slot antenna.

We present the characteristics of such antennas when compared
to the standard one-wave CPW-fed slot antenna. This structure
plays an important role in the design of the novel CPW-fed
hybrid slot antenna (HSA), discussed in Section III, in which a
wider impedance bandwidth is achieved. In this paper we also
present a novel design of a CPW-fed log-periodic slot antenna
(LPSA).

The paper is structured as follows. In Section II we discuss the
half-wavelength CPW-fed slot antenna. Section III introduces a
hybrid wide-band CPW-fed antenna and shows results of the
prototype that have been realized. In Section IV we introduce
the log-periodic design. All the investigated designs were sim-
ulated using the method of moments.

II. HALF-WAVE CPW-FED SLOT ANTENNA

The CPW open-end structure is shown in Fig. 2(a). A
modification to this open-end structure is presented in Fig. 2(b).
This generalized CPW open-end structure [Fig. 2(b)] is a
half-wavelength capacitively-coupled slot antenna, in contrast
to the standard one-wavelength CPW-fed slot antenna (Fig. 1).
The generalized CPW open-end structure can be considered as
a slotline resonator shorted at two ends and fed symmetrically
on its length by the two slots of the CPW feed line. This
rectangular slot has width and length
[Fig. 2(b)]. The short-end inductance increases the effective
electric length of the slot; hence, the physical length is slightly
less than one half-wavelength at the center frequency.

A generalized CPW open-end antenna was designed for a
center frequency of 4.8 GHz on a substrate of dielectric con-
stant and a thickness of 1.58 mm. A CPW line of 50
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(a)

(b)

Fig. 2(a) CPW open-end structure. (b) CPW generalized open-end structure
(dual of the CPW-fed half-wavelength dipole antenna).

TABLE I
GEOMETRY OF THE GENERALIZED OPEN-END CPW FED SLOT ANTENNA

feeds the antenna. The parameters of the antenna are shown in
Table I.

The antenna resonates at 4.8 GHz with a return loss of
dB, which agrees well with the measured values, as shown

in Fig. 3. Both the measured and calculated impedance band-
width of the antenna for a is 13%. The electric field
inside the slot has a sinusoidal distribution with a maximum
at the center, and a null at the end of the slot. The computed
and measured H and E-plane normalized radiation patterns
are plotted in Fig. 4. This slot antenna radiates symmetrically
in both upper and lower hemisphere; hence, we show only
the upper hemispherical portion of each far-field radiation
pattern. The results are in good agreement with one other.
The H-plane pattern is broad and smooth, having a half-power
beamwidth (HPBW) of the order of 80 . The E-plane pattern
is similar, except that the E-field magnitude approaches zero
at the horizon because of the infinite conducting ground plane

used in the simulation. The HPBW in this plane is around
170 . The cross-polarization in both planes is 30 dB below
co-polarization. The directivity of the antenna is computed by
[8]

(1)

where is the half power beamwidth in the E-plane, and
is the half-power beamwidth in the H-plane. Both the calculated
and measured gain in the broadside direction is 2.38 dB.

These characteristics of the generalized half-wavelength
open-end CPW-fed slot antenna are similar to the character-
istics of the standard one-wavelength CPW antenna, except
that the latter exhibits a wider impedance bandwidth. The
bandwidth of the generalized CPW open-end antenna increases
as the center conductor width of the CPW feed line increases,
as shown in Fig. 5. These results are for antennas designed for a
center frequency of 4.5 GHz on substrates of relative dielectric
constant of 10.2, 6.2, and 4.3. For all cases the bandwidth
increases from 2% for of 1 mm to around 14% for equal to
13 mm. Fig. 6 shows a similar trend for antennas designed to
resonate at a frequency of 6 GHz on the same substrates.

As the CPW center conductor strip width increases, the
width of the slot antenna also has to be increased to obtain an
optimum match. We would expect this behavior, since this struc-
ture is the dual of a fat dipole. These characteristics for general-
ized open-end CPW slot dipoles resonating at 4.8 and 6 GHz are
depicted in Fig. 7 and 8, respectively. For all designs, cross-po-
larization remains 30 dB below the co-polarization, even for the
antenna with the widest width.

III. CPW-FED HSA

The impedance bandwidth of the generalized CPW open-end
slot antenna can be increased by combining it with the standard
CPW slot antenna as shown in Fig. 9. This structure is referred
to as the HSA. The center frequencies of the two structures were
kept slightly apart to increase the bandwidth of the overall struc-
ture. The following procedure is used to design such a hybrid
CPW fed slot antenna.

• Design a standard CPW antenna at a frequency slightly
below the center frequency of the desired band (roughly
between 8% to 10% below the center frequency for higher
dielectric constants [ , and between 11% to 15%
for lower dielectric constants ].

• An output port from the standard CPW antenna is used to
feed the generalized CPW open-end antenna with equal
excitation amplitude and phase at the center frequency
with the standard CPW antenna. The separation distance
between the two antennas is given by at the center fre-
quency.

• Design a generalized CPW open-end antenna with a CPW
feedline with dimensions the same as those of the output
CPW line of the standard CPW antenna. The frequency of
this antenna should correspond to the center frequency of
the desired band.

• Optimize the widths of both structures so that an optimum
match is obtained over the entire bandwidth.

Authorized licensed use limited to: NIST Research Library. Downloaded on July 27, 2009 at 18:36 from IEEE Xplore.  Restrictions apply. 



BHOBE et al.: WIDE-BAND SLOT ANTENNAS WITH CPW FEED LINES 2547

Fig. 3. Return loss of the CPW-fed half-wavelength slot antenna. " = 4:3; h = 1:58 mm, S = 11 mm, G = 0:7 mm, W = 4:5 mm, L = 41:4 mm.

Fig. 4. E and H-plane radiation pattern of the CPW-fed half-wavelength slot antenna for " = 4:3; h = 1:58 mm, S = 11 mm, G = 0:7 mm, W = 4:5 mm,
L = 41:4 mm.

Fig. 5. Variation of the bandwidth with respect to S of the CPW-fed open-end slot antenna at 4.8 GHz for " = 4:3;6:2, and 10:2.

A. Design Examples

Several prototype wide-band antennas were designed using
the above procedure. The theoretical and measured return loss

for an antenna designed and built on 1.58 mm thick substrate of
dielectric constant 4.3 is plotted in Fig. 10. The dimensions of
the structure are shown in Table II. The standard CPW antenna
was designed to resonate 4.4 GHz, and the generalized CPW
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Fig. 6. Variation of the impedance bandwidth with respect to S of the CPW-fed open-end slot antenna at 6 GHz for " = 4:3; 6:2, and 10:2.

Fig. 7. Variation in slot width W for increasing S of the CPW open-end slot antenna at 4.8 GHz for " = 4:3;6:2, and 10:2.

Fig. 8. Variation in slot width W for increasing S of the CPW-fed open-end slot antenna at 6 GHz for " = 4:3;6:2, and 10:2.
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Fig. 9. Layout of a CPW-fed HSA.

open-end antenna at 4.8 GHz. The two antennas were then com-
bined to be fed in phase at frequency of 4.8 GHz. The overall
impedance bandwidth of the structure obtained from both simu-
lation and measurement is 49%. Radiation patterns at the center
frequency of 4.8 GHz in both E and H-plane (Fig. 11) show
beamwidths similar to a single-element standard CPW slot an-
tenna and a generalized open-end CPW antenna with a gain of
4 dB in the broadside direction. Good agreement between the
measured and calculated patterns is noted. At the adjacent fre-
quencies, the pattern degrades in the E-plane, due to the fact
that the two resonators are not fed in phase at these frequencies.
The normalized gain of the structure in the broadside direction,
both measured and calculated is shown in Fig. 12. The cross-po-
larization in both the planes is always at least 30 dB below the
co-polarization level throughout the bandwidth. The radiation
bandwidth for the wide-band antenna is 43%.

Using the same procedure, another wide-band hybrid struc-
ture was designed on a substrate with dielectric constant of 12.5.
The dimensions are shown in Table III. The center frequency of
the structure is 4.7 GHz. Fig. 13 shows measured and computed
VSWRs between 3 and 6 GHz. The bandwidth for a
is 1.4 GHz, yielding an impedance bandwidth of 33 %. The
center frequency, theoretical and measured, radiation patterns
for both principal planes are shown in Fig. 14. At this frequency,
the patterns are quite symmetrical, with very low cross-polariza-
tion levels. Again, the radiation patterns at adjacent frequencies
show degradation when compared to the patterns at 4.7 GHz.
The gain in the broadside varies from 2 to 4 dB across the band.
The normalized gain, as a function of frequency, is plotted in
Fig. 15.

IV. LPSA

A well-known approach for increasing the impedance band-
width of an antenna is to utilize a log-periodic design. A wide
bandwidth can be obtained by arraying different narrow band-
width resonators, each having its own frequency of operation.

TABLE II
DIMENSIONS OF THE WIDE BAND ANTENNA ON " = 4:3; h = 1:58 mm

TABLE III
DIMENSIONS OF THE WIDE BAND ANTENNA ON "r = 12:5; h = 1:27 mm

Various configurations of low profile, conformal antennas have
been developed [10]–[13]. Log-periodic antennas are character-
ized by two geometric quantities. The first is the geometric ratio

or scaling factor, given as

(2)

where and are the lengths of the th and the th
element, respectively. The second is the angle of divergence ,
given as

(3)

By applying the scaling factor to the first element’s dimen-
sion, we obtain the dimensions of the other elements. In order
to realize wideband performance, the scaling procedure has to
be applied to the substrate thickness. However, substrate thick-
ness cannot be periodically scaled in practice [11].

A 5-element prototype array, shown in Fig. 16, was designed
on a substrate of dielectric constant 12.5 and thickness 1.27 mm.
First the element corresponding to the highest frequency of the
desired bandwidth was designed. Different scaling factors from
0.75 to 0.95 were chosen to design the remaining elements.
The wideband nature of such a structure is achieved using a
scaling factor of 0.95; for the design is 5 . Fig. 17 illustrates
the theoretical impedance bandwidth for of 33%
and the measured one as 38%. The theoretical and measured
normalized gains of this log-periodic structure are shown in
Fig. 18. LPSA with 7, 9, and 11 elements were designed on a
substrate of dielectric constant of 2.2 and thickness of 1.57 mm.
The theoretical return losses for these antennas are shown in
Fig. 19. An impedance bandwidth of 32% is obtained for the
7-element design. As the number of elements is increased to
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Fig. 10. Theoretical and measured return loss of the CPW-fed HSA for " = 4:3 h = 1:58 mm, f = 4:8 GHz.

Fig. 11. Theoretical and measured radiation patterns of the CPW-fed HSA at the center frequency of 4.8 GHz for " = 4:3; h = 1:58 mm.

Fig. 12. Normalized gain in the broadside direction of the CPW-fed HSA as a function of frequency for " = 4:3; h = 1:58 mm, f = 4:8 GHz.
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Fig. 13. Theoretical and measured return loss for CPW-fed HSA for " = 12:5; h = 1:27 mm, f = 4:7 GHz.

Fig. 14. Theoretical and measured radiation patterns in E and H-planes of the CPW-fed HSA for " = 12:5; h = 1:27 mm, f = 4:7 GHz.

Fig. 15. Theoretical and measured normalized gains of the CPW-fed HSA for " = 12:5; h = 1:27 mm, f = 4:7 GHz.
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Fig. 16. Layout of a CPW-fed five-element LPSA.

Fig. 17. Theoretical and measured return loss of a CPW-fed 5-element LPSA for " = 10:2; h = 1:27 mm, f = 4:8 GHz.

9, the bandwidth increased to 41%. The bandwidth for the
11-element log-periodic structure is 48%. This structure suffers
from a high level of cross-polarization, typically 12 to 15 dB
below the co-polarization level.

V. CONCLUSION

In this paper, we have presented novel designs of CPW-fed
wideband slot antennas using the moment method technique.
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Fig. 18. Normalized gain of the CPW-fed LPSA for " = 10:2; h = 1:27 mm, f = 4:8 GHz.

Fig. 19. Theoretical return loss for CPW-fed 7, 9, and 11-element LPSA for " = 2:2; h = 1:6 mm.

The validity of the design procedure has been illustrated by two
design examples of the HSA structure, obtaining impedance
bandwidths up to 57%. In both examples good agreement be-
tween theory and experiment is obtained. A procedure for de-
signing a CPW-fed LPSA has also been presented. Though the
bandwidth obtained from log-periodic structures is comparable
to the bandwidths obtained from the HSA structure, it suffers
from high cross-polarization levels, typically between 12 to 15
dB below the co-polarization.
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