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Abstract

This paper describes a method for dense depth reconstruc-
tion from a small set of wide-baseline images. In a wide-
baseline setting an inherent difficulty which complicates the
stereo-correspondence problem is self-occlusion. Also, we
have to consider the possibility that image pixels in different
images, which are projections of the same point in the scene,
will have different color values due to non-Lambertian ef-
fects or discretization errors. We propose a Bayesian ap-
proach to tackle these problems. In this framework, the im-
ages are regarded as noisy measurements of an underlying
’true’ image-function. Also, the image data is considered
incomplete, in the sense that we do not know which pixels
from a particular image are occluded in the other images.
We describe an EM-algorithm, which iterates between esti-
mating values for all hidden quantities, and optimizing the
current depth estimates. The algorithm has few free param-
eters, displays a stable convergence behavior and generates
accurate depth estimates. The approach is illustrated with
several challenging real-world examples. We also show
how the algorithm can generate realistic view interpola-
tions and how it merges the information of all images into a
new, synthetic view.

1. Introduction

During the last few years more and more user-friendly solu-
tions for 3D modeling have become available. Techniques
have been developed [5] to reconstruct scenes in 3D from
video or images as the only input. The strength of these
shape-from-video techniques lies in the flexibility of the
recording, the wide variety of scenes that can be recon-
structed and the ease of texture extraction.

In this paper, we present a method for dense depth recon-
struction from a small set of wide-baseline images. Wide-
baseline stereo has become possible thanks to recent devel-
opments in the automatic extraction of local, viewpoint in-
variant features [11, 7]. It is a promising avenue for 3D
reconstruction for a number of reasons. First of all, modern
digital cameras have very high resolutions and are capable
of recording detailed, high-quality imagery. Secondly, us-
ing a limited amount of images considerably speeds up the

reconstruction process. Also, the wide-baseline setting car-
ries the promise of more accurate reconstructions, because
it generates larger, hence more reliably measurable, dispari-
ties in the images. On the other hand, there is a price to pay
for these advantages. Inherent to the wide-baseline setting
is the problem of occlusion, which means that not all parts
of the scene, which are visible in a particular image, are also
visible in the other images. Also, because of the large dif-
ferences in viewpoints, we have to consider the possibility
that image pixels in different images, which are projections
of the same point in the scene, will have different color val-
ues due to non-diffuse reflections.

Stereo matching has been studied mainly in the con-
text of small baseline stereo and for almost fronto-parallel
planes. There exist many algorithms based on a diversity
of concepts, a recent comparative study is presented in [8].
Some algorithms combine multiple views, often taken from
all around the object. Examples are voxel carving [6], photo
hulls [9] and level sets [4]. Several of these approaches use
a discretized volume and restrict possible depth values to
a predefined accuracy. This is not the case for pixel-based
PDE approaches [1, 10], which do not need 3D discretiza-
tion and compute a continuous depth for every pixel. For
large images with fine details, it is questionable if volume
based algorithms can combine reasonable speed and mem-
ory requirements with high accuracy.

Here, the wide-baseline stereo problem is addressed
from a probabilistic point of view. We primarily focus on
the occlusion part of the problem, that is to say, we assume
that we are dealing with mainly diffuse objects, and all de-
viations from this model are caught by a noise term. In the
proposed algorithm, each input image is regarded as a noisy
measurement of an unknown image irradiance or ’true’ im-
age, which is estimated as part of the optimization problem.
This image combines the information from all other views
and can be used as a texture map for the final reconstruction.
Furthermore, because the image is in essence a model for
all views, this also allows view interpolation, i.e. generate
images from a camera position which is not present in the
input set. View interpolation has recently been presented
in a Bayesian framework [3], where a prior probability is
defined by means of so-called texture priors. The princi-
ple difference with our approach is that we introduce prior
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knowledge in terms of depth smoothness. We will discuss
the merits and liabilities of both methods in section 3.

2. Problem Statement
Suppose we are given N images Ii, i=1. . .N , which asso-
ciate a 2D-coordinate x with a color value Ii(x). If we are
dealing with color images, this value is a 3-vector and for
intensity images it is a scalar. The images are taken with a
set of cameras of which we know the internal and external
calibrations. Our aim is to estimate a set of depth-maps Di

which assign a depth-value Di(x) to all pixel locations in
images Ii. These depth-maps are relative to the positions
and view directions of the cameras, and can later be inte-
grated into a single model. In this N -view stereo problem,
the information from all images will contribute to the com-
putation of each of the maps Di. In the remainder of the
paper, we will describe how to compute D1 where we take
I1 as a reference view, without loss of generality.

Given the camera calibrations and a depth value D1(x1)
for a position x1 in I1, it is easy to compute the correspond-
ing pixel location in the ith image:

λixh
i = D1(x1)KiRT

i R1K−1
1 xh

1 + KiRT
i (t1 − ti) , (1)

where Ki, Ri and ti are the camera matrix, rotation and
translation of the ith camera, respectively. Superscript h
denotes that the vector is expressed in homogeneous co-
ordinates. The 2D point xi is easily derived from (1) by
dividing out the homogeneous factor. We will denote the
overall mapping as xi = li(x1,D1(x1)), or even shorter as
xi = li(x1).

Faithful to the Bayesian philosophy, we regard each in-
put image Ii as a noisy measurement of an unknown image
irradiance I∗

i . Particularly, for the chosen reference view,
this allows us to write:

Ii(li(x1)) = I∗
1 (x1) + ε

ε ∼ N (0,Σ) ,
(2)

where ε is image noise, which is assumed to be normally
distributed with zero mean and covariance Σ. Both the irra-
diance or ’true’ image I∗

1 and Σ are unknown, and estimat-
ing them becomes part of the optimization procedure.

A major complication in a wide-baseline setting is the
occlusion problem, which arises from the fact that not all
parts of the scene, which are visible in a particular image,
are also visible in the other images due to occlusion. When
computing image correspondences, such occluded regions
must be identified and excluded from the matching proce-
dure. This will be modeled by introducing a set of visibility
maps Vi(x1), which signal whether a scene point X that
projects onto x1 in I1 is also visible in image Ii or not. Ev-
ery element of Vi(x1) is a binary random variable which is

either 1 or 0, corresponding to visibility or occlusion, re-
spectively. The set Vi are hidden variables, and their values
must be inferred from the input images. Note that, by choice
of reference, V1(x1)=1.

Estimating D1(x1) can now be formally stated as finding
those depth values which make the image correspondences
I∗

1 (x1) ⇔ Ii(li(x1)) restricted to Vi(x1) = 1, most prob-
able. By definition, l1(x1) is the identity transformation
which maps x1 back onto itself.

2.1. MAP estimation
We are now facing the hard problem of estimating the un-
known quantities θ = D1, I∗

1 and Σ given a collection of ob-
servable data I1, ..,IN . Furthermore, we have introduced
the unobservable or hidden variables V = {Vi�=1}, which
must also be inferred over the course of the optimization.
In a Bayesian framework, the optimal value for θ is the one
that maximizes the posterior probability p(θ | I1, ..,IN ).
According to Bayes’ rule, this posterior can be written as:

p(θ |I1, ..,IN ) =
∫

p(I1, ..,IN |θ,V)p(θ |V)p(V)dV
p(I1, ..,IN )

,

(3)
where we have conditioned the data likelihood and the prior
on the hidden variables V . The denominator or ’evidence’
is merely the integral of the numerator over all possible val-
ues of θ and can be ignored in the maximization problem.
Hence, we will try to optimize the numerator only. In order
to find the most probable value for θ, we need to integrate
over all possible values of V which is computationally in-
tractable. Instead, we assume that the probability density
function (PDF) of V is peaked about a single value, i.e. p(V)
is a Dirac-function centered at this value. This leads to an
Estimation-Maximization (EM) based solution, which iter-
ates between (i) estimating values for V , given the current
estimate of θ, and (ii) maximizing the posterior probability
of θ, given the current estimate of V . A more detailed de-
scription of this procedure will be given later. So, given a
current estimate V̂ for the hidden variables, we want to op-
timize:

q(θ |I1, ..,IN ) = p(I1, ..,IN |θ, V̂)p(θ | V̂) (4)

The a-posteriori probability of θ is proportional to the prod-
uct of two terms: the data-likelihood p(I1, ..,IN |θ, V̂) and
a prior p(θ | V̂), which we will call L and P , respectively.
We now discuss both terms in turn.

Under the assumption that the image noise is i.i.d. for all
pixels in all views, the data likelihood L can be written as
the product of all individual pixel probabilities:

L =
N∏

i=1

∏
x1

p
(Ii(li(x1)) |θ

)
, (5)
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where the product is restricted to those terms for which
Vi(x1) = 1. Given the current estimate of the ’true’ image
I∗

1 (x) and the noise distribution Σ, we can further specify
the likelihood to be:

L =
N∏

i=1

∏
x1

N (I∗
1 (x1) − Ii(li(x1));0,Σ

)
, (6)

where the normal distribution is defined by:

N (x;0,Σ) =
1

(2π)d/2|Σ |1/2
exp

( − 1
2
xT Σ−1x

)
. (7)

Here, the variable d in the normalization constant denotes
the dimensionality of x, for color images this will be 3 while
for intensity images d equals 1.

The formulation of an appropriate prior is slightly more
complicated. We can factorize P as the product of a depth
dependent and image dependent part as follows:

P = p
(D1 |I∗

1 ,Σ
)
p
(I∗

1 ,Σ
)

. (8)

Assuming we have no prior preference for the image related
parameters, i.e. assuming a uniform prior over I∗

1 and Σ,
this can be rewritten as:

P = p
(D1 |I∗

1 ,Σ
)
c , (9)

where c is an appropriate constant. The depth prior
p(D1 |I∗

1 ,Σ) will be modeled as an exponential density dis-
tribution of the form exp

(−R(I∗
1 ,D1)/λ

)
. Here, λ is a

parameter which controls the width of the distribution, and
R(I∗

1 ,D1) is a data-driven ’regularizer’. From such a reg-
ularizer we expect that it reflects our prior belief that the
world is essentially simple, i.e. for a locally smooth so-
lution D1 in the neighborhood of a particular point x1, its
value should approach zero, making such a solution very
likely. Vice-versa, large depth fluctuations should result in
large values for the regularizer, making such solutions less
likely. Furthermore, the regularizer should be data-driven:
if the image I∗

1 suggests a depth discontinuity, i.e. by the
presence of a high image gradient at a particular point x1, a
large depth discontinuity at x1 should not be made a-priori
unlikely. Such regularizers are commonly used in the PDE-
community, where they serve as anisotropic diffusion oper-
ators in optic flow or edge-preserving smoothing computa-
tions. In this work, we use the following regularizer [1]:

R(I∗
1 ,D1) = ∇DT

1 T (∇I∗
1 )∇D1 . (10)

Here, T (∇I∗
1 ) is a diffusion tensor defined by:

T (∇I∗
1 ) =

1
|∇I∗

1 |2 + 2ν2

(
∇I∗⊥

1 ∇I∗⊥T
1 + ν21

)
, (11)

where 1 is the identity matrix, ν is a parameter controlling
the degree of anisotropy and ∇I∗⊥

1 is the vector perpendic-
ular to ∇I∗

1 . For color images, the tensor is defined as the

iI (l (x))i I (x)*
1

*I1

Histogram

distribution

Figure 2: Visibility estimation: For the estimation of vis-
ibility, we have to evaluate (i) the noise distribution on the
value of the color-difference mi(x1) = I∗

1 (x1)−Ii(li(x1))
and (ii) the histogram on the value of I∗

1 (x1).

sum of the 3 individual color channel tensors. R(I∗
1 ,D1)

is low when ∇D1 is parallel to ∇I∗
1 , which is exactly the

desired behavior. Note that, by making the depth prior de-
pendent on I∗

1 , it implicitly also makes it dependent on the
original image data. While, strictly speaking, this violates
the Bayesian principle that priors should not be estimated
from the data, in practice it leads to more sensible solutions
than setting them arbitrarily, or using so-called conjugate
priors, whose main justification comes from computational
simplicity [12].

We can now turn back to the optimization of θ. Instead
of maximizing the posterior in (4), we minimize its negative
logarithm. This leads (up to a constant) to the following
energy formulation:

E(θ) =
1
2

N∑
i=1

∑
x1

Vi

(
mT

i Σ−1mi + log
(
(2π)

d
2 |Σ|)

)

+
1
λ

R(I∗
1 ,D1), (12)

where mi = I∗
1 (x1) − Ii(li(x1)). Interestingly, by incor-

porating a noise-model in the image formation, there is an
automatic balancing between the matching term and regu-
larization term. When the norm of Σ is high, the influence
of the matching term decreases, which leads to a higher de-
gree of regularization, i.e. smoother depth solutions. Vice-
versa, when optimizing (12) converges to a stable point, the
norm of Σ decreases, which in turn puts more emphasis on
the matching term.

2.2. An EM solution

In the previous paragraph, an energy equation w.r.t. the un-
known quantities θ was derived. This energy corresponds
to the negative logarithm of the posterior distribution of θ,
given the current estimate of the hidden variables V . Now
we will derive the EM-equations, which iterate between the
estimation of V and the minimization of E(θ).
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Figure 1: Bookshelf scene: The top row shows the 4 original input images. In this experiment, we zoomed in a virtual
camera on the first image (I1), to visualize the integration effects of I∗. The second row displays the output of the algorithm.
Here, the 1th image is the depth map D computed from the new camera position. The last 2 images show a detail of I1 and
I∗, respectively. By integrating the information of all 4 views, the discretization errors in I1 have largely disappeared.

E-step On the (k+1)th iteration, the hidden variables
Vi(x1), are replaced by their conditional expectation given
the data, where we use the current estimates θ(k) for θ. The
expected value for the visibility is given by E[Vi|I∗

1 ,Σ,D1]
≡ Pr(Vi =1|I∗

1 ,Σ,D1). According to Bayes’ rule, the lat-
ter probability can be expressed as:

Pr(Vi =1|I∗
1 ,Σ,D1) =

p(I∗
1 |Vi =1,D1,Σ)

p(I∗
1 |Vi =1,D1,Σ) + p(I∗

1 |Vi =0,D1,Σ)
, (13)

where we have assumed equal priors on the probability of
a pixel being visible or not. Given the current estimate of
θ, the PDF p(I∗

1 |Vi = 1,D1,Σ) is given by the value of
the noise distribution evaluated on the color-difference mi

between I∗
1 (x1) and Ii(li(x1)):

p(I∗
1 |Vi =1,D1,Σ) = N (

mi;0,Σ
)

. (14)

We provide a global estimate for the second PDF p(I∗
1 |Vi =

0,D1,Σ) by building a histogram of the color-values in I∗
1

which are currently invisible. This is merely the histogram
of I∗

1 where the contribution of each pixel is weighted by
(1−Vi(x1)). Note that, if a particular pixel in I∗

1 is marked
as not-visible, in the next iterations this will automatically
decrease the visibility estimates of all similarly colored pix-
els. This makes sense from a perceptual point of view, and
has a regularizing effect on the visibility maps. Both PDFs
are shown in fig.2. The update equations for Vi(x1) are:

Vi�=1 ← N (
mi;0,Σ

)

N (
mi;0,Σ

)
+ HISTI∗

1 ,(1−Vi)(I∗
1 )

. (15)

Note that visibility is computed purely photometrically, and
is in essence a measure for how well the pixel colors are ex-
plained by the model in eq.(2), given the current estimate of
the parameters θ. Obviously, geometrical information, de-
rived from the evolving depth-estimates, could be included
in the procedure. Given the available camera calibrations
and the current estimate of D1, it is possible to compute
hidden surfaces w.r.t. all cameras and set the visibilities of
the occluded parts to zero. However, for several reasons we
chose not to do so. First of all, this would significantly in-
crease the computational cost of the algorithm. Secondly,
the proposed approach generates, as will be shown in the
next section, accurate visibility maps. Finally, because ’vis-
ibility’ measures deviation from the image model, it does
not only signal geometric occlusion, but also detects out-
lier pixels. These outliers typically occur at positions with
strong specular reflections, and cause, when not excluded
from the computations, spurious 3D-effects in the final re-
construction.

M-step At the M-step, the intent is to compute values
for θ that minimize (12), given the current estimates of Vi.
This is achieved by setting the parameters θ to the appropri-
ate root of the derivative equation, ∂E(θ)/∂θ = 0. For the
image related parameters I∗

1 and Σ, a closed form expres-
sions for the roots can be derived and the update equations
are:

I∗
1 ←

∑
i Vi Ii(li)∑

i Vi
,
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Figure 3: Cityhall scene: The top row shows the 4 original input images. The bottom displays some of the output of the
algorithm, where the 1st image of the sequence (I1) was taken as the reference view. The left-most image is the depth map
D1 of I1. The last 3 images are the visibility maps V2, V3 and V4, which signal which pixels in I1 are visible in the other
images.

Σ ←
∑

i

∑
x Vi

(I∗
1 − Ii(li)

)(I∗
1 − Ii(li)

)T

∑
i

∑
x Vi

. (16)

In order to arrive at these closed-form expressions, we ig-
nored the effects of these variables on the regularization
term. This is admissible because their influence on the
depth regularizer R is small compared to their influence on
the matching term. Σ is only indirectly related to R by
way of computation of the visibility maps, which have an
effect on R via the computation of I∗

1 . The image I∗
1 has

an effect on R via its gradient, which is used to define a
quadratic norm on the depth gradient (10). Changes of I∗

1

will therefore only exert a minor influence on R. However,
for the update of the depth map D1 we are not so lucky,
because D1 strongly influences both the matching and the
regularization term. To minimize E w.r.t. D1, we there-
fore follow a gradient descent approach. By applying the
Euler-Lagrange formalism, we get:

∂E

∂D1
=

N∑
i=2

−2Vi(I∗
1 − Ii(li))T Σ−1∇Ii(li) ∂li

+
1
λ

div
(
T (∇I∗

1 )∇D1

)
. (17)

Here, we ignored the D1-dependencies of Σ and I∗
1 , which

are small compared to the D1-dependencies of Ii(li) and
the regularizer R. Image I1 is excluded from the sum, be-
cause l1(x1) is the identity transformation, i.e. changing D1

will not change the influence of I1 on the matching term.
The derivative ∂li is a 2-vector, whose expression is easily
derived from (1).

2.3. Novel view synthesis

In the previous discussion, the first image of the sequence,
I1, was taken as a reference view, and we described how to
compute D1 in the reference frame attached to this camera.
Obviously, any image from the input set could have been
chosen as a reference. Now, we will leave the set of in-
put camera’s and describe how to compute a synthetic view
from a virtual camera.

Central to the ongoing discussion is the image I∗, which
is a model for the unknown image irradiance. When we
choose one of the input images as a reference view, I∗ will
evolve towards what could have been observed from this
point of view, if image formation were perfect and all ob-
jects in the scene were well-behaved (i.e. perfect diffuse
reflectors). There is nothing that prevents us from applying
the procedure to a virtual camera position, where the hope is
that I∗ will evolve towards what would have been observed,
were a real camera put at this location.

The challenge of such novel view synthesis is that, ini-
tially, we have no certain visual information to hold on
to. Therefore, we will rely on the image correspondences
which remain from the calibration procedure. They consti-
tute a small set of initial 3D-points which pull the depth so-
lution in the right direction. To this end, we implemented an
inhomogeneous time diffusion as described in [10], which
slows down the depth evolution of the calibration points.

2.4. Algorithmic issues

On the first iteration of the EM-algorithm, we have to pro-
vide an initial estimate for the hidden variables V . When
we use the 1th image as a reference, V1 is fixed to 1.0, and
all other visibility maps are initialized with 0.5, to reflect
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Figure 4: Cityhall scene: Evolution of a detail of I∗
1 during subsequent EM iterations. Note how I∗

1 gradually sharpens,
due to the ongoing convergence of the depth estimation.

Figure 5: Cityhall scene: A rendering of the (untextured)
3D-model of the first image from the sequence.

our initial uncertainty about visibility or occlusion. When
we compute synthetic views, on the other hand, all maps are
initialized with 0.5. From the update equations (16), it can
be seen that I∗

1 is an average of all images, where the contri-
bution of each pixel is weighted by its estimated visibility.
Because, by choice of reference, V1(x1) = 1, I1 keeps on
pulling I∗

1 towards itself. In the first iterations of the algo-
rithm when the depth estimates have not yet converged, I∗

1

will be a smooth image, because pixel values which do not
correspond to the same point in the scene are averaged. This
leads to large values for Σ, which in turn puts more empha-
sis on the regularizer. This type of soft decision making is
typical for EM algorithms.

The presented algorithm has only 2 free parameters.
They are ν, which controls the degree of anisotropy in (11),
and λ, which controls the width (hence the importance) of
regularization prior. Not surprisingly, both parameters orig-
inate from our prior beliefs which we incorporated into the
equations, as such they can be considered unavoidable.

In the M-step of the algorithm, the current depth esti-
mate is refined through a gradient descent procedure. This
is implemented as a diffusion equation on D1. The search

for correct depth estimates is guided by a sparse set of ini-
tial point correspondences which originate from the camera
calibration procedure. Implicit discretization [13] was used
for the sake of computational speed. During optimization,
integral positions x1 in I∗

1 will, by applying li(), in general
not map onto integral positions in Ii, and we use bilinear in-
terpolation to sample pixel and gradient values from Ii. To
cope with large baselines between the images, a pyramidal
coarse-to-fine strategy is followed. We will end with a final
note on the convergence properties of the algorithm. Demp-
ster et al. [2] have shown that, for Maximum-Likelihood
(ML) estimation, each iteration of EM is guaranteed to in-
crease the data-likelihood, which drives the parameters θ
to a local optimum of L. In this work, we have included a
prior on the unknown variables, so for the moment we can
not make such strong claims. However, various trials on
different data sets have confirmed the robust behavior of the
proposed algorithm.

3. Experiments
We tested the proposed algorithm on 3 different data sets.
The first one is the so-called bookshelf scene [7], which
presents a case with strong wide-baseline and relatively
large image discretization effects. The second one is the
cityhall scene [10], which is a case with large depth discon-
tinuities. Finally, the third data set is the so-called monkey
scene [3], where we have to deal with mixed pixels and non-
Lambertian lighting effects.

Bookshelf scene In this experiment, we use 4 input
images of size 640x480 pixels. The images have relatively
strong discretization effects, which are particularly obvious
in the neighborhood of the printings on the books. To test
the integration effects of I∗

1 , we chose a virtual camera po-
sition which has the same direction as the camera of the first
image from the input sequence, but which is moved closer
to the scene. This allows us to visually compare the final
image model I∗ with the original image I1 at a higher pixel
rate. The results are shown in figure 1. They show that, by
integrating the information of all 4 views, the discretization
effects of the original images have largely disappeared.

Cityhall scene In this experiment, we use 4 input im-
ages of size 3072x2048 pixels. This scene presents a case
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Figure 6: Monkey scene: The left image of the top row is
the novel view which was synthesized from a virtual camera
position. The right image represents the groundtruth, i.e.
the image from the input sequence which was taken from
the chosen camera position. The bottom row shows 2 cor-
responding image regions from the novel view (left) and the
groundtruth (right). The correspondence is almost perfect
and high-frequency detail has been largely preserved. How-
ever, where foreground and background meet there are tiny
defects, due to single depth assignment.

with a complicated 3D-structure and large depth disconti-
nuities. We choose the 1th image of the sequence as the
reference image. It takes 5 minutes for the algorithm to
converge. Figure 3 shows the input images and the final
depth map D1. It also shows the visibility maps V2, V3 and
V4, which signal for every pixel of I1 whether or not the
corresponding scene point is visible in I2, I3 and I4, re-
spectively. Because visibility is computed photometrically,
all pixels which are not well explained by the image forma-
tion model are excluded from the computations. These are
not only geometrically occluded pixels, but also pixels with
a high degree of specular reflections (e.g. reflections in the
window in V4), or mixed pixels in high frequency regions
(e.g. flower beds in V2 and V3). Figure 4 displays the evolu-
tion of a detail of I∗

1 during subsequent EM-iterations. Note
that, while D1 converges to the final solution, I∗

1 gradu-
ally sharpens because corresponding pixels are brought into
alignment. Finally, textured and untextured renderings of
the 3D-model are shown in figures 5 and 7.

Monkey scene This sequence consists of 30 consecu-
tive images of size 640x480 pixels, which are taken along
a camera path around the object. We use these images to
test novel-view synthesis. The experiment goes as follows:
from the overall set, we take the camera position of one of
the images as our virtual camera. Next, 6 images, 3 from the

left (I1, I2, I3) and 3 from the right (I5, I6, I7) are chosen
as the input for our algorithm. Note that the image of the
central camera, I4, is not part of the input set. This image
will serve as groundtruth with which we compare our syn-
thesis. The result is shown in figure 6. As can be observed
from this figure, the results are very good. Noticeably, the
high-frequency details have been largely preserved, which
is not obvious given the irregular 3D-details on the surface
of the animal. The reason for this is that, when comput-
ing image correspondences, the algorithm attaches to strong
features (e.g. strong specularities on the hairs) which are lo-
cal to particular points of the scene and well preserved over
the sequence. As a result, at these positions depth is com-
puted well, and the features are not smoothed out in I∗. On
the other hand, we have difficulties in handling mixed pix-
els which combine visual information of scene points with
very different depths. The visually observable errors are
therefore mainly situated at the hull of the object. In [3] this
is solved by introducing image-based priors. This is sensi-
ble if one is interested in faithful renderings, however, such
an approach requires more input data and takes much longer
to compute.

4. Conclusion

In this paper, we presented a method for dense depth recon-
struction and view interpolation from a small set of wide-
baseline images, where the problem is addressed from a
probabilistic point of view. One of the advantages of such
an analysis is that it makes the tactile or implicit assump-
tions underlying a particular algorithm explicit. In our ap-
proach, the main assumptions are dominant diffuse reflec-
tion and i.i.d. pixel-color distributions. A smoothness reg-
ularizer was introduced to give shape to our prior beliefs
about the world. The key result of this paper is that energy
minimization, which is the cornerstone of PDE-based meth-
ods, is strongly related to MAP-estimation. More specifi-
cally, in terms of our notation, the typical PDE-functional
is a special case of eq.(12), in which I∗ is defined to be the
reference image and noise is supposed to have unit strength.

In the presented framework, images are modeled as
noisy measurements of an unknown irradiance or ’true’
image-function. This has three principal advantages. First
of all, it brings about an automatic balancing between
matching and smoothness. In early stages of the optimiza-
tion, more emphasis is put on regularization, whereas in the
convergence stage, the matching term will gain importance.
Secondly, because the true image is a learned model of im-
age irradiance, we are able to leave the input camera posi-
tions, which in turn allows to compute view interpolations.
Finally, the resulting model integrates all available image
information, and can as such be used as a texture map for
the final 3D-reconstruction.
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Figure 7: Cityhall scene: Three detail views of the textured 3D-model of the first image from the sequence. The black areas
(e.g. behind the statue in the 1st model) correspond to pixels which are not visible in the other images.

In the experiments on the monkey scene, we showed
that our algorithm can generate realistic view interpolations
from a small set of images, without loss of high frequency
information. On the other hand, we have difficulties in han-
dling mixed pixels, which combine visual information of
scene points with very different depths. To deal with this
problem, we would have to assign multiple depths to a par-
ticular pixel, and at this stage it is not obvious how that
could be done.

A strong emphasis was put on the computation of vis-
ibility. The visibility or occlusion of a particular pixel is
modeled as a mixture problem, and we introduced a set of
hidden variables, the so-called visibility maps, which are
sequentially updated in the EM algorithm. These estimates
are a measure for how well the images are explained by the
model, given the current estimates of depth, noise-level and
true image. We can therefore frame our algorithm as a (reg-
ularized) iteratively reweighted least squares algorithm. We
only used color information to estimate visibility, but other
information, e.g. derived from the evolving depth estimates,
can be easily included.

In the current version of algorithm, small deviations
from the Lambertian assumptions are caught by the noise
term. Obviously, if the objects in the scene display a high
degree of specularity, such an approach is not sufficient,
and light sources and surface properties should be explic-
itly modeled. This fits well in the EM-scheme, and will be
the object of our future research.
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