
Wide Quantum Circuit Optimization with Topology
Aware Synthesis

Mathias Weiden1, Justin Kalloor1, John Kubiatowicz1, Ed Younis2, and Costin Iancu2

1Department of Electrical Engineering and Computer Science, University of California, Berkeley
{mtweiden, jkalloor3, kubitron}@cs.berkeley.edu

2Computational Research Division, Lawrence Berkeley National Laboratory
{edyounis, cciancu}@lbl.gov

Abstract—Unitary synthesis is an optimization technique that
can achieve optimal multi-qubit gate counts while mapping
quantum circuits to restrictive qubit topologies. Because synthesis
algorithms are limited in scalability by their exponentially grow-
ing run time and memory requirements, application to circuits
wider than 5 qubits requires divide-and-conquer partitioning of
circuits into smaller components. In this work, we will explore
methods to reduce the depth (program run time) and multi-qubit
gate instruction count of wide (16-100 qubit) mapped quantum
circuits optimized with synthesis. Reducing circuit depth and gate
count directly impacts program performance and the likelihood
of successful execution for quantum circuits on parallel quantum
machines.

We present TopAS, a topology aware synthesis tool built
with the BQSKit framework that preconditions quantum circuits
before mapping. Partitioned subcircuits are optimized and fitted
to sparse qubit subtopologies in a way that balances the often
opposing demands of synthesis and mapping algorithms. This
technique can be used to reduce the depth and gate count of wide
quantum circuits mapped to the sparse qubit topologies of Google
and IBM. Compared to large scale synthesis algorithms which
focus on optimizing quantum circuits after mapping, TopAS is
able to reduce depth by an average of 35.2% and CNOT gate
count an average of 11.5% when targeting a 2D mesh topol-
ogy. When compared with traditional quantum compilers using
peephole optimization and mapping algorithms from the Qiskit
or t|ket〉 toolkits, our approach is able to provide significant
improvements in performance, reducing CNOT counts by 30.3%
and depth by 38.2% on average.

I. INTRODUCTION

Modern quantum machines are subject to high levels of
environmental noise, are difficult to control, and consist of
only tens of qubits. Quantum error correction and mitigation
are widely regarded as vital components in the development of
practical quantum computers [16]. However, because quantum
error correction is not yet realistically implementable, it is
essential that quantum programs be optimized so that run
times and operation counts are minimized, as each operation
adds additional error into the system and longer run times
increase the probability that qubits will decohere. Operations
that involve multiple qubits, such as the CNOT, iSWAP, Toffoli,
and CZ gates, are typically far more error prone and expensive
to implement compared to single qubit rotation gates [6]. For
this reason, multi-qubit gate counts can be used as a metric
for the error introduced into quantum programs.

Optimization techniques that aim to decrease the multi-qubit
gate count of quantum circuits are becoming increasingly used
and studied [12], [18], [25]. Unitary synthesis is a method of
decomposing a quantum circuit into a simpler quantum circuit
that fits some specified gate set. Synthesis seeks to produce
shorter circuits with reduced depth and gate count in order to
improve the likelihood that circuits are executed correctly.

The runtime of unitary synthesis algorithms scales expo-
nentially with the number of qubits n. For current state of the
art unitary synthesis algorithms such as the QSearch/LEAP
algorithm, only circuits up to 5 qubits are realistically decom-
posable. Larger circuits must thus be partitioned into smaller
subcircuits. After synthesizing each subcircuit independently,
subcircuits in the original circuit are replaced with their
synthesized versions.

Other than sensitivity to environmental noise, machines in
the Noisy Intermediate Scale Quantum (NISQ) era are defined
by their limited sizes and connectivities (which physical qubits
are allowed to interact). The connectivity of qubits in machines
using superconducting qubits is especially restrictive. Exam-
ples of realistic and popular superconducting qubit physical
topologies are illustrated in Figure 1.

Each vertex in a physical qubit topology graph represents
a hardware qubit. The set of edges between these hardware
qubits is the set of supported multi-qubit interactions for that
quantum machine. Quantum algorithms are typically designed
assuming that each qubit is able to interact directly with all
other qubits: logical circuits assume all to all connectivity.
In order for a quantum processor to execute these densely
connected logical circuits, a qubit mapping algorithm must
insert SWAP gates routing all interactions along edges in the
physical topology.

As quantum circuits become wider and physical topologies
remain sparse, the number of routing gates inserted by these
mapping algorithms grows quickly. It is therefore desirable
to approximate and transform wide quantum circuits using
unitary synthesis so that the total number of multi-qubit gates
and depth of quantum circuits is reduced.

In this paper, we present TopAS, a qubit topology aware
synthesis tool that applies unitary synthesis to wide quantum
circuits to reduce multi-qubit gate counts and circuit depth.
TopAS first partitions a logical quantum circuit, synthesizes

1

ar
X

iv
:2

20
6.

13
64

5v
2

 [
qu

an
t-

ph
]

 8
 A

ug
 2

02
2

(a) Mesh (b) Linear

(c) Falcon

Fig. 1: Example Physical Qubit Topologies. The 2D mesh
topology is based off quantum machines provided by Google,
while the falcon topology follows IBM’s heavy hexagonal
connectivity scheme.

each partitioned subcircuit independently, reassembles the
optimized logical circuit, then uses a mapping algorithm to
ensure that all operations are legal according to some specified
qubit topology. When targeting the mesh physical topology,
TopAS is able to produce circuits with an average of 30.1%
fewer CNOT gates than Qiskit [4] and t|ket〉 [20], and 11.5%
fewer CNOT gates than other large scale synthesis techniques
such as QGo [23]. TopAS improves upon the QGo algorithm
by optimizing before mapping and by preconditioning circuit
partitions so that the fully mapped results are less deep and
require fewer multi-qubit gates.

The remainder of this paper is structured as follows: Section
II discusses the general processes of unitary optimization,
quantum circuit partitioning, and compares tools that apply
synthesis before and after mapping. Section III presents the
design choices made for the TopAS tool. Section IV compares
the TopAS tool to other optimization and mapping techniques.
Finally, Section V provides commentary and discussion about
advancements that could further improve the performance of
wide quantum circuit synthesis tools.

II. BACKGROUND

A. Quantum Computing Basics

The fundamental unit of information in a quantum computer
is the qubit, which can be represented as a vector of the form

|ψ〉 = α

[
1
0

]
+ β

[
0
1

]
where α and β are complex numbers such that |α|2+ |β|2 = 1
and [1 0]T and [0 1]T are orthonormal basis vectors represent-
ing two distinct quantum states. The state of a quantum system
with n qubits in states |ψ1〉, |ψ2〉, . . . |ψn〉 lies in a 2n × 2n

Hilbert space, and can be represented by the tensor product

Fig. 2: How to implement a SWAP operation using a SWAP
gate, 3 CNOTs, and 3 CNOTs and 4 Hadamards.

|ψ1〉⊗|ψ2〉⊗· · ·⊗|ψn〉. This quantum state |ψ〉 can be evolved
by use of 2n × 2n unitary operators [14].

The quantum circuit model represents this unitary as a series
of quantum gates [3]. Single qubit and multi-qubit gates act
on qubits which are drawn as horizontal wires (see Figure 3).
The number of wires or qubits n is called the circuit width,
while the critical path length or depth of the circuit is T . The
depth is typically drawn as the x-axis of the circuit. For the
scope of this paper, a universal gate set of {U3, CNOT} is
assumed. Note that SWAP gates can trivially be decomposed
into 3 CNOTs as shown in Figure 2.

B. Quantum Circuit Synthesis

Given a target 2n × 2n unitary U and an error threshold
ε, a unitary synthesis algorithm builds a new circuit whose
unitary US satisfies the inequality ‖U − US‖ ≤ ε [25]. Most
recent synthesis tools base their distance metric off the Hilbert-
Schmidt inner product as it is computationally inexpensive [2],
[9], [11]:

‖U − US‖HS = Tr(U†US)

There are broadly two types of synthesis, top-down and
bottom-up. Top-down synthesis techniques are rule-based,
and aim to break down large unitaries into smaller ones.
Usually, these algorithms are quick, but the resultant circuit
depth grows exponentially, which limits their effectiveness.
Bottom-up synthesis starts with an empty circuit and gradually
adds gate until a solution is found. Techniques such as
QSearch/LEAP use an A* heuristic search to find an optimal
depth approximation for the overall unitary [21].

Furthermore, synthesis algorithms such as QSearch also
accept a coupling graph as input so that the connectivity
between qubits may be specified. The coupling graph provided
restricts the synthesis algorithm by requiring that it only place
multi-qubit gates that obey this connectivity. Doing so means
that the resulting circuit is fully mapped to the specified
coupling graph. Previous work [21] has demonstrated that for
small circuits, synthesis algorithms are able to map circuits
to restrictive qubit topologies using fewer gates than other
compiler tools such as Qiskit [4] and t|ket〉 [20]. Thus when
provided a coupling graph and a small width circuit, synthesis
is able to completely remove the need for a mapping algorithm.
Synthesis algorithms are ultimately limited by the size of the

2

solution search trees, and the size of the unitary matrices for
which the Hilbert-Schmidt distance must be calculated.

C. Quantum Circuit Fidelity and Performance

In the NISQ era, the probability that a quantum circuit is
successfully executed depends heavily on the number of multi-
qubit gates and the execution time of circuits. This is because
multi-qubit gates have a high probability of introducing noise
and because quantum states tend to decohere after a certain
amount of time [8]. Producing quantum circuit implementa-
tions with both fewer multi-qubit gates and lower depth is
therefore desirable, and signals that an implementation has a
higher chance of executing properly. For N partitions and a
synthesis threshold ε = 10−10 per partition, the total circuit
approximation error Nε is typically between 10−8-10−7 in
Hilbert-Schmidt distance for our selection of benchmarks. This
means although synthesis introduces approximation errors into
circuit implementations, the error threshold is sufficiently low
that gate and decoherence errors will dominate overall error.
For this reason, we present both CNOT gate counts and circuit
depth to evaluate circuit implementations (see Section IV).

Reducing depth is analogous to reducing the run time of a
classical program, and thus also acts as a direct measure of
circuit performance assuming a quantum machine is capable
of executing gates in parallel. Mitigating other sources of error,
such as superconducting crosstalk [17], remains an important
area of research but is not considered in our evaluation.

D. Mapping Quantum Circuits

Quantum circuits are typically designed with the assumption
that the underlying hardware that may run the circuit can
support interactions between any pair of qubits. However,
due to technological restrictions modern quantum machines
typically have very sparse inter-physical qubit connectivity.
Several examples of realistic sparse physical qubit topologies
are illustrated in Figure 1.

In order to ensure that a quantum circuit can be run
on a quantum computer, a mapping algorithm is used to
transform the circuit so that it conforms to some restricted
qubit connectivity. The process of mapping quantum circuits
to physical topologies happens in two stages: placement or
layout and routing. During the placement phase, an assignment
of logical qubits in the quantum circuit to physical qubits in
the qubit topology is created. In the next phase, the routing
phase, quantum SWAP operations are inserted to ensure that
all multi-qubit interactions specified in the quantum circuit
may take place along edges in the physical topology [12],
[18]. Throughout both phases of circuit mapping, the goal
is to minimize the number of SWAP operations inserted
into the final circuit. This is because for machines using
the {CNOT, U3} gate set, a SWAP is implemented using 3
CNOT gates (Figure 2). As quantum circuits become wider
and more densely connected, the overhead in CNOT count due
to routing SWAP gates quickly rises. However, minimizing the
number of SWAP operations is known to be NP-Hard [19], so

Fig. 3: Example quantum circuit with 5 qubits. Each qubit is
represented by a horizontal line, and the timing of the circuit
is described by the x-axis. The circuit has been partitioned
into 3 subcircuits.

most algorithms use heuristic-based approaches that are sub-
optimal, especially for wider circuits.

E. Quantum Circuit Partitioning

Given a quantum circuit and a positive integer k (called the
partition width or block size), a partitioning algorithm divides
the circuit into subcircuits (also called blocks or partitions) of
width at most k. Valid partitions consist only of gates that
act on those specific qubits in the partition. As soon as a
gate crosses a partition boundary, the partition must be cut
vertically along the violating wire. A new partition can then
be created, or more gates can be added so long as they act
only on qubits still within the partition. An example circuit
with width 3 partitions is shown in Figure 3.

For the purposes of unitary synthesis, the goal of a parti-
tioning algorithm is to form as few partitions as possible, and
thus ensure that each of these partitions is as large as possible.
Our experiments show that these large partitions tend to see a
larger reduction in CNOTs as compared to smaller partitions.
This effect is illustrated in Figure 5.

F. Post-Mapping vs. Logical Circuit Synthesis

Previous tools to apply unitary synthesis optimization to
wide quantum circuits, such as QGo [23], follow a post-
mapping synthesis flow as illustrated in Figure 4a. After
preliminary circuit optimizations, the logical circuit is mapped
to a specified physical qubit topology. This mapped quantum
circuit is then partitioned into subcircuits, each of which are
independently synthesized. The synthesized subcircuits are
then reassembled into the complete optimized and mapped
circuit.

Although post-mapping synthesis schemes are able to re-
duce depth and multi-qubit gate count, there are several
pitfalls that limit their effectiveness. First, because mapped
circuits typically contain more gates than their unmapped
counterparts, partitioning algorithms tend to form far more
partitions on mapped circuits. Because each of these partitions
must be individually synthesized, this approach is typically
more time consuming than partitioning and synthesizing the

3

logical, unmapped, circuit. Second, these methods are very
sensitive to the quality of the mapping algorithm used, as
they can only reduce inefficiencies introduced into mapped
circuits. Doing the same on the logical circuit instead allows
for mapping to be done on an (often much) shorter depth and
gate count approximate circuit. Logically synthesized circuits
typically have fewer gates, which means fewer SWAP gates
are typically needed during routing.

These points motivate the reasoning behind adopting a pre-
mapping, or logical circuit synthesis flow. The process of
logical circuit synthesis for wide quantum circuits is illustrated
in Figure 4b. After some initial quick circuit optimizations,
the logical circuit is partitioned into synthesizable subcircuits.
Each of these subcircuits is paired with a synthesis subtopol-
ogy to which the subcircuits are mapped. After each subcircuit
is synthesized, the circuit is reconstructed and finally fully
mapped to the specified physical qubit topology.

G. Synthesis Subtopology Selection

Each partitioned subcircuit must be assigned a graph GS =
(V,ES) that specifies the connectivity between qubits in the
partition. The synthesis algorithm chooses multi-qubit gates
that correspond to edges in the set ES , mapping the subcircuit
to this synthesis subtopology GS . The synthesis subtopology
selection process in logical circuit synthesis tools diverges
from that in post-mapping synthesis tools such as QGo. Since
post-mapping tools assume circuits are already routed, the
interactions between the qubits in a partition are guaranteed
to fit the physical topology. Therefore, we can choose GS to
be the subgraph induced by the physical qubits in a partition.

Logical synthesis affords more choice here as the partitioned
circuit is not yet routed to obey the restrictions of the physical
hardware. Each synthesis subtopology is a graph of order
equal to the number of qubits in that partition. The only
other requirement for synthesis subtopologies is that they
are connected. This is because if two qubits interact in the
partitioned circuit, but there is no path between them in the
synthesis subtopology, the synthesis algorithm will be unable
to find a circuit whose unitary approximates the original
subcircuit’s unitary. As synthesis algorithms are mostly limited
to operating in the 3-5 qubit partition width ranges, the number
of possible synthesis subtopologies is relatively limited.

Our experiments show that the choice of synthesis subtopol-
ogy can have drastic effects on the number of multi-qubit gates
in the optimized subcircuit, as well as on the performance of
the routing algorithm during the final mapping process. The
goal of the synthesis subtopology selection process is thus to
choose a graph GS for each partition such that the synthesis
algorithm is able to produce low gate count subcircuits and
the mapping algorithm is able to more efficiently place and
route the subcircuit. The structure of the subtopology GS

also heavily impacts the depth of synthesized subcircuits.
Depth is heavily dependent on the degrees of vertices in
the subtopology GS . Subtopology selection thus also must
carefully consider the connectivity within a partition to ensure
that the depth of the optimized circuits is minimized. Section

(a) Post-mapping synthesis optimization.

(b) Pre-mapping or logical circuit synthesis optimization.

Fig. 4: Program flow diagrams for wide circuit optimization
tools using unitary synthesis post- and pre-mapping.

III-C further details the choices made for the subtopology
selection algorithm for the TopAS tool.

III. TOPOLOGY AWARE SYNTHESIS

We present TopAS, a physical qubit topology aware synthe-
sis tool. By partitioning and synthesizing subcircuits from the
logical circuit, the number of multi-qubit operations in a quan-
tum circuit is reduced before mapping begins. The choice to
synthesize logical quantum circuits enables TopAS to produce
mapped circuits with fewer total CNOT gates than many other
optimization tools. TopAS selects synthesis subtopologies for

4

partitioned subcircuits that are sparse and easily embedded
within the underlying physical qubit topology on which the
circuit will be run. Synthesis subtopology selection is done in
such a way that reduces the number of operations needed for
both computation and mapping.

The TopAS tool uses a scan partitioning strategy introduced
by the authors of QGo [23]. The synthesis algorithm used
is the QSearch/LEAP algorithm [21]. Working versions of
the partitioning and synthesis algorithms are provided by the
BQSKit tool [24]. A flowchart of the TopAS tool’s execution
is displayed in Figure 4b.

A. Logical Quantum Circuit Partitioning

The partitioning algorithm views the input circuit as a two
dimensional grid, where qubits are represented by rows, and
time steps in the circuit are represented by columns. Each
element of the grid either contains a quantum operation or is
empty. The width of this grid is n, the number of qubits in the
circuit. The length is T , the depth or critical path length of
the circuit. The scan partitioner algorithm sequentially scans
through all as yet unpartitioned gates in a circuit, examines
each possible grouping of k or fewer qubits, and picks the
one that lends the largest partition. The scan partitioner tends
to form few partitions, and often forms partitions with a
high average number of multi-qubit gates. As mentioned in
Section II-E and illustrated in Figure 5, subcircuits with a large
number of multi-qubit gates tend to yield the most reduction
by synthesis. The distribution of partitions produced by the
scan partitioning algorithm for a subset of benchmarks is also
shown in Figure 5.

Note that partitions consist only of subcircuits with inter-
acting qubits. A circuit logical connectivity graph is used to
enforce this policy. This graph has a vertex for each qubit
in the circuit. The presence of an edge (u, v) indicates that
there is a multi-qubit gate between qubits u and v at some
point in the circuit. Given a partition width of k, candidate
partitions consist of all connected subgraphs in this circuit
logical connectivity graph of order at most k. In the worst
case, a circuit where all qubits interact with each other, there
are O

(
n
k

)
candidate partitions.

B. Synthesizing Logical Quantum Circuits

As logical circuits do not contain gates needed to con-
form to some restrictive physical topology, they tend to be
shorter than their mapped counterparts. Shorter circuits tend
to yield fewer partitioned subcircuits, as there are fewer
total gates to partition. Partitioning circuits before mapping
thus conserves the number of subcircuits produced by the
partitioning algorithm. As fewer subcircuits must be indepen-
dently synthesized in this case, less time is often required to
optimize circuits that are partitioned before mapping. Circuits
with fewer partitions also tend to have more accurate output
circuits. Each partitioned circuit is synthesized independently,
so each synthesis procedure will produce a mapped circuit
whose unitary representation will be within some Hilbert-
Schmidt norm distance ε away from the target unitary. The

Fig. 5: Partition frequency and mean normalized partition size
after optimization as a function of CNOT count. Normalized
partition size is calculated using the number of CNOTs in
the synthesized subcircuit divided by CNOTs in the orig-
inal partition. A value less than 1 indicates that synthesis
reduces those partitions. The partitioner predominately forms
subcircuits with 6-11 CNOTs, but is also able to form many
subcircuits with 16-17 CNOTs.

authors of [15] showed that the total error in a circuit that
consists of synthesized subcircuits is bounded by the sum of
each subcircuit’s distance. If a circuit is partitioned into N
subcircuits, because each partition is synthesized to within a
distance ε, the total distance of the partitioned and synthesized
circuit is bounded by Nε. Decreasing N , as is done in the
logical partitioning case, thus improves the accuracy of the
synthesized circuit. Results comparing the upper bound on
total circuit errors for several synthesized benchmarks are
shown in Table I.

C. Topology Aware Subtopology Selection

The main contribution of this work is a subtopology se-
lection strategy and compilation workflow built around it.
It allows for partitioned subcircuits to be preconditioned in
such a way that balances the opposing demands of synthesis
and mapping. As discussed in Section II-G, the goal of the
subtopology selection process is to assign a graph GS to each
partitioned subcircuit. The vertices in GS represent qubits in
the subcircuit, while edges describe the allowed interactions
between qubits in the output synthesized subcircuit.

Ideally, a quantum circuit is synthesized so that it uses
only edges present in the physical topology for multi-qubit
interactions. Before mapping, the placement and thus al-
lowed interactions between qubits is not known. However,
synthesizing densely connected subcircuits to sparse graph
structures can decrease the need for SWAP operations during
the mapping phase. Limiting the set of synthesis subtopologies
and carefully selecting sparse subtopologies for each subcircuit

5

Fig. 6: The number of SWAP operations within partitions
synthesized to different synthesis subtopologies for the mesh,
falcon, and linear physical topologies. Simpler subtopologies
result in fewer SWAP, but may produce circuits with more
CNOTs.

(a) Line (b) Star

(c) Ring (d) Kite

(e) Theta (f) Complete

Fig. 7: Possible order 4 synthesis subtopologies. The graphs
a, b, and c are embedded within the mesh physical topology.
Graphs d, e, and f are not. Only a and b are embedded in the
falcon topology, while a is the only embedded subgraph of the
linear topology.

allows us to balance the opposing demands of the routing
and synthesis algorithms, leading to fewer total CNOT gates.
Figure 6 shows the average number of internal SWAP gates
per CNOT for a variety of synthesis subtopologies targeting
three physical topologies. Internal SWAP gates are routing
operations that are inserted between the first and last gate of
a partition. If each subcircuit is synthesized to an embedded
subgraph of the physical topology and is executed atomically,
there is a solution to the mapping problem that requires
zero SWAP operations on the subcircuit’s qubits during its

Fig. 8: Neighbor aware subtopology selection encourages the
reuse of edges between sequentially executing partitions.

execution. However, because routing often disrupts the exe-
cution of subcircuits, it is unlikely for there to be exactly
zero internal SWAP operations even for subtopologies that
are embedded within the physical topology. The number of
internal SWAP gates observed for a partition is normalized by
the number of CNOTs in the partition. This allows us to more
effectively compare subcircuits of various sizes. Typically,
sparser subtopologies require more gates for computation than
denser subtopologies, but they require fewer SWAP gates
during mapping.

The TopAS tool restricts the set of graphs from which to
choose synthesis subtopologies to the set of connected graphs
that are embedded in the target physical topology. TopAS
uses a partition width of 4 qubits. The order 4 candidate
subtopologies are illustrated in Figure 7.

QSearch, the synthesis algorithm at the core of the TopAS
optimization flow, aims to synthesize circuits using as few
multi-qubit gates as possible. Often times, circuit depth is
minimized as a consequence of this goal but is not the primary
metric of success. Subtopology selection is the only variable
that TopAS uses to reduce circuit depth directly. For certain
subtopologies choices, circuits produced tend to contain many
gates that must be executed sequentially. The most significant
contributor to this property is the possible graph matchings
present in a given subtopology. In topologies such as the
star (Figure 7b), any choice of a single edge is a maximum
matching. This means that for the star subtopology, no two
CNOTs can be executed in parallel. Other subtopologies like
the line and ring (Figure 7a and 7c) have larger maximum
matchings, and thus allow more parallelism within synthe-
sized subcircuits. Although they typically require more routing
gates, subtopologies containing more edges tend to allow for
lower depth circuits.

The qubit interactions within a partitioned subcircuit can be
described using a weighted undirected graph GL = (V,EL).
For each multi-qubit interaction that occurs between qubits
k1, k2 ∈ [K] in the subcircuit, there is an edge (k1, k2, w) ∈
EL, where the weight w corresponds to the number of times
that interaction occurs. Synthesis algorithms such as QSearch
allow for the connectivity between qubits to be specified by an
unweighted undirected graph GS = (V,ES). For a maximum
partition size of k, V = [k] and ES ⊆ V × V .

6

Our experiments indicate that synthesis is best able to re-
duce the multi-qubit gate count of subcircuits when the logical
connectivities and synthesis subtopologies match. A kernel
function [7] is used to quantify the similarity between the
graphs. The scoring function K : GL×GS → [0, 1] examines
each edge in the synthesis subtopology GS and logical con-
nectivity GL. From the edges, two vectors vL, vP ∈ Rk(k−1)/2

are constructed. The vector vP is simply an indicator vector,
with a 1 at each element that corresponds to a present edge
in GS . Element i of vL contains the weight w associated with
edge i in GL. The normalized inner product

similarity(vP , vL) =
vTP vL∑
i

vL(i)

is then returned to quantify the similarity between the graphs.
For each partition, all k! permutations of qubit labels are
evaluated for each of the candidate synthesis subtopologies.
The permuted subtopology with the highest kernel function
score is considered the best candidate subtopology for the
purposes of producing the smallest output subcircuit. The
effectiveness of the similarity kernel function was evaluated
by synthesizing partitions of width 4 to all order 4 subgraphs
embedded within the mesh physical topology (Figures 7a, 7b,
and 7c). In this scenario, the similarity function was able to
identify the subtopology that would produce the synthesized
subcircuits with the fewest CNOT gates 89% of the time.

If multiple subtopologies have the same similarity score,
that with the fewest edges is preferred. In order favor sparse
subtopologies, each similarity is multiplied by a bias factor.
The biases that produced the best results for the mesh topology
were 1.0 (line), 1.0 (star), and 0.8 (ring).

When selecting subtopologies, TopAS also considers the
impact of subtopology choice for the immediately preceding
and succeeding partitions. Although partitions are synthesized
separately, they are not executed in isolation. If a partition
assumes a physical edge exists between two qubits, and the
partition immediately following also assumes this physical
edge exists, fewer total SWAPs may be needed between the
execution of these two partitions. The TopAS tool therefore
checks each subcircuit’s neighboring partitions for qubits that
are shared. If interactions from the neighboring partitions
occur between shared qubits, they are added as edges to the
current partition’s logical connectivity graph GL. Interactions
from neighboring partitions carry the same weight as inter-
actions within a partition, even if the qubits in the neighbor
partitions do not interact directly within the partition itself.
This policy was chosen as larger amounts of edge sharing
between partitions greatly reduced the final CNOT count of
optimized circuits. TopAS uses this neighbor aware version
of the logical connectivity graph in the computation of the
similarity function. An example of two sequentially executing
partitions with subtopologies that have been selected to reuse
an edge is shown in Figure 8.

Algorithm 1 Subtopology Selection
Input: graph GL, set of graphs Gneighbors, bias function
Output: graph GS

for all graphs Gn in Gneighbors do
if shared edge in Gn and in GL then
Goverlap ← shared edge

end if
end for
vL ← edge weight vector for Goverlap ∪GL

candidates← order ≤ 4 subgraphs in physical topology
for all graphs GP in candidates do
vP ← indicator vector for GP

score =similarity(vP , vL)
if bias(GP)× score > high score then
high score← bias(GP)× score
GS ← GP

end if
end for
return GS

D. Partition Replacement and Mapping

As indicated in Figure 5, it is sometimes the case that syn-
thesized subcircuits grow instead of reduce in size. When this
happens, TopAS considers replacing the synthesized subcircuit
with the original subcircuit. Always choosing the logical
subcircuit when it has fewer CNOTs can be problematic in
the final routing pass, as the original subcircuit may be more
difficult to route than the synthesized version. Thus, TopAS
considers differences in both the number of CNOTs and logical
connectivities of the two subcircuits. TopAS adopts a policy
of replacing the synthesized subcircuit with the original if it
shows more than 30% (empirically determined best threshold)
fewer CNOTs or has a more routable logical connectivity. The
routability of a subcircuit’s logical connectivity is determined
by the average number of of internal SWAP operations per
CNOT for a given physical topology (see Figure 6).

After subtopology selection and synthesis take place, TopAS
maps the synthesized quantum circuit to a physical topology.
For placement and routing, the SABRE Layout and SABRE
Swap [12] mapping algorithms are used.

IV. RESULTS

The performance of TopAS is compared to other optimiza-
tion and mapping tools by measuring the depth and total
CNOT operation counts of optimized and mapped circuits.
Here, we compare TopAS (as described in Section III) to
the Qiskit, t|ket〉, and QGo tools. In all cases, circuits are
optimized using t|ket〉’s full peephole optimization. After-
wards, either Qiskit or t|ket〉 are used to map the quantum
circuit to the specified physical topology. The QGo tool was
used to optimize either the Qiskit or t|ket〉 mapped circuits,
whichever contained fewer CNOT operations. The synthesis
tool used is the QSearch/LEAP algorithm [21]. The original
QGo algorithm was re-implemented using the partitioning and
synthesis algorithms provided by the BQSKit toolkit [24].

7

Total CNOTs per
Mapping Topology Error Partition

QGo Falcon 1.38E-08 15.3
mult 16 QGo Mesh 1.51E-08 12.9

TopAS - 7.20E-09 15.4
QGo Falcon 1.17E-07 12.5

mult 32 QGo Mesh 1.15E-07 11.7
TopAS - 4.96E-08 15.1
QGo Falcon 5.83E-08 7.3

qft 64 QGo Mesh 5.18E-08 7.8
TopAS - 2.32E-08 8.1
QGo Falcon 8.09E-08 8.1

qft 100 QGo Mesh 8.72E-08 7.4
TopAS - 3.85E-08 8.0
QGo Falcon 9.09E-08 6.5

add 65 QGo Mesh 7.02E-08 7.3
TopAS 3.53E-08 7.0
QGo Falcon 1.26E-07 11.8

add 101 QGo Mesh 1.23E-07 9.4
TopAS - 6.18E-08 7.0
QGo Falcon 1.42E-07 7.61

tfim 40 QGo Mesh 1.57E-07 6.3
TopAS - 1.05E-07 8.1
QGo Falcon 5.17E-07 8.4

tfim 100 QGo Mesh 4.71E-07 7.7
TopAS - 2.70E-07 8.0
QGo Falcon 1.83E-07 8.0

hubbard 18 QGo Mesh 1.60E-07 6.5
TopAS 9.56E-08 3.7
QGo Falcon 3.86E-07 10.3

shor 26 QGo Mesh 3.32E-07 11.6
TopAS - 1.52E-07 13.9

TABLE I: Upper bound of total circuit error (sum of Hilbert-
Schmidt distances per partition) and average CNOTs per par-
tition for each benchmark. A synthesis threshold of ε = 10−10

was used for both QGo and TopAS.

Performance was evaluated using a variety of wide quantum
circuit benchmarks. The SupermarQ benchmark suite [22]
proposed a volume metric to describe a benchmark suite’s di-
versity. Our selection of benchmarks has a SupermarQ volume
of 7.46 × 10−6. This small selection of circuits outperforms
many other benchmark suites in SupermarQ volume due to its
focus on real algorithms. Our suite’s SupermarQ volume score
is limited by the fact that none of our benchmarks include
intermediate measurements. This decision was made as the
primary focus in the evaluation of synthesis based optimization
tools is purely depth and multi-qubit gate count reduction.
Each benchmark assumes qubits are measured after the final
program gate is executed.

The qft and shor circuits were generated using Qiskit. The
add and mult circuits were generated with [10]. The hubbard
benchmark was generated with help from [13]. TFIM circuits
were generated using the ArQtic tool [1]. Benchmarks are
labeled so that the number following the benchmark name
indicates the number of qubits in the circuit. These bench-
marks were selected as they were found to be relatively easily

generated, and represent a variety of wide circuits that may
soon be executable on quantum machines. Results for the QGo
and TopAS tools were collected using NERSC’s Perlmutter
supercomputer.

Figures 9 and 10 show the relative CNOT gate count
and depth of circuits optimized and mapped to the mesh
and falcon physical topologies illustrated in Figure 1. The
CNOT gate count and depth are normalized by the results
obtained for circuits optimized then mapped using Qiskit’s
SABRE mapping algorithms. A synthesis threshold distance
of ε = 1× 10−10 and a partition width of k = 4 was used for
both QGo and TopAS.

On average, the TopAS tool is able to reduce CNOT
count compared to Qiskit and t|ket〉 by 35.9% and 24.3%
respectively when targeting a mesh physical topology. For
the falcon physical topology, TopAS outperforms Qiskit and
t|ket〉 by an average of 33.4% and 19.1% respectively. For
the tfim 100 circuit, TopAS outperforms Qiskit by 62.1%
and t|ket〉 by 53.1%. For the shor 26 benchmark, TopAS
outperforms Qiskit by 38.7% and t|ket〉 by 30.8%. Reductions
in circuit depth are even greater, averaging 38.6% and 37.6%
lower compared to Qiskit and t|ket〉 across all benchmarks.

In most cases, the TopAS tool is able to produce circuits
with fewer CNOTs and much lower depth than the QGo tool,
especially for the mesh physical topology. On average, TopAS
outperforms QGo by 11.5% in CNOT count and 34.3% in
depth when targeting the mesh physical topology. For the
falcon physical topology, TopAS only outperforms QGo by
an average of 0.8% in CNOT count, but maintains a 37.3%
average depth reduction.

QGo optimized circuits always reduce CNOT count com-
pared to unsynthesized input circuits, but sometimes lead to
deeper circuits. This is because when synthesizing pure SWAP
gates, the QSearch algorithm tends to find the more expensive
depth 5 implementation illustrated in Figure 2. TopAS is able
to avoid this pitfall by synthesizing partitions that do not
contain SWAP gates, thus resulting in much reduced circuit
depths.

As discussed in Section III-B, working on the logical,
unmapped, quantum circuit also allows TopAS to form fewer
partitions compared to QGo. This results lower upper bounds
on the amount of synthesis error for each benchmark. Syn-
thesis error upper bounds are given in Table I. This table
also lists the average number of CNOTs per partition for all
benchmarks.

TopAS is able to outperform QGo in CNOT count for all
benchmarks when targeting the mesh physical topology except
for the hubbard 18 circuit benchmark. The discrepancy in
performance for this benchmark is primarily explained by the
average size of partitions formed. Table I shows that for this
circuit, TopAS is only able to form partitions with an average
of 3.7 CNOT gates. Figure 5 illustrates that typically, partitions
with this number of CNOTs tend not to reduce. Partitions
formed by QGo tend to include SWAP gates, which greatly
increases the number of CNOTs per partition (6.5 CNOT
gates on average for hubbard 18). For the hubbard 18 circuit,

8

Fig. 9: Comparison of relative CNOT count (top) and depth (bottom) for circuits mapped to the Google style mesh physical
topology. CNOT count and depth is shown relative to optimized circuits mapped using Qiskit’s SABRE Swap algorithm. Lower
depth corresponds directly to better program runtimes on machines with parallel gate execution, lower depth and CNOT count
correspond to improved execution probability on noisy machines.

TopAS’s logical partitioning was simply not able to form
few enough partitions to compensate for the small average
number of CNOT gates per partition. Using a larger partition
width, or a partitioning algorithm that is able to produce larger
partitions on average would likely improve the performance of
TopAS for the hubbard benchmark. This point also partially
explains the drop in TopAS’ performance compared to QGo
for benchmarks targeting the falcon physical topology.

The scalability of the TopAS tool compared to Qiskit, t|ket〉,
and QGo is illustrated in Figure 11. Each tool was used to
optimize and map QFT and TFIM circuits with widths of 10-
100 qubits. Despite performing poorly in comparison at small
circuit widths, TopAS maintains an advantage compared to
other optimization tools as the circuit width increases. In the
case of certain circuits such as the TFIM circuits, TopAS’
advantage increases with circuit width.

V. DISCUSSION

TopAS is able to produce circuits with fewer multi-qubit
gates and lower depth by partitioning logical quantum circuits

and matching subcircuits with sparse qubit subtopologies in
such a way that balances the demands of synthesis and map-
ping algorithms. Partitioning and using unitary synthesis to
optimize the logical quantum circuit allows for smaller circuits
to be passed to mapping algorithms. In the case of the tfim 40
and tfim 100 benchmarks, the logical connectivity graphs are
simply linear path graphs of order 40 and 100 respectively.
These circuits have implementations that do not require any
SWAP operations, as they are directly embeddable within
the mesh physical topology. However, mapping algorithms
implemented in Qiskit and t|ket〉 are unable to find these
placements, likely due to the large widths and depths of
these circuits. By optimizing the logical quantum circuits,
TopAS is able shorten circuits in such a way that allows
for these mapping algorithms to find better placements. This
advantage in mapping performance is maintained in the falcon
topology case, where the TFIM circuits are no longer directly
embeddable in the physical topology.

Using synthesis to map partitions to restrictive subtopolo-
gies also improves the performance of the mapping algorithm.

9

Fig. 10: Comparison of relative CNOT count (top) and depth (bottom) for circuits mapped to the IBM style falcon physical
topology. CNOT count and depth is shown relative to optimized circuits mapped using Qiskit’s SABRE Swap algorithm. Lower
depth corresponds directly to better program runtimes on machines with parallel gate execution, lower depth and CNOT count
correspond to improved execution probability on noisy machines.

Mapping to subtopologies that are easily embedded within the
physical topology means that fewer SWAPs are needed within
the execution time of partitions. This effect is illustrated in Fig-
ure 6. The neighbor aware subtopology selection mechanism
illustrated in Figure 8 helps to maximize the reuse of edges
in the physical topology between the execution of partitions.
The combination of these design choices allows for TopAS to
outperform other optimization and mapping tools.

Section IV demonstrates how TopAS is able to reduce both
CNOT count and circuit depth significantly compared to other
tools. These metrics both play a major role in the likelihood
that a circuit will be executed correctly. The amount of error
due to synthesis (shown in Table I) is far lower than that
introduced by gate noise and decoherence. In total, optimizing
wide circuits with TopAS therefore greatly increases circuit
fidelity compared to other tools.

Because mapping is done after partitioning and synthesis
in the TopAS program flow, it is not limited to using a
single mapping algorithm. We observed that although TopAS
synthesizes partitions to subtopologies embedded within the

physical topology, it is often the case that the mapping
algorithm disrupts the execution of synthesized subcircuits.
When partitions are executed atomically, there is a solution
to the routing problem such that no SWAP gates are needed
during the partition’s execution. A mapping algorithm that is
aware of higher level structures than the primitive gate set
may therefore further improve the performance of TopAS.
Such a tool was put forth by the authors of [5], but it is
only able to consider Toffoli gates instead of arbitrary k qubit
unitary operations. A full partition aware mapping algorithm
is therefore likely necessary to reap the full benefits of this
strategy.

Although TopAS’ set of valid synthesis subtopologies only
includes graphs that are embedded within the physical topol-
ogy, it does not consider whether a set of subtopologies can
be packed into the physical topology simultaneously. This
fact explains the discrepancy in TopAS’ performance between
the mesh and the falcon physical topologies. For example,
although the star subtopology is embedded within the falcon
physical topology, far fewer star graphs can be packed into

10

Fig. 11: Number of CNOTs in QFT (top) and TFIM (bottom)
circuits mapped to the 2D mesh physical topology as a
function of circuit width.

the falcon topology than the mesh topology. A subtopology
selection process that more precisely weighs the frequency
with which subgraphs appear in a physical topology would
thus likely further improve the performance of TopAS.

The two primary factors that limit the scalability of TopAS
are the runtime of the partitioning algorithm used and the
runtime of the synthesis algorithm used. In the case where
qubits in the logical circuit interact with all other qubits, the
runtime of the scan partitioner is O

(
n
k

)
, where n is the circuit

width and k is the partition width. This poor scaling limited
the width of benchmark circuits tested to 100 qubits. Other
partitioning schemes capable of forming large partitions on
average are therefore needed to optimize larger quantum cir-
cuits with TopAS. Algorithms such as QFAST [25] effectively
increase the width of circuits that can be optimized, but in our
experience tend not to perform as well as QSearch/LEAP in
the range of 1-25 CNOT gates. Increasing the partition width
tends to increase the number of CNOTs per partition, which
may provide more opportunity for improvement. Increasing

the partition width also has the effect of adding more graphs
to the set of valid synthesis subtopologies. Supposing that the
optimization algorithm scales, this may further improve the
performance of TopAS by allowing for a greater amount of
mapping to be handled by the optimization algorithm.

As shown in Figure 11, the number of CNOTs in QFT
circuits optimized with the TopAS tool grows roughly linearly
with the number of qubits in the range shown. As the QFT is
a common component of more complex quantum algorithms,
the scaling of this circuit is of particular importance. With a
width of 100 qubits, the TopAS optimized QFT circuit contains
23.9% and 11.7% fewer CNOTs than the Qiskit and t|ket〉
optimized and mapped circuits. Notably, the rate of increase
in CNOTs per qubit in the QFT circuit seems to grow more
slowly for TopAS than for Qiskit and t|ket〉. Because QGo
only optimizes circuits that have already been mapped by these
tools, we expect that TopAS’ performance advantage over
QGo can improve at larger (100-1000 qubit) circuit widths.
This effect can clearly be seen in the TFIM circuit scaling
results.

Although out of the scope for the current paper, an obvious
next question would be to see what happens when TopAS
is combined with QGo. We have clearly shown that a single
application of TopAS’ logical circuit synthesis almost always
outperforms a single round of QGo optimization. When ap-
plying both TopAS and QGo to the hubbard 18 benchmark
mapped to the 2D mesh physical topology (a benchmark which
TopAS fails to reduce CNOT count more than QGo for the
mesh topology), CNOT count was reduced by approximately
5% compared to QGo alone. Thus, combining multiple lev-
els of optimization has the potential to further improve the
performance of quantum circuits.

VI. CONCLUSION

In this work, we have presented TopAS, a topology aware
synthesis tool that optimizes wide quantum circuits. By op-
timizing quantum circuits using unitary synthesis before they
are mapped to restrictive qubit topologies, TopAS precondi-
tions circuits so that they are minimized by synthesis and made
easier to route by mapping algorithms. TopAS is able to reduce
CNOT count and circuit depth, and thus improves circuit
performance, compared to other state of the art synthesis based
optimization tools targeting wide circuit optimization. TopAS
also outperforms the optimization and mapping frameworks
provided by Qiskit and t|ket〉. Because CNOT count and cir-
cuit depth are significantly reduced, the likelihood that circuits
optimized with TopAS execute successfully on noisy, realis-
tic, near term qubit topologies is greatly increased. Further
reduction is possible on TopAS optimized circuits by applying
successive rounds of post-mapping circuit optimization.

ACKNOWLEDGEMENTS

This work was supported by the DOE under contract DE-
5AC02-05CH11231 through the Office of Advanced Scientific
Computing Research (ASCR) Quantum Algorithms Team and
Accelerated Research in Quantum Computing programs, and

11

by the NSF Challenge Institute for Quantum Computation
(CIQC) program under award OMA-2016245.

REFERENCES

[1] L. Bassman, C. Powers, and W. A. de Jong, “ArQTiC: A full-stack
software package for simulating materials on quantum computers,”
2021. [Online]. Available: http://arxiv.org/abs/2106.04749

[2] M. G. Davis, E. Smith, A. Tudor, K. Sen, I. Siddiqi, and C. Iancu,
“Towards Optimal Topology Aware Quantum Circuit Synthesis,” in 2020
IEEE International Conference on Quantum Computing and Engineer-
ing (QCE). IEEE, 2020, pp. 223–234.

[3] D. E. Deutsch, “Quantum Computational Networks,” Proceedings of the
Royal Society of London. A. Mathematical and Physical Sciences, vol.
425, no. 1868, pp. 73–90, 1989.

[4] Q. Developers, “Qiskit: An Open-source Framework for Quantum
Computing,” Jan. 2019. [Online]. Available: https://doi.org/10.5281/
zenodo.2562111

[5] C. Duckering, J. M. Baker, A. Litteken, and F. T. Chong, “Orchestrated
trios: compiling for efficient communication in quantum programs
with 3-qubit gates,” in Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems. ACM, apr 2021. [Online]. Available:
https://doi.org/10.1145%2F3445814.3446718

[6] J. Gambetta and S. Sheldon, “Cramming more power into a
quantum device,” IBM Research Blog, Mar. 2019. [Online]. Available:
https://www.ibm.com/blogs/research/2019/03/power-quantum-device/

[7] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods
in machine learning,” vol. 36, no. 3, 2008. [Online]. Available:
http://arxiv.org/abs/math/0701907

[8] Kandala et al., “Error Mitigation Extends the Computational Reach of
a Noisy Quantum Processor,” Nature, vol. 567, no. 7749, 2019.

[9] S. Khatri, R. LaRose, A. Poremba, L. Cincio, A. T. Sornborger, and
P. J. Coles, “Quantum-Assisted Quantum Compiling,” Quantum, vol. 3,
p. 140, 2019.

[10] H. Khetawat, M. Hassan, A. Neri, A. Rodrigues, and T. Wong, “QArith-
metic.” [Online]. Available: https://github.com/hkhetawat/QArithmetic

[11] V. Kliuchnikov, A. Bocharov, and K. M. Svore, “Asymptotically Optimal
Topological Quantum Compiling,” Physical review letters, vol. 112,
no. 14, p. 140504, 2014.

[12] G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem
for nisq-era quantum devices,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 1001–1014.

[13] J. R. McClean, K. J. Sung, I. D. Kivlichan, Y. Cao, C. Dai, E. S. Fried,
C. Gidney, B. Gimby, P. Gokhale, T. Häner, T. Hardikar, V. Havlı́ček,
O. Higgott, C. Huang, J. Izaac, Z. Jiang, X. Liu, S. McArdle, M. Neeley,
T. O’Brien, B. O’Gorman, I. Ozfidan, M. D. Radin, J. Romero, N. Rubin,
N. P. D. Sawaya, K. Setia, S. Sim, D. S. Steiger, M. Steudtner, Q. Sun,
W. Sun, D. Wang, F. Zhang, and R. Babbush, “OpenFermion: The
electronic structure package for quantum computers,” 2019. [Online].
Available: http://arxiv.org/abs/1710.07629

[14] M. A. Nielsen and I. Chuang, “Quantum computation and quantum
information,” 2002.

[15] T. Patel, E. Younis, C. Iancu, W. de Jong, and D. Tiwari, QUEST:
Systematically Approximating Quantum Circuits for Higher Output
Fidelity. New York, NY, USA: Association for Computing Machinery,
2022, p. 514–528. [Online]. Available: https://doi.org/10.1145/3503222.
3507739

[16] J. Preskill, “Quantum computing in the nisq era and beyond,”
Quantum, vol. 2, p. 79, Aug 2018. [Online]. Available: http:
//dx.doi.org/10.22331/q-2018-08-06-79

[17] M. Sarovar, T. Proctor, K. Rudinger, K. Young, E. Nielsen, and
R. Blume-Kohout, “Detecting crosstalk errors in quantum information
processors,” Quantum, vol. 4, p. 321, sep 2020. [Online]. Available:
https://doi.org/10.22331%2Fq-2020-09-11-321

[18] A. Shafaei, M. Saeedi, and M. Pedram, “Optimization of quantum
circuits for interaction distance in linear nearest neighbor architectures,”
in Proceedings of the 50th Annual Design Automation Conference
on - DAC ’13. ACM Press, 2013, p. 1. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2463209.2488785

[19] M. Y. Siraichi, V. F. d. Santos, S. Collange, and F. M. Q. Pereira,
“Qubit allocation,” in Proceedings of the 2018 International Symposium
on Code Generation and Optimization, 2018, pp. 113–125.

[20] S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington, and
R. Duncan, “t— ket¿: A retargetable compiler for nisq devices,” Quan-
tum Science and Technology, 2020.

[21] E. Smith, M. G. Davis, J. M. Larson, E. Younis, C. Iancu,
and W. Lavrijsen, “LEAP: Scaling numerical optimization based
synthesis using an incremental approach,” 2021. [Online]. Available:
http://arxiv.org/abs/2106.11246

[22] T. Tomesh, P. Gokhale, V. Omole, G. S. Ravi, K. N. Smith, J. Viszlai,
X.-C. Wu, N. Hardavellas, M. R. Martonosi, and F. T. Chong,
“Supermarq: A scalable quantum benchmark suite,” 2022. [Online].
Available: https://arxiv.org/abs/2202.11045

[23] X.-C. Wu, M. G. Davis, F. T. Chong, and C. Iancu, “Reoptimization
of quantum circuits via hierarchical synthesis,” in 2021 International
Conference on Rebooting Computing (ICRC), 2021, pp. 35–46.

[24] E. Younis, C. C. Iancu, W. Lavrijsen, M. Davis, and E. Smith,
“Berkeley quantum synthesis toolkit (bqskit) v1,” Tech. Rep., 2021.
[Online]. Available: https://bqskit.lbl.gov

[25] E. Younis, K. Sen, K. Yelick, and C. Iancu, “QFAST: Quantum
synthesis using a hierarchical continuous circuit space,” 2021 IEEE
International Conference on Quantum Computing and Engineering
(QCE), 2020. [Online]. Available: http://arxiv.org/abs/2003.04462

12

http://arxiv.org/abs/2106.04749
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.1145%2F3445814.3446718
https://www.ibm.com/blogs/research/2019/03/power-quantum-device/
http://arxiv.org/abs/math/0701907
https://github.com/hkhetawat/QArithmetic
http://arxiv.org/abs/1710.07629
https://doi.org/10.1145/3503222.3507739
https://doi.org/10.1145/3503222.3507739
http://dx.doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331%2Fq-2020-09-11-321
http://dl.acm.org/citation.cfm?doid=2463209.2488785
http://arxiv.org/abs/2106.11246
https://arxiv.org/abs/2202.11045
https://bqskit.lbl.gov
http://arxiv.org/abs/2003.04462

	I Introduction
	II Background
	II-A Quantum Computing Basics
	II-B Quantum Circuit Synthesis
	II-C Quantum Circuit Fidelity and Performance
	II-D Mapping Quantum Circuits
	II-E Quantum Circuit Partitioning
	II-F Post-Mapping vs. Logical Circuit Synthesis
	II-G Synthesis Subtopology Selection

	III Topology Aware Synthesis
	III-A Logical Quantum Circuit Partitioning
	III-B Synthesizing Logical Quantum Circuits
	III-C Topology Aware Subtopology Selection
	III-D Partition Replacement and Mapping

	IV Results
	V Discussion
	VI Conclusion
	References

