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WIDE-SENSE NONBLOCKING NETWORKS*
PAUL FELDMANtY, JOEL FRIEDMAN{, AND NICHOLAS PIPPENGER§

Abstract. A new method for constructing wide-sense nonblocking networks is presented. Application of
this method yields (among other things) wide-sense nonblocking generalized connectors with # inputs and
outputs and size O(n log n), and with depth k and size O(n' * Y (log n)' ~'/*).

Key words. nonblocking network, connection network, concentrator, generalizer
AMS(MOS) subject classifications. 94C15, 68E10, 05C35

1. Introduction. In this introductory section, we shall give an informal account of
our results. More precise definitions will be given in later sections.

Informally, a “network” is an acyclic directed graph that allows connections to be
made between “inputs” and “outputs.” A “nonblocking” network is one that allows
connections to be created and destroyed dynamically, with each request for creation
being satisfied without disturbing other previously established connections.

Given a network, we may consider a game between two players, the “blocker”
(representing the collective activity of the users interconnected by the network) and the
“router” (representing the activity of the controller of the network). The positions in this
game are the states of the network, and the initial position is the state in which no
connections are established. The players move alternately, starting with the blocker. The
blocker moves by making a request to create or destroy a connection, and the router
responds by satisfying this request (if possible). The goal of the blocker is to make a
request that cannot be satisfied, and the goal of the router is to avoid this by satisfying
every request. Roughly speaking, a “wide-sense” nonblocking network is one in which
the router can indefinitely avoid losing. (In addition to wide-sense nonblocking networks,
there are “‘strictly” nonblocking networks and “rearrangeable’ networks. We do not need
these notions to formulate our results, but we shall occasionally need them to discuss
other results in the literature.)

The main contribution of this paper is a new principle, according to which certain
“expanding graphs” are shown to be “generalized concentrators” (a special case of which
are “concentrators’”). For these networks, inputs request connection to one or more
outputs, without specifying to which output they are to be connected. This principle will
be presented in § 2.

In § 3, we apply the results of § 2 to construct “generalized connectors™ (a special
case of which are “connectors”). For these networks, inputs request connection to one
or more specified outputs. Our results in this section, taken together with results of
Friedman [F], show that wide-sense nonblocking connectors can have smaller size than
strictly nonblocking connectors with the same number of inputs and outputs and the
same depth. This answers a question that has been open since the distinction between
“wide-sense” and “strictly” nonblocking networks was introduced by Benes in 1962 [B1]
(see also [B2], [B3]).

In § 4, we apply the results of § 2 to construct “bi-generalized connectors.” This
new type of network provides greater interconnection facility than most other types
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considered in the literature, and it serves as a natural setting to display the power of the
new principle.

The results of §§ 3 and 4 concern networks with “limited depth,” in which the
length of the routes from inputs to outputs is constrained. In § 5 we apply the results of
§ 2 to construct networks of “unlimited depth,” in which only the “size” (corresponding
to the number of switches in the network) is to be minimized. Our results in this section,
taken together with results of Shannon [S], show that wide-sense nonblocking generalized
connectors need be larger than wide-sense nonblocking connectors by only a constant
factor. The corresponding result for “rearrangeable” rather than “wide-sense nonblocking”
networks has been known since the work of Ofman [O] in 1965. The corresponding
result for “strictly nonblocking” rather than “wide-sense nonblocking” networks does
not hold (see Bassalygo and Pinsker [BP2]).

A preliminary account of some of these results appears in our earlier paper [FFP].

2. Generalized concentrators. In this section we shall define networks precisely and
present the principle on which most of the results of this paper are based. We shall base
our formulation of a “network” on a directed graph with “inputs” and “outputs.” There
is an alternative formulation based on an undirected graph with “terminals.” Our choice
for this paper is technically simpler, though our resuits hold (with obvious modifications)
for either formulation.

A network is an acyclic directed graph with a set of distinguished vertices called
inputs and a disjoint set of distinguished vertices called outputs. A vertex that is neither
an input nor an output will be called a /ink. We shall use the prefix “(n, m)-" to the term
“network™ (and later to other nouns) to indicate that there are n inputs and m outputs;
we shall use the prefix “z#-" in these cases in place of “(n, n)-.”

A route in a network is a directed path from an input to an output. The size of a
network is the number of edges in it. The depth of a network is the maximum number
of edges in a route in it.

Two routes are compatible if their intersection is an initial segment (possibly empty)
of both of them. A state of a network is a set of pairwise compatible routes. (A state may
be regarded as a forest of vertex-disjoint trees, with their roots at the inputs and their
leaves at the outputs. This alternative viewpoint is taken in many papers on networks
with “generalized” properties.) The states of a network are partially ordered by inclusion,
and we shall use the terms above and below to refer to this partial order. A vertex or edge
is busy in a state if it appears in some route of that state; otherwise, it is idle.

A concentration request in a network is an input of the network. A concentration
request is satisfied by a route if the route originates at the input of the request. A generalized
concentration assignment is a multiset of concentration requests. A generalized concen-
tration assignment is realized by a state if each request is satisfied in the state by a number
of routes equal to its multiplicity.

A generalized concentration assignment is (a, r)-limited if each request has multi-
plicity at most r and the sum of the multiplicities is at most 4. A state is (a, r)-limited if
the generalized concentration assignment it realizes is (a, r)-limited. A concentration
request is (a, r)-limited in a state if the generalized concentration assignment obtained
by adjoining the request to the generalized concentration assignment realized by the state
is (a, r)-limited.

A wide-sense nonblocking (a, r)-limited generalized concentrator is a network for
which there exists a set of distinguished states, called the safe states, with the following
properties: (1) the empty state is safe; (2) any state below a safe state is itself safe; and
(3) given any safe state and any (a, r)-limited concentration request in that state, there
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exists a safe state above the given state containing another route satisfying the given
request. (In our previous paper [FFP], “generalized concentrators” were called “gener-
alizers.” This change has been adopted to increase the uniformity of our terminology.)

A wide-sense nonblocking a-limited concentrator is a wide-sense nonblocking (a, 1)-
limited generalized concentrator. When discussing concentrators, we shall use the adjective
“g-limited” in place of “(a, 1)-limited.”

The key to the results of this paper is the following proposition.

PROPOSITION 1. If F is a network of depth one in which every set of x inputs, where
1 £ x = 2a, has at least (r + s)x neighbors, then F is a wide-sense nonblocking (as, r)-
limited generalized concentrator.

Proof. Let F = (V, W, E) be a network of depth one, with inputs V, outputs W, and
edges E. Suppose that if X ¢ V, with |X| = xand 1 £ x = 2g, then |E(X)| 2 (r + s)x.
(Here E(X) denotes the set of neighbors of X, and | Y| denotes the cardinality of Y.) We
shall show that F is a wide-sense nonblocking (as, r)-limited generalized concentrator.

The first step of the proof is the definition of the set of safe states; for this we shall
need some auxiliary definitions. Let X be a set of inputs. We shall define the assets of X
in S, A5(X), to be the number of idle neighbors of X in §. Let v be an input in V. We
shall define the liabilities of v in S, Bs(v), to be r minus the number of busy edges directed
out of v in S. We shall define the liabilities of X in S, Bs(X), to be the sum of Bg(v) over
inputs v in X. We define the balance of X in S, Cs(X), to be A5(X) — Bs(X). We shall
say that X is solvent in S if Cs(X) = 0, that X is critical in S if Cs(X) = 0, and that X is
bankrupt in S if Cg(X) < 0. Finally, we shall say that S is safe if, for every X < V with
|X| =xand | = x = 24, Xis solvent in S.

Let O denote the empty state. We shall show that O is safe. Let X be a set of inputs
with |X| = x and | = x =< 24. By the hypothesis on F, | E(X)| = (r + s)x = rx. Since
all vertices are idle in O, Ap(X) 2 rx. Since Bo(X) = rx, X is solvent, and thus O is safe.

Let S be a state, let (v, w) be a route not in S, and suppose that 7= S U {(v, w)}
is a safe state. We shall show that S is safe. We observe that (1) Ar(X) = Ag(X) — 1 if
w € E(X), otherwise Ar(X) = As(X); and (2) Br(X) = Bs(X) + 1 if v € X, otherwise
By(X) = Bg(X). Since v € X implies w € E(X), Cs(X) 2 C7(X) 2 0, and thus S is safe.

Finally, let .S be a safe state and let v be an (as, r)-limited concentration request
in S. We shall show that for some idle neighbor w of v in S, the state S U {(v, w)} is
safe. Suppose, to obtain a contradiction, that for every idle neighbor w of v, the state
S U {(v, w)} is unsafe. Then for every idle neighbor w of v, there is a set of inputs X,
with | X,,| = 2a such that X,, is bankrupt in S U {(v, w)}. Of course, since S is safe, for
every w, X, is solvent in S. From these conditions, and from observations (1) and (2)
above, it is easy to see that for every idle neighbor w of v we have (i) w belongs to E(X,,),
but v does not belong to X,,, and (ii) X,, is critical in S. We shall need the following
lemmas concerning critical sets.

LEMMA 1.1. If X is critical in S, then | X| < a.

Proof. Suppose, to obtain a contradiction, that X with |X| =x and a=x < 2a
is unsafe in S. By the hypothesis on F, |E(X)| 2 (r + s)x. Since the request v is
(as, r)-limited in S, fewer than sa outputs are busy in S, so Ag(X) > (r + s)x — sa. Since
Bs(X) = Bo(X) = rx and x Z a, we have Cs(X) > 0, contradicting the assumption that
X is critical in S. O

LEMMA 1.2. For any state S, Cs(X) is submodular in X; that is, Cs(X U Y) +
Cs(XNY) = Cs(X) + Cs(Y).

Proof. Since Bs(X) is defined by a sum over the inputs in X, it is modular in X;
that is, Bs(X U Y) + Bs(X N Y) = Bs(X) + Bs(Y). Thus it remains to show that As(X)
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is submodular in X. This follows from the relations E(X U Y) = E(X)U E(Y) and
EXNY)c E(X)N EY), and the identity [ XU Y| + | XN Y] = |X]| + |Y]. 0

LEMMA 1.3. If S'is a safe state, | X |, | Y| = 2a, and X and Y are critical in S, then
I XUY| £2aand XU Y is critical in S.

Proof. Since X and Y are critical for S, Lemma 1.1 implies {X |, | Y| < a, and thus
|X U Y| = 2a. Thus it remains to show that X U Y is critical in S. Since X and Y are
critical, Cs(X) + Cs(Y) = 0. By Lemma 1.2, Cs(X U Y) + Cs(X N Y) = 0. Since S'is
safe and | XN Y] < a, XN Yis solvent. Thus X U Y is critical. O

Returning to the proof of Proposition 1, let the set of inputs X be the union of X,,
over all idle neighbors w of v. Since each X,, is critical in S, Lemma 1.3 implies that X
is critical in S, and Lemma 1.1 implies |X| < a. Now consider the set X U {v}. Since
S is safe and | X U {v}| = a, X U {v} is solvent in S. On the other hand, (i) and (ii)
above imply that every idle neighbor of v belongs to E(X), but v does not belong to X.
Thus A5(X U {v}) = 45(X) and, since the request v is (as, r)-limited in S,

Bs(XU {v}) = Bg(X)+ 1.

Thus, since X is critical in S, X U {v} is bankrupt in S. This contradiction completes the
proof of Proposition 1. O

The argument used in the proof of Proposition 1 has also found application to some
combinatorial problems concerning fault-tolerant networks (see Friedman and Pippenger
[FP]) and processor-interconnection networks (see Peleg and Upfal [PU]). This argument
suffers the defect that it provides no efficient algorithm for finding safe routes. Indeed,
determining the solvency of a state is a minor variant of a co-NP-complete problem (see
Blum et al. [BKVPY]). We shall present some results (Theorems 4 and 6) that avoid this
defect; it is avoided in another way in the work of Peleg and Upfal [PU].

A wide-sense nonblocking (a, r)-limited generalized concentrator remains one if
any number of inputs (together with the edges incident with them) are deleted and any
number of outputs (with no incident edges) are added.

If F is an (n, m)-network and G is an (m, [)-network, let F - G denote a network
obtained by identifying the outputs of F with the inputs of G in any one-to-one fashion.,
If F is an n-network, define F ¥ by letting F*' = Fand F** = F. F** " Dfor k = 2.

PROPOSITION 2. If F is a wide-sense nonblocking (a, r)-limited generalized m-con-
centrator and G is a wide-sense nonblocking (a, s)-limited generalized m-concentrator,
then F - G is a wide-sense nonblocking (a, rs)-limited generalized m-concentrator.

Proof. Let the safe states of F - G be those in which the induced states of F and G
are safe. Clearly, the empty state is safe and any state below a safe state is itself safe. Let
S be a safe state and let v be an (a, rs)-limited concentration request in S. Let S(F) be
the state of F induced by S and let S(G) be the state of G induced by S.

Since v is (a, rs)-limited, S contains at most a — 1 routes, at most s — 1 of which
are from v, Thus either (1) there are routes in S(F) from v to at most r — 1 outputs of
F, or (2) there is a route in S(F) from v to some output w of F and there are routes in
S(G) from w to at most s — 1 outputs of G.

In case (1), the concentration request v is (a, r)-limited in S(F), so there is a safe
state T(F) above S(F) containing a route from v to some output w of F that is idle in
S(F). The concentration request w is then (g, s)-limited in S(G), so there is a safe state
T(G) above S(G) containing a route from w to some output of G that is idle in S(G).
Then the state obtained by adjoining to S the concatenation of the route from v to w in
T(F) with the route from w in T(G) is a safe state above S containing a route from v to
an output of F . G that is idle in S.
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In case (2), the concentration request w is (a, s)-limited in S(G), so there is a safe
state 7(G) above S(G) containing a route from w to an output of G that is idle in S(G).
Then the state obtained by adjoining to S the concatenation of the route from v to win
S(F) with the route from w in 7{G) is a safe state above S containing a route from v to
an output of F - G that is idle in S. O

3. Generalized connectors. In this section we shall use Proposition 1 to construct
wide-sense nonblocking generalized connectors. Our first goal is to define these networks.

A connection request in a network is an ordered pair comprising an input and an
output. A connection request is satisfied by a route if the route originates at the input
of the request and terminates at the output of the request. A generalized connection
assignment is a set of connection requests, no two of which have an output in common.
A generalized connection assignment is realized by a state if each request of the generalized
connection assignment is satisfied by some route of the state.

A generalized connection assignment is (a, r)-limited if it contains at most a requests,
of which at most  have an input in common. Observe that a state is (g, r)-limited if the
generalized connection assignment that it realizes is (a, r)-limited. A connection request
is (a, r)-limited in a state if (1) the output of the request is idle in the state and (2) the
generalized connection assignment obtained by adjoining the connection request to the
generalized connection assignment realized by the state is (a, r)-limited.

A wide-sense nonblocking (a, r)-limited generalized connector is a network for which
there exists a set of distinguished states, called the safe states, with the following properties:
(1) the empty state is safe; (2) any state below a safe state is itself safe; and (3) given any
safe state and any (a, r)-limited connection request in that state, there exists a safe state
above the given state containing a route satisfying the given request.

A wide-sense nonblocking a-limited connector is a wide-sense nonblocking (a, 1)-
limited generalized connector. When discussing (ungeneralized) connectors, we shall use
the term “connection assignment” in place of “generalized connection assignment” and
the adjective “a-limited” in place of “(a, 1)-limited.” We shall also use the term “‘con-
nector” in place of “oo-limited connector.”

Our main result in this section is the following.

THEOREM 3. For every fixed k Z 1 and n — oo, a wide-sense nonblocking generalized
n-connector exists with depth k and size O(n' * *(log n)! ~ /%),

The bound of Theorem 3 is almost the best possible; Pippenger and Yao [PY ] have
shown that size Q(n' * /%) is necessary (even for networks satisfying a much weaker prop-
erty, that of being “rearrangeable n-shifters” with depth k).

The previously best upper bound for wide-sense nonblocking generalized connectors
was obtained from a construction due to Pippenger [P1] and Nassimi and Sahni [NS].
It yields wide-sense nonblocking generalized connectors with depth j? — 3j + 3 and size
O(n' *24), The special case of depth three and size O(n*/>) was given (using a different
method) by Masson and Jordan [MJ].

The construction of Pippenger [P1] and Nassimi and Sahni [NS] requires wide-
sense nonblocking (ungeneralized) connectors as components. The previously best upper
bound for these networks was obtained from constructions due to Clos [Cl], Cantor [Ca],
and Pippenger [P2]. It yields networks of depth 2j — 1 and size O(n' * '¥). (These networks
satisfy a stronger property, that of being “strictly nonblocking n-connectors™ with depth
2j~1)

The best upper bound for wide-sense nonblocking connectors is now given by Theo-
rem 3. The best upper bound for “rearrangeable generalized connectors” is also now
given by Theorem 3 (the previously best bound was O((n log n)' * '/¥), due to Dolev et



WIDE-SENSE NONBLOCKING NETWORKS 163

al. [DDPW]). Indeed, the bound of Theorem 3 is not much larger than the currently
best bound of O(n' * **(log n)'/*) for “rearrangeable connectors,” due to Pippenger and
Yao [PY].

The lower bound of Q(#?) (for any depth) due to Bassalygo and Pinsker [BP2] shows
that Theorem 3 cannot be extended to “strictly nonblocking generalized connectors.”
The lower bound of Q(n' * '/~ D) (for depth k) due to Friedman [F] shows that it cannot
even be extended to “strictly nonblocking connectors.”

We need the following lemma for the proof of Theorem 3.

LEMMA 3.1. For every n and a, there exists a network of depth one with n inputs
and 8a outputs in which (1) every input has d = [log, (2n®)1 neighbors, and (2) every set
of x inputs with 1 < x < 2a has at least 2x neighbors.

Proof. Consider a random graph in which each input has a randomly chosen set of
d outputs as neighbors, with all sets of d outputs being equally likely and with the random
choices for distinct inputs being independent. Clearly (1) is satisfied; it remains to show
that the probability that (2) is satisfied is strictly positive. The probability that (2) fails is

T o
o
)y

we see that this probability is at most 2 <, <24(1/2)* < 1. O

A wide-sense nonblocking (a, r)-limited generalized connector remains one if any
number of inputs and outputs (together with the edges incident with them) are deleted.

The following propositions and their subsequent use are the counterparts for wide-
sense nonblocking generalized connectors of a method used by Pippenger [P1] for “strictly
nonblocking generalized connectors” and by Nassimi and Sahni [NS] for “rearrangeable
generalized connectors.”

PROPOSITION 3.2. If F is a wide-sense nonblocking a-limited (n, m)-concentrator
and G is a wide-sense nonblocking (a, r)-limited generalized (m, [)-connector, then F - G
is a wide-sense nonblocking (a, r)-limited generalized (n, [)-connector.

Proof. Let the safe states of F - G be those in which the induced states of F and G
are safe. Clearly, the empty state is safe and any state below a safe state is itself safe. Let
S be a safe state and let (v, w) be an (g, r)-limited connection request in .S. Let S(F) be
the state of F induced by S and let S(G) be the state of G induced by S. Either (1) v is
idle in S, or (2) S contains a route originating at v.

In case (1), the concentration request v is a-limited in S(F), so there is a safe state
T(F) above S(F) containing a route from v to an output u of F that is idle in S(¥). The
connection request (u, w) is (a, r)-limited in S(G), so there is a safe state T(G) above S(G)
containing a route from u to w. Then the state obtained by adjoining to S the concatenation
of the route from v to u in 7(F) with the route from u to w in 7(G) is a safe state above
S containing a route from v to w.

Using the estimates

n3x

A

and
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In case (2), the route originating at v passes through some link % that is an input of
G. The connection request (u, w) is (a, r)-limited in S(G), so there is a safe state T(G)
above S(G) containing a route from u to w. Then the state obtained by adjoining to S
the concatenation of the route from v to u in S(F) with the route from u to w in T(G) is
a safe state above S containing a route that from v to w. O

If Fis an (n, m)-network and G is an (n, [)-network, let F - G denote an (r, m + [)-
network obtained by identifying the inputs of F with the inputs of G in any one-to-
one fashion. If F is any network, define F" by letting F"' = F and F"' = F+ F"¢~1
fort = 2.

PROPOSITION 3.3. If F is a wide-sense nonblocking (a, r)-limited generalized (n, m)-
connector and G is a wide-sense nonblocking (a, r)-limited generalized (n, [)-connector,
then F v G is a wide-sense nonblocking (a, r)-limited generalized (n, m + [)-connector.

Proof. Let the safe states of F | G be those that induce safe states of F and G.
Clearly, the empty state is safe and any state below a safe state is itself safe. Let Sbe a
safe state and let the connection request (v, w) be (a, r)-limited in S. Without loss of
generality, we may suppose that w is an output of F.

Let S(F) be the state of F induced by S. The connection request (v, w) is (a, r)-
limited in S(F), so there is a safe state 7(F) above S(F) containing a route from v to w.
Then the state obtained by adjoining this route to S is a safe state above .S containing a
route from v to w. O

Proof of Theorem 3. We proceed by induction on k. For k = 1, the conclusion is
trivial. For k = 2, take a = [n' ~"*(log n)"/*1in Lemma 3.1 and r = 5 = 1 in Proposi-
tion 1 to obtain a wide-sense nonblocking concentrator F with n inputs, 8a outputs,
depth one, and size O(n log n). By inductive hypothesis, there exists a wide-sense non-
blocking generalized (8a)-connector G with depth k — 1 and size

O(a' &= D(log @)! ~ *k~ Dy = O(nlog n).

By Proposition 3.2, H = F - G is a wide-sense nonblocking generalized (#n, 8a)-connector
with depth k and size O(n log n). Let ¢ = [n/8a] = O(n'/*/(log n)"/¥). By Proposition 3.3,
H' is a wide-sense nonblocking generalized (n, 8af)-connector with depth k and size
O(n' " X(log n)! ~ '7¥). Deleting all but z outputs of this network completes the proof. O

The networks of Theorem 3 are obtained by the nonconstructive Lemma 3.1; more-
over, since they rely on Proposition 1, no efficient algorithm is known for finding safe
routes. The following remaining results of this section mitigate these defects in some
special cases.

THEOREM 4. Wide-sense nonblocking generalized n-connectors can be explicitly
constructed with depth two and size O(n>"*), and with depth three and size O(n'"").

For the proof of Theorem 4 we shall need the following lemma.

LEMMA 4.1. For every prime power q, a (q°, q*)-network with depth one can be
explicitly constructed in which every input has q neighbors and every pair of distinct inputs
has at most two common neighbors.

Proof. Let GF (g) be the field with ¢ elements. Let the inputs be the elements of
GF (g)° and let the outputs be the elements of GF (g)%. Let the input (a, b, ¢) have
the output (x, ») as a neighbor if and only if ax? + bx + ¢ = y (where all arithmetic is
in GF (g)).

Every input has ¢ neighbors, one for each possible value of x. If (x, y) is a common
neighbor of (a, b, ¢) and (a’, b, ¢'), then ax?> + bx + ¢ = yand a'x®> + b'x + ¢' = y.
Subtracting these equations, we have (@ — a')x* + (b — b )x + (¢ — ¢') = 0. If (a, b, ¢)
is distinct from (a’, b, ¢'), the coefficients of this quadratic equation do not all vanish,
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and thus it can be satisfied by at most two values of x. Thus this pair of inputs can have
at most two common neighbors, one for each of these values of x. O

Let F(g) denote the network constructed in the proof of Lemma 4.1.

PROPOSITION 4.2. The network F(5) is a wide-sense nonblocking (2 5** ~ ))-limited
concentrator.

Proof. Let the safe states be those in which every input has at most 3-5*~! neighbors
that terminate routes originating at other inputs. Clearly, the empty state is safe and any
state below a safe state is itself safe. Consider a safe state .S in which some concentration
request v cannot be satisfied. We shall show that at least 2-52*~2 outputs are busy in S.

Since v is idle in S, v has at most 3-5*~! busy neighbors in S. Thus it has at least
2-5*7 1 idle neighbors in S. Say that an output w is critical if w is a neighbor of v, w is
idle in S, and S U {(v, w)} is not safe. Then there are at least 2-5*~! critical outputs.

Say that an input u is critical if u is distinct from v and u has 3-5*~ ! neighbors that
terminate routes that originate at inputs other than u. Each critical output w must be
the neighbor of some critical input, else S U {(v, w)} would be safe. Each critical input
u can have at most two critical outputs as neighbors, else the distinct inputs v and u
would have more than two common neighbors. Thus there must be at least 5* ! critical
inputs.

Let X be a set of 5* ! critical inputs. Each critical input in X has at least 3-5*"!
busy neighbors. Furthermore, each of the (* A;') pairs of distinct critical inputs in X has
at most two busy neighbors in common. Thus there are at least

5}\—1
5*—‘(3-5*—')—( 5 )-2;2-52*—2

busy outputs in S. O

Proof of Theorem 4. To prove the first assertion, we may assume that n = 5 for
some integer A = 1. Let ¢ = 5* and a = 2-5%*72, Let G be a wide-sense nonblocking
generalized (g2, a)-connector with depth one and size g%a = O(n*?) (in which each input
is joined by an edge to each output). By Proposition 3.2, H = F(q) - G is a wide-sense
nonblocking generalized (n, a)-connector with depth two and size O(n*?). Let ¢t =
In/al= O(n'’3). By Proposition 3.3, H" is a wide-sense nonblocking generalized (n, at)-con-
nector with depth 2 and size O(n*?). Deleting all but n outputs completes the proof of
the first assertion.

To prove the second assertion, we may assume that » = 57* for some integer
u=1. Letg=5%and a = 2-5%~2, By deleting all but » inputs from F(g), we obtain
a wide-sense nonblocking a-limited (n, g%)-concentrator F’ with depth one and size
O(n'”"). Let G’ be a wide-sense nonblocking generalized (g2, a)-connector with depth
two and size O(n'%7) constructed by taking A = 2u in the proof of the first assertion and
deleting all but a outputs. By Proposition 3.2, H = F' . G' is a wide-sense nonblocking
generalized (n, a)-connector with depth three and size O(n'%"). Let t = n/al = O(n"""). By
Proposition 3.3, H" is a wide-sense nonblocking generalized (», at)-connector with depth
three and size O(n'""). Deleting all but n outputs completes the proof of the second
assertion, O

We could extend Theorem 4 to yield size O(n**%) for depth four, and so forth. As
k = o0, the sequence of exponents approaches, but remains greater than, 3/2. In the
following section, however, we shall obtain size O(n*?) for depth four, so this extension
is of little interest.

4. Bi-generalized connectors. Our efforts to replace the probabilistic argument of
the preceding section by an explicit construction lead naturally to consideration of the
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best currently known explicit constructions for expanding graphs, due to Lubotzky, Phil-
lips, and Sarnak [L.LPS] and Margulis [M2]. The networks produced with the aid of these
constructions have greater size than those produced in the preceding section; they possess,
however, a stronger property than that of being generalized connectors. We shall call
them “bi-generalized connectors.” Our next goal is to define these networks.

Two routes are bi-compatible if their intersection is an initial segment or a final
segment (possibly empty) of both of them. A bi-state is a set of pairwise bi-compatible
routes. (A bi-state may be regarded as two forests with their leaves identified, one with
its roots at the inputs and the other with its roots at the outputs.)

A bi-generalized connection assignment is a set of connection requests. A bi-gen-
eralized connection assignment is realized by a bi-state if each request of the assignment
is satisfied by some route of the bi-state.

A bi-generalized connection assignment is a-limited if it contains at most a con-
nection requests. A bi-state is a-limited if the bi-generalized connection assignment it
realizes is a-limited. A connection request is a-limited in a bi-state if the bi-generalized
connection assignment obtained by adjoining the connection request to the bi-generalized
assignment realized by the bi-state is g-limited.

A wide-sense nonblocking a-limited bi-generalized connector is a network for which
there exists a set of distinguished bi-states, called the safe bi-states, with the following
properties: (1) the empty bi-state is safe; (2) any bi-state below a safe bi-state is itself safe;
and (3) given any safe bi-state and any a-limited connection request in that bi-state, there
exists a safe bi-state above the given bi-state and containing a route satisfying the given
request.

We shall use the term “bi-generalized connector” in place of “bi-generalized co-
limited connector.”

Our main result in this section is the following,.

THEOREM 5. For every fixed k 2 2 and n - o, a wide-sense nonblocking bi-
generalized n-connector can be explicitly constructed with depth k and size O(n' * #%).

For the proof of Theorem 5 we shall need the following lemma.

LEMMA 5.1. Let p and q be distinct primes congruent to one modulo four. Then a
(g + 1)-network of depth one can be explicitly constructed in which every input has
p + 1 outputs as neighbors, every output is a neighbor of p + 1 inputs and every set of x
inputs with 1 = x = 12(q + 1)/(p + 1) has at least x(p + 1)/16 neighbors.

Proof. By the results of Lubotzky, Phillips, and Sarnak [LPS], an undirected graph
G can be explicitly constructed in which there are g + 1 vertices, p + 1 edges incident
with each vertex and in which the adjacency matrix M(G) of G has p + 1 as a simple
eigenvalue and has all other eigenvalues at most 2p'/? in absolute value. Let the network
F be the double cover of G; that is, let the inputs and outputs of F each correspond to
the vertices of G and let the input v have the output w as a neighbor if and only if the
vertices of G corresponding to v and w are adjacent. Clearly F is a (g + 1)-network of
depth one in which every input has p + 1 neighbors and every output is a neighbor of
p + 1 inputs. Let M(F) denote the matrix whose rows are indexed by inputs of F,
whose columns are indexed by outputs of F and whose (v, w) entry is the number of
edges from v to w. Then M(F)"M(F) = M(G)* has (p + 1) as a simple eigenvalue and
all other eigenvalues at most 4p in absolute value. Let ¢ = 4p/(p + 1)? and let f(§) =
£/(£ + e(1 — £)). By the result of Tanner [T], if X is a set of inputs and F(X) is the set of
neighbors of X, then |F(X)|/(g+ 1) 2 f(|X|/(g+ 1)). Leté =4/(p+ 1). Thene < §
and f(36) = 3/4. Since fis concave, if |X| = 38(g + 1), then |FX)| = (g + DS X | /g +
DYz (1X1/38)/(30) z |X|/48. O
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A wide-sense nonblocking bi-generalized a-limited connector remains one if any
number of inputs and outputs (together with the edges incident with them) are deleted.

A t-approximate a-limited m-junctor is an m-network in which, given any (@ — 1)-
limited bi-state S, any set V' containing ¢ inputs and any set W containing ¢ outputs, there
exists a route p from some v € ¥ to some w € W such that S U {p} is a bi-state.

A t-approximate g-limited junctor remains one if any number of inputs and outputs
(together with the edges incident with them) are deleted.

If F is an (n, m)-network, let F* denote the (m, n)-network obtained by reversing
the edges and exchanging the inputs and outputs of F. Clearly, F** = F.

If S is a bi-state of F, let S * denote the bi-state of F* obtained by reversing the
routes of S. Clearly, $** = S.

Two routes are anti-compatible if their intersection is a final segment (possibly empty)
of both of them. An anti-state is a set of pairwise anti-compatible routes. Clearly, if S'is
a state, then S$* is an anti-state.

PROPOSITION 5.2. Let F be a wide-sense nonblocking (a — 1 + t, 1)-limited gener-
alized (n, m)-concentrator and let G be an t-approximate a-limited m-junctor. Then
F. G- F* is a wide-sense nonblocking a-limited bi-generalized n-connector.

Proof. Let S be a bi-state of F' - G - F*, Say that S is safe if (1) .S induces a safe state
S(F) of F and (2) § induces an anti-state S(&*) of F'* and S(F*)* is a safe state of F.
Clearly, the empty bi-state is safe and any bi-state below a safe bi-state is itself safe. Let
S be a safe bi-state of F - G - F* and let (v, w) be an a-limited connection request in S.
Since (v, w) is g-limited, S contains at most @ — 1 routes.

The concentration request v is (a, f)-limited in S(F), so there is a safe state T(F)
above S(F) in which v has routes to all the outputs in some set V of ¢ outputs of F.
Similarly, there is an anti-state 7(F*) above S(#*) in which all the inputs in some set W
of ¢ inputs of F* have routes to w and such that 7(F*)* is a safe state for F.

The bi-state S(G) of G induced by S contains at most a — 1 routes. Since G is a -
approximate a-limited m-junctor, there is a bi-state 7(G) above S(G) containing a route
from some v’ € V'to some w' € W. Let the route p be the concatenation of the route from
v to v’ in T(F), the route from v’ to w' in 7(G), and the route from w' to w in T(F*).
Then S U {p} is a safe bi-state above S containing a route from v to w. 0

PROPOSITION 5.3. Let F be an m-network with depth one in which every set of t
inputs has at least [(m + a)/21 neighbors. Then F - F* is a t-approximate a-limited m-
Jjunctor.

Proof. Let S be an (a — 1)-limited bi-state of ¥ - F*. If V' is a set of ¢ inputs, then
V has as neighbors all the outputs of F in some set V' of [(m + a)/21 outputs. Similarly,
if W is a set of ¢ outputs, then W has as neighbors all the inputs of F* in some set W' of
f(m + a)/21inputs. Then V' N W’ contains at least [(m + a@)/21+[(m + a)/21—m = a
links between F and F*. Since S is (@ — 1)-limited, at most @ — 1 links can be busy.
Thus there is some idle link # in ¥’ N W', The link u has as neighbors some input v in
V and some output w in W. Let p be the route from v through «# to win F - F*, Then
S'U {p} is a bi-state above S containing a route from v &€ Vto we W. g

COROLLARY 5.4. Let q be a prime congruent to one modulo four with 32n = g +
1 < 128n. For every t < n, a t-approximate n-limited (q + 1)-junctor can be explicitly
constructed with depth 2 and size O(n?/t).

Proof. Let p be the smallest prime congruent to one modulo four such that p +
12 12(g + 1)/t. Then p + 1 = O(n/1). Let F be the network constructed in the proof of
Lemma 5.1. Then F has depth one and size O(n?/t). Furthermore, every set of ¢ inputs
has at least 3(g + 1)/4 neighbors. It follows from Proposition 5.3 that F is a f-approximate
n-limited (g + 1)-junctor. O
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Proof of Theorem 5 for k even. For k = 2, the claim is trivial, so suppose k = 4.

Let g be a prime congruent to one modulo four such that 32n = ¢+ 1 < 64n. Let
p be a prime congruent to one modulo four such that 32#** < p + 1 < 64n**. Let F be
the network constructed in the proof of Lemma 5.1.

Let r =[(p + 1)/321and a = 16(g + 1)/(p + 1)j. Then ar = 2n. By Lemma 5.1,
every set of x inputs with 1 = x = 2a has at least 2rx neighbors. Then by Proposition 1
with s = r, Fis a wide-sense nonblocking (2n, r)-limited generalized (g + 1)-concentrator.

Let j = (k — 2)/2 and ¢ = [n' ~%*1. Since r 2 n**, r/ 2 t. By Proposition 2, H = F"
is a wide-sense nonblocking (2#, ?)-limited generalized (¢ + 1)-concentrator.

By Corollary 5.4, a t-approximate z-limited (¢ + 1)-network G can be explicitly
constructed with depth two and size O(n%/t) = O(n' *#*). By Proposition 5.2, H - G -
H* is a wide-sense nonblocking n-limited bi-generalized (g + 1)-connector with depth k
and size O(n' * #¥). Deleting all but # inputs and 7 outputs from this network completes
the proof. [

COROLLARY 5.5. Let q be a prime congruent to one modulo four with 32n = q +
1 = 128n. For every t £ n, a t-approximate n-limited (q + 1)-junctor can be explicitly
constructed with depth one and size O(n’/t?).

Proof. In the network constructed in Corollary 5.4, replace each route of length
two by a route of length one, then delete all links and edges incident with them. The
resulting network is clearly a z-approximate n-limited (¢ + 1)-junctor with depth one.
Since in the original network each of the (¢ + 1) links has O(n/t) inputs and O(»/t) outputs
as neighbors, the resulting network has size O(n’/t?). O

Proof of Theorem S for k odd. For k = 1, the claim is trivial, so suppose k = 3.

Let g be a prime congruent to one modulo four such that 32n < g+ 1 = 64n. Let
p be a prime congruent to one modulo four such that 32n** < p + 1 < 64n**. Let F be
the network constructed in the proof of Lemma 5.1.

Let r =[(p + 1)/321and a = |6(q + 1)/(p + 1)]. Then ar = 2n. By Lemma 5.1,
every set of x inputs with 1 = x = 24 has at least 2rx neighbors. Then by Proposition 1
with s = r, Fis a wide-sense nonblocking (2n, r)-limited generalized (g + 1)-concentrator.

Letj = (k — 1)/2 and ¢ = [n' ~/*7, Since r = n¥*, r/ Z t. By Proposition 2, H = F "/
is a wide-sense nonblocking (2n, r)-limited generalized (g + 1)-concentrator.

By Corollary 5.4, a t-approximate z-limited (g + 1)-network G can be explicitly
constructed with depth one and size O(n*/t%) = O(n' *¥*). By Proposition 5.2, H - G -
H* is a wide-sense nonblocking n-limited bi-generalized (g + 1)-connector with depth k
and size O(n' * #%). Deleting all but # inputs and » outputs from this network completes
the proof. O

Since the networks constructed in Theorem 5 rely on Proposition 1, no efficient
algorithm is known for finding safe routes. The remaining results of this section mitigate
this defect in some special cases.

THEOREM 6. Wide-sense nonblocking bi-generalized n-connectors can be explicitly
constructed with depth three and size O(n*>>), and with depth four and size O(n*?).

For the proof of Theorem 6 we shall need the following lemma.

LEMMA 6.1. For every prime power q, a (q*)-network of depth one can be explicitly
constructed in which every input has q* neighbors and any two distinct inputs have at
most g common neighbors.

Proof. Let GF (gq) be the field with ¢ elements. Let the outputs correspond to the
g points in the three-dimensional affine space over GF (g). Let the inputs correspond
to any ¢ planes in this space. (There are ¢°> + g2 + g planes in the space.) Let the input
v have the output w as a neighbor if the plane corresponding to v contains the point
corresponding to w. Clearly, each plane contains g2 points and any two distinct planes
have at most the g points of a line in common. O
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Let F3(q) denote the network constructed in the proof of Lemma 6.1.

PROPOSITION 6.2. The network F3(2*) is a wide-sense nonblocking (2373, 222~ 1)-
limited generalized concentrator.

Proof. Let the safe states be those in which every input has at most 22~ 2 neighbors
that terminate routes originating at other inputs. Clearly the empty state is safe, and any
state below a safe state is itself safe. Let S be a safe state, let v be a (2373, 222~ !)-limited
concentration request in S, and suppose that there is no safe state above .S containing a
route from v to an output that is idie in .S. We shall derive a contradiction.

Since v is (2% 73, 22*~ ')-limited in S, there are routes from v to at most 2*~!
neighbors of v. Since S is safe, at most 22*~2 other neighbors of v are busy. Say that an
output w is critical if w is a neighbor of v, w is idle in S and S U {(v, w)} is not safe.
Then there are at least 22* — 222~ ! — 2222 = 2222 crjtical outputs.

Say that an input is critical if u is distinct from v and 22*~ 2 neighbors of # terminate
routes that originate at inputs other than u. Each critical output w must be the neighbor
of some critical input, else S'U {(v, w)} would be safe. Each critical input u can have at
most 2> critical outputs as a neighbor, else the distinct inputs v and u would have more
than 2* common neighbors. Thus there must be at least 2*~2 critical inputs.

Let X be a set of 2*~ 2 critical inputs. Each critical input in X has at least 22* ~2 busy
neighbors. Furthermore, each of the (2X'22) pairs of distinct critical inputs in X has at most
2* busy neighbors in common. Thus there are at least

2)\—2,22)\-2_(2)\—2)'2)\22%—-5
5 =

busy outputs in S. This contradicts the assumption that v is (2> 3, 22>~ ")-limited
in S. O

Proof of the first assertion of Theorem 6. We may assume that n = 2°*~ for some
integer A = 3. Let ¢ = 22*~! = O(n*?). Let F be the network obtained by deleting all but
n inputs from F3(2*). By Proposition 6.2, F is a wide-sense nonblocking (2#, f)-limited
generalized (n, 64n)-concentrator with depth one and size O(n>/?).

Let g be a prime congruent to one modulo four with 64n = g + 1 < 128n. By
Corollary 5.5, a t-approximate n-limited (¢ + 1)-junctor can be explicitly constructed
with depth one and size O(n*/t?) = O(n*?). Let G be the network obtained by deleting
all but 64 inputs and 647 outputs from this network. By Proposition 5.2, F - G - F* is
a wide-sense nonblocking bi-generalized n-connector with depth three and size O(n*3),
which completes the proof of the first assertion. O

To prove the second assertion we shall need the following lemma.

LEMMA 6.3. For every prime power q, a (q*)-network of depth one can be explicitly
constructed in which every input has q neighbors and any two distinct inputs have at most
one common neighbor.

Proof. Let GF (g) be the field with g elements. Let the outputs correspond to the
¢* points in the affine plane over GF (g). Let the inputs correspond to any g? lines in
this plane. (There are g? + ¢ lines in the plane.) Let the input v have the output w as a
neighbor if the line corresponding to v contains the point corresponding to w. Clearly,
each line contains g points and any two distinct lines have at most one point in
common. (]

Let Fy(q) denote the network constructed in the proof of Lemma 6.3.

PROPOSITION 6.4. The network F»(2*) is a wide-sense nonblocking (2°*~°, 2>~ )-
limited generalized concentrator.

Proof. Let the safe states be those in which every input has at most 2*~2 neighbors
that terminate routes originating at other inputs. Clearly the empty state is safe, and any
state below a safe state is itself safe. Let S be a safe state, let v be a (22* >, 2>~ ')-limited
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concentration request in S, and suppose that there is no safe state above S containing a
route from v to an output that is idle in .S. We shall derive a contradiction.

Since v is (22*~%, 2*~!)-limited in S, there are routes from v to at most 2* ! neighbors
of v. Since S is safe, at most 2~ 2 other neighbors of v are busy. Say that an output w is
critical if w is a neighbor of v, wis idle in S and S U {(v, w)} is not safe. Then there are
at least 2* — 22! — 22=2 = 22~2 critical outputs.

Say that an input u is critical if u is distinct from v and 2* ~ 2 neighbors of u terminate
routes that originate at inputs other than u. Each critical output w must be the neighbor
of some critical input, else S U {(v, w)} would be safe. Each critical input # can have at
most one critical output as a neighbor, else the distinct inputs v and ¥ would have more
than one common neighbor. Thus there must be at least 2*~ 2 critical inputs.

Let X be a set of 2>~ 2 critical inputs. Each critical input in X has at least 2* 2 busy
neighbors. Furthermore, each of the (”}2) pairs of distinct critical inputs in X has at most
one busy neighbor in common. Thus there are at least

I -
2)\ 2,2)\ 2_( 5 ).1222)\ 5

busy outputs in S. This contradicts the assumption that v is (22*~35 2>~ !)limited
in S. O

Proof of the second assertion of Theorem 6. We may assume that n = 22*~6 for
some integer A = 4, Let £ = 2* 7! = O(n'?). Let F be the network obtained by deleting
all but » inputs from F,(2*). By Proposition 6.4, F is a wide-sense nonblocking (2#, )-
limited generalized (n, 64n)-concentrator with depth one and size O(n*/?).

Let g be a prime congruent to one modulo four with 64n < ¢ + 1 < 128n. By
Corollary 5.4, a t-approximate n-limited (¢ + !)-junctor can be explicitly constructed
with depth two and size O(n?/t) = O(n*?). Let G be the network obtained by deleting all
but 647 inputs and 64n outputs from this network. By Proposition 5.2, F- G- F*isa
wide-sense nonblocking bi-generalized n-connector with depth four and size O(n*?), which
completes the proof of the second assertion. [}

5. Networks with unlimited depth. In previous sections we have used Proposition
1 to construct various networks with limited depth. In this section we shall use it in
situations where depth is not constrained. We shall show that wide-sense nonblocking
generalized n-connectors and bi-generalized n-connectors can be constructed with size
O(n log n). That these results are best possible (to within constant factors) is shown by a
result of Shannon [S] to the effect that even “rearrangeable n-connectors” require size
Q(n log n). (Indeed, Pippenger and Valiant {PV] have shown that even networks satis-
fying a still weaker property, that of being “rearrangeable n-shifters,” must have size
Q(n log n).)

The previously best upper bound for wide-sense nonblocking generalized connectors
was O(n(log n)%), due to Pippenger [P1]. This construction requires wide-sense nonblocking
(ungeneralized) connectors as components. That size O(n log n) is sufficient for these
networks (and indeed, even for networks that satisfy a stronger property, that of being
“strictly nonblocking connectors™) is due to Bassalygo and Pinsker [BP1]. The proof of
Bassalygo and Pinsker is nonconstructive (in the same sense as Lemma 3.1), but subse-
quent results by others ([M1], [GG], [JM], [LPS], [M2]) yield an explicit construction
(see Pippenger [P3] for details).

That our results cannot be extended to “strictly nonblocking generalized connectors”
is shown by the lower bound of Q(n?), due to Bassalygo and Pinsker [BP2].
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The key to our results in this section is the following proposition.

PROPOSITION 7. A wide-sense nonblocking generalized (n, 18n)-concentrator can be
explicitly constructed with depth O(log n) and size O(n log n).

This proposition has the following immediate corollary.

COROLLARY 7.1. A wide-sense nonblocking generalized n-connector can be explicitly
constructed with depth O(log n) and size O(n log n).

To prove Corollary 7.1 we shall need the following proposition.

PROPOSITION 7.2. Let F be a wide-sense nonblocking (a, r)-limited generalized
(n, m)-concentrator and let G be a wide-sense nonblocking (m, n)-connector. Then F - G
is a wide-sense nonblocking (a, r)-limited generalized n-connector.

Proof. Let the safe states of F - G be those that induce safe states of F and G. Clearly,
the empty state is safe and any state below a safe state is itself safe. Let S be a safe state
of F - G and let the connection request (v, w) be (a, r)-limited in S.

The concentration request v is (a, r)-limited in S(F), so there exists a safe state 7(F)
above S(F) containing a route from v to an output u of F that is idle in S(F). The
connection request (#, w) is a-limited in S(G), so there exists a safe state 7(G) above S(G)
containing a route from u to w.

The state obtained by adjoining to S the concatenation of the route from v to u in
T(F) with the route from u to w in 7(G) is a safe state above S containing a route from
vtow. O

Proof of Corollary 7.1. Let F be the network constructed in the proof of Proposi-
tion 7, and let G be an explicitly constructed nonblocking (18n, n)-connector with depth
O(log n) and size O(n log n) (see [P3] for a construction). By Proposition 7.2, F . G
satisfies the claim. O

We can also extend the foregoing corollary to bi-generalized connectors.

COROLLARY 7.3. A wide-sense nonblocking bi-generalized n-connector can be ex-
plicitly constructed with depth O(log n) and size O(n log n).

To prove Corollary 7.3 we shall need the following proposition.

PROPOSITION 7.4. Let F be a wide-sense nonblocking (a, a)-limited generalized
(n, m)-concentrator and let G be a wide-sense nonblocking a-limited m-connector. Then
F . G- F* is a wide-sense nonblocking bi-generalized n-connector.

Proof. Let Sbe abi-state of F - G - F*, Say that S'is safe if (1) S induces a safe state
S(F) of F; (2) S induces a safe state S(G) of G; and (3) S induces an anti-state S(F*) of
F* and S(F*)* is a safe state of F. Clearly, the empty bi-state is safe and any bi-state
below a safe bi-state is itself safe. Let S be a safe bi-state of F - G - F* and let the
connection request (v, w) be g-limited in S.

The concentration request v is a-limited in S(F), so there exists a safe state T(F)
above S(F) containing a route from v to an output v’ of F that is idle in S(F). Similarly,
there is an anti-state 7(F*) above S(}*) containing a route from an input w' of F* that
is idle in S(F*) to w and such that T(F*)* is a safe state for F. The connection request
(v’, w') is a-limited in S(G), so there exists a safe state 7(G) above S(G) containing a
route from v’ to w'.

Let the route p be the concatenation of the route from v to v’ in 7(F), the route
from v’ to w' in T(G), and the route from w’ to w in T(F*). Then S U {p} is a safe bi-
state above S containing a route from v to w. 0

Proof of Corollary 1.3. Let F be the network constructed in the proof of Proposi-
tion 7, and let G be an explicitly constructed nonblocking (18#x)-connector with depth
O(log n) and size O(n log n) (see [P3] for a construction). By Proposition 7.4, F- G - F*
satisfies the claim. O



172 P. FELDMAN, J. FRIEDMAN, AND N. PIPPENGER

Proof of Proposition 7. Let p = 53 and let g be a prime congruent to one modulo
four with 9n = g + 1 = 18n. Let F be the network of depth one and size O(#) constructed
in the proof of Lemma 5.1. Then every set of x inputs with 1 = x =< 2# has at least 3x
neighbors in F. By Proposition 1 with r = 2 and s = 1, F is a wide-sense nonblocking
(n, 2)-limited generalized (g + 1)-concentrator.

Let k = log, nl. By Proposition 2, F % is a wide-sense nonblocking (n, n)-limited
generalized (¢ + 1)-concentrator. Deleting all but » inputs and adding 1827 — (g + 1)
isolated outputs completes the proof. 0

The results of this paper that rely on Proposition 1 do not provide efficient algorithms
for finding safe routes. In special cases (Theorems 4 and 6) we have been able to avoid
this defect. It may be possible to extend the methods used in these special cases to obtain
a version of Proposition 1 that allows an efficient algorithm for finding safe routes, but
such an extension has eluded our efforts thus far.
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