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ABSTRACT In this paper, a wideband circularly polarized (CP) textile multiple-input-multiple-output 
(MIMO) antenna is presented for wearable applications. The designed MIMO antenna consists of two 
sickle-shaped resonating elements and a common ground plane. Each antenna element is excited by a 
microstrip line feed, and an inverted L-shaped strip is introduced in the ground plane to support circular 
polarization. The antenna covers impedance bandwidth (S11≤–10 dB) of 3.6–13 GHz and 3-dB axial ratio 
bandwidth (ARBW) of 5.2–7.1 GHz. The proposed textile MIMO antenna exhibits envelope correlation 
coefficient (ECC) <0.02, diversity gain (DG) >9.96, total active reflective coefficient (TARC) <-10 dB, 
channel capacity loss (CCL) <0.2 b/s/Hz, and mean effective gain (MEG) ratio within ±0.5 dB. The antenna 
offers dual-sense circular polarization and high isolation (>18) between the resonating elements. Also, the 
proposed antenna is investigated for different human body situations, and its specific absorption rate (SAR) 
for human tissues specimen is studied. The overall size of the proposed CP textile MIMO antenna is 
32.5×42×1 mm3. The designed MIMO antenna could be useful for wearable applications due to its textile 
layers, reasonable on-body performance, and compact size. 

INDEX TERMS bending, circular polarization, isolation, textile antenna, wearable

I. INTRODUCTION 

Recently, wearable gadgets have received considerable 
attention from designers due to their widespread 
applications in healthcare, entertainment, navigation, 
remote monitoring, rescue, and security [1–2]. An antenna 
is an important element of a wearable transceiving system. 
Wearable/textile antennas are needed to radiate efficiently 
in a number of situations such as body gestures, bending, 
running, and movement. Textile antennas must be low-
profile, conformal, light in weight, flexible, robust, and 
compact in order to be easily integrated into portable 
electronic devices or clothing [3]. Antennas designed for 
wearable applications are intended to operate in close 
proximity to the human body. Therefore, several issues 
must be considered during the textile antenna design 
process, such as structural deformation, antenna placement, 
and fabrication [4–5]. Wideband circularly polarized (CP) 

antennas are attractive candidates for wearable applications 
due to their orientation flexibility, better mobility, and 
multipath interference suppression capability [6–8]. 
Multiple-input-multiple-output (MIMO)/diversity 
technology is also gaining popularity for improving link 
capacity, particularly in complex multipath environments. 
A multi-element antenna with polarization diversity is a 
good choice for encountering multipath fading and 
establishing reliable channels [9–11]. 

Many wearable MIMO antennas with high inter-element 
isolation have been presented in the literature [12–17]. In 
[12], a dual-band textile-based MIMO antenna was 
proposed for WLAN applications, where vias were used to 
modify the resonant mode of the waveguide cavity. A 
circular-shaped MIMO antenna with high impedance 
surface (HIS) was reported [13], where isolation larger than 
15 dB was achieved between the ports. A solo-coat textile 
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MIMO antenna was presented for wearable applications 
[14], where the ground plane worked as the radiator. In 
[15], a two-element wearable MIMO antenna was reported 
for ultra-wideband (UWB) applications, where a partially 
suppressed ground plane was used to obtain isolation >26 
dB. A wideband rectangular-shaped textile MIMO antenna 
was presented in [16], where two I-shaped stubs were used 
to achieve high inter-element isolation. 

Over the last five years, a few CP MIMO antenna 
designs have been developed that can be used for WLAN, 
C-band, and satellite applications [17–21]. In [17], a 
coplanar waveguide (CPW)-fed square slot MIMO antenna 
was presented, where inverted-L planar strips were used in 
the ground plane to obtain wide axial ratio bandwidth 
(ARBW). A dual CP antenna was reported in [18], where a 
combination of L-shaped strips was used to obtain circular 
polarization. In [19], a CP MIMO antenna consisted of 
grounded stubs and a mirrored F-shaped defected ground 
structure (DGS) in the ground plane was proposed. In [20], 
a CP antenna with monopole extension of the microstrip 
line was presented, where the orthogonal fields are induced 
through the modified ground plane. In [21], a CP MIMO 
antenna was presented for wearable gadgets, where the 
phase difference between orthogonal modes can be 
controlled by a metal strip loaded in the ground plane. The 
MIMO antennas presented in [12–16] showed linearly 
polarized (LP) characteristics while the antennas in [17–21] 
showed CP performance. Most of the wearable/textile 
antennas reported in the available literature are LP single 
element configurations with narrow ARBW, and wearable 
CP MIMO antenna with wide ARBW is rarely reported. 

In this article, a low-profile compact-sized two-element 
CP MIMO textile antenna is presented for wearable 
applications. The proposed MIMO antenna element consists 
of a microstrip line-fed sickle-shaped radiator and a 
modified ground plane. An L-shaped stub is integrated with 
the modified ground plane to introduce a quadrature phase 
shift between the horizontal and vertical electric field 
vectors. The two identical antenna elements are located in a 
mirrored-image fashion to obtain dual-sense radiation 
characteristics. Port-1 emits left-hand CP (LHCP) waves 
while port-2 emits right-hand CP (RHCP) waves. This 
property makes the proposed MIMO antenna suitable for 
polarization diversity operation. 

 
II. ANTENNA CONFIGURATION 

A.  ANTENNA ELEMENT DESIGN 

Fig. 1 shows the geometric layout of the proposed CP 
textile antenna element. The physical size of the antenna 
element is 20×30.5 mm2. The antenna element consists of a 
sickle-shaped radiating patch and a modified ground plane 
designed on the upper and lower sides of the dielectric 
substrate, shown in Figs. 1(a) and (b), respectively. A 50 Ω 
microstrip line is used for feeding the radiator. The 

simulations of the proposed antenna are performed in 
ANSYS HFSS® software. 
 

 

(a) 
 

 
 

(b) 
 

FIGURE 1.  Proposed CP textile antenna: (a) top layout, (b) bottom 
layout. 

 

            
 

                              (a)                                                        (b) 
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                              (c)                                                        (d) 

 

     

 

(e) 

 
FIGURE 2.  Evolution of the proposed textile antenna: (a) Ant. 1, (b) Ant. 
2, (c) Ant. 3, (d) Ant. 4, (e) Ant. 5. 

The antenna element is developed on Felt substrate 
material of thickness of 1 mm, dielectric constant of 1.34, 
and loss tangent of 0.02. The radiating patch and the ground 
plane are formed using Sheildit Superconductive material 
of thickness of 0.17 mm and surface resistivity of <0.5 Ω 
per square. The design parameters of the antenna element 
are: R1=11.5 mm, R2=10.3 mm, R3=13.8 mm, Lf =10.2 mm, 
L1=23.4 mm, W1=1.7 mm, L2=10.5 mm, W2=3 mm, L3=5.7 
mm, W3=5 mm, L4=7.7 mm, W4=20 mm. 

 
 

(a) 

 

 
 

(b) 

 

FIGURE 3.  Simulation results of the design steps: (a) reflection 
coefficients, (b) axial ratio. 

TABLE I 
SIMULATED RESULTS OF THE DESIGN STAGES 

Step Bandwidth (GHz) 

Fractional 

bandwidth 

(%) 

ARBW 

(GHz) 

Ant. 1 3.6–4.5, 7.5–11.3 22.22, 25.24 --- 
Ant. 2 2.21–2.87, 7.4–9.6 16.6, 16.54 --- 
Ant. 3 5.5–10.4 64.15 5.3–5.8 
Ant. 4 5.8–10.6 58.53 5.5–5.9 
Ant. 5 

(Proposed) 
3.7–12.2 106.91 4.7–9.2 

 
1) DESIGN PROCESS 

Fig. 2 presents the evolution process of the textile 
antenna element. The simulated reflection coefficients and 
axial ratio curves of the design steps are shown in Figs. 3(a) 
and (b), respectively. In Fig. 2(a), a microstrip line-fed 
sickle-shaped radiator is designed on the top of the textile-
based substrate material, and a partial ground plane on the 
bottom of the substrate material. The Ant. 1 shows 
resonating bandwidth of 3.6–4.5 GHz and 7.5–11.3 GHz. In 
step-2, as shown in Fig. 2(b), a strip of λ/2 wavelength is 
introduced in the partial ground plane to improve 
impedance bandwidth. Ant. 2 also shows two resonating 
bands. 

Furthermore, as shown in Fig. 2(c), the impedance 
mismatching is encountered by introducing an L-shaped 
strip in the ground plane (Ant. 3). The L-shaped strip also 
induces quadrature phase difference between the two 
electric field vectors (Ex and Ey). The impedance bandwidth 
and axial ratio bandwidth (ARBW) of the Ant. 3 are 5.5–
10.4 GHz and 5.3–5.8 GHz, respectively. In step-4, the L-
shaped strip is alienated into two parts (of dimensions 
L2×W2 and L1×W1), as shown in Fig. 2(d), which improves 
the axial ratio of the antenna element (Ant. 4). The antenna 
resonating band needs to shift to the left side for covering 
the lower frequency range. For this reason, a rectangular 
slot (of dimensions L3×W3) is etched from the ground plane 
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of the antenna element as shown in Fig. 2(e). Thus, the 
current path length increases and shifts the operating 
frequency band towards the lower side. Also, superior CP 
performance is obtained in the proposed Ant. 5. The 
simulated results (impedance bandwidth and ARBW) of the 
design stages are listed in Table I. 

2) CP PERFORMANCE 

Fig. 3(b) shows axial ratio and frequency variations for 
different stages of the proposed antenna. Ant. 1, shown in 
stage-1, is LP as the phase difference between the electric 
field vectors is not 90. Similarly, Ant. 2 is also LP. Further, 
L-shaped strip of different lengths and widths are connected 
to the rectangular ground plane (Ant. 3 and Ant. 4) to 
achieve 90 phase difference between the electric field 
vectors. By using this method, the amplitude of Ex and Ey 
becomes almost equal with 90 phase difference between 
them [17]. The surface current distributions of the proposed 
textile antenna (at ωt=0°, ωt=90°, ωt=180°, and ωt=270°) 
are shown in Fig. 4. A1 and A2 symbolize the orthogonal 
current vectors, and A3 represents their sum. At ωt=0°, the 
surface current density on the upper part of the patch (A1) 
and the edge of the L-shaped strip (A2) increases, and the 
sum (A3) of these two vectors is heading towards the upper 
right, shown in Fig. 4(a). At ωt=90°, as displayed in Fig. 
4(b), the vector sum A3 is heading towards the lower right, 
which illustrates that the current vectors are rotating 
clockwise as time progresses. 

  
 

                                (a)                                                   (b) 

 

  

 

                                (c)                                                   (d) 

 
FIGURE 4.  Vector current distribution at 5.3 GHz: (a) 0

°
, (b) 90

°
, (c) 180

°
, 

(d) 270
°
. 

Similarly, at ωt=180° and 270°, the sum (A3) travels in 

the clockwise direction as displayed in Figs. 4(c) and (d), 
respectively. Therefore, the proposed textile antenna 
demonstrates LHCP operation in the broadside direction. 

The |Ex/Ey| and phase difference plots of the proposed 
Ant. 5 and Ant. 1 are shown in Figs. 5(a) and (b), 
respectively. The curves reveal that the L-shaped strip on 
the ground plane balances the magnitude of horizontal and 
vertical electric field vectors and introduces a 90 phase 
difference between them. The current path increases by 
etching a rectangular slot from the ground plane, hence 
shifting the resonating frequency band towards the left side. 

 
 

(a) 

 

 
 

(b) 

 

FIGURE 5.  Comparison between the Ant. 1 and Ant. 5: (a) |Ex/Ey|, (b) 

phase difference. 

B.  MIMO ANTENNA 

Fig. 6 displays the proposed textile MIMO antenna 
configuration, where two identical antenna elements (Ant. 
5) are placed in a mirrored-image fashion. The monopole 
radiators are excited through 50 Ω microstrip lines. On the 
back side of the textile substrate, a shared ground plane is 
designed with the mirrored L-shaped strips. The proposed 
CP MIMO antenna parameters are: Lm=32.5 mm, Wm=42 
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mm, Lg=7.2 mm, ls=16.5 mm, ws=1 mm, l5=27.8 mm, 
w5=1.2 mm, l6=9.5 mm, w6=6 mm, l7=5.7 mm, w7=5 mm, 
w12=1.7 mm, d1=14.2 mm. The overall size of the proposed 
textile MIMO antenna is 42×32.5 mm2. The top and bottom 
of the textile MIMO antenna prototype are shown in Figs. 
6(c) and (d), respectively. 

1) DESIGN PROCESS 

Due to the mirrored-image arrangement, the L-shaped 
strips of the antenna elements unite to form a T-shaped stub 
at the middle of the MIMO Antenna A as shown in Fig. 
7(a). Without any decoupling element between the antenna 
elements, the S12 parameters of the presented MIMO 
antenna are stable. The S-parameters and axial ratio curves 
of the MIMO Antenna A and MIMO Antenna B are 
displayed in Figs. 8(a) and (b), respectively. The T-shaped 
stub between the antenna elements offers isolation >16 dB. 
However, the ARBW of the antenna changes significantly 
due to the surface wave coupling. Therefore, a rectangular 
slot (of size ls×ws mm2) is etched from the T-shaped stub of 
the MIMO Antenna A to improve 3-dB ARBW of the 
antenna as shown in Fig. 7(b) (MIMO Antenna B). The slot 
also improves isolation (>18.5 dB) of the MIMO antenna. 
The dimensions of the rectangular slot are optimized to 
realize a wider ARBW. The simulated impedance 
bandwidth and ARBW of the proposed MIMO Antenna B 
are listed in Table II. 

 
 

(a) 

 

 
 

(b) 

 

     

 

                             (c)                                                          (d) 

 
FIGURE 6.  Proposed CP textile MIMO antenna: (a) top view, (b) back 
view, (c) top view of the fabricated prototype, (d) bottom view of the 
fabricated prototype. 

TABLE II 
SIMULATED RESULTS OF THE MIMO ANTENNA B 

 
ARBW S11 

Operating 

frequency (GHz) 
5–7.3 3.3–13.6 

Size (mm2) 42×32.5 
Substrate 

thickness 
1 mm ɛr=1.34, tan δ=0.02 

 

 
 

(a) 

 

 
 

(b) 

 

FIGURE 7.  Design of: (a) MIMO Antenna A, (b) MIMO Antenna B. 

Fig. 8(c) shows the simulated axial ratio beamwidth of 
the proposed MIMO antenna at 6 GHz in the ϕ = 0° and ϕ = 
90° planes. It can be seen that the 3-dB axial ratio 
beamwidth ranges from -63° to 72° for ϕ = 0° and -68° to -
62° for ϕ = 90°. The simulated and measured efficiency of 
the proposed antenna are shown in Fig. 8(d), and the peak 
efficiency is about 78 % at 9.5 GHz. The efficiency is low 
due to the dielectric loss, smaller surface area, and compact 
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size of the antenna. 

2) DUAL-SENSE CP PERFORMANCE 

The proposed two-port textile MIMO antenna 
demonstrates dual-sense radiation characteristics.  

 
 

(a) 

 

 
 

(b) 

 

 
 

(c) 

 

 

 
 

(d) 

 

FIGURE 8.  Simulated response of the textile MIMO antenna: (a) S-
parameters, (b) axial ratio, (c) axial ratio beamwidth, (d) antenna 
efficiency. 

  
 

(a) 

 

 
 

(b) 

 
FIGURE 9.  Surface current distribution at 5.3 GHz: (a) port-1/LHCP, (b) 
port-2/RHCP. 

The surface current distributions of the textile antenna (at 
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ωt=0°, ωt=90°, ωt=180°, and ωt=270°) are shown in Fig. 9. 
Here, A1 and A2 symbolize the orthogonal current vectors, 
and A3 represents their sum. By changing the port 
excitation, either LHCP or RHCP behavior can be 
generated in the broadside direction of the antenna. Figs. 
9(a) and (b) illustrate clockwise and anti-clockwise 
movement of the electric field vectors at port-1 and port-2, 
respectively. As shown in Fig. 9(a), the resultant (A3) is 
heading towards the upper right at ωt=0°, while the vector 
sum (A3) is heading towards the lower right at ωt=90°. On 
the contrary, in Fig. 9(b), the vector sum (A3) is heading 
towards the upper left at ωt=0°, while the sum (A3) is 
heading towards the lower left at ωt=90°. When port-1 is 
excited, port-2 is terminated with a load of 50 Ω and vice 
versa. The simulated surface current distribution of the 
proposed MIMO antenna at 8.5 GHz is shown in Fig. 10. It 
is found that the current distribution is uniform throughout 
the patch area, with the exception of the patch element in 
the middle, and this validates the gain of the antenna. 

 
 

FIGURE 10.  Simulated surface current distribution at 8.5 GHz. 

III. RESULTS DISCUSSION 

A.  S-PARAMETERS AND AXIAL RATIO 

The performance of the proposed textile MIMO antenna is 
measured using an Anritsu MS2038C vector network 
analyzer.  

  
 

(a) 

 

 
 

(b) 

 

 
 

(c) 

 
FIGURE 11.  Simulated and measured response of the textile MIMO 
antenna: (a) S-parameters, (b) axial ratio, (c) gain. 

The measured and simulated reflection coefficients of the 
textile MIMO antenna are shown in Fig. 11(a). The 
measured and simulated -10 dB impedance bandwidths are 
113 % (3.6–13 GHz) and 121 % (3.3–13.6 GHz), 
respectively. As shown in Fig. 11(a), the measured isolation 
between port-1 and port-2 is >17 dB while the simulated 
isolation is >19 dB. Since coupling is stronger at lower 
frequencies, the decoupling structure is designed for a 
frequency range of 4-6 GHz. 

The measured and simulated axial ratio plots (in the 
broadside direction) of the textile MIMO antenna are 
illustrated in Fig. 11(b). The measured 3-dB ARBW is 30 
% (5.2–7.1 GHz) and the simulated 3-dB ARBW is 37 % 
(5–7.3 GHz). The minimum (measured) value of the axial 
ratio is 1.2 dB at 5.2 GHz. 

The measured and simulated gain plots of the proposed 
textile antenna are shown in Fig. 11(c). The measured peak 
gain is 5.7 dB at 8.5 GHz. The simulated and measured 
outcomes of the textile antenna are in good agreement. A 
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small difference exists due to the fabrication error and the 
adhesive used to join the textile materials and the copper 
part. 

B.  RADIATION PERFORMANCE 

Fig. 12 illustrates the measured and simulated radiation 
patterns of the proposed CP textile MIMO antenna at 5.3 
GHz and 6.3 GHz. The MIMO antenna shows LHCP 
characteristics when port-1 is excited and port-2 is matched 
with a load of 50 Ω. In the same way, the MIMO antenna 
shows RHCP behavior when port-2 is excited and port-1 is 
matched with a load of 50 Ω. The radiation patterns in Figs. 
12(a)–(d) validate the dual-sense behavior of the proposed 
CP textile MIMO antenna. 

         

(a) 

 

         

(b) 

 

         

(c) 

 

          

(d) 

 

FIGURE 12.  Measured and simulated radiation patterns: (a) 5.3 
GHz/port-1, (b) 6.3 GHz/port-1, (c) 5.3 GHz/port-2, (d) 6.3 GHz/port-2. 

C.  MIMO PERFORMANCE 

To support the proposed textile antenna diversity 
performance, MIMO parameters such as envelope 
correlation coefficient (ECC), diversity gain (DG), total 
active reflection coefficient (TARC), channel capacity loss 
(CCL), and mean effective gain (MEG) are evaluated. ECC 
<0.5, DG >9.95, TARC <0 dB, CCL <0.4 b/s/Hz, and MEG 
ratio between 0 and -3 dB are required for efficient MIMO 
system operation [22–25]. 

1)  ECC AND DG 

In MIMO systems, ECC demonstrates the correlation 
between antenna ports. The following relation can be used 
to evaluate the ECC [25]. 

                                                                       (1) 

The simulated and measured ECC curves of the presented 
textile MIMO antenna are displayed in Fig. 13(a). The ECC 
between antenna elements-1 and -2 is less than 0.02. 

Another important MIMO parameter is DG, which can 
be calculated using the following relation.                                        (2) 

The simulated and measured DG curves of the proposed 
textile MIMO antenna are shown in Fig. 13(a). The DG of 
the textile antenna is greater than 9.96 dB. 

2)  TARC 

When the antenna elements in a multi-port antenna 
system operate concurrently, they affect each other’s 
performance. TARC takes into account this effect, which is 
defined as the square root of the ratio of total incident 
power to reflected power in the overall MIMO system. The 
following equation can be used to compute the TARC of 
the proposed two-port MIMO antenna [26]. 

                                                   (3) 

The simulated and measured TARC curves are presented in 
Fig. 13(b). Here, the measured and simulated TARC values 
are less than -10 dB for the entire operating band. 

3)  CCL AND MEG 

CCL is the knowledge of the maximum cut-off on the 
message transmission rate over a communication channel, 
and it can be evaluated as [25].                                            (4) 
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where                                                                                     

The measured and simulated CCL curves of the proposed 
textile MIMO antenna are presented in Fig. 14(a). The CCL 
values are less than 0.2 b/s/Hz for the entire operating band. 

 
 

(a) 
 

 
 

(b) 

 

FIGURE 13.  Diversity performance of the textile MIMO antenna: (a) ECC 

and DG, (b) TARC. 

MEG reflects gain behavior of the MIMO antenna. It 
demonstrates that the impact of the wireless environment 
on diversity has been considered. The following equations 
can be used to compute the MEG [22].                                            (5)                                            (6) 

The measured MEG graphs of the proposed textile MIMO 
antenna are plotted in Fig. 14(b). It is noticed that the 
difference between MEG1 and MEG2 is ±0.5 dB. 

 

 
 

(a) 
 

 
 

(b) 

 

FIGURE 14.  Proposed textile MIMO antenna: (a) CCL, (b) MEG. 

IV.  BENDING ANALYSIS 

The wearable antenna may bend when mounted in garments 
worn on the human body, such as the arms and thighs. To 
ensure the structural integrity of the antenna, simulations 
were run to test its ability to bend along the E-plane or H-
plane at different radii, 15 mm, 25 mm, 35 mm, and 45 mm. 
The simulated S11 and axial ratio results of the textile 
MIMO antenna at different bending radii are shown in Figs. 
15 and 16, respectively. For better realization, the MIMO 
antenna is analyzed in two states: bending along the E-
plane and bending along the H-plane. Figs. 15(a) and (b) 
show the simulated results for the E-plane and H-plane 
bending with radius varying from 15 mm to 45 mm in 
comparison to the original antenna. It is noticed that the 
curves are shifted to the higher frequency side by 
approximately 700 MHz in comparison to the original 
results. 

The MIMO antenna performs well under bend conditions 
and exhibits a similar bandwidth, however, as the bending 
radius decreases, the S11 results deteriorate due to 
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impedance mismatching between the port and feed line. 
The same trend can be seen in the H-plane bending 
analyses, with the resonating band shifting to the right as 
the bending radius decreases. 

Fig. 16 shows the simulated axial ratio, for the E-plane 
bending, with radius varying from 15 mm to 45 mm in 
comparison to the original antenna. The 3-dB ARBW shifts 
to the lower side as the bending radius increases, and it 
degrades at 6 GHz due to the feed line offset. Figs. 17(a) 
and (b) show the measured S11 and axial ratio of the 
proposed textile antenna in the E-plane, respectively, and 
the simulated and measured results are found to be in good 
agreement. 
 

 
 

(a) 
 

 
 

(b) 

 

FIGURE 15.  S11 comparison for different bending radii: (a) E-plane, (b) 

H-plane. 

Also, the diversity performance of the MIMO antenna is 
investigated in terms of ECC, DG, MEG, TARC, and CCL 
in various bending situations, as shown in Table III. It has 
been found that as the bending radius increases, the 
performance of the antenna slightly decreases due to 
changes in the current distribution on the ground plane of 
the antenna. 

 
 

FIGURE 16.  Axial ratio comparison for different bending radii in the E-

plane. 

 
 

(a) 

 

 
 

(b) 

 

FIGURE 17.  Performance comparison for different bending radii in the 

E-plane: (a) S11, (b) axial ratio. 

Furthermore, the on-body analysis of the antenna is also 
studied. Table IV shows the intrinsic values of 
conductivity, permittivity, density, and loss tangent of skin, 
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fat, muscle and bone of a four-layer human arm shown in 
Fig. 18(a). The simulated S11 results for different bending 
radius are shown in Fig. 18(b), and it is noticed that the 
curves are shifted slightly towards the right side due to the 
lossy nature of the human arm and the reduction in the 
current path length. 

TABLE III 
DIVERSITY PERFORMANCE OF THE MIMO ANTENNA FOR DIFFERENT 

BENDING RADII 

Bending 

radius 

(mm) 

Parameters 

ECC 
DG 

(dB) 

MEG1-

MEG2 

(dB) 

TARC 

(dB) 

CCL 

(b/s/Hz) 

45 0.021 9.95 ±0.5 -10 0.2 
35 0.022 9.93 ±0.5 -10 0.2 
25 0.023 9.93 ±0.5 -9.7 0.22 
15 0.023 9.91 ±0.5 -9.5 0.23 

 
TABLE IV 

INTRINSIC PROPERTIES OF HUMAN TISSUES AT 5.8 GHZ 
Properties/Tissues Skin Fat Muscle Bone 

Permittivity (εr) 35.1 4.95 48.48 10.3 
Conductivity 

(S/m) 
3.71 0.29 4.96 4.56 

Loss tangent 0.2835 0.19382 0.24191 0.25244 
Density (kg/m3) 1100 910 1060 1850 

 

  
 

(a) 
 

 
 

(b) 

 

FIGURE 18.  On-body performance of the antenna: (a) four-layer tissue 

model, (b) S11 comparison for different bending radii in the E-plane. 

V. SPECIFIC ABSORPTION RATE CHARACTERISTICS 

The specific absorption rate (SAR) can be defined by the 
following relation [27]. 

                                              (7) 

where dm is the incremental mass, dE is the time derivative 
of the incremental energy, dA is the volume element, and ρ is 
the mass density. The SAR values are specified by the 
Federal Communications Commission (FCC), International 
Commission on Non-Ionizing Radiation Protection 
(ICNIRP), and IEEE C95.1-2005 standards [28–30]. For 1 W 
of input power, the maximum SAR value obtained for 10 g 
of tissue is 5.434 W/kg. 

According to the new guidelines, the majority of devices 
for human body applications require mW power range. The 
calculated maximum input power of the antenna is 367.86 
mW for 10 g of tissue at 2 W input power, which is less 
than the maximum standard limit. Thus, the proposed 
antenna will operate within allowable limits. 

Table V compares the proposed textile MIMO antenna 
and recently reported textile/wearable antennas. The 
parameters compared are antenna size, substrate material, 
operating bandwidth, fractional bandwidth, gain, ARBW, 
sense of polarization, and isolation. The wearable antennas 
presented in [12–16] were LP. The antenna proposed in 
[11] showed circular polarization behavior, and [17–21] 
were CP with dual sense, but they showed a small operating 
bandwidth. In contrast to the reported antenna designs, the 
proposed textile MIMO antenna exhibits small size, wider 
axial ratio and impedance bandwidths, and dual-sense 
(LHCP/RHCP) behavior. 

VI. CONCLUSION 

In this paper, a wideband CP two-port textile MIMO antenna 
is proposed. The overall size of the textile antenna is 
32.5×42×1 mm3. The proposed MIMO antenna exhibits an 
impedance bandwidth of 113 % and ARBW of 30 %. The 
antenna shows DG >9.96 dB, ECC <0.02, and CCL <0.2 
b/s/Hz. The isolation obtained is greater than 18 dB without 
the use of any additional decoupling elements. SAR analysis 
of the proposed antenna is also studied for human tissue 
models and it is found within the acceptable range. The 
presented antenna is useful for off-body and on-body 
WLAN, Wi-MAX, and C-band uplink/downlink 
applications. 
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TABLE V 
COMPARATIVE ANALYSIS OF THE PROPOSED WORK WITH THE REPORTED WEARABLE MIMO ANTENNAS 

Ref. 
Antenna size 

(mm2) 

Substrate 

material (εr) 

Operating 

bandwidth 

(GHz) 

Fractional 

bandwidth 

(%) 

ARBW 

(GHz) 
Gain (dB) 

Dual 

sense 

Isolation 

(dB) 

[11] 40 × 40 FR-4 (1.6) 1.6–3.8 92.08 1.8–3.1 2.36 No >24 

[12] 92.3 × 101.6 Textile (1.3) 
2.367–2.53, 
5.14–5.86 

6.65, 13.09 --- 5.8 No >20 

[13] π(21.1)2 FR-4 (1.6) 2.4–2.49 3.68 --- 4.2 No >15 
[14] 38.1 × 38.1 Textile (1.2) 2.3–2.8 19.6 --- 2.79 No >12 
[15] 55 × 35 Jeans (1.6) 2.64–12.28 129.22 --- 6.9 No >26 
[16] 70 × 40 Jeans (1.6) 2.4–8 107.69 --- 4.4 No >22 
[17] 60 × 60 FR-4 (1.6) 2.0–4.76 81.65 2.0–3.7 4 Yes >15 
[18] 32 × 32 FR-4 (1.6) 1.4–8.73 144.71 3.74–8.8 3.8 Yes >20 

[19] 13.7 × 36.2 
Rogers 

RO4003C 
(3.38) 

5.2–6.3 19.13 5.2–6.3 5.8 Yes >22 

[20] 100 × 150 
Rogers 

RO4350B 
(3.66) 

2.47–2.55 3.2 2.5–2.66 6.1 Yes >20 

[21] 30 × 30 FR-4 (1.6) 2.37–2.54 6.92 2.4–2.5 --- Yes >20 
Prop. 42 × 32.5 Textile (1.34) 3.6–13 113.25 5.2–7.1 5.7 Yes >18 
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