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S
pectrum sensing refers to the 

task of identifying the fre-

quency support of a given 

input signal. Standard radio-

frequency (RF) lab equipment 

can provide this functionality. An exam-

ple is a spectrum analyzer (e.g., 

HP-8563E), which sweeps the center fre-

quency of an analog bandpass filter and 

draws the in-band signal energy. The fre-

quency support then consists of those 

spectrum intervals in which the signal 

power exceeds the noise floor. Recently, 

there has been growing interest in spec-

trum sensing for mobile cognitive radio 

(CR) receivers [1], which aim at utilizing 

unused frequency regions on an oppor-

tunistic basis. Commercialization of CR 

technology necessitates a spectrum sens-

ing mechanism that reacts in real time 

to cognitive decisions. A mobile device, 

however, cannot embed solutions based 

on standard lab equipment due to size, 

weight, power, and cost limitations. 

Sensing in CR mobiles must be per-

formed using minimal hardware and 

software resources. Therefore, enabling 

widespread use of CRs calls for innova-

tive spectrum sensing techniques. 

In this article, we present a mixed 

analog-digital spectrum sensing method 

that is especially suited to the typical 

wideband setting of CRs. The next sec-

tion briefly summarizes existing 

approaches to CR sensing. The advan-

tages of our system with respect to cur-

rent architectures are threefold. First, 

our analog front end is fixed and does 

not involve scanning hardware. Second, 

both the analog-to-digital conversion 

(ADC) and the digital signal processing 

(DSP) rates are substantially below 

Nyquist. Finally, the sensing resources 

are shared with the reception path of the 

CR, so that the low-rate streaming sam-

ples can be used for communication pur-

poses of the device, besides the sensing 

functionality they provide. Combining 

these advantages leads to a real-time 

map of the spectrum with minimal use 

of mobile resources. Our approach is 

based on the modulated wideband con-

verter (MWC) system [2], which samples 

sparse wideband inputs at sub-Nyquist 

rates. We report on results of hardware 

experiments, conducted on an MWC pro-

totype circuit [3], which affirm fast and 

accurate spectrum sensing in parallel to 

CR communication. This can help allevi-

ate one of the current main bottlenecks 

in wide-spreading deployment of CRs. 

CRS AND SPECTRUM SENSING

Traditional communication, such as tele-

vision, radio stations, mobile carriers and 

air traffic control is carried over predeter-

mined frequency bands. Over the years, 

government agencies allocated the 

majority of the spectrum to legacy users, 

reserving a particular frequency interval 

for each owner. This resource allocation 

strategy has led to spectrum congestion, 

to such a point that, today, the increasing 

demand for transmission bands can rare-

ly be satisfied by a permanent allocation. 

Fortunately, studies conducted by the 

Federal Communications Commission 

(FCC) in the United States and by similar 

agencies in other countries indicate that 

the spectrum is underutilized; In a given 

geographical location and time duration, 

only a small number of legacy users 

transmit concurrently. This low frequen-

cy utilization, illustrated in Figure 1, is 

what drives CR technology. 

The idea behind CR is to exploit tem-

porarily available spectrum holes 

belonging to inactive primary users. 

Spectrum sensing therefore takes place 

whenever the CR searches for available 

transmission holes. After a certain fre-

quency band is chosen, the CR continu-

ously monitors the spectrum to detect 

any change in the activity of the primary 

users. Once a primary user becomes 

active, the CR must choose another 

working band, or tailor its transmission 

to reduce in-band power. Quick and effi-

cient spectrum sensing is evidently an 

essential component of CR functionality. 

The November 2008 special issue of 

IEEE Signal Processing Magazine 

reviews existing CR technology [4], [5]. 

Current approaches for spectrum sens-

ing are briefly summarized in Table 1 

according to [6] and [7]. From a bird’s-

eye view, previous methods can be cate-

gorized into either fully hardware or 

fully software solutions. Known analog 

methods imitate the scanning mecha-

nism used in lab equipment, thereby 

requiring tunable circuits, independent 

of the CR reception hardware. The soft-

ware solutions assume that the input is 

sampled at the Nyquist rate  

 fNYQ5 2fmax,  (1)

which is twice the highest wideband 

frequency fmax. No analog preprocessing 
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[FIG1] A CR aims at sensing the 
available frequency holes in 
consecutive time intervals.
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is needed and the samples can be 

shared with the subsequent CR stages. 

However, since CR typically operates in 

a wideband environment, the sampling 

rate fNYQ can be prohibitively large. 

Consequently, utilizing these sensing 

algorithms requires premium ADC and 

DSP devices that can accommodate 

high-rate streaming data. 

Table 1 distinguishes between para-

metric and generic approaches. Para -

metric methods rely on a specific 

structure that the input signal is as -

sumed to obey. For example, matched fil-

tering requires the exact transmission 

shape of the primary user. Other para-

metric approaches incorporate knowl-

edge on preambles,  midambles, 

synchronization bits, cyclostationarity, 

and modulation format. In contrast, the 

generic methods avoid assumptions on 

the underlying signal content. Sensing 

based on the MWC, introduced below, 

belongs to the family of generic methods 

and possesses additional unique features: 

fixed hardware, sub-Nyquist ADC and 

DSP rates, and shared acquisition 

resources between sensing and CR 

reception. Mixed analog-digital system 

design is the enabling factor behind 

these unique benefits. 

SUB-NYQUIST SAMPLING: 

MODULATED WIDEBAND 

CONVERTER

Consider a signal consisting of several 

concurrent transmissions. To avoid sam-

pling at the high Nyquist rate, the 

 common practice in engineering is de -

modulation. The signal is multiplied by 

the carrier frequency of a band of inter-

est, so as to shift the desired contents to 

the origin, then filtered and sampled at a 

low rate. When the band positions are 

unknown, e.g., in a CR receiver, standard 

demodulation cannot be used. 

The MWC treats multiband signals 

when knowledge of the carrier frequen-

cies is present or absent. The only 

assumption is that the spectrum is con-

centrated on N frequency intervals with 

individual widths not exceeding B. The 

sampling rate is proportional to the 

effective spectrum occupation NB rather 

than fNYQ. Typically, the spectrum is 

underutilized so that NB V fNYQ. A digi-

tal algorithm detects the spectral support 

and enables either signal reconstruction 

or low-rate processing of the individual 

band contents. In this article, we take 

advantage of the MWC for a slightly dif-

ferent task—instead of aiming at the 

information bands, our goal is to detect 

the inactive support. This complemen-

tary viewpoint allows optimizing the 

MWC design for holes detection at the 

expense of the tasks that are not required 

in the CR settings, namely reconstruc-

tion and processing of the primary trans-

missions. The resulting MWC-based 

spectrum sensing is categorized under 

the “Generic” rubric of Table 1, since no 

assumption is made on signal shape of 

legacy users or their specific modulation 

techniques. Nonetheless, the sampling 

rate is comparable with that of a demod-

ulator who knows the exact carrier of 

each transmission.

We now explain the MWC sampling 

stage, as depicted in Figure 2(a). The sys-

tem consists of a front end of m channels. 

In the ith channel, the input signal x 1t 2  
is multiplied by a periodic waveform pi 1t 2  
with period Tp, low-pass filtered by h 1t 2 , 
and then sampled at rate fs5 1/Ts. The 

basic MWC configuration has 

 fp5 1/Tp $ B, Tp5 Ts, m $ 4N. (2)

The parameter choice (2) results in 

 Sampling rate5mfs < 4NB,  (3)

which, in general, is far below fNYQ. In 

practice, an advanced configuration 

that we describe in the sequel is used in 

our hardware experiments, allowing to 

reduce the number of branches m at 

the expense of increasing the sampling 

rate fs on each channel with overall rate 

of mfs < 4 NB. 

To derive an expression for the ith 

sequence of samples yi 3n 4, we note that 

since each pi 1t 2  is periodic, it has a 

Fourier expansion 

 pi 1t 2 5 a
`

,52`

ci, e
j2pfp,t,  (4)

for some coefficients ci,. Denote by 

z, 3n 4  the sequence that would have 

been obtained if the signal was mixed 

by a pure sinusoid e j2pfp,t and low-pass 

filtered. This sequence corresponds to 

uniform samples at rate fp of a section 

of x 1t 2 ,  conceptually obtained by 

bandpass filtering an fp-width interval 

around ,fp and demodulating to the 

origin. Since the system is linear, 

modulating by pi 1t 2  and low-pass fil-

tering is equivalent to summing the 

weighted combinations of all the 

sequences z, 3n 4 
 yi 3n 45 a

L

,52L

ci, z, 3n 4,  (5)

where the sum limits 2 L # , # L rep-

resent the range of coefficients ci, with 

nonnegligible amplitudes. It follows that 

the number of spectrum intervals that 

are aliased to the origin is M5 2L1 1. 

In principle, any periodic function with 

high-speed transitions within the period 

Tp can be used to obtain this aliasing. 

One possible choice for pi 1t 2  is a sign-

alternating function, with M  sign 

[TABLE1] SPECTRUM SEN SING APPROACHES FOR CR.

APPROACH
ANALOG 
FRONT END ADC/DSP RATE

SHARED WITH 
CR RECEPTION

P
A

R
A

M
E

T
R

IC

ANALOG PILOT DETECTION / 
MATCHED-FILTERING 

SCANNING N/A ✗

DIGITAL PILOT DETECTION / 
MATCHED-FILTERING 

✗ NYQUIST ✔

CYCLOSTATIONARY FEATURE 
EXTRACTION 

✗ NYQUIST ✔

WAVEFORM-BASED SENSING ✗ NYQUIST ✔

RADIO IDENTIFICATION ✗ NYQUIST ✔

G
E

N
E

R
IC

ANALOG ENERGY DETECTION SCANNING N/A ✗

DIGITAL ENERGY DETECTION ✗ NYQUIST ✔

MULTITAPER SPECTRUM 
 ESTIMATION 

✗ NYQUIST ✔

FILTER BANK SPECTRUM SENSING ✗ NYQUIST ✔

THIS ARTICLE FIXED SUB-NYQUIST ✔
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 intervals within the period Tp [2]. 

Popular binary patterns, e.g., the Gold or 

Kasami sequences, are especially suitable 

for the MWC [8]. 

Mixing by periodic waveforms aliases 

the spectrum to baseband, such that 

each frequency interval of width 

fp5 1/Tp receives a different weight. The 

energy of the various spectral intervals is 

overlayed at baseband, as visualized in 

Figure 2(a). At first sight, the sequences 

yi 3n 4 seem corrupted due to the deliber-

ate aliasing. Nonetheless, the fact that 

only a small portion of the wideband 

spectrum is occupied, together with the 

different weights in the different 

 channels, permits the recovery of x 1t 2 . 
The next section explains the digital 

computations of Figure 2(b), and in par-

ticular how the spectrum sensing func-

tionality is achieved. 

COMPUTATIONALLY LIGHT 

SOFTWARE ALGORITHM

Mathematically, the analog mixture boils 

down to the linear system [2] 

 y 3n 45 Cz 3n 4,  (6)

where the vector y 3n 45 3 y1 3n 4, c,

ym 3n 4 4T collects the measurements at 

t5 nTs. The matrix C  consists of the 

coefficients ci, and z 3n 4 consists of the 

values of z, 3n 4 arranged in vector form. 

From (2) and the definition of z, 3n 4, it 
follows that at most 2N sequences, z, 3n 4 
are active, namely contain signal energy 

[2]. The spectrum  sensing functionality is, 

therefore, tantamount to finding the 

index set 

 S5 5, | z, 3n 4 2 06, (7)

which reveals the spectrum support of 

x 1t 2  at a resolution of fp Hz. The choice 

fp $ B in (2) implies a minimal resolu-

tion that should match the expected 

bandwidth of legacy transmissions. For 
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[FIG2] (a) Block diagram of the modulated wideband converter. (b) A digital algorithm recovers a multiband input.
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CR, a smaller resolution fp , B is uti-

lized as discussed in the next section. 

Detecting S by inverting C in (6) is 

not possible, since the m 3 M matrix 

C is underdetermined; the MWC uses 

m V M  to reduce the sampling rate 

below Nyquist.  Underdetermined 

 systems have in general infinitely 

many solutions. Nonetheless, under 

the parameter choice (2), and addi-

tional mild conditions on the wave-

forms pi 1t 2 , a sparse z 3n 4 with at most 

2N  nonzero entries is unique and can 

be recovered in polynomial time [2] by 

relying on results in the field of com-

pressed sensing. Further simplification 

of the DSP can be obtained by noting 

that z 3n 4 are jointly sparse over time, 

particularly, the index set S does not 

depend on the time index n. Therefore, 

S can be estimated from several con-

secutive samples, which increases the 

robustness of the estimate. 

Support recovery is performed in 

the continuous-to-finite (CTF) block of 

Figure 2(b). The CTF builds a frame (or 

a basis) from the measurements using 

y 3n 4  Frame construct    Q5 a
n

 y 3n 4 yH 3n 4
 Decompose  Q5 V V

H, (8)

where the (optional) decomposition 

allows removal of the noise space. The 

active spectrum slices are detected from 

the sparse solution of the following 

underdetermined system 

 V5 CU. (9)

It is proven in [9] that (9) has a unique 

solution matrix U with minimal number 

of nonidentically zero rows, and that the 

locations of these rows coincide with the 

support set S of x 1t 2 . This is the point 

where the CR device can decide how to 

allocate its energy, since 

Spectrum holes5 d
,oS

c, fp

 2
fp

2
, ,fp1

fp

2
d .

 (10)

Additional steps on the same sample 

sequences yi 3n 4 enable processing and 

reconstruction of any input transmis-

sion. We refer to [2] for a detailed 

description of these recovery steps. Note 

that among the transmissions in x 1t 2 , 
some belong to primary users while oth-

ers can be CR communications. The fact 

that the same samples enable recon-

struction of CR communications is high-

ly important—it enables the CR to both 

sense the spectrum with the system of 

Figure 2(a) and intercept communica-

tions as a standard receiver. Although 

beyond the current scope, we note that 

the CTF has a major role in signal recon-

struction, beyond the robustness in esti-

mating S. The CTF isolates the support 

recovery to a single execution of a poly-

nomial-time algorithm. Once S is 

known, real-time processing and recon-

struction is possible, i.e., at the (low) 

speed of the streaming measurements 

y 3n 4 [10]. 

In the next section, we describe the 

circuit prototype of the MWC [3], which 

is used in our experiments. 

EFFICIENT HARDWARE REALIZATION 

The basic configuration (2) has m $ 4N  

channels, which may be too large to fit 

into a CR device. In addition, the wave-

forms pi 1t 2  need to be different so as to 

capture linearly independent mixtures of 

the spectrum, which results in additional 

hardware per channel. To moderate the 

physical size, we constructed an ad -

vanced MWC configuration, proposed in 

[2]. In this MWC version 

 � the number of channels m is col-

lapsed by a factor q . 1 at the expense 

of increasing the sampling rate of each 

channel by the same factor

 � a single shift-register provides a 

basic periodic pattern, from which m 

periodic waveforms are derived using 

delays, that is by tapping m different 

locations of the register.

Technically, this configuration allows to 

collapse channels all the way down to a 

single sampling channel at the same 

sub-Nyquist rate. 

A board-level design of the MWC 

using this advanced configuration to 

treat a multiband model with N5 6 

bands and individual widths up to 

B5 20 MHz was reported in [3]. The RF 

stage covers a wideband range of inputs 

with fNYQ5  2 GHz and spectrum occu-

pation NB5 120 MHz. An aliasing reso-

lution of fp5 20 MHz in conjunction 

with a sampling rate of 1/Ts5 70 MHz 

results in a collapsing factor of q5 3. 

Using m5 4 channels, the total sam-

pling rate is 280 MHz, which is about 

14% of the Nyquist rate. Photos of the 

hardware are presented in Figure 3. The 

resolution fp can be improved by setting 

fp , B5 20 MHz. In the original MWC 

scheme [2], this choice is avoided since 

it increases the computations needed for 

signal reconstruction when a transmis-

sion occupies more than two sequences 

z, 3n 4. The CR settings permit fp , B, as 

only the support set S is needed for sens-

ing; Reconstructing the primary trans-

missions is not of interest. Since Figure 

2(a) is also used for CR reception, the 

resolution fp needs only to exceed the 

bandwidth of the CR communication, 

rather than the expected bandwidth B of 

the primary users, which can in general 

be higher. 

The nonordinary RF design that 

stems from sub-Nyquist sampling is 

described in [3]. For instance, low-cost 

(a)

(b)

[FIG3] A hardware realization of the 
MWC consisting of two circuit boards. 
(a) implements m = 4 sampling 
channels, whereas (b) provides four 
sign-alternating periodic waveforms of 
length M = 108, derived from different 
taps of a single shift-register. (Figure 
taken from [3] with permission.)
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analog mixers are specified for a pure 

sinusoid in the oscillator port, whereas 

the MWC requires simultaneous mixing 

with the many sinusoids comprising the 

waveforms pi 1t 2 . Another circuit chal-

lenge pertains to generating pi 1t 2  with 2 

GHz alternation rates. The severe timing 

constraints involved in this logic are 

overcome in [3] by operating commer-

cial devices beyond their datasheet speci-

fications. The reader is referred to [3] for 

further technical details. 

SPECTRUM SENSING 

DEMONSTRATION

To verify the sensing potential of the 

MWC in a wideband environment, we 

conducted two experiments. In the first 

experiment, an HP-E4432B signal gen-

erator inputs a sinusoid to the MWC 

hardware. The four output channels 

were recorded using an Agilent 

Infiniium 54855A four-channel scope. 

All digital computations were carried 

out in MATLAB. The pure sinusoid rep-

resents a challenging scenario of a lega-

cy user with extremely narrow 

bandwidth. We varied the sinusoid fre-

quency from 100 MHz to 1,100 MHz in 

steps of 5 MHz. The CTF outputs the 

spectral support at resolution fp5 20 

MHz. We also executed the additional 

recovery blocks of Figure 2 so that the 

algorithm estimates the input carrier 

frequency as well. The results, on the 

left side of Figure 4, demonstrate that 

out of these 200 experiments, there are 

only two outliers, which means 99% 

correct support and carrier estimation. 

It is important to understand the rea-

son for the outliers in Figure 4. It is well 

known that finding the sparse solution of 

an underdetermined system, such as (9), 

is NP-hard. In practice, we solve (9) 

using polynomial-time algorithms that 

coincide with the true solution over a 

wide range of possible inputs, 99% of the 

cases in our experiments. The detection 

performance could have been improved 

for a higher number of sampling chan-

nels, say m5 5. Our design choice of a 

four-channel prototype [3] represents a 

customary engineering compromise; 

saving the extra 25% in hardware size 

and digital computations of the m5 5 

system, at the expense of not improving 

the last 1% of system performance. At 

this point, higher application layers can 

assist. For example, collaborative spec-

trum sensing in a network of CR devices 

is known to improve the overall holes 

detection, cf. [7]. 

Our lab experiments indicate an aver-

age of 10-ms duration for the digital com-

putations, including the CTF support 

detection and the carrier estimation, 

measured in a standard MATLAB environ-

ment. Algorithms for sparse solution of 

underdetermined systems consume time 

and typically scale with the size of C. The 

small dimensions of C, 12 3 111 in our 

prototype, is what makes the MWC sens-

ing practically feasible from the computa-

tional perspective. We point out that this 

sensing duration is negligible with 

respect to cognitive protocols. For 

instance, the IEEE 802.22 Standard for 

CR devices and networks, which is still 

under development, specifies a sensing 

duration of 30 s [11]. 

Interestingly, Cordeiro et al. sum-

marized the IEEE 802.22 Standard for 

CR in [12] in 2006 and envisioned that 

the sensing procedure would probably 

be carried out in two steps. First, a 

coarse and fast support detection, as 

does the CTF with a spectral resolution 
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[FIG4] Results of hardware experiments demonstrating accurate spectrum sensing combined with signal reception, both 
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of fp5 20 MHz. Then, a finer estima-

tion, if needed. In the experiments of 

the previous section, the carrier recov-

ery algorithm of [10] obtains carrier 

estimates within 10 kHz of the true 

input frequencies. 

In the second experiment, we exem-

plify the resource sharing of sensing and 

reception. Figure 4 depicts the setup of 

three signal generators that were com-

bined at the input terminal of the MWC 

prototype: an amplitude-modulated 

(AM) signal at 807.8 MHz with 100 kHz 

envelope, a frequency-modulation (FM) 

source at 631.2 MHz with 1.5 MHz devi-

ation at 10 kHz rate and a pure sine 

waveform at 981.9 MHz. Together, this 

scenario represents a mixture of pri-

mary and cognitive transmitters. The 

carrier positions were chosen so that 

their aliases overlay at baseband, as the 

photos in Figure 4 demonstrate. The 

digital recovery algorithm was executed 

and detected the correct support set S 

(CTF) and input carrier positions. In 

addition, the figure demonstrates cor-

rect reconstruction of the AM and FM 

signal contents, affirming the potential 

of standard signal reception combined 

with spectrum sensing. 

A video recording of these experi-

ments and additional documentation are 

available in [13] and [14]. 

In addition, we prepared a graphical 

package to demonstrate the MWC 

numerically, which is also available in 

[13] and [14]. The software guides the 

user through a four-stage flow: defining 

the multiband signal model N, B, fmax, 

adjusting the MWC parameters and sub-

Nyquist sampling, CTF support recovery, 

and signal reconstruction. A screenshot 

is shown in Figure 5. 

OUTLOOK

The proliferation of wireless devices 

necessitates flexible and efficient use of 

the spectrum. To render CR a widespread 

reality, the spectrum sensing bottleneck 

must be resolved. The sensing task is a 

crucial step in the CR life cycle—it pre-

cedes all other cognitive decisions. 

Besides identifying available frequency 

holes, continuous monitoring is needed 

to detect appearance of primary users, an 

event that has immediate implications on 

the CR transmissions.

Cognitive communication is still a 

dream to come true. Research on CR is 

rapidly developing, providing sophisti-

cated solutions for the multitude of chal-

lenges this technology triggers. Of the 

various goals, spectrum sensing is 

unique. In contrast to other cognitive 

decisions, e.g., spectrum collaboration 

and CR networking, which are performed 

at higher application layers, sensing is 

the only task that involves the analog 

hardware as it begins in the analog 

domain. Traditionally, scanning a wide 

span of the spectrum is done using lab 

equipment, which is not constrained by 

size, power, cost, or volume. The CR era 

calls for innovative solutions for minia-

turizing the sensing core into a mobile 

device, which has many other functional-

ities to perform in parallel. We therefore 

foresee much of the future research and 

development devoted to improving and 

innovating in the sensing stage.

We have demonstrated a low-rate, effi-

cient spectrum sensing mechanism that 

can reliably determine inactive bands over 

a wide span of the spectrum, within a few 

milliseconds. With respect to existing 

sensing strategies, our approach proposes 

a mixed analog- digital design, with a sim-

ple and fixed analog front end. Besides 

sensing, the system also serves as the CR 

reception path. Our design is efficiently 

realized in hardware and introduces only 

light computational loads. Hardware 

experiments report fast and accurate spec-

trum sensing due to the low sampling 

rate. The contribution of this work is in 

outlining the practical considerations for 

CR sensing, and providing an initial cir-

cuit-level proof of feasibility. Future work 

should address various hardware-related 

aspe cts, including how to miniature the 

design into a chip, so that it can later be 

embedded into existing mobile platforms. 
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deployments. It is unclear which of the 

many variants of this increasingly per-

sonalized model will be successful. 

Revenue models built around a premi-

um service, a value-added service, 

impulse purchases, or a subscription 

service are likely to survive only in 

niche applications that exploit particu-

lar location environments to satisfy 

very specific user needs. 

What will happen in the long term? In 

a visionary scenario, search engines 

would evolve into fully fledged recom-

mendation engines able to update user 

preferences automatically in real time, 

including social network and use pat-

terns. Anticipatory functions, ranging 

from serendipity content discovery, to 

learning and entertainment, would be 

possible. Such applications would require 

a higher degree of user profiling and 

behavioral tracking than we are currently 

accustomed. This causes a dilemma. On 

the one hand, the lack of personalized 

data limits the value of useful applica-

tions. On the other hand, advanced per-

sonalized services require extended access 

to personal data provoking privacy con-

cerns. A privacy backlash could prejudice 

advanced mobile search. Thus, ensuring 

privacy by law enforcement, by techno-

logical design, and/or by user choice are 

all necessary elements to pursue.

Who will be the winners in this race? 

Technology enables much change but it 

is the social force of users that changes 

the role of mobile Internet in our soci-

ety. Mobile search is no exception, and 

its value must be scrutinized on its value 

and compatibility with the modern life-

style, rather than its technological 

capacity. Thus, whoever is able to follow 

the logic of mobile search developing 

applications that would match the 

increasingly mobile, global, connected, 

and individualized users’ necessities 

would get a foothold in the market place.

ACKNOWLEDGMENT

The opinions expressed in this article are 

those of the authors and do not neces-

sarily reflect the views of the European 

Commission.

AUTHORS

José Luis Gómez-Barroso (jlgomez@cee.

uned.es) is a professor at Universidad 

Nacional de Educación a Distancia in 

Spain.

Claudio Feijóo (cfeijoo@cedint.upm.

es) is a professor at Universidad Poli -

técnica de Madrid in Spain.

Ramón Compañó (ramon.compa-

no@ec.europa.eu) is the program man-

ager of the Institute for Prospective 

Technological Studies (Joint Research 

Centre of the European Commission).

REFERENCES
[1] O. Westlund, J. L. Gómez-Barroso, R. Compañó, 
and C. Feijóo, “Exploring the logic of mobile search,” 
Behav. Inform. Technol., to be published. . 

[2] C. Feijóo, I. Maghiros, F. Abadie, and J. L. 
 Gómez-Barroso, “Exploring a heterogeneous and 
fragmented digital ecosystem: Mobile content,” 
Telemat. Inform., vol. 26, no. 3, pp. 282–292, 
2009.

[3] M. Fransman, The New ICT Ecosystem. 
Implications for Europe. Edinburgh: Kokoro, 
2007.

[4] S. Ramos, C. Feijóo, and J. L. Gómez-Barroso, 
“Next generation mobile network deployment strate-
gies,” J. Inst. Telecommun. Prof., vol. 3, no. 1, pp. 
13–19, 2009.

[5] J. West and M. Mace, “Browsing as the killer app: 
Explaining the rapid success of Apple’s iPhone,” Tele-
commun. Policy, vol. 34, no. 5–6, pp. 270–286, 2010.

[6] G. Goggin, “Adapting the mobile phone: The 
iPhone and its consumption,” Continuum, vol. 23, 
no. 2, pp. 231–244, 2009.

[7] M Leppaniemi and H. Karjaluoto, “Factors in-
fluencing consumers’ willingness to accept mobile 
advertising: a conceptual model,” Int. J. Mobile Com-
mun., vol. 3, no. 3, pp. 197–213, 2005.

[8] T. Park, R. Shenoy, and G. Salvendy, “Effective 
advertising on mobile phones: A literature review 
and presentation of results from 53 case studies,” Be-
hav. Inform. Technol., vol. 27, no. 5, pp. 355–373, 
2008.

[9] R. Wilken and J. Sinclair, “Waiting for the kiss 
of life: Mobile media and advertising,” Convergence, 
vol. 15, no. 4, pp. 427–445, 2009.

 [SP]

REFERENCES
[1]  J. Mitola, III, “Cognitive radio for flexible mobile 
multimedia communications,” Mobile Network Ap-
plicat., vol. 6, no. 5, pp. 435–441, 2001. 

[2]  M. Mishali and Y. C. Eldar, “From theory to prac-
tice: Sub-Nyquist sampling of sparse wideband analog 
signals,” IEEE J. Select. Topics Signal Processing, 
vol. 4, no. 2, pp. 375–391, Apr. 2010. 

[3]  M. Mishali, Y. C. Eldar, O. Dounaevsky, and E. 
Shoshan, “Xampling: Analog to digital at sub-Ny-
quist rates,” IET Circuits Devices Syst., vol. 5, no 1. 
pp. 8–20, Jan. 2011.

[4]  I. Budiarjo, H. Nikookar, and L. P. Ligthart, 
“Cognitive radio modulation techniques,” IEEE 
Signal Process. Mag., vol. 25, no. 6, pp. 24–34, 
2008. 

[5]  D. Cabric, “Addressing feasibility of cognitive ra-
dios,” IEEE Signal Processing Mag., vol. 25, no. 6, 
pp. 85–93, 2008. 

[6]  D. D. Ariananda, M. K. Lakshmanan, and H. 
Nikoo, “A survey on spectrum sensing techniques 
for cognitive radio,” in Proc. 2nd Int. Workshop 
Cognitive Radio and Advanced Spectrum Man-
agement (CogART), May 2009, pp. 74–79. 

[7]  T. Yücek and H. Arslan, “A survey of spectrum 
sensing algorithms for cognitive radio applications,” 
IEEE Commun. Surveys Tutorials, vol. 11, no. 1, pp. 
116–130, 2009. 

[8] M. Mis hali and Y. C. Eldar, “Expected-RIP: Con-
ditioning of the modulated wideband converter,” in 
Proc. IEEE Information Theory Workshop (ITW 
2009), Oct. 2009, pp. 343–347. 

[9] M. Mis hali and Y. C. Eldar, “Blind multi-band sig-
nal reconstruction: Compressed sensing for analog 
signals,” IEEE Trans. Signal Processing, vol. 57, no. 
3, pp. 993–1009, Mar. 2009. 

[10] M. Mis hali, Y. C. Eldar, and A. Elron, “Xam-
pling: Signal acquisition and processing in union of 

subspaces,” EE Dept., Technion, CCIT Report No. 
747, Oct. 2009. 

[11] Standard for Wireless Regional Area Networks 
(WRAN)—Specific Requirements—Part 22: 
Cognitive Wireless RAN Medium Access Control 
(MAC) and Physical Layer (PHY) Specifications: 
Policies and Procedures for Operation in the TV 
Bands, IEEE Standard 802.22. 

[12] C. Cor deiro, K. Challapali, D. Birru, S. Shan-
kar, et al., “IEEE 802.22: An introduction to the first 
wireless standard based on cognitive radios,” J. Com-
mun., vol. 1, no. 1, pp. 38–47, 2006.

[13] M. Mishali [Online]. Available: http://www.
technion.ac.il/~moshiko/hardware.html

[14] Y. C. Eldar [Online]. Available: http://webee.
technion.ac.il/Sites/People/YoninaEldar/hardware.
html

 [SP]

[applications CORNER] continued from page 107


