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Abstract
Could we build a motion tracing camera using wireless

communication signals as the light source? This paper
shows we can, we present the design and implementa-
tion of WiDeo, a novel system that enables accurate, high
resolution, device free human motion tracing in indoor
environments using WiFi signals and compact WiFi ra-
dios. The insight behind WiDeo is to mine the backscat-
ter reflections from the environment that WiFi transmis-
sions naturally produce to trace where reflecting objects
are located and how they are moving. We invent novel
backscatter measurement techniques that work in spite of
the low bandwidth and dynamic range of WiFi radios,
new algorithms that separate out the moving backscat-
ter from the clutter that static reflectors produce and then
trace the original motion that produced the backscatter
in spite of the fact that it could have undergone multi-
ple reflections. We prototype WiDeo using off-the-shelf
software radios and show that it accurately traces motion
even when there are multiple independent human motions
occurring concurrently (up to 5) with a median error in
the traced path of less than 7cm.

1 Introduction
Fine-grained human motion tracing, i.e. the ability to
trace the trajectory of a moving human hand or leg or
even the whole body, is a general capability that is use-
ful in a wide variety of applications. For example, it
can be used for gesture recognition and virtual touch-
screens (e.g. Kinect style natural user interfaces), activity
recognition (e.g. controlling the Nest thermostat depend-
ing on intensity of human activity), monitoring of young
infants and the elderly, or security applications such as
intruder detection. Motivated by these applications, the
computer vision community has developed a number of
depth sensing based systems (e.g Kinect) to implement
motion tracing capabilities in cameras. However these
devices are limited because they have a constrained field
of view (around 2-4m range with a 60 degree aperture),
and do not work in non line-of-sight scenarios, prevent-
ing their use in many applications such as whole home
activity recognition, security and elderly care.

To tackle these limitations, recent work namely RF-
IDraw [43] - has built a motion tracing system using wire-
less signals. The idea is that users would wear RFID














Figure 1: WiDeo in operation: The compact WiFi AP in the
study integrates WiDeo’s motion tracing functionality, and can
reconstruct the hand movement made by humans in the living
room. WiDeo traces motion even though the AP is separated by
a wall and does not have a LOS path to the humans, and doesn’t
require that the humans have any RF devices on them.

tags, and the motion tracing system would generate trans-
missions and then listen to reflections of wireless signals
from these tags. RF-IDraw then infers the underlying
hand motion from changes in reflection signal parame-
ters such as angle of arrival over time. RF-IDraw demon-
strates good accuracy and since it uses lower frequencies
than light (the 900MHz RFID band whereas visible light
is at 600THz), it works in non line-of-sight (NLOS) sce-
narios and in the dark. However, RF-IDraw has two lim-
itations that restrict its deployability. First, RF-IDraw re-
quires the user whose motion is being traced to wear a
special RFID tag on her hands. However, users are ac-
customed to motion tracing using systems such as Kinect
that do not require the user to have any special hardware
on them, and changing user habits can be hard. Second,
the tracing system requires large antenna arrays of eight
antennas with a separation of 8λ , that in their current im-
plementations translates to an antenna array distance of
nearly 2.62m. Expecting users in homes to deploy an-
tenna arrays that might span almost an entire room is a
big hurdle.

Fig. 1 depicts our goal which is to design a device free,
compact motion tracing system. By device free we mean
that the humans whose motion is being traced do not need
to have any devices on them, whether it’s RFID tags or
phones. By compact we mean that the motion tracing is
implemented on standard WiFi or LTE APs (albeit with
minor modifications in hardware and software) and the
APs have antenna arrays that they would have had as stan-
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dard APs anyways. Thus the system is as compact as an
AP that is already being deployed. Finally, we would like
the system to be non-intrusive, it should be integrated into
WiFi and LTE APs that people anyway deploy in their
homes and reuse existing packet transmissions for fine-
grained motion tracing.

The above requirements pose unique challenges. First,
since the system needs to be device-free, it can only rely
on natural reflections of the transmitted signals that hu-
man limbs naturally produce. These are relatively weak
compared to the ones from RFID tags that RF-IDraw
uses, and reflections from different objects in the envi-
ronment cannot be easily distinguished since they are all
slightly distorted copies of the same transmitted signal
(each RFID tag has its own unique IDs which allows RF-
IDraw to distinguish different moving hands because the
tags will be different). Second the fact that the system
uses a compact antenna array with at most four antennas
and regular spacing of λ/2 makes achieving high spatial
accuracy difficult. As the RF-IDraw paper notes, regu-
larly spaced, compact antenna arrays struggle to resolve
the spatial angles of incoming signal reflections.

We present WiDeo, a device-free, compact motion
tracing system with standard AP antenna arrays. WiDeo
only needs 4 antennas per AP, with a spacing of λ/2
which translates to an antenna array length of 18cm for
WiDeo-integrated WiFi APs. At a high level, WiDeo
uses the AP’s transmitted signals itself as a flash to light
up the scene, and then analyzes the natural reflections of
these transmitted WiFi communication signals from the
environment that arrive back at the AP over time to trace
any motion that’s occurring. WiDeo accomplishes mo-
tion tracing through three main components which oper-
ate in sequence:
Backscatter Sensor: The sensor analyzes the compos-
ite reflected signal received at the WiDeo AP (referred
as backscatter) to tease apart the individual reflections
coming from each significant reflector in the environ-
ment, and calculates each reflection’s amplitude, time of
flight (ToF) and angle of arrival (AoA). Our key contri-
bution here is a novel algorithm that accurately estimates
these backscatter components in spite of the constraints
that the humans are device-free, and the limited spatial
resolution of the compact antenna arrays. Our key in-
sight is to exploit the natural sparsity that exists in in-
door environments; as several empirical studies on indoor
MIMO [16, 19] have shown, the number of significant re-
flectors in an environment is fairly small. WiDeo exploits
this insight to accurately measure the backscatter param-
eters using sparsity aware optimization algorithm.

Second, WiDeo must tolerate limited dynamic range,
which causes strong reflections to swamp weak ones,
and limited sampling bandwidth, which hides reflections
spaced closely in time. Typical WiFi sampling of 80Msps

implies a resolution of 12.5ns, or about 6 feet. Our novel
algorithms separate weak and closely-spaced reflections
despite the limitations of commodity radios.
Declutterer: Reflectors abound in indoor environments,
and most of them will be static. The declutterer ana-
lyzes the raw set of reflection parameters estimated by
the backscatter sensor, and clusters them into groups that
correspond to reflections from static and moving reflec-
tors. Further it also eliminates the static reflectors since
they are not useful for motion tracing and enables WiDeo
to specifically focus on reflections arising from moving
objects.
Motion Tracing: This component of WiDeo analyzes the
reflections arising from moving objects to predict the un-
derlying motion that could have produced those sequence
of reflections and their parameters. We design a novel
statistical and sequential estimation framework that pre-
dicts the motion that might have taken place, then esti-
mates the changes in reflection parameters the predicted
motion would have produced, and compares it with the
actual estimated reflection parameters from the backscat-
ter sensor to continuously refine WiDeo’s estimate of the
motion that occurred.

We design and implement a prototype of WiDeo us-
ing WARP radios and simulation environment. The ra-
dios are running a standard WiFi OFDM PHY using up
to 40MHz, and use 4 antennas with a spacing of 6cm
for an overall length of 18cm. We conduct experiments
in indoor environments to demonstrate the accuracy of
WiDeo’s motion tracing. We show that WiDeo can ac-
curately trace multiple sets of fine-grained motion with
a median tracing error of less than 7cm, which is com-
parable to RF-IDraw’s performance of tracing error of
5.5cm. Further, the motion tracing has very high reso-
lution, WiDeo achieves the same accuracy even when the
multiple humans performing the motion are as close as
2 feet away from each other, which to the best of our
knowledge, no prior RF based motion tracing system has
demonstrated.

2 Related Work
Fine-grained motion tracing: Vision based systems
such as [51, 4] make use of depth sensors (e.g. Kinect)
and infrared cameras (e.g. Wii) to trace the fine-grained
motion of a user and enable applications such as gesture
recognition, virtual touch screens etc. WiDeo, on the
other hand, unlike solutions based on depth imaging or
infrared, does not require line of sight to work.

RF based systems like [43] and sensor based systems
like [23, 26] perform accurate motion tracing but require
instrumentation of users. However, WiDeo achieves ac-
curate fine-grained motion tracing in a device-free man-
ner.

2



USENIX Association  12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 191

RF based coarse motion tracking and gesture recog-
nition: Recent work such as WiTrack and others [34, 7,
6, 5] has shown the ability to coarsely track full body mo-
tion (not fine-grained motion of human limbs) using ra-
dio waves. Other approaches like [35, 24, 33, 30, 49, 45]
track human motion by using ultra-wide band (UWB)
signals. All of these approaches are also device-free, but
unlike these systems, WiDeo is the first device-free fine-
grained motion tracing system that can accurately recon-
struct the detailed trajectory of a user’s free-form writ-
ing or gesturing in the air, where the motion may only
span a few tens of centimeters. Such free-form tracing
capability is not supported by prior work in RF based
gesture recognition or motion tracking. For example,
[34] presents a state-of-the-art WiFi based interface, yet
it only supports the detection and classification of a pre-
defined set of nine gestures. Moreover, many of these
systems [6, 5, 35, 24, 33, 30, 49, 45] require GHz of
bandwidth unlike WiDeo which works with regular WiFi
bandwidths.

There have been approaches like [48, 50, 27, 36]
which use existing WiFi infrastructure, with no hardware
modifications to achieve device-free human localization
and coarse motion tracking, they use coarse informa-
tion about the environment in terms of Received Signal
Strength Indicators reported by WiFi NICs and require
extensive war-driving. In contrast, WiDeo requires minor
changes to existing WiFi/LTE APs, re-uses the spectrum
allocated for communication by performing fine-grained
motion tracing using reflections of communication sig-
nals that would have been sent for data communication
anyway.
Motion clustering techniques: WiDeo also builds on
theoretical work on motion segmentation, clustering and
classification [41]. These works are targeted at vision
applications that use visible light, and deal with taking
a collection of pixels that represent the motion and un-
derstanding the underlying motion that occurred. WiDeo
on the other hand has to deal with RF signal reflections
which pose unique challenges such as multiple reflec-
tions, noisier measurements and compact, limited sensors
(antenna arrays).
Indoor Localization: A large body of work, ranging
from classic RSSI based techniques [15, 9, 47, 37] to
recent antenna array based techniques [46, 25, 20] ex-
ploit already available WiFi infrastructure to provide in-
door localization services for radios. They achieve im-
pressive localization accuracy of a few decimeters. An-
other line of approaches uses single moving antenna to
simulate an antenna array [29]. However WiDeo differs
from all of them in two fundamental respects. First, it
precisely traces fine-grained motion, rather than a static
location. Second, its device-free, the traced object does
not need to have any RF transmitters on them.

3 Design

WiDeo’s goal is to achieve accurate device-free motion
tracing of moving objects. To realize this, WiDeo, like
standard ToF camera, incorporates four main compo-
nents:
Flash: This is the light source used to light up the scene;
in WiDeo, this is simply the transmission that the AP in
which WiDeo is housed is sending for standard commu-
nication. In other words, wireless transmissions used for
communicating packets act as the flash for the WiDeo.
Backscatter Sensor: This component looks at the
backscatter arising from the environment when the AP’s
transmission gets reflected and arrives back at the AP.
The sensor teases out the individual signals emanating
from each reflector in the environment as well as esti-
mates each reflection’s intensity, angle of arrival and rel-
ative time of arrival. The corresponding component in a
standard camera are the image sensors which capture the
light (aka the backscatter) from objects in the scene and
form a picture of the scene.
Declutterer: The captured backscatter contains a lot of
reflections from static objects which act as clutter to the
reflections originating from the moving object WiDeo
wishes to trace. The declutterer component figures out
which of the reflections are from objects WiDeo doesn’t
care about and eliminates them so that motion tracing can
focus only on reflections from moving objects.
Motion Tracer: This component looks at the reflections
coming from moving objects over time to predict the ac-
tual physical motion that could have produced that se-
quence of reflections.
We omit the description of the flash component since that
is a standard AP transmitter. We describe each of the
other three components in detail next. For now assume
that the AP’s receiver can listen to all the reflections from
the environment even though it is transmitting at the same
time; we describe how we leverage recent work on full
duplex to tackle that challenge in § 3.2.2.

3.1 Backscatter Sensor

The sensor’s main challenge is to estimate the parame-
ters of each reflection that makes up the received signal.
The reflected signals from these reflectors arrive at the
AP with different times of flight (ToF), amplitudes and
angles of arrival (AoA), but the receiver only obtains the
sum of the signals. Let’s assume L reflectors are present
and that each reflector k applies an unique unknown dis-
tortion function fk(x(t)) to the transmitted signal x(t). So
the overall backscatter signal y(t) that is arriving back at
the AP can be simply written as:

y(t) = ∑L
k=1 fk(x(t)) (1)
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The backscatter sensor’s goal is to estimate these func-
tions fk and then calculate the ToF, amplitude and AoA
of the signals reflected from each of these reflectors. As
written, the above equation 1 appears intractable, all we
know is the transmitted signal x(t) and the overall re-
ceived signal y(t). How might we tease out the individ-
ual reflections? WiDeo makes two novel observations to
solve the above under-constrained problem:
Reflector Sparsity: First, WiDeo posits based on recent
empirical evidence [16, 19] that the number of significant
reflectors in an indoor environment are limited. While
there may be many objects, the ones that actually pro-
duce sufficiently strong reflections to be visible in the 40
dB of effective dynamic range, which is typical in WiFi
radios, are not so numerous. This phenomenon has been
extensively proven in empirical wireless communication
studies that study the performance of MIMO which crit-
ically depends on the number of independent reflectors
in an environment [16, 19]. In WiDeo’s case, this means
that the number of reflectors that could have contributed
significantly to the overall signal is limited.
Narrowband Transformations: The second key obser-
vation is that WiDeo uses narrowband communication
signals and radios as the flash/light source. By narrow-
band we mean that the signals generated or received by
the WiDeo device (the AP) are filtered to only let the sig-
nal within the bandwidth, which conforms to FCC regu-
lation, used for communication to come through. For ex-
ample, if we are using the WiFi channel of width 40MHz
at center frequency 2.42GHz, then a passband filter of
width 40MHz centered at 2.42GHz is applied at the trans-
mitter and the receiver. Filtering by a passband filter can
be modeled as convolution with a sinc pulse of the same
bandwidth in the time domain [1]. So the reflected signal
(after including the attenuation and delay) is now con-
volved with a sinc pulse. So the signal that arrives back
from a single reflector is actually given by:

fk(x(t)) =
(
αkx(t − τk)

)
⊗ sinc(Bt) (2)

where B is the communication bandwidth of the signal,
αk is the complex amplitude and τk is the overall delay
of the reflection or the Time of Flight (ToF) for the kth

reflector, and ⊗ represents the convolution operator [39].
Eq. 2 can equivalently be written as:

fk(x(t)) =
(
αksinc(B× (t − τk))

)
⊗ x(t) (3)

If there are L reflectors, then all L reflections will undergo
different attenuations and ToFs, add up over the air and
then get convolved with a sinc pulse. Therefore the over-
all signal is given by:

y(t) =
(

∑L
k=1 αksinc(B× (t − τk))

)
⊗ x(t). (4)

The sensors now first calculate the overall transforma-
tion h(t) that has happened to the transmitted signal x(t),

i.e. y(t) = h(t)⊗ x(t) where h(t) is essentially the sum
of the transformations applied by all the reflectors. This
is classic channel estimation that’s used in standard com-
munications (after all every receiver estimates the chan-
nel that has transformed the transmitted signal to be able
to decode). We refer the reader to the following litera-
ture [8] for a review of the different techniques that can
be used.

However, WiDeo’s problem is quite harder than stan-
dard channel estimation which only cares about the over-
all transformation. Although, WiDeo knows the overall
channel h(t), it needs to figure out the amplitudes and
time shifts of the sinc pulses that are summed up to pro-
duce the overall channel h(t). The equation that WiDeo
has to solve is therefore given by:

h(t) = ∑L
k=1 αksinc(B× (t − τk)) (5)

We can rewrite the equivalent equation in the digital do-
main (after all WiDeo will be working in the baseband
domain after ADC sampling) as:

h[n] = ∑L
k=1 αksinc(B× (nTs − τk)), (6)

where Ts is the sampling time of ADC. WiDeo’s goal is
to solve the above equation to determine αk and τk for all
reflections.

To tackle this, we now exploit the sparsity observation
that the number of significant reflectors in an environment
is limited to a handful (typically on the order of 10-15).
Specifically, we attempt to find the smallest number (less
than 20 in our implementation) of scaled and shifted sinc
pulses that could have summed up to produce the overall
channel response. Mathematically, we are attempting to
solve the following problem:

min ∑n(h[n]−∑k αksinc(B× (nTs − τk)))
2 +λr|α|0

s. t. τk ≥ 0, |αk| ≤ 1,k = 1 : L,n =−N : N.
(7)

Note that the above problem is similar to classic prob-
lems in compressive sensing [17, 42, 14]. Like in com-
pressive sensing problem, we are trying to find the min-
imum number of non-zero components (each component
corresponds to a reflector) and the corresponding scaling
and shifting factors that best explain the observed chan-
nel h[n]. The sparsity of the number of reflectors is
coerced by the term λr|α|0, where λr is a positive reg-
ularization term and |.|0 is the number of non-zero terms
in the amplitude vector. However there is one major dif-
ference, WiDeo’s problem is trying to find the best spars-
est combination of parameterized continuous basis func-
tions (the sinc pulses parameterized by continuous shift
factors), whereas classic compressive sensing is finding
the sparsest combination of discrete finite sized vectors
that produces some overall vector. We omit the mathe-
matical details here for brevity, but refer the reader to a
large body of literature on solving these sparse estimation
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problems [18, 40, 31]. WiDeo’s contribution is to show
that the backscatter sensing problem can be formulated
using sparsity and compressive sensing intuition.

3.1.1 What if the reflectors are closely spaced?

The above description didn’t make any mention of how
closely spaced the reflectors are. For example, if the two
reflectors are a foot apart, their reflections will arrive at
the AP within two nanosecond of each other (wireless
signals travel a foot per nanosecond and reflection for
objects a foot apart takes 2 nanoseconds). But sampling
rates of wireless communication radios are at best around
100Msps (Mega samples per second), which means that
two samples are spaced 10ns apart. How could then
WiDeo estimate the parameters of the two reflectors that
are closely spaced to an order of magnitude closer in time
than the sampling period? Even if two reflections are
closely spaced in time because their reflectors are almost
at the same distance from the AP, they are likely to be
at different spatial angles (otherwise they would be the
same reflector!). So the spatial dimension provides us the
ability to separate reflections in space when they are close
in time. The heuristic works in the other direction too, if
two reflectors are at the same AoA (because they are on
the same radial line), they are likely at different delays
and can be separated out.

How do we use this insight to separate out reflections?
The intuition is that if the WiDeo AP has an antenna ar-
ray (typical APs have 4 antennas), then the specific AoA
of each reflection imposes a constraint on how the phase
of that reflection changes across space. Specifically if
the antennas are laid out equidistant at distance d in a
straight line, the so called uniform linear array (ULA),
and if the AoA is θ , then the relative phase between
the signal at any two consecutive antennas is given by
(φ(θ) = 2πd sin(θ)c/λ ), where c is the speed of light in
air and λ is the wavelength of the RF carrier. Assuming
that there are four antennas in the WiDeo’s AP we call the
following vector [0,φ(θ),2φ(θ),3φ(θ)] of phase differ-
ences of all the antennas with respect to the first antenna
as the relative phase constraint vector.

In general when more than two backscatter signals are
present, each of these backscatter signals arrives at all
four antennas, but based on the AoA of these signals
the relative phase constraint vectors of these signals will
be different. WiDeo uses this insight in the following
way. In addition to finding the best sparse signals as de-
scribed by 7, WiDeo imposes an additional constraint that
these estimated sparse solutions should strictly follow the
phase vector constraint imposed by the ULA structure
leading to the following problem for Ψ antennas:

min ∑
m

∑
n
(hm[n]−∑

k
αke−i(m−1)φ(θk)sinc(B× (nTs − τk)))

2

+λr|α|0
s. t. τk ≥ 0, |αk| ≤ 1,k = 1 : L,n =−N : N,m = 1 : Ψ.

The e−i(m−1)φ(θk) term in the optimization objective func-
tion is encoding the phase constraint that arises from a
specific AoA. In essence, while many signals can fit the
time domain constraint given by 7, only few of them can
satisfy the relative phase constraint vector thereby further
limiting our solution space and hence increasing the ac-
curacy of our estimates despite the closeness of these sig-
nals in time. The matching relative phase constraint vec-
tor of ULA has one-to-one relationship with AoA, thus
using this process we can simultaneously estimate the
AoA of the backscatter signals in addition to their am-
plitude and ToF.

To summarize using the above technique, the sensor
outputs a set of reflections with their associated three tu-
ple of parameters: amplitude, ToF and AoA. The next
step is eliminating the numerous reflections from static
objects that act as clutter to motion tracing problem which
we describe below.

3.2 Declutterer
Reflectors abound in the environment and their reflec-
tions end up cluttering the backscatter, making it hard for
WiDeo to focus on the reflections arriving from the mov-
ing object that’s being traced. Tracing accuracy can be
greatly improved if this clutter can be eliminated. There
are two kinds of clutter in decreasing order of harmful-
ness. The first are reflections from objects nearby whose
relative strength w.r.t. to the moving object reflection is
greater than the dynamic range of the WiDeo receiver. In
this case, the reflection from the moving object is com-
pletely lost in the quantization noise and motion cannot
be traced. The second is clutter whose strength is within
the dynamic range relative to the moving object’s reflec-
tion. Here information is not lost, but it becomes harder
for the tracing algorithm to recover the original motion.
WiDeo’s declutterer handles both kinds of clutter and
eliminates them. We start by describing how to handle
the second kind of clutter by guessing which reflections
are from moving objects, and then describe how to elimi-
nate the rest of the clutter including the nearby reflectors.

3.2.1 Eliminate Reflections of Static Objects

WiDeo uses a heuristic to loosely identify reflections that
are likely to have come from moving objects. The ba-
sic idea is to look across sequences of backscatter sensor
measurements as shown in Fig. 2, and then make an as-
sociation of which reflections haven’t changed in value
and which have. The idea is that the reflections that have
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continuously changed their parameters (their amplitude,
AoA and ToF) will include reflections from moving ob-
jects. Everything else is classified as static clutter that has
to be eliminated.

(a)	  Backsca)er	  components	   (b)	  Sta3c	  Backsca)er	   (c)	  Moving	  Backsca)er	  

A
oA

  →

A
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  →

A
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  →

Fram
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Delay → Delay → Delay →

Figure 2: The figure represents backscatter components ob-
tained from a simulated hand movement in a typical indoor sce-
nario using ray tracing software [2]. The backscatter compo-
nents collected in each time interval are presented as an im-
age snapshot. The horizontal and vertical axes correspond to
ToF and AoA respectively. Each colored pixel corresponds to
a backscatter component. Different snapshots stacked one over
the other correspond to set of backscatter components obtained
in consecutive time intervals. The majority of backscatter com-
ponents are contributed by static environment, which are shown
in the same color to provide contrast with moving backscatter.

The key question then is to look at snapshots of
backscatter over time, associate the backscatter param-
eters that we believe are coming from the same reflec-
tor and then apply the above heuristic . Each snapshot
is made up of as many backscatter points as number of
reflections, and each point is associated with a three tu-
ple of amplitude, ToF and AoA. WiDeo keeps track of
a moving window of such backscatter snapshots (in our
current implementation the last 10 snapshots are main-
tained). The first step is to associate points which are gen-
erated from the same reflector between every two succes-
sive snapshots, even if the reflector moved between those
two snapshots. To do so, we invent a novel point associa-
tion algorithm across snapshots based on minimizing the
amount of change between consecutive snapshots.
Identification of Static Reflections: The algorithm starts
by calculating the pairwise distance between every pair
of backscatter points in successive snapshots. Distance
is defined as the absolute difference in the three parame-
ters (amplitude, ToF and AoA) squared and summed after
appropriate normalization. Note that this metric is calcu-
lated for all pairs of points, so there would be n2 distances
where n is the number of backscatter points in a snap-
shot. The goal is to figure out the specific pairings where
points in each pair of snapshots are generated by the same
backscatter reflector.

Our key insight is that for static objects, the points cor-
responding to backscatter reflections from that static ob-
ject in successive snapshots should be at zero distance
with respect to each other because by definition they did

not move and the associated parameters did not change.
Further even for the points that correspond to moving re-
flectors, given how slow human motion is relative to the
length of a backscatter snapshot (a millisecond), the dis-
tance between points in successive snapshots that corre-
spond to the moving object is small. So if we can pair the
points up such that the overall sum of the distance metrics
for these paired points is the minimum among all possi-
ble pairings, then very likely we will have associated the
right sets of points together.

How do we determine the right point association be-
tween successive snapshots? This is a combinatorial as-
signment problem where we first pass distances between
all pairs of points as the input and then pick the set of
pairs that minimize the overall sum of distance metric
among them. A naive algorithm would be to enumer-
ate all possible assignment of point pairs, which would
require evaluation of n! assignments for snapshots with n
points. To reduce the complexity, we turn to a classic al-
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Figure 3: This figure illustrates application of Hungarian al-
gorithm for a subset of backscatter components obtained in
the experiment narrated in Fig. 2. The left side represents the
backscatter components in two successive snapshots. The color
of each pixel is a representation of the value of α(power in
dBm), θ (in degrees), or τ(in ns) according to the appropriate
row. We design a distance metric between each component in
the first (top) snapshot and each component in second (bottom).
The distance thus obtained are represented as edges with ap-
propriate weights (not shown in the figure for clarity). We want
to find the matching with minimum weight in the above bipar-
tite graph. Applying Hungarian algorithm results in the least
weight matching presented on the right, thus providing a way to
associate backscatter components in the two snapshots.

gorithm in combinatorial optimization known as the Hun-
garian algorithm [28] which runs in polynomial time.
We omit a full description of the algorithm for brevity
however, the algorithm is best visualized in terms of a
bipartite graph G = (F1,F2,E), where points from the
first snapshot are vertices in the set (F1) and points from
the second snapshot are in the set (F2) and the edge set
(E) consists of all possible edges between vertices in the
two sets. The weight of each edge is the distance metric
between the backscatter parameters corresponding to the
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points the edge connects. The goal of our algorithm is to
find a matching with minimum cost, as shown in Fig. 3.
Eliminating Static Clutter: The next step is to eliminate
the clutter caused by static backscatter reflectors. This
step immediately follows from the above computation;
we identify the pairs of points whose distance metric is
close to zero, and stays so for at least a fixed number of
snapshots (typically around 10 snapshots corresponding
to those reflectors being static for 10ms). When we find
such points, we declare them to be part of the static clut-
ter. These points are then eliminated from the snapshots
and the only points left are those that the algorithm be-
lieves to be coming from moving reflectors.

The static clutter elimination step also naturally pro-
vides the detection of a new motion that is starting. For
example, let’s say we start with a completely static envi-
ronment; in the steady state the declutterer block won’t
report any parameters because eventually all of the com-
ponents will be declared static and eliminated as clutter.
When a new motion starts and generates new backscat-
ter components, the sensor will report these parameters to
the declutterer which will classify them as moving points.
Such points are grouped together and passed to the mo-
tion tracing block, described in section 3.3, as a new mov-
ing object that needs to be traced.

3.2.2 Eliminating Clutter from Nearby Reflectors

In many scenarios, we may have a nearby reflector that
is producing strong reflections. If these reflections are
stronger than the reflections from the moving object that
WiDeo wishes to trace by more than the dynamic range
of the radio, all information about the moving object will
be lost in the quantization error of the ADC at the re-
ceiver. Further remember that WiDeo aims to listen to
reflections from the environment while the WiDeo AP is
transmitting signals for communication. The transmit-
ted signal also directly leaks through to the receiver and
causes interference.

WiDeo’s observation is that such clutter is essentially
a form of self-interference, and recent work on full du-
plex radios can be used to eliminate such clutter [12].
Full duplex radios have to solve a similar problem, they
have to cancel their own transmitted signal’s leakage and
reflections that arrive back at the receiver. This self-
interference also incorporates reflections from the envi-
ronment, and recent work has developed sophisticated in-
terference cancellation techniques that can eliminate the
self-interference to the noise floor [12]. WiDeo leverages
this work. We provide a brief description below, but re-
fer the readers to [10] for a detailed description. WiDeo’s
contribution is showing how full duplex can be used to
build imaging applications rather than the communica-
tion applications that full duplex research has focused on.

Conceptually, full duplex radios consist of a pro-
grammable canceler component that consists of both ana-
log and digital cancelers. The canceler’s main compo-
nent is a programmable filter which attempts to model
the distortions that the transmitted signal goes through
before arriving back at the same radio’s receiver as self-
interference. The canceler takes the transmitted signal as
input, passes it through the programmable filter, and then
subtracts the filtered signal from the received signal to
completely eliminate self-interference.

Note that in traditional full duplex radios, the goal is to
completely eliminate the self-interference. WiDeo how-
ever is different, in fact some of the self-interference may
be coming from moving objects that we do not want to
cancel since we want to infer the motion from them. So
WiDeo implements a novel modification to traditional
full duplex self-interference cancellation. It uses the
backscatter sensor measurements to program the filter to
only model the static and strong reflectors that act as clut-
ter, but intentionally leaves the components that would
also have modeled the moving reflectors out. WiDeo
figures out which backscatter components correspond to
moving reflectors using the static clutter detection algo-
rithm described in the previous section. Thus cancellation
is selectively applied only to the static and strong clutter
components. Specifically the programmable canceler fil-
ter is tuned to implement the following response:

hcm = ∑L′
k=1 αke−i(m−1)φ(θk)sinc(B× (t − τk)) (8)

where αk,τk,θk is the amplitude, ToF and AoA parame-
ters for all L′ unwanted reflectors, and hcm is the response
of cancellation filter attached to the mth antenna.

This completes the design of the declutterer compo-
nent. At this point we have a set of snapshots with points
that correspond to moving objects. Further points in suc-
cessive snapshots are associated with each other if they
belong to the same moving reflector. However note that
this does not mean we have traced the original moving
object itself, all we have isolated is the multiple backscat-
ter reflections from it. The next step is to trace the original
object and its motion which produced the snapshots with
the moving points.

3.3 Tracing the Actual Motion
Each WiDeo AP sends the isolated backscatter measure-
ments arising from moving objects it computes from the
previous step to the central server. Whenever a new mo-
tion starts, its quite likely that many of the WiDeo APs
will detect the backscatter measurements from this new
motion. The server collects backscatter snapshots over
a period of 10ms from all participating radios, and as-
sumes that any moving backscatter detected by any of the
radios are coming from the same object. The heuristic
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implicitly makes the assumption that two new and inde-
pendent human motions won’t start within an interval of
10ms. Given the timescales at which human motion hap-
pens, 10ms is a negligible amount of time and we believe
that such asynchrony is very likely in practice. Note that
this does not mean that two independent motions cannot
be occurring simultaneously, we are only making the as-
sumption that they don’t start within 10ms of each other.

3.3.1 Localizing the origin of the motion

The first step the server implements is actually to localize
the origin of the motion that just started. The server has
measurements from multiple radios across multiple snap-
shots, and very likely the new motion will be detected
at many of these radios. So, how might we estimate the
location of the new motion? The idea is that the measure-
ments collected at the WiDeo APs imposes constraints on
where the moving reflector is located. We demonstrate
the idea using the AoA measurement. Let’s say the lo-
cations of the M WiDeo APs involved in motion tracing
are given by (xi,yi), i = 1, . . . ,M. Similar to many other
state-of-the-art localization systems [46, 38] using WiFi,
the locations of the APs (or the anchors) are assumed to
be known in advance. Let the AoA measurements of the
reflector at the APs be denoted by θi, i = 1, . . . ,M and the
current estimate of the object’s location is (x,y). So the
most likely location of the object is one that minimizes
the following metric:

min ∑M
i=1(θ̄i +bθi −θi)

2

s. t. θ̄i = AoAULA((x,y),(xi,yi))
(9)

The above equation is stating the fact that the predicted
angle of arrival at each of the WiDeo APs given the esti-
mated location of the reflector and the location of the APs
must closely match the actual AoA measured by each of
the APs. The function AoAULA((x,y),(xi,yi)) computes
the AoA seen by the tracing radio located at (xi,yi) from
a reflector located at (x,y). However there is a new fac-
tor bθi that represents the bias to model multipath reflec-
tions. This is because the moving backscatter not only
corresponds to the direct backscatter from the object but
also the backscatter from the reflections of the backscat-
ter. For example, if a backscatter reflection from a mov-
ing object is further reflected by a wall before arriving at
the AP, the ToF parameter will have a constant bias that
reflects the extra time it takes to traverse the extra dis-
tance corresponding to going to the wall and reflecting
off it. Similar bias exists for both the amplitude and AoA
measurements. Further the bias values are unknown and
hence are a variable in the optimization. The value of
(x,y) that minimizes the above metric is likely the best
estimate of the location of the reflector.

We can also use other parameters like ToF and power

to estimate the location of the target. In our actual im-
plementation, we solve a more sophisticated optimiza-
tion problem than the simple optimization problem in 9.
Specifically, WiDeo uses AoA, ToF, and backscatter sig-
nal strength measurements over multiple frames for the
particular backscatter, say J frames, and declares the ori-
gin of the motion as the location that minimizes the fol-
lowing objective function described by Eq. 10

∑J
j=1 ∑M

i=1[(ᾱi −αi j)
2 +(τ̄i +bτi − τi j)

2 +(θ̄i +bθi −θi j)
2],

(10)
where αi j, τi j, and θi j are the power, ToF, and AoA re-
spectively of the backscatter observed by the ith AP in
the jth frame and the variables ᾱi, τ̄i, and θ̄i are the val-
ues of respective backscatter parameters that would have
been observed at the APs if the object was actually lo-
cated at that particular location. We follow a simple path
loss model [21] to describe the relation between the lo-
cation of the object and the backscatter signal strength
ᾱi. The variables bτi and bθi represent the bias in ToF
and AoA respectively due to reflections of the backscat-
ter from the object. This problem of minimizing Eq. 10
is non-convex, therefore we apply a widely used heuristic
known as sequential convex optimization to solve it [13].

We note that Eq. 9 as such is an ill-posed problem
without a unique solution because each AP introduces its
own bias terms for backscatter parameters. However, in
Eq. 10, by collecting measurements over enough num-
ber of backscatter frames, the number of measurements
become greater than the number of variables and the op-
timization problem becomes well-posed. Further the pa-
rameters of simple path loss model used to model ᾱi are
also estimated as part of the minimizing Eq. 10 and need
not be known ahead of time.

3.3.2 Tracing Motion

Once the newly detected moving object is localized, the
next step is to trace the object’s motion as it moves and
produces new measurements via our backscatter sensor.
Remember that the new measurements are naturally as-
sociated with the measurements from the previous snap-
shots via the declutterer described in § 3.2. So the al-
gorithm has already clustered backscatter measurements
coming from the same moving reflector together, and we
can operate the motion tracing algorithm on each cluster
of measurements separately. Hence we describe the trac-
ing algorithm as if there is a single motion occurring and
a single set of backscatter measurements being produced
from it across successive snapshots.

Our approach to this problem is to build a dynamical
model about the motion that is occurring and progres-
sively refine its parameters. There are several parame-
ters to the motion model: current position of the object,
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velocity, direction of motion, acceleration, and bias in
each backscatter parameter due to the indirect reflections.
Both the bias and initial position variables are initialized
using the output of the localization algorithm in the pre-
vious step. Velocity, acceleration and direction of motion
are initially set to zero and then updated over time as new
measurements come along. Note that we also allow the
bias parameter to change over time, after all as the object
moves, the bias for each parameter changes.

The key insight is as follows: at every point in the
traced motion, given the estimate of the motion model
at that instant, WiDeo can predict what the backscatter
sensor measurements for that moving reflector should be
(given the estimate for the locations of the reflector and
the WiDeo AP and the biases in the parameters we can
calculate the expected amplitude, ToF and AoA of the re-
flections). WiDeo also of course has access to the actual
backscatter sensor measurements at that instant for the
same moving reflector, so we can calculate the error be-
tween the predicted and the actual backscatter measure-
ment. The goal of the motion tracing component is to
minimize the sum of these backscatter prediction errors
over the entire motion trajectory in a sequential fashion.
The algorithm proceeds in three steps at each time instant:
Model based prediction: In this step, WiDeo calculates
the new position of the reflector given the previous posi-
tion and motion model parameters namely, velocity and
acceleration. It then uses this extrapolated position along
with the estimates of the bias for the backscatter param-
eters to calculate what the new values of the amplitude,
ToF and AoA of the reflection should be.
Backscatter prediction error computation: Compute
the difference between the above predicted and measured
backscatter parameters.
Model update from error: Update motion model pa-
rameters such that the overall backscatter prediction er-
ror is minimized across the entire trajectory. The update
step uses a classic technique in dynamic estimation: the
Kalman filter [44]. Kalman filter theory shows that as-
suming the measurement noise and motion modeling er-
ror is Gaussian, the update is dependent on two factors.
First factor is the size of the prediction error itself, i.e. if
the error is large then a larger update to the model is re-
quired and vice-versa. The second factor is a gain term
that modulates this error term. The gain factor is cho-
sen such that the accumulated error between all the ob-
servations of the measured backscatter parameters so far
and the best prediction that the motion model can make is
minimized. In essence the gain signifies the effect of ac-
cumulated errors in the motion model, for example if the
measurements are noisy the gain should be chosen small
to account for the unreliable nature of the measurement
and vice-versa. We omit the proof and refer the read-
ers to [44] for a more detailed mathematical treatment
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Figure 4: Accuracy of WiDeo’s algorithms in estimating the
delays and AoAs of backscatter. WiDeo achieves an accuracy
of 300ps and 1.2 degrees (with error bar representing standard
deviation) at 40MHz bandwidth used in WiFi signals.

of the Kalman filter and how to compute the gain factor
given the motion model and history of backscatter mea-
surements and prediction errors.

The convergence of the motion tracer takes a few snap-
shots, after this point it constantly updates its motion
model parameters. Reconstructing the motion is now akin
to starting with the initial point and performing a direc-
tional piece-wise integration using the speed and direc-
tion of motion parameter at each time step. An instance
of the above algorithm is executed for each detected mo-
tion.

4 Evaluation

We implement a prototype of WiDeo using the WARP
software radios using WiFi compatible OFDM PHY with
a bandwidth of 20MHz at 2.4GHz. The radio is set up to
use 4 antennas and all RX chains are phase synchronized
like in a MIMO radio. The spacing of the antennas is
λ/2 and the overall width of ULA is 18cm. The declut-
terer is designed using analog cancellation circuit boards
based on the design described in [11]. From the time
it receives information about the clutters to be canceled,
the declutter takes few microseconds to remove their ef-
fect and improve the dynamic range. The optimization
algorithms that measure the backscatter parameters and
the rest of the tracing algorithms are implemented in a
host PC in C using the cvxgen toolbox [32] and Matlab.
Although the current implementation of WiDeo is not re-
altime we believe it is possible with a few architectural
changes and speed optimizations in the future.

4.1 Back-scatter sensor benchmarks
We start with micro-benchmarks of the backscatter sensor
that underpins motion tracing. The goal here is to demon-
strate that WiDeo’s backscatter measurement algorithms
provide high accuracy and fine resolution.
Accuracy: We first measure WiDeo’s accuracy in mea-
suring backscatter parameters. Given the complex geom-
etry of indoor environments, a natural question is how do
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we know ground truth for all the multipaths to evaluate
the accuracy of WiDeo? We perform controlled experi-
ments by connecting the RX chains with wires from the
transmitted chain. The lengths of the wires are varied
to provide different delays, attenuators on each wire pro-
vide tunable amplitude, and phase shifters are introduced
to simulate AoA. This wired experiment can create 10
different backscatter components. To mimic realistic in-
door reflections, we vary the lengths and attenuations by
sampling it from an indoor power delay profile [19], and
AoA is picked uniformly at random. We vary the receiver
bandwidth from 20MHz to 160MHz.

Since WARP radios can only support up to 40MHz
bandwidth, we use signal analyzers for the higher band-
width experiments. Higher receiver bandwidth is ex-
pected to help improve accuracy because we are getting
finer-grained observations in time due to higher sampling
rates. However, the default configuration for WiDeo un-
less stated otherwise is WARP radios with 20MHz band-
width.

Fig. 4 plots the overall estimation accuracy for delay
and AoA of the backscatter components as a function of
bandwidth, we omit amplitude results for brevity (their
accuracy was within 1dB). As we can see WiDeo pro-
vides extremely high accuracy, measuring delay to within
0.3ns accuracy for a bandwidth of 40MHz, the most com-
monly used WiFi bandwidth. Further AoA accuracy is
1.2 degrees at 40MHz bandwidth. Accuracy improves
slightly for delay estimation with bandwidth, which is
expected since we now get more closely spaced samples
that helps discern delay better. AoA accuracy is not af-
fected much by bandwidth since that is primarily deter-
mined by the number of antennas.
Resolution: Next we conduct an experiment to measure
WiDeo’s resolution, i.e. how close two backscatter re-
flectors can be before WiDeo’s algorithms fail to disam-
biguate their respective parameters? First, we create two
backscatter components whose delays are far from each
other by using wires of different lengths. We then slowly
decrease the relative delay and measure at what relative
delay the accuracy is a factor of two worse than in Fig. 4.
Next we repeat the same experiment, but instead of de-
lay, we make the AoA of two backscatter components
very close to each other and check at what relative AoA
the accuracy is a factor of two worse than in Fig. 4. The
results are presented in Fig. 5.

WiDeo can resolve delay to 2ns, distinguishing two
gesturing humans separated by only one foot. WiDeo can
resolve angle to 5 degrees, distinguishing humans 1 foot
apart at 12 feet away.
Range and Dynamic Range: A third benchmark is how
weak a backscatter signal can be before it cannot be es-
timated by WiDeo. Clearly if a backscatter is weaker
than the noise floor of the receiver radio (-90dBm), then
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Figure 5: WiDeo can accurately measure parameters even
when the backscatter are spaced only 2ns apart in time or 5
degrees apart in spatial orientation.

WiDeo cannot detect it. But how much above the noise
floor does the backscatter have to be for accurate mea-
surement? We repeat the accuracy experiment shown in
Fig. 4 by picking the parameters for 9 components from
the power delay distribution while progressively decreas-
ing the strength of the 10th backscatter component.

Fig. 6 (on left) plots estimation accuracy of differ-
ent backscatter parameters as a function of the received
strength at the radio. When the backscatter component
is weaker than -70dBm (i.e less than 20dB above the
noise floor of the receiver), WiDeo’s accuracy degrades
to around 6ns for the delay. In practice this means that
the motion that is being traced needs to happen within 16
feet radius of the radios for high backscatter sensor accu-
racy. Note that the range of motion tracing can be more
than 16 feet as motion tracing may not need parameters
to be highly accurate.

Another related benchmark is the resilience of WiDeo
in scenarios where there is backscatter from a nearby re-
flector and the motion we actually want to trace is far-
ther away and producing weak backscatter. To test this
we conduct a controlled experiment where there are two
backscatter reflectors, one nearby whose strength is kept
constant at 10dBm while the other one is made weaker
and weaker. We plot the accuracy of backscatter mea-
surement for the weaker component as a function of the
difference in strength w.r.t. the strong backscatter com-
ponent in Fig 6(on right). WiDeo accurately measures
components as weak as 80dB below the strong reflector,
well beyond the radio’s 40dB dynamic range. This works
because the declutterer estimates the strong component,
then cancels it completely all the way down to the noise
floor.

Note that both the maximum range and the dynamic
range of WiDeo is limited by the noise floor of the ra-
dio being used and the transmitted power by the sensor,
and not due to the limitations of WiDeo’s algorithm. This
is because WiDeo’s cancellation can cancel specified re-
flections all the way to the noise floor. If the cancellation
were imperfect and doesn’t reach the noise floor; for ex-
ample, a 20dB residue will limit WiDeo to sensing signals
above -50dBm rather than the -70dBm shown in Fig 6,
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Figure 6: (on left)WiDeo can accurately estimate backscatter
parameters for reflections that are as weak as −70dBm. (on
right) It can also accurately estimate parameters for very weak
backscatter components even when there is a strong backscatter
component present which is 80dB stronger.

which would reduce the range as well to 2 feet.

4.2 Motion tracing benchmarks

We now evaluate WiDeo’s ability to accurately trace mo-
tion in indoor environments. We calculate two metrics
Location accuracy: This is the accuracy of the localiza-
tion of a motion that is detected by WiDeo. We use Eu-
clidean distance between the centroid of the ground truth
motion and the estimated motion as the metric.
Motion tracing accuracy: This is the accuracy of the
traced motion. The metric we used is the root mean
square error of the traced motion which we calculate by
computing the distance of each point in the traced motion
with the ground truth motion trace at that point. The dis-
tances are squared and added up and normalized by the
number of points before taking the square root. Hence,
the metric represents the motion tracing error in meters.
Similar to [43], we remove any offset between the ground
truth motion and traced motion.

The locations tested for motion tracing accuracy spans
all scenarios: non line-of-sight (NLOS) to any of the
tracing radios, LOS to a subset of the tracing radios
and through walls in an indoor environment spanning
600sq.ft. By default, unless stated otherwise, the number
of tracing radios is fixed to three and they are deployed at
three fixed but arbitrarily picked locations in the testbed.
The motions we trace are actually humans sketching var-
ious shapes with their hands. By default, unless stated
otherwise, we have two humans performing motion con-
currently in our experiments.

We could not find any recent system that implements
fine-grained motion tracing within the design require-
ments of WiDeo: namely being device-free, compact and
one that uses existing communication signals and spec-
trum. RF-IDraw [43] as discussed before is not device-
free, nor compact. Other recent work such as WiTrack [6]
is device free but implements coarse tracking of the en-

tire human body moving, but cannot track fine-grained
motion of human limbs. Hence we refer the reader to
§ 1,§ 2 for a qualitative comparison to these related sys-
tems.

Our experimental results show the following

• WiDeo accurately traces motion, it achieves a me-
dian localization accuracy of 0.8m and motion trac-
ing accuracy of 7cm.

• WiDeo can accurately trace multiple independent
motions, tracing as many as five independent and
concurrent motions with an error less than 12cm.

• WiDeo’s resolution is 0.5m, i.e. if the two indepen-
dent motions are occurring within half a meter or
higher of each other, WiDeo can trace them accu-
rately.

• Accuracy improves modestly with the number of ra-
dios involved in the tracing. When we increase the
number of radios to five, localization accuracy im-
proves to 0.7m, whereas motion tracing accuracy
improves to 6cm.

4.2.1 Motion tracing experiments

We use a SPEAG hand [3] to perform motion tracing ex-
periments. This model hand is designed to have same di-
mensions and absorption/reflection characteristics as that
of a typical human hand in 2.4GHz frequency range.

This hand is placed over a chart with figures of differ-
ent shapes like the one shown in Fig. 7. Several markers
are drawn on the shape and the backscatter is captured by
WiDeo’s APs when the SPEAG hand is placed on each of
these markers. The markers are spaced apart by approx-
imately 5cm so as to emulate a scenario where WiDeo
collects measurements every 10ms when a human hand is
moving at a speed of 5m/s [22]. The ground truth location
for each marker on the chart is obtained by using laser
range measurements and architectural drawings. In Fig.
7, the shape in the blue shown in the right is found using
such laser measurements. By placing the model hand in
all the locations of the chart sequentially, we emulate the
scenario where a human hand traces the particular trajec-
tory whose ground truth is accurately determined.

We conducted experiments in scenarios with one, two,
and all three APs in LOS. WiDeo’s accuracy is tabulated
in Fig. 8. WiDeo achieves an accuracy of 5.1cm when
the APs are in LOS, and is still quite accurate at 12.8cm
when two of the APs are in NLOS.

4.2.2 Understanding WiDeo’s motion tracing

Because of the time consuming nature of the data col-
lection procedure for the above testbed experiments, we
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0.22 m 

0.33 m 

Figure 7: (Left) A chart with figure of 8 with multiple mark-
ings where SPEAG hand (in inset) was placed and the data was
captured by WiDeo’s AP. (Right) Ground truth data obtained
using laser range finder (in blue) along with the motion trace
reconstructed by WiDeo (in red) using 3 APs.

Mo0on$ Localiza0on$Accuracy$(m)$ Mo0on$Tracing$Accuracy$(cm)$

Testbed) Wireless)InSite) Testbed) Wireless)InSite)

All)AP)LOS) .54) .54) 5.1) 5.3)

1AP)NLOS)) 1.1) 1.1) 8.5) 8.4)

2AP)NLOS) 1.61) 1.63) 12.8) 12.5)

Figure 8: Median accuracy for different motion shapes ob-
tained using SPEAG hand and Wireless InSite tool.

can only perform a limited number of experiments us-
ing it. To extensively test the motion tracing accuracy
of WiDeo under more diverse conditions, we simulated
the entire system in an electromagnetic emulation envi-
ronment called Wireless InSite [2]. Wireless InSite is a
ray tracing based tool to accurately model RF propaga-
tion in any indoor environment with walls and other ob-
jects. This tool enables us to emulate complex indoor en-
vironments in which WiDeo will be used, as well as know
the ground truth for every experiments. To demonstrate
Wireless InSite produces similar results, we modeled the
testbed described above and then collected data for the
same scenarios in Wireless InSite. We emulated the dy-
namic range and progressive interference cancellation on
the data obtained from Wireless InSite simulation. Fig.
8 compares the accuracy of motion tracing achieved with
Wireless InSite data with that obtained with the physi-
cal experiments. We see that the two results match very
closely which is due to Wireless InSite’s ability to accu-
rately model indoor RF environments. Hence, in the rest
of the sections, we use Wireless InSite to analyze perfor-
mance of WiDeo in more detail.

4.2.3 WiDeo’s motion tracing performance

We now evaluate the WiDeo’s motion tracing accuracy by
conducting extensive experiments using Wireless InSite.
Specifically, we vary the placement of the two moving
humans arbitrarily in the testbed across 100 different lo-
cations. We calculate the median localization error and
the root mean square error of the traced motion. We plot
the CDFs in Fig. 9.

WiDeo achieves a median localization error of 0.8m
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Figure 9: WiDeo’s motion tracing is extremely accurate; it
traces fine-grained motion with a median localization error of
0.8m and motion tracing error of 7cm.
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Figure 10: WiDeo provides high resolution motion tracing, it
can accurately trace two independent motions occurring even
if they are only spaced 0.5m apart (with error bar representing
standard deviation).

and a median tracing error of 7cm. The tail errors are of-
ten cases where the human motion is happening in a dead
zone where the backscatter to any of the tracing radios
is weaker than -80dBm. In these cases the backscatter
measurement itself has worse accuracy which translates
to poor accuracy for motion tracing. However WiDeo
still achieves a motion tracing accuracy better than 15cm
in 90% of the scenarios.

4.2.4 Resolution

Many applications that might build upon WiDeo’s motion
tracing capability care about resolution, i.e. how close
can two independent human motions be occurring and
WiDeo can still trace them accurately (e.g multi-player
video games). To conduct this experiment we progres-
sively move the two moving humans closer to each other
and plot the worse of the two motion tracing accuracies
as reported by WiDeo in Fig. 10.

WiDeo achieves a motion tracing resolution of 0.5 me-
ters while still achieving an extremely good tracing accu-
racy of 12cm. So two humans could be standing a little
bit more than a foot away from each other (e.g. in a video
game), moving their hands closest to each other simulta-
neously, and still be able to accurately trace their motion.

We also observed that localization error is unaffected;
the error is the same as in Fig. 9 . This is expected since

12
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the localization technique works by combining measure-
ments from multiple tracing radios when a new moving
backscatter component is detected. Since we assume that
two human motions do not start exactly at the same time
and are usually spaced at least 10ms apart, WiDeo’s lo-
calization algorithms have a sufficiently long window of
time (10ms) in which they can perform localization on a
single new object without the presence of a nearby mov-
ing object. The same argument applies when the second
new motion is detected, by then the first motion is local-
ized and can be accounted for and localization can focus
only on the new backscatter components that arise from
new moving object.

4.2.5 Impact of number of tracing radios

In this experiment, we see impact on accuracy as we vary
the number of radios performing tracing in WiDeo. We
conduct the same experiment as in § 4.2.3, but vary the
number of tracing radios from one to five. We plot five
different CDFs of localization and motion tracing error in
Fig. 11 .

As we can see, WiDeo’s localization error is poor (4m)
with a single tracing radio. This is expected, since WiDeo
relies on triangulation to localize well. However motion
tracing error is less affected, WiDeo still traces with less
than 12cm error. Consequently while we cannot localize
with a single radio, we can still trace. The reason is that
with a single tracing radio, we cannot get an accurate esti-
mate of the depth (location), but the relative motion from
that initial location can still be accurately traced since it
only depends on relative shifts in backscatter measure-
ments, which are quite accurate.

Increasing the number of tracing radios helps with lo-
calization error, it goes down to 0.7m with five tracing
radios. Motion tracing, which is already quite accurate
even with a single radio, improves slightly to 7cm. This
is expected since triangulation improves with more radios
and hence localization improves. However backscatter
measurement doesn’t depend on having multiple obser-
vations, it’s done independently by each radio. Hence
tracing accuracy only improves by a small amount.

4.2.6 Distinct motions that WiDeo can trace

In this experiment, we check how many independent con-
current human motions can WiDeo trace. We vary the
number of human motions occurring concurrently from
one to six and plot the median tracing accuracy in Fig. 12.

WiDeo can trace up to five concurrent motions with an
accuracy of 12cm. To the best of our knowledge, no prior
WiFi based system has demonstrated being able to trace
five moving humans concurrently. Beyond that accuracy
worsens. The reason is that there aren’t enough radios to
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Figure 11: WiDeo’s localization accuracy improves with the
number of tracing radios to 0.7m because of better triangula-
tion. However tracing accuracy is unaffected because WiDeo’s
algorithm’s can trace accurately even with information from a
single tracing radio.
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Figure 12: WiDeo can accurately trace as many as five inde-
pendent motions that are occurring simultaneously (with error
bar representing standard deviation).

provide sufficient number of backscatter measurements to
disentangle these motions. Being able to trace five con-
current motions is sufficient for a home environment, but
not for work environments where a far greater amount of
motion is expected.

5 Conclusion
This paper demonstrated the surprising capability to build
motion tracing camera using WiFi signals as the light
source. The fundamental contributions are algorithms
that can measure WiFi backscatter and mine them to trace
motion. We plan to prototype many interesting appli-
cations that builds on top of WiDeo, including gesture
recognition, indoor navigation, elderly care and security
applications.
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