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Abstract Episodically to continuously active slow-moving landslides are driven by precipitation.

Climate change, which is altering both the frequency and magnitude of precipitation worldwide, is

therefore predicted to have a major impact on landslides. Here we examine the behavior of hundreds of

slow-moving landslides in northern California in response to large changes in annual precipitation that

occurred between 2016 and 2018. We quantify the landslide displacement using repeat-pass radar

interferometry and pixel offset tracking techniques on a novel data set from the airborne NASA/JPL

Uninhabited Aerial Vehicle Synthetic Aperture Radar. We found that 312 landslides were moving due to

extreme rainfall during 2017, compared to 119 during 2016, which was the final year of a historic multiyear

drought. However, with a return to below to average rainfall in 2018, only 146 landslides remained in

motion. The increased number of landslides during 2017 was primarily accommodated by landslides that

were smaller than the landslides that remained active between 2016 and 2018. Furthermore, by examining

a subset of 51 landslides, we found that 49 had increased velocities during 2017 when compared to 2016.

Our results show that slow-moving landslides are sensitive to large changes in annual precipitation,

particularly the smaller and thinner landslides that likely experience larger basal pore-water pressure

changes. Based on climate model predictions for the next century in California, which include increases in

average annual precipitation and increases in the frequency of dry-to-wet extremes, we hypothesize that

there will be an overall increase in landslide activity.

1. Introduction

In mountainous regions around the world, landslides dominate erosion and landscape evolution (Booth

et al., 2013; Kelsey, 1978; Korup et al., 2007; Larsen et al., 2010; Mackey & Roering, 2011; Simoni et al., 2013)

and pose a major natural hazard that causes billions of dollars in damages and claims thousands of lives

annually (Froude & Petley, 2018; Kirschbaum et al., 2015). Numerous factors, such as rainfall, snowmelt,

earthquakes, river incision, and human activities can alter the stress balance along a hillslope and trigger

landslides. However, once they occur, they can display a wide range of behaviors. The most hazardous land-

slides fail catastrophically and can move kilometers downslope at rates up to tens of meters per second

(e.g., Bell, 2018; Iverson et al., 2015). Less hazardous, but still destructive, are landslides that move downs-

lope at rates as low as millimeters to meters per year (herein referred to as “slow-moving landslides”) and

can remain active for decades or longer (e.g., Bennett, Roering, et al., 2016; Bovis & Jones, 1992; Keefer &

Johnson, 1983; Nereson & Finnegan, 2018). The persistent and long-termmotion of slow-moving landslides

makes them particularly well suited for investigations that aim to better understand landslide processes.

Slow-moving landslides occur worldwide in regions that have mechanically weak, clay-rich materials (i.e.,

soil and rock) and high seasonal precipitation (e.g., Cerovski-Darriau & Roering, 2016; Malet et al., 2002;

Miao et al., 2014; Rutter & Green, 2011; Simoni et al., 2013). These landslides can display kinematic changes

over timescales ranging from 10−2 to 102 days in response to stress perturbations that act to alter the driving

stress or resisting strength. Stress perturbations caused by nearby earthquakes (e.g., Lacroix et al., 2015),

variations in atmospheric pressure (e.g., Schulz, Kean, &Wang, 2009; VanGenuchten&DeRijke, 1989), and
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undrained loading (e.g., Booth et al., 2018; Hutchinson & Bhandari, 1971) have all been linked to observable

changes in landslide behavior. Most commonly, however, stress changes from infiltrating precipitation and

snowmelt drive changes in landslide activity (e.g., Coe et al., 2003; Iverson &Major, 1987; Malet et al., 2002;

Rutter & Green, 2011; Terzaghi, 1950).

Climate change, which is altering both the frequency and magnitude of precipitation worldwide, is thus

predicted to have a major impact on landslides (Crozier, 2010; Gariano & Guzzetti, 2016; Jakob & Lambert,

2009). Regional increases in the intensity, duration, and amount of precipitationwill likely trigger or increase

the activity of landslides by generating elevated pore-water pressures that reduce the effective normal stress

(normal stress minus pore-water pressure) and consequently decrease the frictional strength of hillslopes

(Terzaghi, 1950). For example, Chiang and Chang (2011) used landslide and climate models to predict up to

a 12% increase in unstable hillslopes in Taiwan over the next century due to increased rainfall. In contrast,

regional decreases in rainfall or increases in drought conditions will likely reduce landslide activity. Coe

(2012) combined over a decade of continuous landslide monitoring data with climate models to predict

a decrease in the activity of the Slumgullion landslide, Colorado, over the next century due to decreased

rainfall and increased temperature. Additionally, changes in rainfall patterns may have different effects on

shallow and deep-seated landslides (Crozier, 2010; Gariano & Guzzetti, 2016). Shallow landslides are more

sensitive to changes in the intensity and duration of individual storms (e.g., Chiang & Chang, 2011; Iverson,

2000), while deep-seated landslides are more sensitive to changes in seasonal and annual precipitation (e.g.,

Iverson & Major, 1987; Malet et al., 2002; Rutter & Green, 2011). However, uncertainties in landslide and

climate models make it difficult to assess how landslides will respond to climate change.

Recent and ongoing climate shifts in California have already had an impact on the behavior and activity of

landslides (Bennett, Roering, et al., 2016; East et al., 2018; Handwerger et al., 2019; Nereson & Finnegan,

2018). Over the past decade, California has experienced both a historic drought (2012–2016) and the sec-

ond wettest year on record (2017; Griffin & Anchukaitis, 2014; Robeson, 2015; Swain et al., 2016, 2018).

Bennett, Roering, et al. (2016) found that the mean velocity of slow-moving landslides in the northern Cali-

fornia Coast Ranges reached a 70-yearminimumduring the recent historic drought. Slow-moving landslides

in the central California Coast Ranges also displayed minimum velocities during the drought (Nereson &

Finnegan, 2018) but displayed high velocities during the extreme wet year of 2017 (Handwerger et al., 2019;

Warrick et al., 2019). Rapid shifts from dry-to-wet extremes in California, similar to the changes in precipita-

tion that occurred between 2012 and 2018, are predicted to increase by 25% to 100% during the 21st century

(Swain et al., 2018). In addition to these changes in precipitation extremes, annual mean precipitation could

increase by 12% across the state (Allen & Luptowitz, 2017). If these climate model predictions hold true,

there could be an increase in both landslide activity and landslide hazards.

To better understand how landslides respond to rapid climate shifts, such as the recent transition from his-

toric drought to the secondwettest year on record, wemap and quantify the kinematic response of hundreds

of slow-moving landslides in the Eel River catchment, northern California Coast Ranges, between 2016

and 2018. Tracking the time-dependent behavior of large inventories of landslides is necessary to determine

their hazard potential and the role they play in landscape evolution. State-of-the-art remote sensing tech-

niques, such as satellite and airborne synthetic aperture radar interferometry (InSAR), provide millimeter-

to centimeter-scale measurements of ground surface change that can be used to quantify landslide motion

across entiremountain ranges (e.g., Bayer et al., 2018; Colesanti &Wasowski, 2006; Scheingross et al., 2013).

Thesemonitoring tools, combinedwith field and laboratorymeasurements, help to improve our understand-

ing of the mechanisms that control landslides and allow us to better understand how landslides respond to

environmental changes, such as the warming global climate.

Here we identify and monitor active landslides using InSAR and pixel offset tracking techniques with a

novel data set from the NASA/JPLUninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) that we

designed specifically to monitor the Eel River landslides. This is the first study to use UAVSAR data to track

the time-dependent motion of numerous slow-moving landslides in response to large changes in rainfall.

We examine relationships between landslide activity, displacement, velocity, geometry, and precipitation

to document how large hydrologic changes impact landslide activity and kinematics. We also discuss the

implications of our findings for understanding landslide mechanisms and how ongoing and future climate

change may affect landslide behaviors and landscape evolution.
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Figure 1. Eel River catchment, northern California. Uninhabited Aerial Vehicle Synthetic Aperture Radar flight paths
(black and colored rectangles) and Franciscan Complex mélange (Jennings et al., 1977) draped over a hillshade of the
topography. The azimuth (along track) and look direction of the Uninhabited Aerial Vehicle Synthetic Aperture Radar
instruments are shown with black and green arrows in the legend. Black polygons show mapped slow-moving
landslides from this study and from previously published inventories (Bennett, Miller, et al., 2016; Handwerger et al.,
2015; Mackey & Roering, 2011). Thin blue lines show major rivers and tributaries. Dotted line shows San Andreas
Fault, and arrows show relative fault motion. Inset shows field site location within California. Digital elevation model
from TanDEM-X.

2. Study Area: Northern California Coast Ranges

Our study focuses on a ∼4,700-km2 area that contains hundreds of episodically to continuously active

slow-moving landslides located within the Eel River catchment, northern California Coast Ranges

(Figure 1). Due to high landslide activity, the northern California Coast Ranges have been a focus site

for landslide investigations for over four decades (Bennett, Miller, et al., 2016; Bennett, Roering, et al.,

2016; Booth & Roering, 2011; Booth et al., 2013, Handwerger et al., 2013, 2015; Iverson & Major, 1987;

Kelsey, 1978; Mackey et al., 2009; Mackey & Roering, 2011; Mackey et al., 2011; Roering et al., 2009, 2015;

Schulz, Smith, Wang, Jiang, & Roering, 2018; Zhao et al., 2012). Nearly all of the slow-moving landslides

are underlain by the Jurassic-Cretaceous Franciscan Complex mélange (Figure 1), which comprises tecton-

ically sheared sandstone, siltstone, shale, meta-sandstone, greenstone, chert, blueschist, and serpentinite

HANDWERGER ET AL. 3
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Figure 2.Water year precipitation for Kekawaka Creek, CA. Gray bars
show cumulative water year (1 October to 30 September) precipitation for
16 km2 km region. Dashed gray line corresponds to average rainfall
between 1895 and 2018. Line with dots shows the Palmer Drought Severity
Index (PDSI) with positive values corresponding to wet conditions (blue)
and negative values corresponding to dry conditions (orange). Precipitation
data from Parameter-elevation Regressions on Independent Slopes Model
and PDSI data from the WestWide Drought Tracker.

(Jayko et al., 1989; Jennings et al., 1977; McLaughlin et al., 1982;

McLaughlin et al., 2000). The vegetation in the slow-moving

landslide-prone areas of the Eel River catchment consists of open

oak grassland; and the region is primarily used for cattle grazing and

agriculture (Kelsey, 1978; Mackey & Roering, 2011).

The northernCalifornia Coast Ranges have aMediterranean climatewith

seasonal precipitation that occurs primarily between October and May,

30–50% of which is delivered by landfalling atmospheric rivers (Dettinger

et al., 2011). Our field area is centered on Kekawaka Creek (Figure 1),

which has a long-termaverage annual precipitation of∼1.55m (Figure 2),

calculated between the 1895 and 2018 water years (WYs) using data from

the Parameter-elevation Regressions on Independent Slopes Model Cli-

mate Group at Oregon State University. Note the WY is defined as the

time period between 1 October and 30 September, such that WY2017 = 1

October 2016 to 30 September 2017. Average annual precipitation varies

across the northern California Coast Ranges with the largest cumula-

tive precipitation occurring in the Northwest and decreasing toward the

Southeast (Figures 3 and S1 in the supporting information).

Recent climate shifts in California have already had severe consequences

on water supply, agriculture, infrastructure, wildfires, ground subsi-

dence, sediment flux, and landslides (Bekaert et al., 2019; Bennett,

Roering, et al., 2016; Chaussard et al., 2017; Diffenbaugh et al., 2015; East

et al., 2018; Handwerger et al., 2019; Murray & Lohman, 2018; Swain et al., 2018). Between the 2012 and

2018WYs, California experienced one of its most extreme droughts and the second wettest year in recorded

history (Diffenbaugh et al., 2015; Griffin & Anchukaitis, 2014; Swain et al., 2018). In the Kekawaka Creek

area, minimum rainfall was 0.82 m during WY2014, and maximum rainfall was 2.21 m during WY2017

(Figure 2). The extreme rainfall during WY2017 resulted from an unusually high number of atmospheric

river storms, including the strongest atmospheric river event in the past 70 years (Gershunov et al., 2017;

Guirguis et al., 2018; Swain et al., 2018). These large changes in rainfall subsequently caused transitions

between dry and wet soil moisture conditions, as quantified by the Palmer Drought Severity Index (PDSI;

Figure 2). The PDSI (data provided by the WestWide Drought Tracker) is an estimate of relative dryness

(negative and positive values correspond to dry and wet conditions, respectively) and serves as a good proxy

for the conditions that drive landslide motion because it is based on temperature and precipitation data and

accounts for antecedent conditions (Bennett, Roering, et al., 2016; Nereson & Finnegan, 2018). The PDSI

Figure 3. Precipitation maps for northern California Coast Ranges. (a–c) Cumulative precipitation for the 2016–2018
water years (WYs) draped over a hillshade of the topography. Black polygons show mapped slow-moving landslides
from this study and from previously published inventories (Bennett, Miller, et al., 2016; Handwerger et al., 2015;
Mackey & Roering, 2011). Thin blue lines show major rivers and tributaries. Precipitation data from
Parameter-elevation Regressions on Independent Slopes Model and digital elevation model from TanDEM-X.
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shows dry conditions between WY2013 and WY2016 and in WY2018 and wet conditions in WY2012 and

WY2017 (Figure 2). Although WY2012 was the first year of the historic California drought, the Kekawaka

Creek area received sufficient rainfall in preceding years such that wet soil conditions were maintained

and the multiyear period of dry soil conditions began in WY2013. Our study focuses on the period between

WY2016 and WY2018, during which time the PDSI shows a transition from dry to wet to dry conditions.

Slow-moving landslides in the Eel River catchment are often large (>500 m long), deep-seated (>3 m thick)

masses that move downslope at rates up to several meters per year (Bennett, Miller, et al., 2016; Bennett,

Roering, et al., 2016; Handwerger et al., 2013, 2015; Mackey & Roering, 2011). Due to their flow-like appear-

ance, these landslides are often referred to as earthflows; however, most of their displacement occurs by

sliding along narrow basal and lateral shear zones (Keefer & Johnson, 1983; Nereson & Finnegan, 2018;

Schulz, Smith, Wang, Jiang, & Roering, 2018). Similar types of slow-moving landslides occur in moun-

tainous areas around the world (Cerovski-Darriau & Roering, 2016; Malet et al., 2002; Miao et al., 2014;

Rutter & Green, 2011; Simoni et al., 2013). The slow-moving landslides occur in a mechanically weak (fric-

tion angle ∼ 15◦), clayey granular soil (chlorite, illite/mica, and smectite) with low hydraulic diffusivity

(∼ 10−6 m2/s; Iverson & Major, 1987; Keefer & Johnson, 1983; Nereson et al., 2018; Schulz, Smith, Wang,

Jiang, & Roering, 2018; Schulz, Smith, Wang, Jiang, Deuell, et al., 2018).

Historical optical imagery has been used to track the activity ofmany of the Eel River slow-moving landslides

for over 70 years (Bennett, Roering, et al., 2016; Mackey & Roering, 2011). These landslides display unsteady

motion with velocities that are highly variable both within a single landslide and between neighboring land-

slides (Handwerger et al., 2013, 2015;Mackey et al., 2009). Over seasonal timescales, the Eel River landslides

exhibit velocity changes that generally correspond to precipitation-induced changes in pore-water pressure

(Iverson & Major, 1987; Schulz, Smith, Wang, Jiang, & Roering, 2018; Schulz, Smith, Wang, Jiang, Deuell,

et al., 2018). Typically, each landslide accelerates during the wet season and decelerates throughout the dry

season. However, the timing of speed minima and maxima and sliding behavior can vary from year to year

(Handwerger et al., 2013; Schulz, Smith, Wang, Jiang, & Roering, 2018). Furthermore, the seasonal veloc-

ity changes displayed by these slow-moving landslides are superimposed onto yearly—and decadal—scale

velocity variations (Bennett, Roering, et al., 2016; Mackey et al., 2009). Mackey et al. (2009) found that the

Kekawaka landslide (located in our field area; see Figure 4) reached peak velocities between 1964 and 1981

and then decelerated until 2006. They suggested that the peak velocities were a result of a particularly wet

time period in California. Bennett, Roering, et al. (2016) analyzed the behavior of 98 Eel River landslides

and showed that the mean velocity of the landslides decreased 85% between 1944 and 2015, with minimum

velocities coincidingwith the historic drought between 2012 and 2015. Furthermore, they showed that these

velocity changes are correlated with the PDSI such that periods of increased dryness (i.e., drought) corre-

spond to low landslide velocities. Nereson and Finnegan (2018) also found that the PDSI serves as a good

proxy for the conditions that drive increased or decreased landslide motion for the transport zone of the

Oakridge landslide in central California. In order to better understand how landslides will respond to future

and ongoing climate shifts, we explore how the recent transition from dry to wet conditions impacted the

landslide activity in northern California.

3. Methods

3.1. InSAR and Pixel Offset Tracking

Satellite and airborne InSAR provide millimeter- to centimeter-scale measurements of surface deformation

and have been used to quantify the ground surface deformation associated with landslides (e.g., Bayer et al.,

2018; Hu et al., 2016; Schlögel et al., 2015), faults (e.g., Fielding et al., 2005; Fialko et al., 2001; Huang et al.,

2017), glaciers (e.g., Gourmelen et al., 2011; Milillo et al., 2019), and ground subsidence (e.g., Bekaert et al.,

2019; Chaussard et al., 2017; Murray & Lohman, 2018). Previous studies have used satellite-based InSAR

to identify and monitor slow-moving landslides in the California Coast Ranges (Cohen-Waeber et al., 2018;

Handwerger et al., 2013, 2015, 2019; Hilley et al., 2004; Roering et al., 2009, 2015; Zhao et al., 2012). InSAR

techniques work particularly well for monitoring slow-moving landslides in the California Coast Ranges

because they have sparse vegetation and move downslope at relatively low rates.

We use a novel data set from the NASA/JPLUAVSAR airborne system that we designed specifically tomoni-

tor the Eel River landslides (Figures 1 and 4). Previous work by Delbridge et al. (2016) used UAVSAR data to

HANDWERGER ET AL. 5



Journal of Geophysical Research: Earth Surface 10.1029/2019JF005035

Figure 4. Average velocity maps for two Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) flight paths.
Average line-of-sight (LOS) velocity between April 2016 and February 2018 draped over a hillshade of the topography.
Red and blue colors correspond to active landslide deformation. Differences in velocity between UAVSAR track 33805
(a) and track 24500 (b) are related to the changes in the look geometry of the UAVSAR. The azimuth (along track) and
look direction of the UAVSAR instruments are shown with black arrows. Changes in the activity of the landslides are
based on a previously published inventory from Bennett, Miller, et al. (2016). Thin blue lines show major rivers and
tributaries. Digital elevation models from OpenTopography and TanDEM-X.

measure the 3-D kinematics of the Slumgullion landslide, Colorado; and previous work by Scheingross et al.

(2013) used UAVSAR data to map 150 landslides and explore their relation to the creeping section of the San

Andreas Fault in central California. Our study is the first to use UAVSAR data to track the time-dependent

behavior of hundreds of slow-moving landslides in response to large changes in rainfall. The UAVSAR sys-

tem is flown aboard a NASAGulfstream III and acquires data with a L-band (24-cm radar wavelength) radar

that has a pixel size of 0.6 m in azimuth and 1.67 m in range. For each data acquisition (dates listed in

Table S1), data were acquired along four different flight paths, and thus, each flight provides four line-of-site

measurements when processed to interferograms. SAR data were acquired eight times between April 2016

and February 2018 (Table S1). We process all possible combinations of interferograms, which results in 112

interferograms (28 along each flight path; Figure S2 and Table S1). The minimum time between a single

interferogram pair is 47 days, and the maximum time is 673 days. We process the data from UAVSAR Sin-

gle Look Complex stacks using the InSAR Scientific Computing Environment software package developed

at JPL/Caltech/Stanford (Rosen et al., 2012) with eight looks in azimuth and three looks in range, result-

ing in a 4.8-m azimuth by 5-m range pixel size. To remove topographic contributions to the phase and to

geocode the interferograms, we use a 12-m pixel spacing digital elevation model (DEM) from the German

Aerospace Center (DLR) TanDEM-X and reduce phase noise by applying a standard power spectrum filter

with a filtering parameter value of 0.7 (Goldstein & Werner, 1998).

The persistent downslope motion and large deformation gradients of slow-moving landslides can intro-

duce phase unwrapping errors when using conventional InSAR techniques to process long-time-span

interferograms. These errors occur when the displacement between adjacent pixels exceeds half the radar

wavelength. An example of InSAR unwrapping errors at the Boulder Creek landslide is shown in Figure S3.

To overcome these types of unwrapping errors, previous studies implemented a deformation model into the

InSARprocessing that helped remove large phase gradients (Handwerger et al., 2013, 2015, 2019).While this

technique can improve the quality of interferograms, it requires a deformationmodel for each landslide and

is therefore best suited for studies that focus on a small numbers of landslides. Therefore, we also use pixel

HANDWERGER ET AL. 6
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offset tracking with SAR data to overcome issues associated with large displacements. Our pixel offset track-

ing uses incoherent cross correlation of the SAR amplitude images to calculate offsets (i.e., displacements) of

nearly identical features. Pixel offset tracking circumvents issues related to high deformation rates because it

does not require phase unwrapping. In addition, it also provides two-dimensional measurements (i.e., look

direction and along-track direction). This technique has been used with both SAR data and optical imagery

to successfully measure large displacements associated with landslides, faults, and glaciers (e.g., Bao et al.,

2019; Bennett, Roering, et al., 2016; Dehecq et al., 2015; Fialko et al., 2001; Huang et al., 2017; Leprince et al.,

2008; Pathier et al., 2006; Stumpf et al., 2017). However, pixel offset tracking is less accurate (i.e., sensitive to

1/20 of the pixel size) than conventional InSAR and is therefore best suited for landslides that move at least

decimeters to meters per year and for data sets with high spatial resolution such as UAVSAR. We process

pixel offsets from the full-resolution SAR Single Look Complex images using the standard InSAR Scientific

Computing Environment amplitude matching program. We explored a range of correlation window sizes

from 16 to 256 and found that a matching window of 64 range × 128 azimuth provided the best landslide

deformation signal. We process all possible combinations of SAR data, resulting in 112 pixel offset maps (28

on each flight path; Figure S2 and Table S1).

3.2. Time Series and Three-Dimensional Surface Displacement Inversions

We construct cumulative displacement time series inversions from the UAVSAR pixel offset tracking mea-

surements using the Generic InSAR Analysis Toolbox (Agram et al., 2013) with the Small Baseline Subset

method (Berardino et al., 2002; Schmidt & Bürgmann, 2003).We then use data from overlapping flight paths

to invert for 3-D surface displacement time series. The 3-D inversions require three or more independent

measurements of ground displacement. Each flight path provides two independent measurements using

pixel offset tracking (i.e., range and azimuth). We combine four independent measurements for areas where

two flight paths overlap and six independent measurements for areas where three flight paths overlap.

Each measurement from the UAVSAR is composed of the true displacement vector projected onto the look

direction or along-track (i.e., azimuth) direction of the UAVSAR. Using the overlapping measurements and

information about the geometry of the UAVSAR allows us to solve for the true 3-D motion using a least

squares inversion (details described in Delbridge et al., 2016). We perform the least squares inversion using

theMATLAB software package. We also quantified errors in the pixel offset displacement measurements by

calculating the mean and standard deviation values across a ∼10-km2 region with no active landslides. The

meandisplacement error over the full study periodwas 0.09± 0.05m (±1 standard deviation). To help reduce

errors in the displacement measurements, we apply displacement thresholds to the time series inversion.

We remove all pixels with cumulative horizontal displacements <0.2 and >20 m over the full study period.

This essentially removes all stable areas and areas that have displacements that significantly exceed those

displayed by the Eel River landslides (cm/year to m/year) (Bennett, Roering, et al., 2016; Handwerger et al.,

2015; Mackey & Roering, 2011).

3.3. Landslide Reconnaissance andMetrics

We construct a new inventory of landslides active between April 2016 and February 2018. We initially iden-

tify active landslides using InSAR velocity maps. To be considered active, the landslides need to display

clear ground surface deformation during the study period. We then use the high-resolution DEMs, Google

Earth images, and previously published inventories (Bennett, Miller, et al., 2016; Handwerger et al., 2015;

Mackey & Roering, 2011) to confirm that the deformation signals correspond to landslides. Figure 4 shows

an example of InSAR velocity maps and landslide inventories for two different UAVSAR flight tracks. Areas

with relatively high positive or negative line-of-sight velocities generally correspond to active landslides.

The positive and negative values indicate motion toward or away from the UAVSAR radar, respectively.

To explore how changes in precipitation and relative dryness (i.e., PDSI) affected the landslide activity, we

delineate our landslide inventory into three WY periods, which encompassed the following: (1) WY2016 (7

April 2016 to 4 October 2016), (2)WY2017 (4 October 2016 to 30 October 2017), and (3)WY2018 (30 October

2017 to 9 February 2018). These time periods are set by the UAVSAR data acquisitions. Although only the

second time period spans a fullWY, and all three periods lie outside the defined start and end of theWY (i.e.,

1 October to 30 September), our analysis generally covers the period of increased seasonal activity in the Eel

River landslides (November to June; Handwerger et al., 2013, 2015). In addition, the seasonal patterns of

precipitation were relatively consistent, with the onset of seasonal rainfall beginning in October and ending

in June (Figure S5). Therefore, we assume the landslide inventories are approximately representative of each
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WY. However, we note that our inventories likely underestimate the number of active landslides during

WY2016 and WY2018.

We quantify the spatial attributes (i.e., area, length, width, and slope angle) of each landslide using the 12-m

TanDEM-X DEM. We also estimate the landslide thickness, which is the most important length scale in

controlling their response to seasonal precipitation (e.g., Berti & Simoni, 2012; Iverson, 2000). We estimate

thickness from field-based observations and area-thickness geometric scaling relations defined as Z = 𝛼A𝛾 ,

whereZ is the landslide thickness, 𝛾 is the power law exponent,𝛼 is a fit parameter, andA is the landslide area

(Guzzetti et al., 2009; Larsen et al., 2010; Handwerger et al., 2013; Simoni et al., 2013). Field-based estimates

of thickness for landslides in our study site were made from lidar and field observations of 69 landslides

where transects into the landslide body were exposed by incised channels and gullies (Mackey & Roering,

2011). These thickness estimates are considered the minimum landslide thickness because no basal shear

zones were observed. Using these data, Handwerger et al. (2013) found 𝛼 = 0.46 and 𝛾 = 0.29. These scaling

relations are comparable to those derived from borehole data (𝛼 = 0.44 and 𝛾 = 0.31) from similar types of

slow-moving landslides in Italy (Simoni et al., 2013). We emphasize that without actual measurements of

landslide thickness, we treat these as first-order estimates to characterize landslides as relatively thinner or

thicker.

4. Results
4.1. Landslide Activity

In total, we identified 312 active landslides during our ∼2-year study period that range in planform area

from 7.4 × 103 to 3.1 × 106 m2 and mean slope angle from 11◦ to 39◦ (Table S2). Comparison with the

inventory compiled by Bennett, Miller, et al. (2016) reveals 102 landslides that were previously unmapped;

123 active landslidesmapped by both studies; 58 landslides that enlarged in planform area; 71 landslides that

were mapped as active by Bennett, Miller, et al. (2016) but did not display clear deformation signals in our

dataset; 87 reactivated landslides (i.e.,mapped as dormant byBennett,Miller, et al., 2016); and 167 landslides

that were mapped as dormant by both studies (i.e., previously mapped landslides that showed no active

deformation). The previously unmapped landslides were either recently triggered or were possibly missed

by Bennett, Miller, et al. (2016), who manually mapped landslides using satellite and aerial optical images.

The differences in our landslide inventories can result from real changes in landslide activity, bias from

the different mapping techniques (InSAR vs. optical images), and from human error (i.e., manual landslide

mapping). Lastly, we further classified 53 of the landslides as “possible landslides” because they displayed a

strong InSAR signal similar to the other active landslides but were covered with dense vegetation, making

it difficult to observe surface deformation features using our additional criteria (e.g., Google Earth images).

The landslide activity also changed in time due to the large changes in precipitation. We mapped 119 active

landslides duringWY2016, 312 landslides duringWY2017, and 146 landslides duringWY2018 (Figure 5 and

Table S2). There were also changes in the individual landslides moving each year. We found 93 landslides

that were active during all threeWYs, 5 landslides that were only active duringWY2016, 185 landslides that

were only active during WY2017, and 17 landslides that were only active during WY2018. Figure 5 shows

the cumulative frequency-magnitude (i.e., landslide area) relationship and the kernel density estimate (i.e.,

probably density) for our landslide inventories. We found that there was a similar distribution of landslides

during WY2016 and WY2018 and that the increased landslide frequency during WY2017 was accommo-

dated by smaller landslides with areas < 1 × 105 m2 and estimated thicknesses <15 m (Figure 5). Using

a two-sample Kolmogorov-Smirnov test for landslide area (significance level 0.01), we can reject the null

hypothesis that the landslides only active duringWY2017 are from the same distribution as landslides mov-

ing during all three WY. Finally, there are no clear differences in the distributions of the landslide spatial

attributes (i.e., slope, length, andwidth), other than area (i.e., thickness), that can be used to differentiate the

inventories during the three WYs (Table S2). For example, using the two-sample Kolmogorov-Smirnov test

for mean slope angle, we cannot reject the null hypothesis that the landslides only active during WY2017

are from the same distribution as landslides moving during all three WY.

4.2. Landslide Kinematics

Each landslide generally displayed a nonuniform spatial velocity pattern, that is, some parts are moving

faster than others (Figure 4). These spatial velocity patterns remained fixed during our study period and

are similar to those patterns observed between 1944 and 2015 (Bennett, Roering, et al., 2016; Handwerger
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Figure 5. Landslide inventories by water year (WY). (a) Active landslides mapped during the WY2017. Thin blue lines
correspond to major rivers and tributaries. (b–d) Active landslide map for WY2016, WY2017, and WY2018 for the
boxed region shown in (a). (e) Cumulative number of active landslides and landslide area during each water year.
Black dashed vertical lines show estimated landslide thickness. (f,g) Kernel density (i.e., probably density) estimate for
the three water year landslide inventories, for landslides that are moving in all three time periods, and landslides only
active in WY2017. Black dashed vertical lines show estimated landslide thickness. The increase in landslide activity is
primarily accommodated by small- to medium-sized landslides area < 1 × 105 m2 and estimated thickness <15 m.

et al., 2013, 2015; Mackey & Roering, 2011). To quantify the time-dependent changes in velocity, we selected

a subset of 51 landslides for 3-D time series inversions using the pixel offset tracking method (Figure 6).

These landslides were selected because they showed the strongest deformation signal when using the pixel

offset tracking technique. We assume these landslides are representative of the Eel River landslides during

our study period.

Figure 7 shows the characteristic horizontal displacement and velocity time series for the 51 landslides. We

defined the characteristic values for each landslide as the 75th percentile value within themapped landslide

body (Bayer et al., 2018). This value gives less weight to the slower-moving areas and noisy areas with false

high velocities that were not removed by our displacement thresholds (see example in Figure S3). We found

that the maximum characteristic horizontal displacement for a single landslide over the full study period

was ∼10 m, the minimum displacement was ∼0.6 m, and the median displacement for all 51 landslides

was ∼2.7 m. There was a large increase in displacement for each landslide that corresponded to the large

increase in precipitation duringWY2017. The landslide response to precipitation is evenmore evident when

examining the normalized displacement and the normalized precipitation (Figure 8), which accentuates

the deformation and precipitation patterns. The displacement patterns track the precipitation patterns with

a time lag that is on the order of months. While we cannot more accurately resolve the time lag due to the

infrequent sampling of the UAVSAR data (the median time period between data acquisitions was 75 days),

this agrees with previous findings for the Eel River landslides (Handwerger et al., 2013). We also examined

the velocity time series of each landslide (Figure 7). The maximum characteristic horizontal velocity for a

single landslide was∼16m/year, which occurred during the wet season ofWY2017, and theminimum char-

acteristic horizontal velocities approached zero as a few of the landslides appeared to come to a complete

halt during the dry season. There was also a large range in the landslide velocities during WY2017, when

compared to WY2016 and WY2018. We compared the normalized velocity changes to the PDSI time series

for our field area and found there is a good agreement (Figure 8). Velocities increase when the soil is becom-

ing wetter and decrease when the soil is becoming dryer. The PDSI also indicates that during the WY2016

and WY2018, the region was under dry conditions, while almost all of WY2017 was under wet conditions

(Figure 8).
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Figure 6. Velocity maps showing 51 landslides selected for pixel offset tracking time series. Color scale shows the horizontal velocity, which is draped over a
hillshade of the topography. Black polygons show landslides used in the time series analysis (see Figures 7-9). Thin blue line shows river network. Insets show
enlarged view of the landslides selected for analysis. We masked out areas with displacements <0.2 and >20 m. Digital elevation models from OpenTopography
and TanDEM-X.

To better understand the relationship between precipitation, landslide velocity, and landslide geometry, we

compared values over a similar time period forWY2016 andWY2017. ForWY2016, we calculated the veloc-

ity between April 2016 and October 2016, and for WY2017, we calculated the velocity between March 2017

andOctober 2017. This time period spans the seasonal deceleration for bothWYs. Figure 9 shows the ratio of

the WY2017 velocity to WY2016 velocity as a function of estimated thickness and measured average width.

We analyzed the landslide width in addition to the estimated thickness because the width has also been

found to scale with thickness (e.g., Hovius et al., 1997). We find that 49 of the 51 landslides were moving

faster during WY2017 when compared to a similar time period in WY2016 and that the smaller (i.e., nar-

rower and thinner) landslides displayed larger velocity changes (Figure 9). Therewas up to a sixfold increase

Figure 7. Displacement and velocity time series between April 2016 and February 2018. (a,b) Cumulative horizontal
displacement and velocity time series. Gray lines correspond to characteristic value for the 51 landslides. Black line
corresponds to median value for all 51 landslides. (c,d) Cumulative precipitation and precipitation rate time series.
Shaded gray box highlights WY2017. Precipitation data from Parameter-elevation Regressions on Independent Slopes
Model. WY = water year.
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Figure 8. Normalized displacement and velocity time series. (a) Normalized cumulative horizontal displacement and
cumulative precipitation time series. Gray lines correspond to characteristic value for each landslide. Black line
corresponds to median displacement for the 51 landslides. Values are normalized to range between minimum
(min = 0) and maximum (max = 1). (b) Normalized horizontal velocity time series and Palmer Drought Severity Index
(PDSI). Gray lines correspond to characteristic value for each landslide. Black line corresponds to median velocity for
the 51 landslides. Blue and dashed red line show PDSI and highlight wet and dry conditions, respectively. Shaded gray
box highlights WY2017. Precipitation data from Parameter-elevation Regressions on Independent Slopes Model and
PDSI data from the WestWide Drought Tracker. WY = water year.

in velocity for the smaller landslides and less than a twofold increase in velocity for the largest landslides.

Interestingly, the two landslides that weremoving slower duringWY2017were two of the smaller landslides

whose velocities were ∼1.1 times slower. We also found no relation between the landslide velocity ratio,

mean velocity, and topographic slope (Figure 9). In addition to the size-dependent velocity response, we also

explored how the spatial gradients in rainfall impacted the landslide velocity by examining the response

from north to south and west to east (Figure S6). We found no clear relation between the spatial gradients

in rainfall and the velocity ratio.

Figure 9. Landslide velocity as a function of size and topographic slope. (a) Velocity ratio as a function of landslide
area and estimated thickness from area-thickness scaling relationships. Dashed vertical lines highlight constant
thickness values. (b) Velocity ratio as a function of average landslide width. (c) Velocity ratio as a function of average
slope angle. (d) Average velocity over the full study period as a function average slope angle. Velocity ratio is calculated
over a similar time period for WY2017 (March–October 2017) and WY2016 (April–October 2016). Dashed horizontal
lines in (a)–(c) show velocity ratio equal to one. WY = water year.
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5. Discussion

Our data reveal that large changes in the activity of slow-moving landslides occurred over a short time

period in response to large changes in annual precipitation. We found that 312 landslides were moving due

to the extreme rainfall of WY2017, compared to only 119 during the last drought year of WY2016. With a

return to low rainfall amounts duringWY2018, only 146 landslides remained inmotion.We emphasize again

that due to the irregular time sampling of the UAVSAR data, we likely underestimated the total number of

active landslides in WY2016 and WY2018. Nonetheless, the role of antecedent rainfall is apparent in the

temporal differences in landslide activity. We found that more landslides were moving in WY2018 than in

WY2016, despite significantly lower rainfall in WY2018. This suggests that the above-average rainfall in

WY2016 and WY2017 influenced the behavior of landslides in WY2018, while the period of below-average

rainfall between WY2012 and WY2015 influenced the behavior of landslides in WY2016.

The majority of the landslides that were triggered or reactivated in WY2017 was smaller than the landslides

that remained active between WY2016 and WY2018 (Figure 5). Using area-thickness scaling relations and

measurements from DEMs, we found that landslides < 1 × 105 m2 and <15 m thick were most sensitive

to the precipitation changes (Figure 9). These observations suggest that larger and thicker landslides are

less sensitive (but still responsive) to rainfall over monthly or annual timescales and also shows that there

is still sufficient water (i.e., pore-water pressure) available to drive slow motion of many landslides even

during dry conditions, while smaller and thinner landslides experience larger pore pressure swings that can

both trigger motion and result in larger changes in velocity (Figures 9 and S7). These kinematic changes are

consistent with changes in pore-water pressure recorded by ground-based measurements (Figure S7) and

predicted by models, which show that stronger and more rapid pore-water pressure changes occur near the

ground surface and diffuse as they propagate vertically downward (e.g., Berti & Simoni, 2012; Iverson, 2000;

Schulz, Smith, Wang, Jiang, Deuell, et al., 2018). Furthermore, our findings agree with Bennett, Roering,

et al. (2016) who showed that landslides with estimated thicknesses <15 m had the most variable velocities

in the face of the recent historic drought.

By examining the time series behavior of 51 landslides, we found that each landslide displayed seasonal

kinematic changes with a large increase in displacement and velocity during the extreme rainfall ofWY2017

(Figure 7). Our findings agree with previous studies that have shown that landslides in the California Coast

Ranges can display large displacements in certain years (Iverson & Major, 1987; Mackey & Roering, 2011;

Nereson & Finnegan, 2018). For example, Iverson and Major (1987) found that the Minor Creek landslide,

northern California, displayed a large increase in displacement during WY1984 due to an unusually rainy

summer in WY1983. In fact, WY1983 was the wettest year on record in California. Similarly, Nereson and

Finnegan (2018) showed that the Oakridge landslide in central California, which also occurs in the Fran-

ciscan mélange, displayed large variations in annual displacement between 1937 and 2017 due to changes

in climate-driven surface moisture.

Although these landslides displayed large increases in velocity, none of them (to our knowledge) contin-

ued to accelerate toward runaway instability and catastrophic failure, which suggests that these landslides

might have a stabilizing mechanism that allows them to display slow sliding for long time periods. The two

most commonmechanisms invoked to explain this behavior are shear-induced dilatancy (e.g., Iverson, 2005;

Schulz,McKenna, et al., 2009), which can cause a reduction in pore-water pressure, and shear-displacement

and/or rate-strengthening friction (e.g., Handwerger et al., 2016; Keefer & Johnson, 1983; Scaringi et al.,

2018; Tika et al., 1996; Wang et al., 2010), both of which act to increase the frictional resistance during slid-

ing. It is also possible that both of these mechanisms work in concert to inhibit runaway acceleration or

that other strengthening mechanisms are important. For example, Schulz, Smith, Wang, Jiang, and Roering

(2018) and Schulz, Smith,Wang, Jiang, Deuell, et al. (2018) performed advanced laboratory testing onmate-

rial from the Two Towers landslide (located in our field area; see Figure 4) and found that shear resistance

was invariant with shear-displacement rate (although tested rates were 2 orders of magnitude or more faster

than observed landslides speed) and that there was no shear-induced dilatancy, which also was suggested by

in situ monitoring results. However, they found that the soil swelling pressure exerted along the landslide's

lateral shear zones increased landslide stability by as much as 6%, which contributes to reducing the poten-

tial for catastrophic failure. In addition, we hypothesize that landslide drainage networks are important

for reducing pore-water pressures and preventing runaway acceleration (e.g., Coe et al., 2003; Handwerger
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et al., 2013; Krzeminska et al., 2013; Van der Spek et al., 2013). These landslides tend to have well-developed

surface and possibly subsurface, drainage networks that can efficiently transfer water to the river network

and reduce pore-fluid pressures such that the landslide groundwater system typically maintains a narrow

range of pore-water pressures that are sufficient to drive motion but is also susceptible to changes during

years of extreme precipitation or drought. Given only our remote sensing data, we are unable to determine

the relevant processes stabilizing the landslides that we studied. We highlight the need for further field

and laboratory-based measurements and models, such as those utilized by Schulz, Smith, Wang, Jiang, and

Roering (2018) and Schulz, Smith, Wang, Jiang, Deuell, et al. (2018), for multiple landslides in this region

to better understand these processes.

Annual precipitation and precipitation extremes (i.e., dry-to-wet year transitions) are both predicted to

increase in California over the next century (Allen & Luptowitz, 2017; Swain et al., 2018; Zecca et al., 2018).

The rainfall seasonality in California may also become more intense, with more rainfall delivered between

December andMarch,with relatively less rainfall between September–November andMarch–May. Based on

these predicted changes in precipitation and the findings of our study, we hypothesize there may be a pref-

erential formation of smaller landslides, more frequent widespread landsliding, large changes in landslide

displacement from year-to-year, and a more frequent transition of landslides between active and dormant.

These changes in landslide activity could increase landslide hazards to humans and the built environment.

Additionally, changes in the landslide activity over yearly timescales may alter the hillslope morphology,

drainage networks, and the timing and volume of sediment delivered to rivers, which could in turn mod-

ify channel incision and hillslope evolution (e.g., Bennett, Miller, et al., 2016; Booth et al., 2013; Golly

et al., 2017; Kelsey, 1978; Korup et al., 2010; Mackey & Roering, 2011; Nereson & Finnegan, 2018; Ouimet

et al., 2007; Sklar & Dietrich, 2004; Whipple, 2004). More work is needed to better understand the inter-

actions between hillslopes and channels in areas dominated by slow-moving landslides during dry-to-wet

year transitions.

Our findings document the sensitivity of slow-moving landslides to large changes in annual precipitation.

These findings agree with numerous studies of both slow- and fast-moving landslides around the world that

have highlighted potential impacts of climate change on landslide behaviors (e.g., Crozier, 2010; Gariano &

Guzzetti, 2016). Although it is likely that increases in landslide activity will occur in regions where precipi-

tation is likely to increase due to climate change (e.g., Bovis & Jones, 1992; Jakob & Lambert, 2009; Chiang

& Chang, 2011), there are also regions where precipitation, and therefore landslide activity, is predicted to

decrease (e.g., Coe, 2012; Gariano &Guzzetti, 2016). Furthermore, regional changes in climate patternsmay

influence the style and type of landslides, such that changes in individual stormswill likely influence shallow

landslide activity, while changes in seasonal and annual precipitation will likely influence deep-seated land-

slide activity. It is therefore imperative that we improve mechanical-hydrological models that can predict

the future behavior of landslides given inputs from climate models (e.g., Chiang & Chang, 2011; Coe, 2012;

Gariano & Guzzetti, 2016; Nereson & Finnegan, 2018). Thus, documenting the past and present landslide

response to changes in precipitation that may mimic future climate scenarios in different regions around

the world is essential to provide insight into future landslide behaviors, hazards, and landscape evolution.

6. Conclusions

Weused a novel data set acquired by theNASA/JPLUAVSARairborne SAR interferometry system to identify

and monitor hundreds of slow-moving landslides in the Eel River catchment, northern California, between

April 2016 and February 2018. During this time period, there were large changes in annual precipitation,

including the 2017 rainy season, which was the second wettest year on record in California and which fol-

lowed a multiyear period of extreme drought. We quantified changes in landslide activity and kinematics

over the ∼2-year study period and determined that the extreme rainfall of 2017 triggered a widespread but

short-lived increase in the activity and velocity of the landslides. These kinematic changeswere the strongest

in the smallest landslides and highlight the sensitivity of these landslides to large changes in precipitation.

Based on future predictions of climate change and precipitation occurring over the next century, we expect

that there will be large changes in landslide behavior that may increase landslide hazards to humans and

cause sediment delivery to streams to be more extreme and episodic. We therefore highlight the need for

observations and models that can help predict such precipitation-induced changes to landslide activity.
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