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Abstract

Human leukocyte antigen (HLA) genes confer strong risk for autoimmune diseases on a log-
additive scale. Here we speculated that differences in autoantigen binding repertoires between a 
heterozygote’s two expressed HLA variants may result in additional non-additive risk effects. We 
tested non-additive disease contributions of classical HLA alleles in patients and matched controls 
for five common autoimmune diseases: rheumatoid arthritis (RA, Ncases=5,337), type 1 diabetes 
(T1D, Ncases=5,567), psoriasis vulgaris (Ncases=3,089), idiopathic achalasia (Ncases=727), and 
celiac disease (Ncases=11,115). In four out of five diseases, we observed highly significant non-
additive dominance effects (RA: P=2.5×1012; T1D: P=2.4×10−10; psoriasis: P=5.9×10−6; celiac 
disease: P=1.2×10−87). In three of these diseases, the dominance effects were explained by 
interactions between specific classical HLA alleles (RA: P=1.8×10−3; T1D: P=8.6×1027; celiac 
disease: P=6.0×10−100). These interactions generally increased disease risk and explained 
moderate but significant fractions of phenotypic variance (RA: 1.4%, T1D: 4.0%, and celiac 
disease: 4.1%, beyond a simple additive model).
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Genetic variation in HLA genes, within the major histocompatibility complex (MHC) locus, 
is associated with many autoimmune diseases1–3. For most of these diseases, the MHC 
explains more disease risk than any other locus. Previous research has shown non-additive 
effects (disease contributions beyond the cumulative effect of individual alleles) at classical 
MHC genes in resistance to infectious diseases4–7, and researchers have proposed that non-
additive effects may also occur in autoimmunity8–12. Indeed, some studies have reported 
synergistic interactions between specific HLA haplotypes13–15, but non-additive effects and 
interactions have not been systematically characterized in large population cohorts and 
across multiple diseases.

In an additive model, disease effects of two alleles are independent and combine linearly (on 
the log-odds scale); i.e. the presence of the first and second copy of an allele multiplicatively 
increases risk by the same amount. Non-additive effects describe deviations from this linear 
relationship and may arise from interactions between two alleles, or from intrinsic effects of 
individual alleles (e.g. haploinsufficiency)16,17. Since both alleles at a given HLA locus are 
expressed, heterozygous genotypes might confer expanded antigen-binding properties and 
elevated autoantigen presentation, depending on the degree of complementarity between the 
two alleles18.

In order to test for the presence of non-additive effects, we used SNP2HLA19 to impute 
HLA alleles from dense ImmunoChip-based SNP genotype data in five autoimmune 
diseases: seropositive rheumatoid arthritis (RA, Ncases/controls=5,337/11,049)20,21, type 1 
diabetes (T1D, N=5,567/6,265)22, psoriasis vulgaris (N=3,089/5,964)23, idiopathic achalasia 
(N=727/2,911)24, and celiac disease (N=11,115/9,042)25 (Supplementary Table 1). We 
demonstrated accurate HLA imputation elsewhere19 using the ImmunoChip platform and 
the same reference panel (T1D Genetics Consortium, N=5,225)26.

For each of these five diseases, we focused our analyses on the HLA loci with the strongest 
effects (RA: HLA-DRB120,21, T1D: HLA-DRB1-DQA1-DQB122, psoriasis: HLA-C23, 
achalasia: HLA-DQA1-DQB124, celiac disease: HLA-DQA1-DQB125). We focused on four-
digit classical alleles, which distinguish HLA gene variants at the amino acid sequence 
level27. Since T1D, achalasia, and celiac disease have independent associations to multiple, 
linked HLA genes22,24,25, we combined phased four-digit classical alleles from separate 
genes into multi-locus haplotypes for these diseases. For our primary test, we restricted our 
analysis to common alleles at each locus (reference panel allele frequency > 5%; 
Supplementary Table 2) and to individuals carrying only these common alleles (“common 
allele dataset”, Supplementary Table 1). This approach ensured the highest imputation 
accuracy and increased the statistical power to estimate the true additive component of each 
haplotype by providing a sufficient number of homozygote events. As a secondary test, we 
analyzed both rare and common haplotypes that were present in at least 10 homozygous 
individuals (“full dataset”, Supplementary Table 1).
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To assess for non-additive associations, we first examined disease risk of homozygotes and 
heterozygotes for each haplotype. Under additivity, for a given allele, the log-odds of 
heterozygotes compared to non-carriers of the allele should be half that of homozygotes. 
However, we found that many haplotypes deviated from this linear relationship (Fig. 1a, 
Supplementary Table 3). We also observed an excess of heterozygous genotypes deviating 
from Hardy-Weinberg equilibrium in cases (Fig. 1b, Supplementary Table 4), but not 
controls (Fig. 1c, Supplementary Table 4). In contrast, 43 RA-associated non-MHC SNPs28 

followed an additive relationship perfectly (Fig. 1d, Supplementary Table 5) and also 
followed Hardy-Weinberg equilibrium (Fig. 1e, Supplementary Table 6). We note that the 
lower effect sizes of non-MHC variants may limit our ability to detect non-additive effects.

To test for the general presence of non-additive effects, we constructed one global logistic 
regression model for each disease that included additive and dominance terms for all 
common haplotypes simultaneously (Fig. 2a). The additive term captures the dosage effect 
(zero, one, or two copies) of a given haplotype, while the dominance term captures any 
deviations from the additive scenario29. Strikingly, for four of the five diseases, the 
inclusion of dominance terms improved the fit of the models (RA: Pdf=5=2.5×10−12; T1D: 
Pdf=5=2.4×10−10, psoriasis: Pdf=7=5.9×10−6; celiac disease: Pdf=6=1.2×10−87). In the 
achalasia dataset we observed a non-significant trend (Pdf=5=0.066); power may have been 
limited due to the relatively small sample size of this dataset. These results were consistent 
in the full datasets, including a larger set of common and rare alleles (Supplementary Table 
7), and also when using regression on a probit scale30 instead of logistic regression 
(Supplementary Table 8). In a purely additive model, common HLA haplotypes explained 
8.1% of phenotypic variance for RA, 13.3% for T1D, 5.9% for psoriasis, and 21.1% for 
celiac disease. The addition of dominance terms explained an additional 0.9%, 1.1%, 0.9%, 
and 1.9% of phenotypic variance, respectively (Fig. 2b). These values are comparable to the 
effect of the largest known non-MHC RA risk effect; the rs2476601 PTPN22 risk allele 
explains 0.8% of the total phenotypic variance in RA31.

When we examined non-additive effects of individual HLA haplotypes separately, we 
observed that most haplotypes showed significant non-additive contributions in RA, T1D, 
and celiac disease (Table 1, Supplementary Table 3). In contrast, of 7 common haplotypes 
tested in psoriasis, only HLA-C*06:02 showed a non-additive effect. Across all four 
diseases, 14 of 23 HLA haplotypes showed non-additivity, and 12 had a positive dominance 
component; thus, for most alleles, heterozygosity confers a higher risk of autoimmunity than 
expected from homozygote disease risk (Fig. 2c, Supplementary Table 9).

We considered that these non-additive effects might originate from imputation artifacts. To 
ensure high quality imputation, we only used samples genotyped on ImmunoChip, 
containing dense SNP coverage (>5,000 SNPs within the MHC)19. Additionally, our 
primary analyses focused on common alleles that were well represented in the reference 
panel and had high imputation confidence (INFO) scores32 (>0.973, median 1.003, 
Supplementary Table 2). Also, significance of non-additive effects were unrelated to INFO 
scores (Kendall’s tau=−0.08, P=0.56; Supplementary Fig. 1, Supplementary Table 10). 
Finally, we conducted a stringent permutation analysis where we reassigned case-control 
status, based on an additive risk model for HLA haplotypes; this approach conserved the 
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additive effect of each haplotype (Supplementary Fig. 2) and simultaneously maintained any 
imputation inaccuracies within the dataset. In celiac disease, psoriasis, T1D, and RA, the 
significance of non-additive effects in 10,000 trials never exceeded that of the actual data 
(Supplementary Fig. 3). These results argue that our findings cannot be explained by 
imputation artifacts.

In RA, T1D, and achalasia, the strongest additive disease associations point to individual 
amino acids (rather than four-digit classical alleles)20,22,24 and we found indeed non-
additive disease associations also at the amino acid level (Supplementary Fig. 4, 
Supplementary Table 11). We did observe residual non-additive haplotype effects after 
adjusting for the amino acid residue with the most significant non-additive effect 
(Supplementary Note 1). In most cases we did not have sufficient power to differentiate non-
additive interaction effects of key amino acid positions from those of classical alleles.

We then investigated whether interactions between specific haplotypes might explain the 
observed dominance effects. If disease risk of a specific genotype combination of two alleles 
deviates from the disease risk expected from both alleles alone, then there is an interaction 
between the two alleles. Importantly, such interactions may give rise to apparent dominance 
effects at individual alleles. For each disease, we defined a global logistic regression model 
that simultaneously included interaction terms between all common haplotypes within a 
given locus. For three diseases (RA, T1D, and celiac disease), including additive and 
interaction terms showed a significant improvement in fit, compared to a model with 
additive and dominance terms (RA: Pdf=5=1.8×10−3, T1D: Pdf=5=8.6×10−27; celiac disease: 
Pdf=9=6.0×10−100). Hence, the observed non-additive effects for RA, T1D, and celiac 
disease are at least partially explained by interactions between HLA haplotypes. The models 
with additive and interaction terms explained 9.5%, 17.3%, and 25.2% of phenotypic 
variance for RA, T1D, and celiac disease, respectively; interactions yielded an additional 
0.5%, 2.9%, and 2.3% of phenotypic variance over a model with additive and dominance 
terms (Fig. 2b).

In contrast, psoriasis showed no evidence of interactions (Pdf=14=0.92). In order to further 
identify interactions, we imputed an additional 5,294 psoriasis cases and 10,295 controls 
genotyped on platforms other than ImmunoChip (Supplementary Table 1c). While this 
increased our sample size dramatically, we still observed no evidence of interactions 
(Pdf=14=0.87; Supplementary Table 12). The contrast between psoriasis and other diseases 
may be related to recent suggestions that the psoriasis association with HLA-C*06:02 is 
caused by variation in an enhancer element33, rather than antigenic binding properties. 
Achalasia showed no evidence for interaction effects in our primary analysis (Pdf=5=0.15), 
and only nominal evidence when testing the full dataset. All other diseases yielded 
qualitatively identical results when we tested the full datasets with both rare and common 
haplotypes (Supplementary Table 7). Again, probit regression analysis showed qualitatively 
identical results (Supplementary Table 8).

We then identified the specific HLA haplotypes contributing to interaction effects in RA, 
T1D, and celiac disease. For RA, 7 of the 10 possible interactions were significant 
(P<0.005=0.05/10), all of which increased disease risk beyond the separate additive 
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contribution of each haplotype (Fig. 3a/c). For T1D, 7 of 10 interactions were significant 
(P<0.005=0.05/10), with five increasing risk and two reducing risk (Supplementary Fig. 5); 
these interactions are detailed elsewhere22. For celiac disease, among the 15 possible 
haplotype pairs, there were four significant pairwise interactions (P<0.003=0.05/15), each 
increasing risk (Fig. 3b/d). The identified interactions refined our previous findings of non-
additive disease contributions. For instance, in celiac disease, DQA1*05:01-DQB1*02:01 

had a significant non-additive component (P=4.7×1019) with d>0, indicating an elevated 
disease risk in heterozygotes. This elevated disease risk is explained by the interaction 
model, in which we observed significant risk-increasing interactions between DQA1*05:01-

DQB1*02:01 and three other alleles (Fig. 3d).

Our results build on previous studies that proposed specific non-additive associations in 
different autoimmune diseases. While previous studies of heterozygote risk in RA 
highlighted haplotypes with a common 'shared epitope' (SE) at positions DRβ1#70-7434,35, 
we discovered significant interactions between SE haplotypes and non-SE haplotypes. There 
was no evidence for a previously reported interaction between DRB1*04:01 and 
DRB1*04:0436 (Supplementary Note 2, Supplementary Table 13). Some specific 
interactions in T1D have been described previously, such as an elevated disease risk for 
HLA-DRB1*03:01-DQB1*02:01/DRB1*04:01-DQB1*03:02 genotypes15. Our recent 
comprehensive investigation of T1D also confirmed this interaction and revealed additional 
interactions with both increasing and decreasing risk effects22.

In celiac disease, the DQ2.5 haplotype, composed of HLA-DQA1*05:01 and HLA-
DQB1*02:01, is the primary contributor to disease susceptibility37,38. Here, we confirmed 
that DQA1*05:01-DQB1*02:01 has the strongest association in an additive model 
(P=4.3×10−675), and we also found significant interactions between DQA1*05:01-

DQB1*02:01 and other haplotypes. Some of these combinations contained DQA1*05:01 

and DQB1*02:01 in trans, but we also observed haplotype combinations that have not 
previously been implicated (e.g. DQA1*05:01-DQB1*02:01/DQA1*01:01-DQB1*05:01; 
interaction OR=3.74, P=1.9×10−10). Interestingly, the interaction with the strongest risk 
effect in our data (DQA1*02:01-DQB1*02:02/DQA1*05:01-DQB1*03:01; interaction 
OR=16.85, P=7.0×10−74), identified in previous studies39, contained the protective 
haplotype DQ7 (coded by DQA1*05:01-DQB1*03:01; homozygote OR=0.03), highlighting 
the complexity of interactions in the HLA.

Some previously reported interacting variants on the same haplotype have been disputed for 
only tagging hidden causal variants40. However, here we show interactions between 
homologous haplotypes, which are unaffected by any linked variation. Interestingly, there 
was little overlap between diseases in the interacting pairs of haplotypes, suggesting that the 
precise interactions are disease specific. These interactions may depend on the exact 
autoantigens driving disease susceptibility2. Such a scenario would be consistent with 
previous observations, e.g. in RA, where immune reactions against different citrullinated 
autoantigens seem to be restricted by specific HLA-DR variants41,42. Additional complexity 
may arise from parent-of-origin effects in T1D (and potentially other diseases)43,44,45. One 
possible mechanistic explanation for the interactions between HLA class II haplotypes is the 
formation of αβ-heterodimers in trans. In celiac disease, where the major disease antigen is 
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known, expression of the gliadin peptide-presenting HLA-DQ2.5 molecule is the primary 
determinant of disease risk. Genotypes carrying HLA-DQA1*05:01 and HLA-DQB1*02:01 

in trans can form this heterodimer, explaining the observed interaction effect between these 
haplotypes38. Differential intrinsic stability of certain trans-heterodimers may also affect 
disease risk, as suggested for HLA-DQ in T1D46. Further independent replication, for 
instance in other ethnicities, and experimental investigations of causal mechanisms are 
needed to generalize the findings and precisely understand how interacting alleles confer 
genetic predisposition for these complex diseases.

METHODS

Samples

We analyzed genotype data from previously published studies of HLA association in anti-
citrullinated protein antibody positive (ACPA+) rheumatoid arthritis (RA, N = 16,386)21, 
type 1 diabetes (T1D, N = 11,832)22, psoriasis vulgaris (N = 9,053)23, idiopathic achalasia 
(N = 3,638)24, and celiac disease (N = 20,157)25. Each dataset contained samples from 
multiple case-control GWAS cohorts, and all individuals had European ancestry 
(Supplementary Table 1). Each genotype dataset has undergone stringent quality control for 
the original studies above; here only post-QC data was used. Similarly, case-control 
matching was done as in the original studies. Generally, cases and controls were from the 
same patient collection and matched for country or region of origin. In most (but not all) of 
the studies, principal components were additionally used to adjust for any residual 
stratification. For data availability and specific quality control see Supplementary Table 14. 
All samples were collected from individuals after consent.

HLA genotypes and imputation quality

The SNP genotype data for the MHC region, obtained from previous disease-specific studies 
(see above), was generated by the Illumina ImmunoChip platform47. Following previous 
studies, we defined the MHC region as the region on chromosome 6 from 29Mb to 34Mb. 
We imputed four-digit classical HLA alleles with SNP2HLA19, using dense SNP data across 
the MHC region for each disease dataset (number of SNPs used for imputation for RA: 
4,499; for T1D: 4,604; psoriasis: 4,030; for achalasia: 3,773; and for celiac disease: 3,249) 
and a reference panel of 5,225 individuals of European ancestry from the Type 1 Diabetes 
Genetics Consortium (T1DGC)26. Cases and controls were imputed together, to ensure 
consistent imputation quality across all samples. We have separately demonstrated high 
imputation accuracy using genotype data from the ImmunoChip platform19. Furthermore we 
found no evidence for a potential bias in imputation accuracy due to using a disease-specific 
reference panel (Supplementary Table 15).

For each allele, the INFO score was calculated from the ratio of the observed variance in 
dosage to the expected variance under Hardy-Weinberg equilibrium32:

(Equation 1)
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where x is the imputed dosage and p is the frequency of the allele. An INFO score close to 0 
indicates poor imputation quality, while a score closer to 1 indicates higher quality; a value 
greater than 1 is also possible. Due to the presence of non-additive effects that inflated the 
disease risk in heterozygotes, the allele distribution in disease cases deviated from Hardy-
Weinberg equilibrium. Therefore, we calculated INFO scores using the variance and allele 
frequency in controls only (Supplementary Table 2). However, because the imputation 
algorithm does not take case/control status into account, we expected that imputation quality 
should be similar in cases and controls. For RA, we also calculated INFO scores within each 
cohort to test whether lower INFO scores (i.e. lower quality of imputed genotypes) were 
associated with a higher likelihood to detect non-additive effects, which could suggest that 
non-additive effects are an artifact of imputation errors.

Selection of genes for analysis

For each disease, we selected the HLA genes that were most significantly associated with 
disease risk in previous studies (RA: HLA-DRB121; T1D: HLA-DRB1, HLA-DQA1, HLA-

DQB122; psoriasis: HLA-C23; achalasia: HLA-DQA1, HLA-DQB124; celiac disease: HLA-

DQA1, HLA-DQB125). For diseases in which more than one HLA gene was implicated to 
confer major independent risk contribution, we defined haplotypes according to unique 
combinations of four-digit classical alleles at each relevant gene. We used phased best guess 
genotypes from SNP2HLA to ensure that each haplotype contained classical alleles on the 
same chromosome.

For RA and psoriasis, we repeated the analysis using imputed dosages (which range on a 
continuous scale from 0–2) rather than best guess genotypes (which are restricted to the 
integer values 0, 1, or 2; see Supplementary Table 16). Because imputed dosages do not 
contain phasing information, we did not perform this analysis for the diseases involving 
multiple genes.

Selection of alleles for analysis

We performed all association tests with two datasets: the common allele dataset and the full 
dataset. In the common allele dataset, we restricted our analysis to classical alleles with a 
frequency greater than or equal to 5% in the T1DGC reference panel, or haplotypes 
comprising these classical alleles (RA: m = 5; T1D: m = 5; psoriasis: m = 7; achalasia: m = 
5; celiac disease: m = 6; where m indicates the number of included HLA alleles/haplotypes). 
This cutoff ensured a very high imputation quality, and INFO scores for all alleles in the 
common allele subset exceeded 0.97 (Supplementary Table 2). We also ensured that all 
haplotypes in the common subset had at least 10 homozygous individuals. (If fewer than 10 
homozygotes are present, the additive and non-additive terms are statistically 
indistinguishable.) In the full dataset, we included all m variants (four-digit classical alleles 
or haplotypes) with at least 10 homozygous individuals (RA: m = 11; T1D: m = 11; 
psoriasis: m = 13; achalasia: m = 9; celiac disease: m = 10).

We ensured complete data in both datasets by excluding all individuals who lacked exactly 
two best-guess alleles at a given locus. For analyses that used imputed dosages, we excluded 
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all individuals whose total dosage across the relevant alleles was less than 1.95 or greater 
than 2.05.

Statistical framework for association testing

To analyze the effects of HLA haplotypes on disease risk, we used a logistic regression 
framework (probit regressions yielded qualitatively identical results, Supplementary Table 
4). We began by presenting a baseline model, consistent with the models used to fine-map 
HLA effects in previous recent publications for RA21, T1D22, psoriasis23, achalasia24, and 
celiac disease25. These models assume a purely additive contribution from each haplotype. 
To control for cohort-specific effects and population stratification, we included an indicator 
variable for each cohort, the first L principal components (for RA, psoriasis, and achalasia), 
and a gender term (for T1D and celiac disease) as covariates. This resulted in the following 
logistic regression model:

(Equation 2)

where θ is the logistic regression intercept, aj is the additive effect of allele j, and xi,j is the 
allelic dosage (using best guess genotype or imputed dosage) of allele j in individual i. For a 
multi-allelic locus with m possible alleles, we included m − 1 a parameters, and we set the 
final a parameter to 0 to denote the reference allele. We arbitrarily selected the most 
common allele in the controls as the reference allele. The parameter δi,k is a binary indicator 
variable that equals 1 if and only if individual i is in cohort k, and λk is the effect for the kth 

cohort. Among a total of K cohorts, we arbitrarily selected the largest cohort as the reference 
cohort and set its λ parameter to 0.

For RA, psoriasis, and achalasia, we also included the first L principal components, where 
pi,k,l is the value of principal component l in cohort k for individual i, and πk,l is the 
corresponding effect size. To be consistent with HLA fine mapping studies on other 
diseases, we used L = 10 for RA21 and psoriasis23, L = 5 for achalasia24, and no principal 
components for T1D22 or for celiac disease25.

We included an additional covariate to account for gender differences in T1D and celiac 
disease, once again to conform to previous HLA fine-mapping analyses22,25; however, the 
gender covariate had no significant effect on our results (Supplementary Table 17). Here, γ 

is the effect of gender, and gi is a binary indicator variable that equals 1 if and only if 
individual i is female. We did not include the gi parameter for RA, psoriasis, or achalasia, 
following refs.21,23, and24, respectively.

We tested significance in fit for each model by calculating the change in deviance (defined 
as −2 × the difference in log likelihood) from the original model to the revised model. This 
value follows a χ2 distribution with n degrees of freedom, where n is the number of new 
parameters introduced in the revised model. For the additive model, n is 1 less than the total 
number of tested haplotypes (to account for a reference haplotype).
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Analysis of dominance and interaction effects

For each disease, we tested for non-additive effects by including a dominance term dj for 
each represented haplotype in the relevant dataset (the common allele subset or the full 
dataset):

(Equation 

3)

where dj represents the dominance effect of allele j, and δxi,j denotes that individual i is 
heterozygous for haplotype j. For analyses involving best guess genotypes, δxi,j if and only if 
xi,j = 1. For dosage-based analyses, we used the formula δxi,j = 1 − abs(1 − xi,j). We assessed 
the change in deviance between the additive model and the dominance model, which follows 
a χ2 distribution with m degrees of freedom (1 for each haplotype). To determine the relative 
non-additive effect of a specific haplotype, we constructed a separate model for each 
haplotype by repeating the model in equation 3 for a single value of j (1 degree of freedom). 
For the single-haplotype models, we used a significance threshold of P < 0.05/m to correct 
for multiple tests.

We also constructed an interaction model, which contains an additive term for each 
haplotype and an interaction term between each pair of haplotypes:

(Equation 

4)

where ϕj,h is effect size of the interaction between alleles j and h. We did not include 
dominance terms in this model, due to partial redundancy between dominance and 
interaction terms. The interaction model contains an additional m(m − 1)/2 degrees of 
freedom (1 for each pairwise interaction), compared to the additive model. We assessed the 
change in deviance between the dominance model and the interaction model, which follows 
a χ2 distribution with m(m − 1)/2 − m degrees of freedom. To determine the relative 
significance of individual interaction terms, we compared the P-values associated with each 
ϕ parameter, and we used a significance threshold of P < 0.05 / [m (m − 1)/2].

To compare the disease risk in homozygotes and heterozygotes, we constructed additive 
models after excluding all homozygous individuals (to estimate the heterozygous effect size) 
or excluding all heterozygous individuals (to estimate the homozygous effect size). This 
separation of genotype groups was necessary to estimate the true additive component for 
each HLA haplotype’s disease risk (from homozygotes only) and subsequently allow for the 
calculation of the dominance component (based on heterozygotes only). For dosage-based 
analyses, we defined heterozygous individuals as those with a dosage greater than 0.95 and 
less than or equal to 1.05, while homozygous individuals were those with a dosage greater 
than 1.05.

Calculation of phenotypic variance explained

We calculated the proportion of phenotypic variance explained by a given locus using the 
liability threshold model48,49. We assumed that disease risk is the consequence of an 
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underlying liability score. Each individual with a score above a pre-specified threshold gets 
disease50. Each genotype has the same threshold, but the distribution of liability can differ 
among genotypes. The variance between the genotype-specific liability functions is a 
measure of the variance explained by the locus. For a more detailed description, including 
equations, see Supplementary Note 3.

Analysis of amino acid-level non-additive effects

For RA, we also analyzed non-additive effects of individual amino acid positions within 
specific HLA genes. We used imputed amino acid genotypes at positions 13, 71, and 74 of 
HLA-DRB1, and we analyzed all residues at these positions with a frequency greater than or 
equal to 5% in the T1DGC reference panel. We used the previously described allele-level 
models (Equations 2 and 3) to assess the non-additive effects of amino acid variants.

Because residues at amino acid positions within a given locus are in strong linkage 
disequilibrium, we used a stepwise conditioning approach to test the effects at successive 
positions on RA risk, following refs.20,51. We analyzed positions in the order of significance 
of additive contribution to disease risk. First, we analyzed non-additive effects in DRβ1#13. 
Then, we analyzed DRβ1#71 while conditioning on DRβ1#13, and we analyzed DRβ1#74 
while conditioning on DRβ1#13 and DRβ1#71. To condition on a specific amino acid 
position, we included all possible amino acid variants at that position as covariates, but we 
excluded any variant that had strong correlations to other variants in the dataset (R2 > 
0.97)23.

Permutation of imputed HLA genotypes

To verify that the observed non-additive effects were not a subtle artifact of imputation 
inaccuracies, we permuted SNP-imputed HLA genotypes across cases and controls, based 
on the case probability predicted by a purely additive model (Equation 2). This approach 
conserves allele frequencies (which confer additive disease associations) within cases and 
controls and also conserves individual genotypes. However, it randomizes the distribution of 
homozygote and heterozygote genotypes among cases and controls. We performed 10,000 
permutations, and for each permutation we recorded the deviance of a non-additive model 
with dominance terms for all relevant HLA haplotypes (Equation 3). To validate the 
permuted cohorts, we also compared the distribution of additive effects for each relevant 
HLA haplotype with the observed values in the actual dataset (Supplementary Fig. 2).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Disease associations of HLA and non-HLA variants
(a) Disease associations of HLA haplotypes with rheumatoid arthritis (RA), type 1 diabetes 
(T1D), psoriasis vulgaris (PsV), idiopathic achalasia (Ach), and celiac disease (CeD). For 
each common haplotype, the odds ratio (OR) for heterozygotes (vs. non-carriers) is plotted 
against the OR for homozygotes (vs. non-carriers). The dashed line represents a purely log-
additive relationship, in which heterozygotes have exactly half the risk of homozygotes (on 
a log-odds scale). Data points above the dashed line represent haplotypes with a positive 
dominance component, and below the line haplotypes with a negative dominance 

component. Error bars represent 95% confidence intervals. (b,c) De Finetti diagram of the 
proportion of heterozygotes in relation to the frequency of each HLA haplotype (grouped 

across all diseases), shown separately for (b) cases and (c) controls. The solid line represents 

the expected proportion of heterozygotes under Hardy-Weinberg-Equilibrium. (d) Disease 
association of 43 known genome-wide RA-associated SNPs located outside the MHC 

region, using the same plotting scheme as for panel a. No single SNP shows a significant 

deviation from the dashed line (representing a purely additive disease contribution). (e) De 

Finetti diagram of heterozygote frequency for the same 43 non-MHC SNPs as in panel d, 
given separately for controls and cases.

Lenz et al. Page 15

Nat Genet. Author manuscript; available in PMC 2016 March 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 2. Non-additive contribution of the HLA to autoimmune disease risk
(a) Schematic overview of possible non-additive scenarios. The log-odds for heterozygote 
genotypes can be divided into an additive effect a and a dominance component d, which 
represents the departure from additivity. Depending on the signs of a and d, there are four 
possible scenarios, represented by red lines. Dashed black lines represent the expected log-
odds under a purely additive model (d = 0). As an example, the values of a and d are 

indicated for the solid red line (risk variant with positive dominance component). (b) 
Phenotypic variance explained by additive, dominant, and interaction effects of HLA 
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haplotypes, respectively, for each disease with a significant non-additive HLA contribution: 
rheumatoid arthritis (RA), type 1 diabetes (T1D), psoriasis vulgaris (PsV), celiac disease 

(CeD). (c) For each common HLA haplotype with significant non-additive effect in RA, 
T1D, PsV, and CeD, we calculated the additive (blue bars) and dominance (red bars) 
components of the log-odds for heterozygotes. The dashed line indicates the median of the 
dominance components depicted in the figure. Error bars represent 95% confidence 
intervals.
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Figure 3. Interaction effects among HLA haplotypes
Pairs of common haplotypes with significant interaction effects (beyond the combined 

additive effect) are shown. For (a) rheumatoid arthritis (HLA-DRB1) and (b) celiac disease 
(HLA-DQA1-DQB1) we ran a global regression model that included additive terms for each 
haplotype and interaction terms between each pair of haplotypes. The fold change in odds 
ratio (OR) due to the inclusion of interaction effects is displayed for each haplotype pair, 
and the P-value associated with each interaction OR is shown in parentheses. Additive ORs 
are also displayed for each haplotype, shaded in light gray. The total OR of a haplotype pair 
is the product of two haplotypic additive ORs and one interaction OR. “Ref” indicates the 
reference haplotype for each regression model. Bolded values indicate interactions that are 
significant after multiple test correction (P < 0.05/10 = 0.005 for rheumatoid arthritis, P < 

0.05/15 = 0.003 for celiac disease). Significant interactions are visualized for (c) HLA-DRB1 

(rheumatoid arthritis) and (d) HLA-DQA1-DQB1 (celiac disease). Outer node segments 
represent haplotypes with the color indicating their additive disease contribution, while 
internal arches represent significant interaction effects. For both nodes and arches, red color 
indicates disease risk and blue indicates protection, with effect sizes following the scale in 

panel c. The effect sizes of the interactions are also represented by the width of the arches.
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