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Abstract

Background: Recent evidence suggests that RNA interaction can regulate the activity and localization of

chromatin-associated proteins. However, it is unknown if these observations are specialized instances for a few

key RNAs and chromatin factors in specific contexts, or a general mechanism underlying the establishment of

chromatin state and regulation of gene expression.

Results: Here, we perform formaldehyde RNA immunoprecipitation (fRIP-Seq) to survey the RNA associated

with a panel of 24 chromatin regulators and traditional RNA binding proteins. For each protein that

reproducibly bound measurable quantities of bulk RNA (90 % of the panel), we detect enrichment for

hundreds to thousands of both noncoding and mRNA transcripts.

Conclusion: For each protein, we find that the enriched sets of RNAs share distinct biochemical, functional,

and chromatin properties. Thus, these data provide evidence for widespread specific and relevant RNA

association across diverse classes of chromatin-modifying complexes.
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Background
Control of gene expression is mediated by transcrip-

tional and post-transcriptional mechanisms. Standard

models hold that DNA binding proteins (e.g., tran-

scription factors) respond to sequence composition

and chromatin context to promote transcription of

RNA molecules [11, 17, 58, 62]. Subsequently, a diverse

cast of RNA binding proteins (RBPs) binds the nascent

transcripts to dictate splicing, stability, localization and

translation [19, 26, 33, 35, 59, 83]. Recent advances in

systematic profiling of nucleic acid–protein interac-

tions have blurred these conventions, finding that

many DNA binding proteins associate with RNA to

modulate both transcriptional and post-transcriptional

outcomes [1, 7, 15, 28, 39, 44, 60, 71, 89]. Collectively,

these studies suggest a more intertwined regulatory net-

work than previously appreciated.

RNA’s role in chromatin formation has long been stud-

ied [2, 63]. Recent work has focused on better understand-

ing RNA interactions with chromatin proteins. It has been

suggested that a large class of newly discovered long non-

coding RNAs (lncRNAs) have functional roles in binding

and modulating the activity of proteins involved in chro-

matin modification [38, 45, 57, 70–72, 82, 84]. For ex-

ample, the lncRNA Xist plays an integral role in the

inactivation of one X chromosome in female mammalian

cells by recruiting a variety of transcriptional and epigen-

etic repressors [10, 54, 55, 65, 76, 89]. Despite the estab-

lished influence of chromatin on the gene expression

changes of development and disease, our current under-

standing of how chromatin modifications are executed by

the cell is incomplete. Though much of the machinery has

been detected and biochemical mechanisms described,

where and when specific chromatin modifiers take action

is unclear. If Xist and other examples are to be general-

ized, RNA may be an important missing component of

these incomplete models of chromatin dynamics.

Multiple groups recently mapped the full spectrum of

RNA interactions of one of Xist’s silencing partners,

PRC2 [31, 39, 89]. Complementing these data with bio-

chemical assays, they suggest that PRC2 binds numerous
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transcripts with high affinity but lower specificity than

traditionally studied RBPs [12, 13, 31]. This promiscuous

binding challenged models purporting lncRNA guidance

of PRC2 to specific loci and led to revised models based

on PRC2 sensing the presence of RNA, which modu-

lates its activity and or localization [8, 30, 31]. How

these interactions and properties extend beyond PRC2

to the many other chromatin-associated complexes re-

mains unknown.

Here, we address this question by surveying RNA

interactions of 24 proteins using the same cell type

(K562) and cross-linking conditions. Our set includes

both traditional RBPs and chromatin-associated pro-

teins (CAPs) that lack classically defined RNA binding

domains. We refined a formaldehyde cross-linking

RNA immunoprecipitation technique followed by

deep sequencing (fRIP-Seq) to perform triplicate ex-

periments that showed high concordance, exceeding

previous genome-wide surveys of individual CAPs.

We detected widespread binding of CAPs to both

lncRNAs and mRNAs, driven by a mix of gene struc-

ture and sequence composition preferences. We un-

covered many intriguing examples of RNA binding

relating to the local chromatin, suggesting that RNA

indeed plays important roles in creating and/or main-

taining chromatin states. Our data provide a powerful,

novel resource towards further dissecting the interplay

of RNA and epigenetic regulation across diverse chro-

matin regulatory complexes.

Results
fRIP-Seq: a method for capturing and identifying

RNA–CAP interactions

To survey a broad panel of RNA–CAP interactions, we

required an immunoprecipitation (IP) method optimized

for maximal RNA and protein recovery that is specific,

scalable, quantitative, reproducible, and similar to chro-

matin immunoprecipitation (ChIP) conditions known to

readily isolate CAP complexes and recover DNA–CAP

interactions. Existing cross-link IP (CLIP) methods for

measuring direct RNA–protein binding require large

amounts of input RNA, scale poorly for survey purposes

across multiple antibodies, and are challenging to assess

quantitatively [18, 40, 42, 68].

To address these specific needs, we modified existing

RNA IP (RIP) and ChIP protocols that employ formalde-

hyde cross-linking to prevent post-lysis re-association or

“mixing” of RNA-protein complexes similar to RIPiT-

Seq [34, 67–69, 77, 78]. We first observed that the per-

centage of formaldehyde used for cross-linking had dra-

matic effects on both protein and RNA recovery (Fig. S1

in Additional file 1). High formaldehyde concentrations

used for cross-linking resulted in much lower protein

and RNA recovery in comparison with lower

formaldehyde concentrations. We hypothesized that

higher formaldehyde concentrations over-cross-link pro-

teins and nucleic acids into macro-aggregates that either

are lost to the insoluble fraction or are too large for ef-

fective capture. Indeed, in testing a range of formalde-

hyde percentages using HNRNPU (a nuclear protein),

we found that tenfold lower (0.1 %) formaldehyde cross-

linking allowed for considerably more efficient recovery

of total RNA, protein, and protein-associated RNA

(Fig. S1 in Additional file 1).

After cross-linking, a 90 second sonication was suffi-

cient for nuclear lysis and chromatin shearing, but gentle

enough to lightly fragment RNAs. Following incubation

with a targeted antibody, we isolated bound proteins

with magnetic beads and purified associated RNA

(Fig. S1 in Additional file 1). For the purposes of this

study, we refer to this optimized protocol as formal-

dehyde RNA immunoprecipitation (fRIP; Fig. 1a).

To confirm that 0.1 % formaldehyde cross-linking is

sufficient to prevent post-lysis mixing, we queried the

association of HNRNPU with cytoplasmic transcripts.

We established sets of nuclear and cytoplasmic tran-

scripts as those that were significantly differentially

expressed in a comparison of RNA-Seq of nuclear lysate

and whole cell lysate. Under native conditions (no cross-

linking), HNRNPU enriches for cytoplasmically localized

transcripts, suggesting that HNRNPU interacts with

these RNAs after cell lysis (Fig. S2 in Additional file 1).

However, 0.1 % formaldehyde cross-linking abolishes this

association of cytoplasmic transcripts with HNRNPU

(Fig. S2 in Additional file 1). Thus, light cross-linking

maintains the absence of post-lysis reassociation of

RNPs.

After devising and testing the optimized protocol, we

compiled a diverse fRIP candidate list (Additional file 2).

We included traditional RBPs in our panel as positive

controls for known RNA binding preferences and a

point of comparison for RNA–CAP binding properties.

In addition, recent observations of interaction between

chromatin modification and RNA processing suggest

that many RBPs may also associate with and influence

chromatin [3]. We systematically tested candidate anti-

bodies in fRIP conditions for specific enrichment of the

target protein using western blot analysis (Fig. S3 in

Additional file 1). From the original candidate list of 36,

we were able to cleanly isolate 25 proteins (69 %). Of 25

validated antibodies, 23 reproducibly enriched bulk RNA

relative to a negative IgG control (Fig. S1 in Additional

file 1).

We performed fRIP on the 23 candidates that had

both specific IP and enrichment for RNA interactions.

In addition, we included one protein (STAG2, a cohesin

subunit) that did not appear to enrich RNA above back-

ground as a negative control for background binding of

Hendrickson et al. Genome Biology  (2016) 17:28 Page 2 of 18



H

H

OC

+0.1% 

formaldehyde

cross linking

sonication

 “tap”

+ antibody

+ protein G

beads

lysate

2 hour 

incubation

“bound”

RNA

isolation

magnetic

purification

cDNA library 

construction 

HiSeq

fRIP-SEQ

IMP1

input

LSD1

WDR5

NUP98

PCAF

CTCF

HNRNPH

ADAR

DNMT1

CHD7

CBP

RBBP5

CBX3

HUR

CHD1

HDAC1

HNRNPU

SUZ12

CHD4

EZH2

log2 fold change 

fRIP/inputREP:
A BhF DB C E

XIST

−2

2

log2 

fold change

fRIP/input

RNA recovery

binding preference

high med low

RNA both

hnrnph phf8 hnrnpuchd7 adar rbbp5hur dnmt1 chd1 ctcf hdac1 suz12 p-cbx3 cbx3cbp pabp chd4 wdr5nup98 imp1 pcaf lsd1 stag2

-3 5

ezh2

B

A C

DNA

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

500

1500

3000

Fig. 1 (See legend on next page.)

Hendrickson et al. Genome Biology  (2016) 17:28 Page 3 of 18



RNA to protein. We also included one antibody that ap-

peared to cross-react with many proteins (SETD2) as a

negative control example of a non-specific antibody. To

identify the captured RNA associated with our total

panel of 25 fRIP experiments, we performed high

throughput RNA sequencing (RNA-Seq) on the protein-

associated RNA alongside input RNA collected from

lysate.

fRIP-Seq reliably and reproducibly detects widespread

binding of CAPs to RNA

Each fRIP-Seq was conducted in biological triplicate

(different dates and lysates; STAG2, EZH2, and SETD2

were performed as duplicates) in K562 cells, allowing

a thorough assessment of the reproducibility of the

experiments. Replicates exhibited remarkable consistency,

demonstrated by hierarchical clustering of log2 fold

changes of fRIP-Seq over input RNA-Seq (Fig. 1b). For

every protein, replicates clustered together.

Further, these data recapitulated known RNA–protein

interactions. For example, we observed specific binding

of ADAR to Alu sequences, for which they have a well-

documented affinity (Fig. S4 in Additional file 1) [49].

Previous CLIP-Seq studies for five RBPs (HNRNPU,

CTCF, HUR, IMP1, and HNRNPH1) broadly agreed

with our results [22, 32, 40, 48, 61, 74, 86]. Transcripts

containing CLIP-Seq peaks showed greater evidence of

fRIP-Seq binding than those without, despite all CLIP

experiments having been performed in different cell

types (Fig. S5 in Additional file 1). SUZ12 and HNRNPU

fRIP-Seq experiments clearly detected (>3-fold) estab-

lished interactions with the lncRNA XIST (Fig. 1c) [14,

25, 53, 90]. Surprisingly, we also found that the ATPase

helicase chromatin-remodeling enzyme CHD4 bound

XIST >7-fold over input, suggesting that CHD4 is a pre-

viously unreported XIST binding protein.

We next asked how transcripts bound by fRIP-Seq are

affected upon RBP depletion. In publicly available

RNA-Seq measuring gene expression after depletion of

five of our proteins (HNRNPU, IMP1, HUR, CTCF, and

SUZ12) [13, 40], fRIP-Seq and depletion/control fold

changes were significantly correlated (Fig. S6 in

Additional file 1). Transcripts identified as bound by

fRIP-Seq by the known transcript stabilizer HUR were

significantly downregulated following HUR depletion

[40, 48, 61]. Transcripts bound by SUZ12 were similarly

affected, suggesting a previously unknown stabilizing

role.

We observed slight clustering of sequencing reads over

specific regions of RNAs, due to sonication shearing

prior to protein–antibody pull down. From this coverage

bias, we were able to broadly determine regions of pro-

tein interaction, but with lower resolution than would be

needed for direct binding site detection. For instance,

alignment coverage for PABP, a protein that binds polya-

denylated transcript tails, was highest over the 3’ end of

transcripts (Fig. S7 in Additional file 1). Alternatively, we

found that DNMT1 and SUZ12 tended to associate with

the 5’ ends of transcripts (Fig. S7 in Additional file 1).

Likewise, we found drastic and intriguing differences in

fRIP-Seq coverage over individual transcripts like XIST,

for which we observed bimodal 3’ binding of HNRNPU

and concomitant enrichment of SUZ12 at the site of

HNRNPU depletion (Fig. 1c). Lastly, we found that in

addition to binding Alu-containing transcripts, ADAR

preferentially binds to Alu elements and adjacent regions

within transcripts, even after accounting for multi-

mapping reads (Fig. S4 in Additional file 1). Collectively,

fRIP-Seq not only detects the RNA transcripts bound by

a protein but also traces the spatial geography of the

interactions.

Having ascertained the resolution and accuracy of

fRIP-Seq in measuring RNA–protein interactions, we

examined genome-wide trends across the panel of pro-

teins. We observed that CAPs interact with both coding

and noncoding RNAs across a large dynamic range of

enrichment. Further, CAPs bind a diversity of tran-

scripts; each CAP and RBP had enrichment and under-

representation for unique sets of transcripts (Fig. 1b).

Importantly, the unique binding signature for each pro-

tein was not found to be a function of the physical

amount of RNA isolated with each protein (low ~ 1–10

nanogram range, medium ~ 10–50 nanogram range,

high ~ 50+ nanograms), nor specific to its recognized sta-

tus as a dedicated RNA or DNA binding protein (Fig. 1b).

To further investigate potential biases of the fRIP-

Seq enrichment profiles, we asked how they relate to

transcript localization in the nucleus or cytoplasm.

(See figure on previous page.)

Fig. 1 fRIP-Seq reveals widespread binding of chromatin-associated proteins to mRNAs and lncRNAs. a Formaldehyde cross-linking RNA–protein

complexes enables identification of target RNAs by high-throughput sequencing. b We mapped RNA interaction partners for 24 proteins in

triplicate and performed hierarchical clustering of log2 fRIP/input fold change over the ~25,000 genes present in at least one condition. Replicates

cluster together for every protein. Binding patterns vary between proteins. Neither total RNA recovery from fRIP-Seq (orange 1–10 nanogram

range, green 10–50 nanogram range, purple 50+ nanograms) or published nucleic acid binding properties (orange DNA, green both DNA and

RNA, purple RNA) can explain the observed clustering solution. c The lncRNA Xist is significantly bound by HNRNPU and PRC2 components

SUZ12 and EZH2 in our data, validating these known interactions. fRIP-Seq coverage suggests potential binding patterns along the transcript. The

coverage scales (y-axis) have maximum coverage 500, except for CHD4 and EZH2, which have maximum coverage 1500 and 3000, respectively
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First, we categorized transcripts as enriched in the

nucleus versus cytoplasm by comparing RNA-Seq of

nuclear and whole cell lysates (Fig. S2 in Additional

file 1). We took the most enriched nuclear transcripts

and looked at their enrichment patterns across our

fRIP-Seq panel (Fig. S2 in Additional file 1). Although

enriched by some nuclear-localized proteins (HNRNPH),

we found that nuclear-localized transcripts were not pref-

erentially enriched by CAPs as a class compared with

known cytoplasmic proteins like IMP1. These data indi-

cate that the enrichment profiles in Fig. 1c are not simply

a reflection of the localization of the targeted protein.

As a final test for the possibility of unnatural inter-

action with cytoplasmic transcripts, we performed a full

fRIP-Seq experiment in nuclear lysate for the nuclear

protein DNMT1, an exemplar of many of the CAPs in

our panel. Cytoplasmic interactions were inconspicuous;

fRIP/input fold changes were highly concordant be-

tween the two conditions, clustering together among

all sequenced samples (Fig. S8 in Additional file 1).

Altogether, we established that fRIP eliminates post-

lysis mixing, nuclear transcript localization does not

bias fRIP-Seq, and nuclear fRIP-Seq produces similar

results.

SETD2 replicates sequenced as a negative control for a

non-specific antibody produced discordant binding pro-

files; the replicates did not cluster together when ana-

lyzed with the full dataset. In contrast, the two STAG2

fRIP replicates with low enrichment for bulk RNA re-

producibly strongly enriched for a small set of 22 genes

on a scale of 10–100-fold. Notably, this includes the

STAG2 protein binding to STAG2 mRNA (60-fold en-

richment). Prior studies establish a precedent for nega-

tive controls unexpectedly binding specific RNA targets

[26]. As a set, the significantly enriched transcripts are

specific to STAG2 and functionally related by the

localization of the encoded proteins to centrosomes,

centrioles, and spindles (Fig. S9 in Additional file 1).

Together, these observations suggest the validity of

this experiment and a potential role for STAG2–RNA

interactions in chromosome biology.

CAPs and RBPs enrich for RNA at various stages of

processing

In studying positional preferences along transcripts,

we also observed that fRIP alignments from different

proteins varied along a spectrum of the proportion

that aligned to introns versus exons. We hypothe-

sized that the proteins bind at different stages during

the lifecycle of the RNAs’ post-transcriptional pro-

cessing. To compare the proteins, we computed the per-

centage contribution to total gene FPKM (fragments per

kilobase per million fragments) by purely exon isoforms

versus unspliced pre-RNA isoforms (see “Materials and

methods”). In the fRIPs, exonic contribution ranged from

proteins that almost exclusively bound exons (CHD4,

IMP1, DNMT1, LSD1) to those with far more intron

binding (ADAR, HNRNPH1, HNRNPU, HUR) (Fig. 2a).

Presumably, exon binders interact with the RNA after

transcription and initial processing, while the intron

binders are present and bound during transcription. The

known roles of intron binders HNRNPU [86], HNRNPH1

[32], and HUR [48] in splicing support their co-

transcriptional presence.

The proteins also varied considerably on their prefer-

ence for binding genes present in the input at low or

high abundance, which we assessed by plotting and

regressing input FPKM against fRIP/input fold change

(Fig. 2b). We noted a relationship between the contri-

bution of intron alignments and the correlation be-

tween gene abundance and fold change across proteins

(Spearman correlation 0.93; p value < 1e-10). The intron

binders were more enriched in the fRIP for low abun-

dance genes, particularly those with <10 FPKM (Fig. 2b).

In contrast, most other proteins, and particularly the

strongest exon binders, preferred higher abundance

genes.

We hypothesized that the correlation between intron

preference and abundance preference could manifest as

a consequence of the co-transcriptional presence of the

proteins. For highly abundant genes, usually only a small

proportion of RNA for the gene exists at the site of tran-

scription at any given time. If a protein is only binding

the gene’s RNA at this locus, it is likely to be depleted

for the gene’s overall RNA. Alternatively, a much greater

proportion of a transcribed low abundance gene’s RNA

would exist at the transcription site. This could more

easily lead to enrichment of a protein that binds RNA

co-transcriptionally.

To test this hypothesis, and rule out the possibility

that the FPKM-dependence of fRIP/input fold change is

an artifact of the challenge of estimating abundance

from incompletely spliced RNAs, we examined single

exon genes. If the same dependence of fold change on

FPKM appears for single exon genes, where the chal-

lenge of quantifying intron reads is absent, we may

proceed with more confidence in the functional rele-

vance of our observations. Indeed, single exon genes

demonstrated the same influence of abundance on fRIP/

input fold change (Fig. 2c). FPKM versus fold change

correlations aligned well for all genes and single exon

genes (Spearman correlation 0.80; p value < 2.5 e-6).

CAPs bind to diverse sets of both mRNAs and lncRNAs

Substantial previous work has identified important

functional roles for lncRNAs interacting with CAPs

[20, 21, 41, 47, 55, 79, 82, 85, 88]. In order to com-

pare and contrast CAP binding of lncRNAs and

Hendrickson et al. Genome Biology  (2016) 17:28 Page 5 of 18



mRNAs, we first needed to account for the differing

abundance levels of these two gene classes. Given our

observation of a strong effect of transcript abundance

on RBP binding (Fig. 2b) and the paucity of high

abundance lncRNAs [5], we sampled a subset of

mRNAs to match the lower abundance distribution of

lncRNAs (Fig. 3a).

Low abundance mRNA versus lncRNA enrichment

spanned a wide range across the panel (Fig. 3b). Surpris-

ingly, we did not find a prevalent bias for lncRNAs over

mRNAs amongst our CAPs, but rather a slight (HDAC1,

CBX3, SUZ12, WDR5) or even strong preference for

mRNAs (LSD1, CTCF, PCAF). In fact, the highest

relative lncRNA/mRNA enrichment was observed pri-

marily among the traditional RBPs (HUR, HNRNPU,

HNRNPH1 and ADAR, but not IMP1 and PABP).

We next explored the idea that lncRNAs, as potential

“guides” for chromatin modifying complexes, might be

more selective in their associations with CAPs compared

with mRNAs. To determine the selectivity of lncRNAs

for CAPs in our panel, we calculated a CAP binding spe-

cificity score for each transcript using an entropy-based

metric that relies on Jensen-Shannon (JS) divergence

(“Materials and methods”) [5]. This specificity metric

(ranging from 0 to 1) quantifies the similarity between a

transcript’s binding pattern across our panel and a

predefined pattern that represents the extreme case in

which a transcript associates with only one CAP. By this

measure, lncRNAs were significantly more specific in

their binding preferences across the CAPs compared

with an abundance-matched sampled population of

mRNAs (Fig. S1 in Additional file 1). Thus, lncRNAs

may interact less promiscuously with CAPs compared

with mRNAs.

CAPs associate with functionally coherent sets of mRNAs

Given that CAPs interact widely with mRNAs, we next

asked whether these mRNAs belong to coherent gene

expression programs. We took advantage of the fact

that, unlike ncRNAs, mRNAs have vast collections of

functional annotations. We clustered all genes into ten

discrete groups using k-medoid clustering on their

fRIP-Seq enrichments to isolate distinct patterns

amongst genes and between fRIPs (Fig. 3c; “Materials

and methods”). Strong relationships between specific

fRIPs (e.g., CHD4 and PABP or CBX3, SUZ12 and CBP)

from the hierarchical clustering in Fig. 1 are generally pre-

served and the enrichment patterns driving the clustering

are easily discernible.

We analyzed each cluster for enrichment of a var-

iety of functional annotations using the Database for

Annotation, Visualization and Integrated Discovery

(DAVID; “Materials and methods”) [27]. We found

hundreds of enriched terms and disease associations

within the fRIP-Seq clusters (Additional file 3). Clus-

ters 1, 7 and 10 exhibit highly enriched terms and are

composed of transcripts primarily associated with

CHD4, DNMT1, and PABP. Functional annotations

enriched in this cluster are generally related to trans-

lation and mitochondria. Another example is the re-

lated set of clusters 2 and 3, wherein association with

the PRC2 subunit SUZ12 is the dominant pattern.
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Fig. 2 Proteins bind RNA at various stages of RNA processing. The proteins varied on the proportion of intron alignments in the fRIP-Seq

versus input. a The heat map shows the average proportion of a gene’s FPKM assigned to exon isoforms versus unspliced pre-RNA

isoforms (“Materials and methods”). The scatter plots show every gene for ADAR and CHD4. Traditional RBPs ADAR, HNRNPH1, HNRNPU,

and HUR likely bind co-transcriptionally; thus, they often immunoprecipitate with unspliced transcripts. b RBPs also varied on the degree

to which the fRIP/input fold change correlated with input FPKM. The heat map plots the Spearman correlation of these values, and the

scatter plots show every gene with a generalized additive model regression line. c Relationships between input FPKM and fold change

were consistent between single and multi-exonic genes
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Fig. 3 Chromatin-associated proteins bind functionally coherent sets of mRNA. RBPs differed on the degree to which they preferred to bind

mRNAs versus lncRNAs. a To properly compare the two, we sampled a set of low abundance mRNAs to match the distribution of lncRNAs

(referred to as mRNA_lncFPKM) and plotted the FPKM distributions for each set. b The heat map plots the Z scores of Mann–Whitney U tests

comparing the distributions of fold changes for lncRNAs and low abundance mRNAs. To its right, we plot the empirical cumulative distribution

functions for HUR and SUZ12. c We partitioned significantly enriched genes from all fRIP-Seqs that were also enriched by twofold or more into

ten distinct groups using k-medoid clustering. A gene set enrichment analysis using DAVID found significantly enriched functional annotations

for each cluster (“Materials and methods”)
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These clusters are strongly enriched for cytoskeleton,

microtubule, nucleotide binding, cell cycle terms and

alternatively spliced genes. Combinatorial binding was

evident; many transcripts bound multiple RBPs and

CAPs either simultaneously or at distinct temporal

phases in the transcripts’ life cycles. Consistent with

our observation that RBPs bind more readily to

lncRNAs than CAPs, clusters 8 and 9 are dominated

by association with HNRNPH1, HNRNPU, ADAR and

HUR and are enriched for lncRNAs.

While the underlying biology driving the observed

functional relationships between fRIP-enriched sets of

genes is unclear, their existence argues that the interac-

tions captured via fRIP-Seq are nonrandom and that the

widespread mRNA-CAP associations may be biologically

relevant.

CAPs specifically associate with a variety of transcript

features

We next turned to exploring the RNA properties that

determine protein binding. For example, it has been re-

ported that EZH2 has greater in vitro affinity for long

RNAs [12, 13]. To assess this attribute for EZH2 and all

proteins surveyed by fRIP-Seq, we computed the Spear-

man correlation of transcript length and fRIP/input fold

change over all mRNAs (Fig. 4a). We set gene lengths to

the average length of the gene’s isoforms weighted by

their input FPKM. In addition to validating the prefer-

ence of EZH2 for longer transcripts, we discovered that

many more CAPs, including RBBP5 and HDAC1, also

strongly prefer longer transcripts (Fig. 4a). In contrast,

CHD4, DNMT1, and CTCF bound shorter genes.

Recent studies have uncovered a regulatory layer inter-

facing co-transcriptional RNA splicing and chromatin [3,

43, 44, 51, 52, 56, 60, 73, 91]. Because longer genes tend

to have more exons, we wondered whether the length

preference of CAPs might be more attributable to the

number of exons in the bound transcripts, potentially

via interaction with the splicing machinery. Similar to

above, we assigned each gene the average exon number

of its isoforms, weighted by their input FPKM. Spearman

correlations of fRIP/input fold change and exon number

matched those for length (Fig. 4b), suggesting that the

relationship of length and exon number to binding is

confounded.

To differentiate the role of length versus exon number,

we computed a semipartial correlation with fRIP/input

fold change for each. More specifically, we performed a

regression for one attribute to predict fold change and

computed the Spearman correlation between the resid-

uals and second attribute. If only one attribute (such as

length) truly mattered, the regression for length would

model the data completely and no correlation with exon

number would remain in the residuals. Comparing these

two statistics, we found that numerous proteins that ap-

pear to depend on transcript length (SUZ12, CBP,

CHD7, PCAF) respond far more to the number of exons

(Fig. 4c). For these proteins, length correlation subsides

after accounting for the effect of exon number.

SUZ12 exemplifies this exon number preference. We

observed that SUZ12 fRIP/input fold change has Spear-

man correlation 0.37 with exon number after length-

normalization, but an insignificant 0.03 correlation with

length after exon-normalization. To further demonstrate

this property, we observed that a positive correlation be-

tween transcript length and SUZ12 fRIP/input fold

change was absent among sets of transcripts with an

equal number of exons (Fig. 4d), but greater exon num-

bers increased the average fold change among the genes.

In contrast, HDAC1 exemplified another set of proteins

for which transcript length appears to be the more im-

portant variable; the same slope relating length to fold

change appears for genes with every number of exons

(Fig. 4e).

In summary, structural properties of the genes affect

their binding by CAPs. Though previous work has char-

acterized a preference of PRC2 subunit EZH2 for longer

transcripts, we found here that for PRC2 subunit

SUZ12, the number of exons in the transcript, rather

than its length, is a more dominant determinant of

binding.

CAPs bind to specific sequence motifs

We next asked whether our panel of CAPs and RBPs

have sequence composition binding preferences in

addition to the gene structure preferences described

above. To this end, we performed a search for motifs

whose presence in gene transcripts had high mutual in-

formation with the transcripts’ fRIP/input fold changes

for each protein (“Materials and methods”).

Even though the fRIP-Seq protocol does not include

shearing RNA down to binding site resolution, we

discovered many significant motifs in transcript-wide

searches. The sequence binding preferences of trad-

itional RBPs HUR, HNRNPH1, and HNRNPU have been

previously explored, and we recapitulated those prefer-

ences here with U-rich motifs for HUR [40, 48, 61]

(Fig. 5a), AG-rich motifs for HNRNPH1 [6, 23] (Fig. 5b),

and a UGU motif for HNRNPU [29, 86] (Fig. 5c).

Having established that fRIP-Seq can find known bind-

ing motifs, we turned to the CAPs, for which knowledge

of sequence binding preferences is sparse. As with the

traditional RBPs, we found many motifs for the CAPs,

which were significant at similarly high levels. SUZ12

had affinity for the motif GAAGMHGAW and other

AG-rich motifs, exemplified by the EIF5B locus (Fig. 5d).

Supporting its strength, transcripts containing three

instances of this motif were bound at a fourfold
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higher level on average. We discovered motifs for

CBP and HDAC1 with effects of comparable magni-

tude (Fig. 5e, f ).

DNMT1 was enriched for a GC-rich motif, but only in

lncRNAs (Fig. S11 in Additional file 1). Further analysis

of this motif uncovered that it was highly biased towards

the 5’ end of genes, similarly to DNMT1 coverage over-

all (Fig. S11 in Additional file 1). Browsing individual

genes suggested that the motif often occurs in CpG

islands (Fig. S11 in Additional file 1).

Interestingly, many of the proteins responded to simi-

lar motifs. The motif UUUUAAAA and slight variations

were extremely polarizing to our panel. Seven proteins,

including RBBP5 and IMP1 most significantly, bound

RNAs containing the motif and did so with greater fold

changes per each additional motif occurrence (Fig. S12

in Additional file 1). Alternatively, 15 proteins, including

CTCF most significantly, avoided genes containing the

motif (Fig. S12 in Additional file 1). Although AU-rich

sequences are a well-studied class of post-transcriptional

regulatory elements [9], this particular motif has not

been a specific focus of these analyses. The motif is

highly enriched at the 3’ ends of transcripts, and motif

occurrences in 3’ UTRs, introns, and lncRNAs are each

more conserved than background sequence of those an-

notation classes (Fig. S12 in Additional file 1). Though

different from the consensus polyadenylation signal

(PAS) AAUAAA, we hypothesized a potential relation-

ship between the two. We compared motif occurrences

to direct RNA sequencing (DRS) mapping polyadenyla-

tion sites in K562 [50], but no obvious patterns emerged

(Fig. S12 in Additional file 1). Altogether, these lines of

evidence suggest a possible, but presently unclear, func-

tional role for UUUUAAAA in post-transcriptional

regulation.

To more fully represent the binding preferences of

many related motifs and to measure the overall ability of

RNA sequence composition to predict protein binding,

we performed a linear regression on k-mer counts to

predict the transcripts’ fold changes. The variance

A B

C D E

Fig. 4 Chromatin-associated proteins prefer specific gene structure properties. The proteins had strong preferences for transcript length (a) and

exon number (b). The heat maps plot the Spearman correlation between fRIP/input fold change and length or exon number. To their right, we

plot empirical cumulative density functions for specific proteins exemplifying substantial correlations. c Because length and exon number are

highly correlated, we isolated the role of each using semipartial correlations. We regressed fold change against exon number and computed

Spearman correlation of the residual against length (Isolated fRIP vs length correlation) and vice versa (Isolated fRIP vs exons correlation). As can be

seen in the resulting plot, and further explored in (d), SUZ12 is affected by exon number rather than length. e In contrast, HDAC1 correlates with

length at every level of exon number plotted
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Fig. 5 (See legend on next page.)
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explained by binding predictions for unseen transcripts

increased with k for nearly all proteins up to a length of

k = 7 (Fig. S13 in Additional file 1). The Alu 7-mers for

ADAR and G-rich 7-mers for HNRNPH1 drove the

highest accuracy predictions of all of the proteins,

explaining ~38 % of the variance in log2 fold change.

Binding of the traditional RBPs tended to be better pre-

dicted by sequence composition, but many CAPs were

also modeled well, including RBBP5, CTCF, CBP, and

SUZ12. Collectively, our analyses discovered known

binding motifs and new trends in noncanonical CAP

binding preferences.

Transposable elements (TEs) can serve as a source of

sequence motifs with an inherent evolutionary history.

Thus, we also asked whether specific classes of TEs in

the transcripts affected protein binding. Mentioned

above and well-known, ADAR binds Alu elements in

both orientations (Fig. S14 in Additional file 1) [49]. We

additionally found dozens more significant associations

between protein binding and the presence of specific TE

families. Transcripts containing antisense Alu elements

had greater fold changes in the HUR fRIP, reflecting an

interaction recently described in three independent

CLIP-Seq datasets with the poly-U stretches of antisense

Alu [36]. Though TE preferences within mRNAs and

lncRNAs were broadly similar, an association between

DNMT1 and sense strand ERV1 was specific to

lncRNAs (Fig. S14 in Additional file 1). ERV1 insertions

appear to have played a role in the origin of many

lncRNAs [37].

Between motif searches, k-mers, and TEs, we detected

a variety of known and novel sequence binding prefer-

ences of the proteins analyzed, including initial evidence

that even CAPs lacking traditional RNA binding do-

mains have greater affinity for certain sequence motifs.

CAP binding relates to local chromatin

To explore the relationship between CAP binding to

RNAs and the local chromatin of the bound RNAs’ loci,

we compared fRIP-Seq with all ENCODE ChIP-Seq and

reduced representation bisulfite sequencing (RRBS)

mapped in K562. Because some chromatin marks are

more relevant in either the promoter or spanning body

of genes, we computed promoter-based and gene body-

based statistics to measure the magnitude of binding for

each mark and gene (see “Materials and methods”).

First, we asked whether CAPs bind RNA from loci

where they concurrently bind DNA, perhaps because the

proteins bind the RNA due to its proximity. We exam-

ined the Spearman correlations across all genes between

fRIP-Seq and ChIP-Seq for 11 proteins with both data

types (Fig. S15 in Additional file 1). Coordinated DNA

and RNA binding is not apparent, suggesting that other

factors are more important to determine RNA binding

and that DNA occupancy alone is insufficient to drive

association with transcripts in close proximity.

Extending to all ChIP datasets, since chromatin marks

correlate very strongly with gene expression (Fig. S16 in

Additional file 1), raw correlations between fRIP/input

fold change and promoter or body-based ChIP were

confounded with the tendency of the proteins to bind

lower or higher abundance transcripts (Fig. S17 in

Additional file 1); that is, proteins that bound higher

abundance genes positively correlated with active chro-

matin marks and vice versa. However, many intriguing

relationships appear when plotting the ChIP statistics for

significantly bound and unbound RNAs across input

FPKMs. Correlations between chromatin marks and

gene abundance emerge and can be normalized for.

Matching and generalizing previous analysis of DNMT1

binding to RNA at the CEBPA loci, we observed lower

levels of DNA methylation in promoters of genes bound

by DNMT1 genome-wide at all abundance levels

(Fig. 6a). Interestingly, DNMT1 binding does not appear

to affect gene body DNA methylation, but CTCF bind-

ing has a strong relationship: CTCF-bound RNAs have

higher levels of methylation across the span of the gene

(Fig. S18 in Additional file 1). This is consistent with

prior work linking CTCF to DNA methylation and spli-

cing [75].

For a more global view, we quantified all fRIP-

chromatin mark relationships by measuring the gap be-

tween regression lines for bound and unbound RNAs

across input FPKM (Fig. 6c; “Materials and methods”).

Clustering analysis revealed that chromatin marks group

with respect to their relationship with gene activation.

RNA binding of many CAPs (e.g., DNMT1, NUP98,

WDR5, PCAF, and LSD1) correlated with higher presence

of activating modifications like H3K4me3 and H3K27ac.

Differences between bound and unbound RNAs were not

as apparent for silencing modifications like H3K9me3 and

H3K27me3. Greater levels of H3K4me3 in promoters of

(See figure on previous page.)

Fig. 5 Chromatin-associated proteins prefer specific sequence motifs. We searched for motifs that have high mutual information with the

fRIP/input differential expression statistic using FIRE (“Materials and methods”). Motifs discovered for HUR (a), HNRNPH1 (b), and HNRNPU

(c) matched well to known motifs in the RBPmap database [64]. For each motif, we plotted the empirical cumulative density function of

the fRIP/input statistic for genes with and without the motif. Below that, we plotted the 25th, 50th, and 75th percentiles of the fRIP/input statistic for

genes containing the specified number of motif occurrences. We discovered novel motifs at similar levels of significance for CAPs SUZ12 (d), CBP (e),

and HDAC1 (f)
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genes bound by WDR5 (Fig. 6b), as exemplified by

CHST2 binding (Fig. 6d), is of particular interest because

WDR5 participates in a complex that writes the

H3K4me3 mark and has previously been implicated for

recruitment by RNA [20, 85, 87].

In summary, the presence of this variety of known and

novel relationships suggests a role for RNA–protein

interactions influencing the maintenance and dynamics

of chromatin states.

Discussion
Using an optimized and scalable protocol for cata-

loguing RNA–protein interactions, including those on

and around chromatin, we have demonstrated that a

diverse set of proteins known to associate with and/or

modify chromatin also widely interact with thousands of

coding and noncoding RNA transcripts. We recapitulated

previously known RNA–protein interactions and found

that, like traditional RBPs, CAPs interact with functionally

A

B

D

C

Fig. 6 Protein binding to RNA relates to local chromatin. Because chromatin marks measured by RRBS (DNA methylation) or ChIP-Seq (histone

modifications and modifiers) correlate with gene abundance (Fig. S16 in Additional file 1), we plotted this relationship separately for genes bound

and unbound by each protein. a DNMT1-bound RNAs have less DNA methylation in their promoter, shown as a scatter plot of every gene with a

generalized additive model regression. b WDR5-bound RNAs have more H3K4me3 in their promoter. c For each chromatin mark and protein, we

plotted the difference between the bound and unbound regression lines as a heat map (“Materials and methods”), revealing a clear difference in

the relationship of certain proteins to activating chromatin marks. d CHST2 exemplifies a WDR5-bound RNA with ample H3K4me3
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coherent sets of RNAs via specific transcript features in a

combinatorial manner. RNA–CAP binding relates to the

local chromatin of the RNAs’ loci, adding evidence to

support a crucial role for RNA–protein interactions in

chromatin modification.

Our fRIP-Seq technique enabled the highly reprodu-

cible mapping of a diverse set of RNA targets for 24

proteins. Profiling many proteins in parallel is a powerful

method to account for protocol artifact or common

background noise arising from promiscuous or highly

abundant RNAs that bind protein or magnetic beads

indiscriminately [4, 18]. RNA recovery and input li-

brary construction (low versus high) did not predict

correlation between experiments, ruling them out as

confounding factors. Concordance with CLIP-Seq, RBP

depletion assays, and individually measured and function-

ally established interactions further support the validity of

our data.

In two cases (SUZ12/EZH2 and WDR5/RBBP5), fRIP-

Seq did not map RNA interaction partners of two pro-

teins known to function together in a complex with the

concordance one might expect. There are many possible

contributing factors for this observation, primarily re-

volving around the fact that the RNA binding properties

of these proteins are poorly understood. The proteins

exist in the cell both in and out of the complex, and

there is no reason to believe that the proteins in isola-

tion would bind to similar transcripts as each other. If

fRIP-Seq is preferentially capturing these RNA inter-

action partners, then differing profiles would be the ex-

pected result.

We observed RNA–protein interactions at various

stages of RNA processing, indicated by the quantity

of intron alignments in each fRIP-Seq. Known co-

transcriptional binders ADAR, HNRNPH1, HNRNPU,

and HUR had the most intron alignments. Co-

transcriptional binding also led to different patterns

relating gene abundance to fRIP/input fold change.

These correlations with abundance were recalled and

normalized for in downstream analyses, such as com-

parisons with local chromatin.

Though fRIP-Seq does not pinpoint interaction sites to

the same resolution as CLIP-Seq, we nevertheless dis-

covered many binding preferences for the proteins

measured using transcript-wide analysis. This included

reproducing the known sequence motifs bound by

ADAR, HNRNPH1, HUR, and HNRNPU from whole

transcript motif searches. Preferred sequence motifs

were found for CAPs as well, with similar degrees of evi-

dence as those known motifs. For example, we discov-

ered an AG-rich motif predictive of SUZ12 binding.

In addition to sequence preferences, we found that

fRIP-Seq enrichment for many proteins correlated with

transcript length and number of exons. In particular,

though a PRC2 preference for longer RNA transcripts

had previously been observed, we found here that length

correlation manifests through a far stronger preference

by SUZ12 for transcripts with more exons. Current

models for the role of PRC2–RNA interactions posit that

PRC2 maintains gene silencing by writing the silencing

mark H3K27me3 only in the absence of RNA [8, 30, 31].

Our observations suggest a revised hypothesis whereby

obfuscation of PRC2 silencing may further require

spliced RNA, sensed by SUZ12 interaction. Given the

apparent ubiquitous transcription of the genome, this

distinction is an important one, as it would substan-

tially limit the pool of RNA that can modulate PRC2

activity.

Much previous work on RNA binding partners of

CAPs has focused on ncRNA. Here, we surprisingly de-

tected substantial binding of CAPs to mRNAs, too. Al-

though we observed weaker enrichments of lncRNAs by

CAPs in comparison with mRNAs, we did detect that

lncRNAs are more selective and associate with fewer

CAPs on average than mRNAs. However, our data over-

all suggest that lncRNA-CAP binding is not the domin-

ant feature of the RNA–CAP interactome.

Instead, RNA may more generally provide a communi-

cation medium between the genome and CAPs. We ob-

served widespread correlations between CAP fRIP-Seq

enrichment and local chromatin state. Matching a previ-

ous analysis, which suggested that DNMT1 would not

methylate DNA in the presence of RNA [15], the pro-

moters of DNMT1-bound RNAs had lower levels of

DNA methylation. Furthermore, we discovered a novel

relationship between WDR5 binding to RNAs and the

H3K4me3 levels of the transcripts’ promoters; loci with

bound RNA have more H3K4me3, which could be the

result of RNA recruitment of WDR5 and the MLL com-

plex to further solidify an open and active promoter

state in a positive feedback loop.

Our analysis leaves open the question of what happens

to mRNAs bound by CAPs. One could imagine these in-

teractions are transient light disturbances to the mRNA

on its journey to translation. Alternatively, a small pro-

portion of transcribed mRNA copies may be diverted to

permanent interaction with CAPs and sequestered away

from translation. Follow-up work will be needed to dif-

ferentiate these outcomes and clarify the role of mRNAs

in chromatin modification processes.

Conclusions
Our introduction of fRIP-Seq and panoramic profiling of

RNA interactions with chromatin-associated proteins

will enable many future analyses to further dissect the

role of RNA in chromatin processes. The dual nucleic

acid affinity of CAPs is an intriguing feature that, with

further study, may unify the separate paradigms of
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RNA-mediated chromatin regulation of transcription

with chromatin-mediated post-transcriptional regulation

of RNA. While we have provided a static snapshot of the

cell, the open questions of how chromatin is modified

are most relevant to the dynamics of development and

disease. The framework applied here provides an import-

ant lens with which to study the chromatin regulation of

these cell state changes.

Materials and methods
Cell culture and cross-linking

K562 cells (ATCC catalog #CCL-243) were grown in

RPMI 1640 (Invitrogen, catalog #22400105) with 10 %

fetal bovine serum (FBS) and 1 % Antibiotic-Antimycotic

100× (Invitrogen, catalog #15240062). We collected cells

with a gentle 5 minute spin at 500 g and washed these

with room temperature phosphate-buffered saline (PBS).

We re-suspended at 5e6 cells per ml in room temperature

RPMI media without FBS or antibiotic-antimycotic and

added formaldehyde to a final concentration of 0.1 %. We

cross-linked at room temperature for 10 minutes and then

halted it by quenching for 5 minutes at room temperature

after adding glycine to a final concentration of 125 mM at

a medium pace. We spun cells for 5 minutes at 500 g and

then washed them twice in 4 °C PBS. We flash froze pel-

lets of 10e6 cells and stored them at −80 °C.

fRIP

We re-suspended frozen pellets in 1 mL of RIPA lysis

buffer (50 mM Tris (pH 8), 150 mM KCl, 0.1 % SDS,

1 % Triton-X, 5 mM EDTA, 0.5 % sodium deoxycholate,

0.5 mM DTT (add fresh) + protease inhibitor cocktail

(Thermo Scientific, PI-87785) + 100 U/ml RNaseOUT™

(Life Technologies, 10777–019)). We incubated cells at

4 °C for 10 minutes before lysing on a Branson® digital

sonifier using 10 % amplitude for 0.7 seconds on and

1.3 seconds off at 30 second intervals for a total of

90 seconds. We used chilled tube holders and swapped

them out between shearing runs to reduce temperature

elevation. After lysis, we spun the lysate at 4 °C max

speed for 10 minutes. We collected supernatant and di-

luted by adding equal volume of fRIP binding/wash buf-

fer (150 mM KCl, 25 mM Tris (pH 7.5), 5 mM EDTA,

0.5 % NP-40, 0.5 mM DTT (add fresh), 1× PIC (add

fresh), 100 U/mL RNaseOUT (add fresh)). At this point,

we removed 50 μl of lysate for input sample and stored

at −20 °C for later RNA purification and library

construction. After dilution, we clarified the lysate by

passage through a 0.45 μM syringe filter. We then “pre-

cleared” filtered lysate by incubating with Dynabeads®

Protein G (Life Technologies catalog #10004D) at a con-

centration of 25 μl of beads per 5 million cells for 30 mi-

nutes at 4 °C with slow rotation. We flash froze pre-

cleared lysate in 1 mL aliquots of ~5 million cells and

stored it at −80 °C. For fRIP, we thawed lysate on ice and

added 6 μg of HuR antibody (Santa Cruz, sc-5483). After

addition of antibody, we rotated lysate at 4 °C for 2 hours

before adding 50 μl of Dynabeads® Protein G. We ro-

tated beads and lysate at 4 °C for 1 hour before

washing twice with 1 mL of fRIP binding/washing

buffer + 1× PIC and 100 U/mL RNaseOUT. After the

final wash, we removed the supernatant and froze

and stored the beads at −20 °C.

RNA purification and library construction

We re-suspended the frozen beads in 56 μl of RNase-

free water and added 33 μL of 3× reverse-crosslinking

buffer (3× PBS (without Mg or Ca), 6 % N-lauroyl sarco-

sine, 30 mM EDTA, 15 mM DTT (add fresh)), 10 μl of

Proteinase K (Life Technologies, catalog #AM9516), and

1 μl of RNaseOUT to both the re-suspended beads and

input sample. We performed protein degradation and

reverse-crosslinking for 1 hour at 42 °C, then another

1 hour at 55 °C. We added beads and reaction buffer to

1 mL of TriZol (Life Technologies, 15596–026). After

agitation, we added 200 μl of chloroform followed by

~15 seconds of vigorous agitation and a 20 minute

microcentrifuge spin at 4 °C max speed. We collected

the aqueous layer, added it to 750 μl of ethanol + 1 μl

GlycoBlue™, and ran it over a Qiagen RNeasy® min-elute

column (Qiagen, catalog #74204). We extracted RNA

using the buffer RWT/3× isopropanol modification

detailed in “Appendix B: Optional On-Column DNAse

Digestion…” of the Qiagen miRNeasy® Mini Handbook.

We eluted RNA in 15 μl of RNase-free water. To remove

ribosomal RNA, we fed ≥70 ng of input and fRIP RNA

into the Ribo-Zero™ Magnetic Gold Kit (Epicentre,

catalog #MRZG12324) followed by a cleanup using

Agencourt RNAClean XP beads (Beckman Coulter,

catalog #A63987) and elution with 19.5 μL of Elute,

Prime, Fragment mix from the TruSeq RNA Sample

Preparation Kit (Illumina, catalog #RS-122-2001). We

performed library construction per the vendor’s in-

structions, starting with the “Incubate RFP” step. We

pooled the resulting cDNA libraries and subjected

them to paired-end sequencing on an Illumina HiSeq

2500 at a depth of 31 base pairs per read.

fRIP-Seq computational analysis

We aligned sequencing reads to human genome assem-

bly hg19 and GENCODE v18 reference annotation [24]

using TopHat [81]. We estimated transcript and gene

abundances, as well as depletion/ enrichment signifi-

cance using Cuffdiff 2 [80]. In addition to the standard

exon annotation, we estimated abundances on an aug-

mented version of the annotation to which we added an

unspliced pre-RNA isoform for every unique isoform

start and endpoint. This quantification proved useful in
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some analyses, such as measuring the contribution of in-

tronic reads from unprocessed transcripts.

Cluster and functional annotation analysis

We limited cluster analysis in Fig. 1 to genes with ex-

pression that was high enough in at least one condi-

tion such that Cuffdiff 2 was able to test for

enrichment/depletion in at least one fRIP-Seq versus

input comparison. For each gene, we added a pseudo-

count of 1 FPKM before calculating the log2 fold

change fRIP/input. We hierarchically clustered these

values across genes (rows) and fRIPs (columns) using

Pearson correlation distance and Ward’s agglomerative

method.

We performed K-medoid clustering (using the R

package PAM) on only genes that were called as sig-

nificantly enriched by Cuffdiff and enriched at greater

than twofold over input in at least one replicate. We

clustered using k = 10 and Euclidean distance. To

order the clusters for visual representation in a heat

map (Fig. 3), we performed hierarchical clustering on

median log2 fold change for each cluster (row) and

each fRIP (columns). To annotate the clusters, we

searched for functional terms enriched in each clus-

ter’s genes using DAVID [27].

Motif analysis

We used FIRE to search for motifs that have high mu-

tual information with fRIP-Seq enrichment [16]. FIRE

requests an input dataset consisting of nucleic acid se-

quences and a statistic assigned to each. For a higher

resolution view of fRIP/input enrichment, we created an

augmented annotation in which every intron was in-

cluded as an isoform, extended on both sides to include

the adjacent exons. For each protein, we then chose the

most expressed isoform for every gene and assigned

them the isoforms’ Cuffdiff differential expression test

statistic.

Choosing an appropriate seed size for motif searches

on full transcripts of varying size is more challenging

than the typical application of equally sized promoters.

We sought to focus on a middle range of the transcript

length distribution so that the chosen seed size was not

wildly inappropriate for many transcripts. Accordingly,

in an initial analysis we allowed only transcripts whose

length is within a factor of sqrt(10) from the distribution

median; thus, all included transcripts have length within

a factor of 10 of all other transcripts. We then chose the

smallest k-mer seed size for which one would expect

every k-mer to occur by chance in <1 % of transcripts of

that length. Because transcript lengths are log-normally

distributed, half of the transcripts are longer and half are

shorter than the median transcript length, for which the

chosen seed was aimed. For mRNAs, the median

transcript length in GENCODE v18 is 1997 nucleotides,

suggesting 10-mer seeds. Because this large k-mer size

might miss some of the smaller k-mer motifs typical of

RBPs [66], we performed additional runs of FIRE using a

transcript length distribution chosen to be smaller and

more appropriate for an 8-mer-seeded search. Here, we

limited transcripts to length between 400 and 4000

nucleotides.

K-mer analysis

If sequence preferences are driven by more general se-

quence composition preferences that cannot be so easily

represented by regular expression or position weight

matrix motif models, then fRIP-Seq enrichment of gene

transcripts may be more effectively modeled by consid-

ering all k-mers. To this end, we performed a regression

to assign weight coefficients to all k-mers for the same

input datasets described above. To avoid overfitting, we

performed ridge regression, which minimizes not only

the distance between model predictions and actual

values but also the magnitude of the weights. We chose

the alpha parameter that varies the emphasis of these

two competing objectives by evaluating fivefold cross-

validated mean squared error over a parameter grid.

More complex techniques (partial least squares and sup-

port vector regression) failed to yield significant gains.

CLIP-Seq analysis

To assess the concordance between fRIP-Seq and

CLIP-Seq, we downloaded six datasets mapping five

proteins (HNRNPU [86], CTCF [74], HUR [40, 48,

61], IMP1 [22], and HNRNPH1 [32]). We mapped

reads and called peaks using a previously described

protocol [36]. We considered a gene to be targeted if

an exonic peak was detected.

ChIP-Seq analysis

We downloaded aligned sequencing reads in BAM format

for all K562 ChIP-Seq experiments performed by the

ENCODE project from https://www.encodeproject.org.

We assigned every transcript two scores measuring

the enrichment of ChIP alignments over input align-

ments. For the first score, we computed log2 ChIP/input

alignments for a promoter region of 3 kb, centered at

the transcription start site. For the second, we computed

log2 ChIP/input alignments for the entire transcript

span. We normalized alignment coverage by the total

number of mapped reads in the ChIP-Seq experiment.

To assign scores to genes consisting of multiple iso-

forms, we computed a weighted average of the isoform

scores, weighting isoforms by their FPKM.

To measure the relationship between the fRIP/input

fold change and ChIP scores across all abundance levels,

we first computed separate Lowess nonparametric
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regressions of FPKM versus ChIP score separately for

genes bound and unbound in the fRIP-Seq experiment.

Next, we integrated the difference between these two re-

gression lines over the distribution of FPKM. This statis-

tic is conceptually similar to computing the area of the

region in between the two regression lines in the FPKM

versus ChIP score plots, where we more heavily weight

more likely FPKM levels.

Ethics approval

Not applicable.

Availability of data and materials

fRIP-Seq data are available through the Gene Expression

Omnibus at accession GSE67963.

CLIP-Seq data were obtained for IMP1 from GSE21918,

HNRNPH1 from GSE23694, HUR from GSE28865 and

GSE29780, HNRNPU from GSE34491, and CTCF from

GSE3554.

Depletion RNA-Seq data were obtained for CTCF

from GSE44267, SUZ12 from GSE50177, HUR from

GSE28865, and HNRNPU from ENCSR732ICL, and

IMP1 from ENCSR629EWX.
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