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ABSTRACT

This paper demonstrates that it is possible to leverage WiFi
signals from commodity mobile devices to enable hands-free
drawing in the air. While prior solutions require the user to
hold a wireless transmitter, or require custom wireless hard-
ware, or can only determine a pre-defined set of hand ges-
tures, this paper introduces WiDraw, the first hand motion
tracking system using commodity WiFi cards, and without any
user wearables. WiDraw harnesses the Angle-of-Arrival values
of incoming wireless signals at the mobile device to track the
user’s hand trajectory. We utilize the intuition that whenever
the user’s hand occludes a signal coming from a certain direc-
tion, the signal strength of the angle representing the same
direction will experience a drop. Our software prototype us-
ing commodity wireless cards can track the user’s hand with
a median error lower than 5 cm. We use WiDraw to imple-
ment an in-air handwriting application that allows the user
to draw letters, words, and sentences, and achieves a mean
word recognition accuracy of 91%.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Wireless commu-
nication; H.5.2 [User Interfaces]: Input devices and strate-
gies

General Terms

Design, Experimentation, Performance

Keywords

Wireless; Motion Tracking; Gesture Recognition; Channel State
Information; Angle-of-Arrival

1. INTRODUCTION

Today, a user can write, scroll, swipe, or draw on a touch
screen of a smart phone, tablet, or laptop. Users can even in-
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teract hands-free with a computing device using commercial
hardware systems such as Kinect [1] and Leap Motion [2].
While these systems are highly popular, they require a dedi-
cated hardware setup or line-of-sight (LOS) to the user. Re-
cently, researchers have made progress in detecting human
hand gestures using wireless signals [3-8], enabling gesture
recognition in non-line-of-sight (NLOS) scenarios. However,
prior solutions are limited because they either require the user
to hold a wireless transmitter [7], or require a custom wire-
less hardware to track the user’s hand motions [3-6,8]. More
importantly, most of the current solutions [3-5, 8] require a
priori learning of wireless signal patterns, which limits them
to recognize only a fixed set of pre-defined hand gestures. We
believe that, if we can leverage wireless signals to automat-
ically track the detailed trajectory of the human hand in the
air, we can greatly simplify interaction of the user with today’s
computing devices including laptops, smart TVs, tablets, and
even devices that do not have a dedicated user input (e.g.,
sensors and IoT devices). Since WiFi signals do not require
LOS and can traverse through material (e.g., cloth), hands-
free drawing can also be used by the user to interact with the
mobile device in a pocket or a bag - e.g., to control volume or
answer a call, or simply draw the name of the callee in the air
to start a conversation.

This paper demonstrates that it is possible to leverage WiFi
signals from commodity mobile devices to enable hands-free
drawing in the air. We introduce WiDraw, the first hand mo-
tion tracking solution that can be enabled on existing mo-
bile devices using only a software patch. WiDraw leverages
physical layer information and multiple antennas on com-
modity devices to track the detailed trajectory of the user’s
hand in both LOS and NLOS scenarios, without requiring the
user to touch the device or hold any hardware. As shown in
Figure 1(a), using WiDraw, a user can draw arbitrary lines,
curves, or even alphabetical characters, simply by using hand
motions in the air.

WiDraw utilizes the Angle-of-Arrival (AoA) values of incom-
ing wireless signals at the mobile device to track the user’s
hand trajectory. Existing techniques such as MUSIC [9] can
utilize the Channel State Information (CSI) from multiple an-
tennas to estimate the angles at which a wireless signal from a
transmitter arrives at the receiver. MUSIC also reports the sig-
nal strength of the incoming signal component arriving from a
given angle. We utilize the intuition that whenever the user’s
hand blocks a signal coming from a certain direction, the sig-
nal strength of the AoA representing the same direction will
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Figure 1: (a) WiDraw’s estimated trajectory when the user
drew a straight line, a circular curve, the letter “S”, and
the word “can”. (b) The user’s hand perturbs the signal
strength of several AoAs along its trajectory.

experience a sharp drop. E.g., in Figure 1(b), if the hand
passes through the trajectory ABC, it will occlude the AoAs
01, 62, and 63 in sequence. By tracking the signal strength
of the AoAs, it is possible to determine when such occlusions
happen. Thereafter, by utilizing the azimuth and elevation
of the affected AoAs, it is possible to determine a set of hor-
izontal and vertical coordinates along the hand’s trajectory.
The depth of the user’s hand can also be approximated using
the drop in the overall signal strength. E.g., if the hand is
close to the receiver, it will occlude a larger number of AoAs
in comparison to when the hand is farther away from it. By
estimating the hand’s depth, along with horizontal and verti-
cal coordinates, WiDraw tracks the hand’s trajectory w.r.t. the
WiFi antennas of the receiver.

We demonstrate the feasibility of WiDraw by building a soft-
ware prototype on HP Envy laptops, using Atheros AR9590
chipsets and 3 antennas. The tracking granularity of WiDraw
depends on the number of AoAs along the hand’s trajectory.
While periodic access point beacons can contribute several
angles, the tracking granularity can be further increased by
employing lightweight probing mechanisms to obtain AoAs
from neighboring client devices as well. We show that by uti-
lizing the AoAs from up to 25 WiFi transmitters, the WiDraw-
enabled laptop can track the user’s hand with a median error
lower than 5 cm. WiDraw’s rate of false positives - motion
detection in the absence of one - is less than 0.04 events per
minute over a 360 minute period in a busy office environ-
ment. Experiments across 10 different users also demonstrate
that WiDraw can be used to write words and sentences in the
air, achieving a mean word recognition accuracy of 91%.

Our main contributions are summarized as follows:

e WiDraw is the first hand motion tracking system using
commodity WiFi cards: Existing systems can only track a
few gestures, require special hardware, or require the user
to hold a device.

e We identify the opportunity to utilize the AoA informa-
tion to enable hands-free drawing in the air: Our solu-
tion harnesses the effect of hand occlusions on the signal
strength of incoming signal directions.

¢ We implement and demonstrate our solution using com-
modity wireless cards: We exploit the CSI information
from the three antennas of the Atheros AR9590 chipset and
evaluate our system using more than 90,000 trajectories
drawn by 10 users.

e We design and implement a virtual handwriting applica-
tion using WiDraw: Our system achieves an average letter
and word recognition accuracy of 95% and 91%, respec-
tively.

The subsequent sections expand on each of these contribu-
tions, including experimental observations, followed by algo-
rithms, design, and evaluation.

2. BACKGROUND AND OBSERVATIONS

This section presents the relevant background on AoA esti-
mation followed by our observations that suggest that AoAs
can be used to estimate the motion of the human hand in a
3D space. For our measurements, we use HP laptops running
Linux OS. We note that AoA estimation is possible from com-
modity chipsets if they can report per packet Channel State
Information (CSI) [10,11]. Next we briefly describe the mech-
anism to obtain AoAs from the CSI.

2.1 AoA estimation from CSI

A wireless signal from a transmitter arrives at several angles
at the receiver. The AoA at the receiver can be computed by
comparing the phase of the CSI values acquired from multiple
antennas, a quantity which changes linearly by 27 for every
wavelength \ along the path from the transmitter to the re-
ceiver. E.g., if the receiver has only two antennas placed at a
distance of \/2 and a measured phase difference of the CSI
acquired from the two antennas is A¢, we can estimate the
angle-of-arrival 0 as:

0 = arcsin(A¢/m)

Rather than analyzing the phase differences between every
pair of antennas individually, the receiver can employ AoA
estimation algorithms such as MUSIC [9]. MUSIC utilizes
the phase difference values and yields a pseudospectrum (Fig-
ure 2(a)). Each peak in the pseudospectrum is an estimated
AoA. Multiple peaks in Figure 2(a) imply incoming signals
along different directions from the transmitter.

Since wireless signals propagate in a 3-D space, the angle of
an incoming signal at the receiver has both azimuth and ele-
vation components (Figure 2(b)). MUSIC can compute both
the azimuth and elevation of an AoA if the receiver’s anten-
nas are arranged in a special pattern [12]. However, when
applied to linear antenna arrays such as those within a laptop
or tablet screen, MUSIC can only compute a one-dimensional
representation of the AoA (6 in Figure 2(b)). The 1-D AoA
value 0, as reported by MUSIC, is related to the azimuth (az)
and elevation (el) values of the AoA:
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Figure 2: (a) MUSIC’s pseudospectrum output with and
without occlusion by human hand. (b) MUSIC yields the
1-D angle-of-arrival (AoA) which is related to the azimuth
and elevation of the AoA.
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Observe that 6 is upper bounded by (5 — el), which occurs

when the azimuth angle is 7. In section 3.1, we will use
these observations to compute both the azimuth and elevation
values of the AoA from the existing linear antenna array of the

laptop.

2.2 Effect of human hand on the AoA

To track the motion of a human hand near the wireless re-
ceiver, we observe that if the user’s hand blocks the signal
arriving along a specific AoA, the AoA’s signal strength will ex-
perience a sharp drop (as shown in Figure 2(a)). On the other
hand, if the trajectory of the user’s hand does not occlude the
signal arriving on a specific AoA, its signal strength will not
demonstrate any drop. To illustrate the above, consider 3 dif-
ferent AoA values as observed by the receiver in Figure 3(a).
The trajectory of the user’s hand blocks ; completely and 6,
partially but does not pass through 6s. Figure 3(b) shows the
change in signal strength values of the 3 angles over time.
The time instant when the signal strength of a given AoA at-
tains its minimum value corresponds to the moment when the
user’s hand arrives at a location that is closest to that angle
on its moving trajectory. We find that the drop in the signal
strength of a given AoA value is proportional to proximity of
the hand to the AoA trajectory, which is why 6, demonstrates
a larger drop than 6 in Figure 3(b).

The set of AoAs whose signal strength values attain a mini-
mum provides a mechanism to determine the hand’s position

@,
_.—E 307\”\\\uu\w‘uu\w‘uu\mhumw.mmwmu,umwmw LTI i 0 I i
(=)

[

@ 20r

k7]

g 10¢ v
2

w

(@)

(6] 0.2 04 0.6 0.8 1 1.2
Time in seconds

Figure 3: (a) Trajectory of human hand through 3 AoA
values. (b) Change in amplitude of the AoAs as the human
hand passes through them.

and motion. If the user’s hand is y; units away from receiver
and it causes an AoA with azimuth (az) and elevation (el) to
attain a minimum, the horizontal (x;) and vertical (z;) coor-
dinates of the user’s hand can be computed as:

Yi yi * tan(el)
2y =
cos(az)

"~ cot(az)

(2)

The trajectory of the human hand can be estimated by us-
ing the sequence of coordinates, as obtained from the AoAs
whose signal strength drops. Of course the tracking accuracy
depends on the number of angles along the hand’s trajectory.
A large number of angles placed close to each other along
the hand’s trajectory can allow tracing the trajectory with fine
granularity. On the other hand, a small number of angles far
apart from each other, along the hand’s trajectory, will result
in low accuracy. Therefore, the feasibility and limitations of
hand tracking depend on the distribution of AoA values in real
environments. Next, we study these requirements in detail.

2.3 AoA density for hand motion tracking

As shown in Figure 4(a), due to their radial nature, the spatial
distance between incoming signal directions increases with
larger distance from the WiFi antennas. Near the receiver,
the density of the AoAs is quite high implying that the user’s
hand can be tracked with high granularity. However, farther
the user’s hand is from the receiver, lower will be the granu-
larity of trajectory tracking. The density of the AoAs in a given
environment in turn depends on the number of transmitters
within the range of the WiDraw-enabled receiver. Figure 4(b)
plots the average number of access points (APs) and WiFi-
enabled devices across 50 different locations in different en-
vironments - apartment, office, cafeteria. To track the move-
ment of the user’s hand, WiDraw needs to periodically obtain
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Figure 4: (a) Distance between nearby angles increases with greater distance from the receiver. (b) Average number of
APs and WiFi-enabled devices across 50 different locations in different environments. (c) The average distance between
neighboring AoAs increases with lower number of WiFi transmitters and increasing depth of the hand from the receiver.

and analyze the incoming signal directions of each transmit-
ter. If the transmitter is an AP, WiDraw can obtain the CSI and
AoA of its transmitted signal by leveraging periodic beacons.
However, if the transmitter is a client device, the WiDraw-
enabled receiver may have to periodically probe the device to
obtain its AoA values. Therefore, WiDraw may only be able to
leverage a few neighboring clients.

To estimate the tracking granularity using angles, we esti-
mated the AoA values from neighboring transmitters whose
signals are incident on the receiver at the frontside, using the
data from the same 50 locations as in Figure 4(b). We con-
sider the AoAs only at the front side of the receiver because
the user will likely draw in front of the receiver. Figure 4(c)
plots the average distance between nearby AoAs as a func-
tion of the number of transmitters and increasing distance
from the laptop. We observe that for a modest number of
transmitters (e.g., 30), the inter-AoA distance values are rea-
sonably low (12.75 cm) for a distance of 1 foot but increases
to greater than 24.65 cm for distances more than 2 feet. This
suggests that at a larger distance from the receiving antennas,
we will only be able to track coarse hand motion trajectories.
However, as long as the human hand is within 2 feet from the
receiver, the density of the AoAs may be reasonable enough
to allow us to track finer hand motions.

2.4 Effect of environmental changes on AoA

AoA values need to be reasonably stable at least during the
motion of the user’s hand. The AoA values can change rapidly
if the transmitter is mobile, making it difficult to use it for
motion detection [11]. On the other hand, if the transmitter
is static, an AoA will change only if a dominant propagation
path between the transmitter and the receiver is affected. We
find that the changes in signal strength of the AoAs due to
environmental changes are structurally different from those
because of the user’s hand near the receiver. First, as shown
in Figure 5(a), unlike hand occlusions, signal strength varia-
tions due to environmental fluctuations are often random and
therefore can be removed using a low pass filter. Second, af-
ter filtering, the drop in signal strength due to environmental
changes is significantly lower than when a human hand oc-
cludes the AoA (Figure 5(b)). Third, while hand occlusions
result into a large drop in signal strength within a few sec-
onds, such large changes occur much more slowly due to en-
vironmental fading. Therefore, it may be possible to increase
robustness by estimating the hand’s trajectory from the AoAs

45 ‘ ‘ ‘
o ===During hand occlusion
S ==Unfiltered w/o hand
=407 ===Filtered w/o hand
[S)
[
@ 35
»
S30f
=
(p]

25 : : : :

0 4 .8 1.2 1.6 2

1
I onl id -
nly consiaer
0.8 ' >3()le for hand ,
! occlusion. /
E 0.6 ,l
©o.4 /
0.2 ’ ==Hand occlusion
. > 4 ===f-vironmental variation
(0), ‘ ‘
0 3 5 10 15

Drop in signal strength (dB) after filtering

Figure 5: Signal strength fluctuations in a busy cafete-
ria: (a) Drop in signal strength over time is significantly
lower than that due to occlusion from human hand. (b)
Distribution of signal strength fluctuations at 50 different
locations with and without hand occlusions.

whose signal strength demonstrates a large drop. Of course,
our system requires more robust mechanisms if any particular
AoAs signal strength changes significantly.

In conclusion, we observed that human hand causes signif-
icant drop in the signal strength of the AoAs along its tra-
jectory. We found that the occlusion due to human hand
causes deeper perturbations than random environment re-
lated fluctuation. Therefore, by tracking the azimuth and
elevation of the AoAs which undergo significant changes in
signal strength, it may be possible to determine the trajec-
tory of the human hand. However, as observed in our mea-
surements, several challenges remain: (1) How will we de-
termine the azimuth and elevation angle from the 1-D an-



gle reported by MUSIC? (2) How can we ensure fine-grained
tracking by using the incoming signals from a modest num-
ber of transmitters? (3) While 2D hand position may be ob-
tained by considering the azimuth and elevation of an AoA,
how can we track the hand’s depth to enable 3D motion track-
ing? (4) The incoming signal from a transmitter can change
if the transmitter is mobile or the wireless environment is
changing quickly. How can we enable robust motion track-
ing under such AoA changes? The next section answers these
questions and presents our system called WiDraw that en-
ables fine-grained hand trajectory tracking using AoA values
of wireless signals.

3. HAND TRACKING ALGORITHMS

This section presents our solutions that enable tracking the
user’s hand near the WiFi receiver. We begin by explaining
how the azimuth and elevation of an AoA can be computed.
Thereafter, we explain how we track the hand’s motion using
the azimuth and elevation values.

3.1 Azimuth and elevation estimation

To calculate the azimuth and elevation values from MUSIC’s
1-D AoA output, we refer to Equation 1. Observe in Fig-
ure 2(b) that, if the user rotates the linear antenna array over
the Z axis (as shown in Figure 6), the azimuth of a given
AoA will gradually increase until the signal incidents the lap-
top along its antenna array, when the azimuth becomes 90°.
At that moment, the 1-D AoA value reported by MUSIC (0
in Figure 2(b)) will attain its maximum value and accord-
ing to Equation 1 it will essentially be equal to the (90° -
elevation angle). Therefore we ask the user to turn the lap-
top around its Z-axis as shown in Figure 6 and collect MU-
SIC’s pseudospectrum outputs. From the pseudospectrums,
for each 1-D AoA, we compute the maximum value it attains
and use it to compute the elevation. Once we know the ele-
vation, the azimuth of the AoA is estimated using Equation 1.

A pertinent question is how frequently will the user have to
turn the laptop for motion tracking? Observe that a recali-
bration is only required when the direction of incoming sig-
nals from a given transmitter changes completely. This hap-
pens when an existing dominant incoming signal direction
is blocked and thus, another incoming signal appears with a
different AoA value. We will explain in Section 4.3 how we
determine such changes and automatically calculate the new
azimuth and elevation values, without any user initiated cali-
bration.

Y

Figure 6: User turns the laptop around its Z-axis to help
WiDraw compute the per AoA azimuth and elevation.

3.2 Hand trajectory tracking

During the hand’s motion, if an AoAs signal strength attains
a minimum, we can calculate the instantaneous spatial coor-
dinates of the hand by applying the AoA's azimuth and eleva-
tion values in Equation 2. However, Equation 2 can compute
the horizontal and vertical coordinates of the hand only if the
hand’s depth from the receiver is known. Therefore, we begin
by discussing how the hand’s depth can be estimated.

Determining hand’s depth

To determine the hand’s initial depth, we track the average of
the RSSI values of all incoming signals from the neighboring
transmitters. Figure 7(a) plots the drop in the average RSSI
value when the user’s hand is placed at varying depths from
the receiver. We find that, on average, the drop in the aver-
age RSSI is higher if the user’s hand is placed closer to the
receiver. This happens because, when the hand is closer to
the receiver’s antenna, a larger number of incoming signals
from different transmitters are blocked. Therefore, we calcu-
late the drop in the average RSSI value when the user’s hand
first appears near the receiver. Thereafter, we calculate the
approximate initial depth of the hand using the relationship
established in Figure 7(a).

The depth of the user’s hand will not change in case the user
is drawing on a plane parallel to the receiver’s antenna. How-
ever, if the user’s hand moves in all 3 dimensions, the depth
value will not remain constant. By tracking the changes in
the average RSSI value across all transmitters, it is possible
to approximately determine the depth changes as well. We
try to further improve the accuracy of depth estimation by
analyzing the time difference between consecutive AoA min-
ima. Our intuition is that, if the hand is moving towards the
receiver, the time difference value between consecutive AoAs
will be smaller than if the hand is moving away from the re-
ceiver. By analyzing the time difference values, it is possible
to geometrically find the change in the hand’s depth. E.g.,
in Figure 7(b) let the user’s hand pass through 3 consecutive
Ao0As - AoAp, AoA1, and AoA, at times to, t1, and ¢z, respec-
tively. The depth of the hand changes by h; units between
to and ¢; and by hs units between ¢y and ¢2. Since we know
the initial depth of the hand at time ¢, we can compute the
coordinates of the points A, B, C, which capture the trajectory
of the hand if its depth remained constant. If d;,d. are the
distances between these coordinates (as shown in 7(b)), ge-
ometrically we can obtain the change in depth hs at time ¢,
as:

By = (d1 —|—d2) *a—dp 3)

(tan@zfl — tan@fl) * o

in which @ = (t1 — t0)/(t2 — to). By utilizing the above equa-
tion, we can determine the change in depth of the hand’s tra-
jectory. This, when combined with the hand’s initial depth,
allows us to track the hand’s absolute depth.

Determining horizontal and vertical coordinates

The spatial coordinates computed from an AoA when it at-
tains a minimum may not represent the exact coordinates of
the user’s hand. This is because, if the user’s hand does not
occlude the AoA completely but is placed near its trajectory,
the AoA's signal strength will still drop. Figure 7(c) shows the
drop in signal strength with increasing proximity of the hand
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AoA is proportional to the hand’s distance from the AoA.

to the AoA’s trajectory. The drop in signal strength can there-
fore suggest the approximate distance of the hand from the
coordinates computed from the AoAs azimuth and elevation
values. E.g., consider AoAy in Figure 8. If the drop in signal
strength the moment it attains its minimum value is 8.5 dB,
the hand’s actual location can be anywhere on the perimeter
of a circle with a radius of 5 cm. Further, the trajectory of
the user’s hand at that moment is also tangential to the same
circle.

We determine the location of the user’s hand on the circle by
analyzing the trend (increasing or decreasing) of the neigh-
boring angles’ signal strength values at the moment when
AoAp attains a minimum. If the signal strength of a neigh-
boring angle is increasing, then the hand’s direction is away
from it and vice versa. E.g., in Figure 8, the hand is mov-
ing towards AoA; and AoAjs but is moving away from AoAs.
Consider the unit vectors along the tangents in Figure 8 which
pass through the coordinates obtained from the neighboring
angles. The direction of a particular unit vector is towards the
angle if the angle’s signal strength is decreasing, and away
from the angle if it is increasing. The hand’s direction is
closer to the direction of a unit vector if the corresponding
angle’s signal strength is decreasing faster. Therefore, we ag-
gregate these unit vectors by computing their weighted aver-
age based on the rate of change of the corresponding angle’s
signal strength. Mathematically, if the rate of change in the
signal strength of the neighboring angle AoA; is v;, and the
corresponding unit vector is i,, the weighted average (U) is

n

> il *ddi

U="—— “
2, [vi

The direction of the aggregate vector U provides us the es-
timate of the hand’s direction. Observe in Figure 8, there
can be only 2 tangents to the circle whose direction matches
with that of /. The hand’s coordinate can be either of the
points where these two tangents meet the circle (A and B in
Figure 8). To select one of the two points, we (i) use the co-
ordinates of A or B to estimate signal strength drop for each
AoA based on the relationship established in Figure 7(c) and
(ii) calculate the actual signal strength drop for each AoA by

AoA, (RSSl increasing)
o

AOA, Ve
(RSSI decreasing) .

Tangent

wrea€erere Unit vectors

(RSS! decreasing)

Figure 8: Determining spatial coordinates for the user’s
hand when AoA, attains a minimum, using the signal
strength trend of neighboring angles.

comparing the currently measured signal strength value with
the initial one. Then, we can break the tie between A and B
by choosing the point which yields a more accurate estimate
of signal strength drop for most AoAs.

3.3 Dealing with large
environmental variations

We found in Section 2.4 that the changes in signal strength
due to random environmental related fluctuations have a dif-
ferent structure than the changes due to the user’s hand move-
ment. Such random fluctuations can be ignored by applying
filtering and by ignoring any signal strength drop which is
smaller than 3dB (Figure 5(b)). Large and gradual drop in
the signal strength of an AoA due to environmental variations
can still occur. If large environmental variations affect an AoA
near the hand’s trajectory, this will reflect in our trajectory
tracking error. However, if such an AoA is far away from the
hand’s trajectory, it needs to be detected as an outlier. Fur-
ther if the time interval between consecutive AoA minima is
too long, then they were probably a result of random envi-
ronmental fluctuation and not due to the hand’s motion. For-
mally, if 6;_; and 6, are two consecutive AoAs which demon-
strated a large drop in signal strengths at time ¢;_; and ¢,



and resulting into 2D coordinates C;—; and C; respectively,
we declare 6; as an outlier if

Ci—Ci_
\ 1] S

m 5
t; —ti—1 i )

where 7, is the maximum expected speed of the user’s hand,
which is fixed at 3 feet/second in our implementation. We
also declare both #;_; and 6; as outliers if the time duration
between them is more than a threshold (7):

ti—tic1>T 6)

To determine the accuracy of identifying the AoAs whose sig-
nal strengths change due to the hand’s motion and not be-
cause of large environmental fluctuations, we collected 2 sets
of traces over a duration of 6 hours. The first trace consists
of AoA data when the user draws in front of the receiver’s an-
tenna, while in the second trace she is sitting idle in front of
the receiver. Table 1 shows the accuracy and false positives of
identifying the relevant AoAs computed from the above 2 sets
of traces. If we consider AoAs that undergo a significant drop
in signal strength within a considerably long duration (7" in
Equation 6) as valid, false positives expectedly increase, and
so does accuracy. However, as long as we reject AoAs that un-
dergo minima beyond 1.5 seconds, it is possible to maintain
low false positive rate with a slight decrease in accuracy. We
further note that while using a threshold of 1.5 seconds, 13
short trajectories were falsely recorded within a duration of
6 hours, implying that our false positive rate is less than 0.04
events/minute.

4. DESIGN AND IMPLEMENTATION

In this section, we present WiDraw’s detailed design.

4.1 Setup and implementation details

In our solution, we equip the laptop with a wireless network
card equipped with Atheros 9590 chipset. The network card
is attached to 3 antennas and is able to extract the Chan-
nel State Information (CSI) from all antennas on receiving a
wireless frame. The reported CSI is a matrix containing one
complex number per subcarrier and per receive antenna at the
receiver. During the calibration period, the Atheros card is set
in monitor mode to capture the MAC addresses of neighbor-
ing 802.11 devices — both APs and clients. If the neighboring
device is a client, WiDraw may need to probe it to obtain the
CSI information from the received ACK. To keep the prob-
ing overhead low, the WiDraw receiver uses link layer NULL
frames to probe a client device. Note that neighboring devices
will respond to the NULL frame with an ACK, irrespective of
their connection state. Thereafter, WiDraw uses the CSI val-
ues from the ACK to compute and analyze the AoA values.

Time duration

threshold (sec) Accuracy | False positives

0.5 84.8% 0.02%
1.0 87.8% 0.03%
1.5 89.5% 0.06%
2.0 91% 0.11%

Table 1: Accuracy & false positive rate of identifying the
relevant AoAs whose signal strength changes due to hand
occlusions and not due to environmental fluctuations.

Implementation details WiDraw is implemented as a combi-
nation of driver modifications and user-space programs. The
WiFi driver collects CSI and RSSI values of incoming signals
and sends it to a userspace program written in C. The userspace
program calculates the 1-D AoAs using MUSIC. It also calcu-
lates the azimuth and elevation values for each AoA and re-
ports these values along with the signal strength changes over
time to another module written in MATLAB, which uses this
information to track the hand’s trajectory.

4.2 Transmitter selection

Apart from APs, WiDraw should only utilize stationary client
devices for AoA estimation since, if the device is mobile, its
AoA values will not be stable. To determine if a device is
actually static, we adopt the algorithm as studied in [13].
Briefly, we compute the correlation of the CSI values over
time, which captures the similarity between a current and a
past CSI value. Low correlation values imply rapid changes
in the wireless channel between the client device and the
WiDraw receiver, due to mobility or environmental variations.
Therefore, in our implementation, we avoid clients whose CSI
correlation values are lower than 0.9. Further, we observe
that the user will mostly draw in front of the laptop’s screen.
Therefore, we optimize by selecting only those transmitters
whose AoAs fall within the same region.

4.3 Azimuth and elevation estimation after user
initiated calibration

The transmitter selection procedure runs during the user ini-
tiated calibration phase when the azimuth and elevation of
the AoAs are identified. After the calibration is completed, the
AoA value of a chosen client device may change. Further, new
client devices whose AoAs can be suitably used for trajectory
tracking may appear in the neighborhood. It is impractical
to ask the user to calibrate whenever such changes happen.
To detect the azimuth and elevation values of these unknown
AoAs without calibration, we track their signal strength while
a user is drawing in the air. If an unknown AoAs signal
strength demonstrates a minimum at a given moment, we
choose the coordinates obtained by the AoAs whose minima
occurred right before and after the unknown AoA. Thereafter,
we compute the coordinates of the user’s hand during the
unknown AoA’s minimum as a weighted average of the two
chosen coordinates. Once the coordinates are known we use
Equation 2 to compute the azimuth and elevation of the un-
known AoA. Thereafter, the new AoA can be used to track the
user’s hand.

4.4 System architecture

Figure 9 shows the overall architecture of WiDraw. During
the calibration phase, the laptop’s WiFi card is set in monitor
mode to capture MAC addresses of nearby 802.11 devices and
select the initial set of transmitters (Section 4.1). During the
same phase, the receiver uses the CSI of incoming signals and
MUSIC to estimate their 1-D AoA values (Section 2.1). Then,
the user is asked to rotate the laptop and the system calculates
the azimuth and elevation of each AoA (Section 3.1).

During normal operation, the WiDraw receiver periodically
collects RSSI and CSI from incoming signals. Then, it uses
CSI correlation values over time (Section 4.2) and filtering
(Section 3.3) to filter out signals from mobile clients or those
affected by large environmental variations. For stable AoAs,
WiDraw processes the RSSI value and obtains an estimate of



the hand’s depth (Section 3.2). If a minimum signal strength
value of an AoA is detected, the depth estimation is refined
using Equation 3. If the azimuth and elevation of the AoA are
known, we use the algorithm in Section 3.2 to estimate the
hand’s coordinates. Otherwise, for unknown AoAs, the hand’s
coordinates are estimated as the weighted average of the co-
ordinates of two known neighboring AoAs (Section 4.3).

] Initial calibration

Set card in monitor mode, capture MAC
addresses of nearby 802.11 devices (4.1)
]

Use CSl and MUSIC to estimate
1-D AoA values (2.1)

Rotate laptop, calculate
azimuth and elevation (3.1)

Tx stable?
4.2,3.3
Yes

RSSI Processing,
: depth estimation (3.2)

Skip ,
transmitter :

| RSS min No
detected? .
: Refine :
: depth (3.2)

]

Estimate new AoA’s
coordinates (4.3)

' Estimate hand'’s
coordinates (3.2)

Figure 9: WiDraw Architecture.

5. EVALUATION

In this section, we evaluate WiDraw’s trajectory tracking ac-
curacy when the user draws 2D and 3D lines, curves, and
English alphabetical characters. Unless otherwise stated, the
user sits in front of the laptop and starts drawing at a location
within 2 feet distance from the laptop’s antenna, at an ap-
proximate speed of 1.5 feet/second. We evaluate WiDraw in
a typical office building during normal business hours as well
as a busy cafeteria. In the default case, the laptop computes
AoA values from 30 neighboring transmitters, including both
APs and client devices. For each transmitter, WiDraw com-
putes the AoA values 20 times/second.

Ground truth collection: We compute the ground truth of
the hand’s trajectory by collocating a Leap Motion controller
[2] with the laptop’s WiFi antenna. Leap Motion reports the
3D location of the palm in millimeters w.r.t. the Leap Motion
controller as the origin, which we use as the ground truth
coordinates of the user’s hand. WiDraw’s tracking error is
computed by calculating the point-by-point position differ-
ence between the ground truth trajectory and WiDraw’s es-
timated trajectory.

5.1 2D Tracking Evaluation

We begin by evaluating the accuracy of tracking a total num-
ber of 8448 2D movements including line segments and circu-
lar curves on a 2D plane parallel to the laptop’s screen. Fig-
ure 10(a) shows the distribution of tracking errors for both
lines and curves. The error increases with increasing depth
from the laptop’s antenna (Figure 10(b)). The impact of in-
creasing depth is twofold: first, the distance between con-
secutive coordinates obtained from the AoAs becomes larger;
second, the drop in signal strength at a particular AocA due
to hand occlusion becomes weaker and may be mistakenly
attributed to environmental noise. Nonetheless, at a depth
of 2 feet (60 cm) from the laptop, WiDraw’s median track-
ing error is 5.4 cm. The median tracking error does not re-
duce significantly if the neighboring APs or client devices are
probed with a greater number of probe packets every second
(Table 2). WiDraw’s tracking error also does not accumulate
over time. Table 2 shows that WiDraw can track reasonably
long trajectories (up to 300 seconds) with only a slight in-
crease in estimation error. WiDraw’s tracking error however
depends on the number of neighboring transmitters used for
AoA estimation (Figure 10(c)). Nonetheless, even by using
only the 12 neighboring transmitters, WiDraw can track the
user’s hand with a median error lower than 6.4 cm.

Drawing time (seconds)
Packets/sec —5——=5-T—60 T 120 | 300
100 441 | 4.76 | 4.77 | 4.81 | 4.82
50 4,42 | 5.01 | 5.05 | 5.06 | 5.05
25 4,83 | 5.01 | 5.11 | 5.09 | 5.09
10 5.22 | 5.34 | 5.71 | 5.76 | 5.76

Table 2: Median tracking error (cm) for varying probing
frequency and drawing time.

5.2 3D Tracking Evaluation

We evaluate the accuracy of WiDraw in distinguishing be-
tween 2D and 3D movements and tracking the 3D move-
ments. The user draws a total of 1560 straight lines or curves
while moving the hand either towards or away from the lap-
top. Table 3 shows the accuracy and false positives of dis-
tinguishing between 2D and 3D movements by utilizing the
change in the average RSSI value, as described in Section 3.2.
Once we determine that the user is drawing in all 3 dimen-
sions, we start tracking the changes in the hand’s depth by us-
ing the algorithm specified in section 3.2. Figure 11(a) shows
that while WiDraw can often estimate the depth change with
less than 10% error, there are occasions when the estimated
depth change does not conform with the actual depth change,
resulting into tracking errors. Figure 11(b) shows the distri-
bution of the 3D trajectory estimation errors. The median
tracking error (8.6 cm) is higher than in the case of 2D trajec-
tories because of an additional error introduced by changing
depth values. Therefore, we find that the 3D tracking error is
proportional to the depth estimation error (Figure 11(c)).

5.3 Tracking English Characters

Next, we evaluate if WiDraw can effectively track the trajec-
tory of English characters drawn by the user. English charac-
ters are more difficult to track than simple drawings because
they consist of multiple sharp turns, segments, etc. In our
study, we used 75, 880 characters drawn by a total of 3 users.
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Detection result(%)
Ground Truth 5D 3D
2D 98.36 1.64
3D 2.81 97.19

Table 3: Distinguishing between 2D and 3D trajectories.

We designed experiments to determine the dimensions of the
3D area, near the receiver, within which WiDraw can effec-
tively identify the letters drawn by the user. We asked the
users to draw letters of different sizes naturally, at varying
distance from the receiver. Figures 12(a) and 12(b) show the
distribution of trajectory tracking error when the users draw
characters at increasing depth and horizontal distance from
the receiver respectively. We observe that, for a depth and
horizontal distance smaller than 2 feet, the median tracking
error remains lower than 5.2 cm.

Figure 12(c) shows that the tracking error increases with the
letter size, since, for large sizes, some segments of the trajec-
tory will be farther away from the receiver’s antenna. How-
ever, notice that the tracking error does not fully capture the
WiDraw’s capability of identifying letters. Even with large
tracking errors, WiDraw’s estimated trajectory can be success-
fully recognized by a simple handwriting recognition app if
there are enough AoA minima, as we evaluate in the next
section. This happens because WiDraw’s errors are not inde-
pendent random errors. Most of the errors are due to depth
estimation errors or lack of motion information between two
AoA minima. Therefore, although the tracking error is a few
centimeters, the estimated trajectory is either an enlarged or

squeezed version of the original letter. Similarly, a very small
tracking error may not yield high recognition accuracy if there
are not enough AoA minima to capture every segment of the
trajectory. As an example, from the results in Figure 12(c) we
find that for a reasonable letter size of 30 cm, WiDraw’s me-
dian tracking accuracy is approximately 4.1 cm. In the next
section, we show that even with such errors, a simple hand-
writing recognition app can successfully identify the letters in
up to 98% of the cases.

5.4 Evaluation in different environments

The above results demonstrate WiDraw’s performance in an
office environment. In this section, we evaluate WiDraw’s
performance in a busy cafeteria and in NLOS environments
where the user’s hand is not visible to the receiver. In the
cafeteria experiment, a user draws several curves and letters
at a distance of 1 foot from the laptop screen. Figure 13(a)
plots WiDraw’s tracking error when dealing with environmen-
tal noise and automatically adjusting for changes in AoA val-
ues. The error is higher than in the experiments in the of-
fice building because of the environmental noise. Recall that
WiDraw computes the azimuth and elevation values of the
AoA by asking the user to turn the receiver around its Z-axis.
Figure 13(b) shows the median tracking error over time after
a user calibration. Figure 13(b) also shows the tracking error
over time in an NLOS scenario when the WiDraw receiver is
placed in a bag, while the user is drawing lines in the air at a
distance of 1 foot from it. We find that after 1 hour since cal-
ibration, the median tracking error in both the LOS and the
NLOS scenario is within 6 cm.
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6. USING wipraw FOR TEXT INPUTS

In this section, we show how WiDraw can be used to allow
the user to reliably input texts to a computer by writing in
the air. Similar to the approach in [7], we interface WiDraw
with the MyScript Stylus app on Android [14]. As the user
writes in the air, we feed WiDraw’s estimated trajectory into
MyScript and we use its handwriting recognition functional-
ity to interpret the text written by the user. Using MyScript’s
output, we evaluate the character and word recognition ac-
curacy of WiDraw. We begin by studying the effect of various
constraints on letter recognition accuracy.

6.1 Letter Recognition Accuracy

Table 4 shows WiDraw’s letter recognition accuracy for both
capital and small letters drawn by the user. The accuracy
drops with increasing depth and horizontal distance of the
user’s hand from the receiver’s antenna. WiDraw’s letter recog-
nition accuracy is less than 80% beyond 2 feet from the re-
ceiver. The above results suggest that for good results the
user should draw the characters within a 3.3 x 2 x 2 cubic feet
area in front of the laptop’s antenna. The letter recognition
accuracy also decreases with decreasing character sizes (Fig-
ure 14), but the accuracy is quite high for sizes greater than
30 cm. We find that even if the median trajectory tracking er-
ror for letters is around 5 cm (as demonstrated in section 5.3),
characters of reasonable sizes can still be recognized because

most of the errors are due to transformation and distortion in
the shape of the trajectory rather than independent position-
ing errors.

Horizontal Depth (cm)
range (cm) 30 40 50 60
0-30 0.98/0.97 | 0.95/0.87 | 0.95/0.82 | 0.91/0.80
10-40 0.98/0.96 | 0.96/0.94 | 0.92/0.87 | 0.89/0.79
20-50 0.96/0.92 | 0.90/0.83 | 0.89/0.80 | 0.87/0.77
30-60 0.88/0.89 | 0.85/0.78 | 0.85/0.79 | 0.76/0.73
Table 4: Letter recognition accuracy for upper-

case/lowercase English letters (letter width 30 cm).
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Figure 14: Letter recognition accuracy decreases with de-
creasing width of the letters. Distance from Rx: 1 foot.

6.2 Writing Words using wiDraw

WiDraw allows users to write cursive words in the air. The av-
erage size of a user’s handwritten letter that is supported by
WiDraw is around 30 cm. Further, the width of the horizontal
plane on which the user can write is limited to 100 cm. There-
fore, while writing words, we allow the users to write up to
3 characters contiguously. If a word consists of more than 3
characters, the user needs to start drawing the 4th character
from the beginning of the line. Figure 15(a) shows WiDraw’s
estimated trajectory when the user writes "widraw" in the air.
Notice that the estimated trajectory overlaps "wid" with "raw"
and includes a horizontal line between the 3rd ("d") and the
4th ("r") character and hence it is hard to recognize. WiDraw
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different users when the users write continuous sentences.

determines this horizontal line, removes it from the trace,
and then places every 3 letters in sequence (Figure 15(a)).
The horizontal line separating two groups of 3 letters will be
close to 90 cm since each letter’s approximate width is 30 cm.
Therefore, if the user is drawing words, WiDraw determines
any horizontal straight line which is more than 2 letters wide
(> 60 cm) and then segments the trace into separate halves
based on the starting and ending coordinates of the straight
line.

We evaluate WiDraw’s word recognition accuracy by estimat-
ing the trajectories of 1000 words drawn by 3 users at a dis-
tance of 1 foot from the receiver, and thereafter feeding these
trajectories into the MyScript Stylus app. Figure 15(b) shows
WiDraw’s word recognition accuracy as a function of the num-
ber of letters in the word. Expectedly, as the word gets longer,
it is more difficult to recognize it correctly,. However, even
by using a simple handwriting recognition software such as
MyScript, the average word recognition accuracy is more than
91%. Of course the accuracy can be improved by using ad-
vanced techniques in natural language processing [15].

6.3 Writing Sentences using WiDraw

To enable the user to write sentences using WiDraw we ask
the users to pause for a moment (typically 1 second) between
consecutive words. Since the user pauses between words,
there will be a little change in the signal strength of different
AoAs in between two words. Therefore, to segment words
in a sentence, we track the rate of change in signal strength
of different AoAs. If the signal strength of a threshold per-
centage of AoAs does not change for more than 500ms, we
classify it as a pause and segment the words accordingly. The
accuracy of pause detection reduces slightly if we increase the
threshold of the percentage of AoAs. However, false positives
may imply wrongly breaking up a single word into multiple
words. In our implementation, we chose a threshold of 92%
since it results into no false positives and achieves a high word
segmentation accuracy of 96%.

An undetected pause may not necessarily mean an error in
word recognition. This is because MyScript can sometimes
detect if a sequence of characters actually consist of multiple
words. To evaluate the accuracy of writing multiple words we
asked 10 users to write a passage of 100 words continuously
in the air, with 3 characters per line and a pause between two
words. Figure 15(c) shows that even with a simple Android
handwriting recognition software such as MyScript, WiDraw’s

word recognition accuracy for continuous writing is higher
than 85% across all users. Note that, for the evaluation of
RF-IDraw [7], the system closest to ours, the authors manu-
ally segmented the user’s writing into words. As pointed out
in [7], standard segmentation methods from natural language
processing [16] can be used to further improve the word seg-
mentation accuracy. Overall, the result in this section implies
that WiDraw can be used to input different kind of texts to the
mobile device.

7. RELATED WORK

Gesture recognition and hand motion tracking related research
can be classified in three types.

Camera-based Vision-based gesture recognition has been a
well-researched topic for over two decades [17,18]. Recent
works use depth cameras (e.g., [1]) or infrared cameras (e.g., [2,
19]) to enable in-air 3D human computer interactions. De-
spite their popularity, these approaches require a dedicated
hardware setup and LOS to the user.

Motion sensor-based Some recent works rely on motion sen-

sors available in today’s smartphones to perform gesture recog-
nition, or allow the user to write in the air (e.g., [20, 21]).

Others make use of such sensors on wearables such as smart-

watches [22], armbands [23], wristbands [24], and rings [25,

26]. In contrast to WiDraw, all motion-based systems require

an external device such as a smartphone or a wearable. More-

over, most of these approaches rely on machine learning to

achieve fine-grained gesture recognition.

RF-based WiDraw belongs to a recent class of systems which
employ RF signals to enable a user to interact with their envi-
ronment in both LOS and NLOS scenarios [3-8,27,28]. Most
of these works [3-6, 8,27] require the use of custom wireless
hardware and/or signal processing capabilities unavailable on
off-the-shelf devices. In addition, several solutions [3-5,8] re-
quire a priori learning of the effect of hand motions on wire-
less signal patterns, which allows them to recognize only a
pre-defined set of gestures; others [6,27] focus on human
motion tracking rather than fine-grained gesture recognition
and can only identify coarse-grained gestures (e.g., a pointing
gesture).

Wi-Fi Gestures [28] and WiGest [29] are the only two works
to our best knowledge that perform WiFi-based gesture recog-
nition using RSSI and CSI information from off-the-shelf de-
vices. However, they also rely on a priori learning, and as a



result, they can only classify a few simple gestures. Lastly,
RF-IDraw [7] is the first RF-based system that can accurately
track the trajectory of the hand, enabling a virtual touch screen
based on RF signals. While RF-IDraw can achieve good track-
ing accuracy, it requires the user to hold an RFID transmitter,
similar to motion sensor-based solutions.

WiDraw’s contribution: In contrast to previous solutions,
WiDraw is the first hands-free motion tracking solution that
can be enabled on existing mobile devices using only a soft-
ware patch, combining the desired features of the above two
approaches. Similar to Wi-Fi Gestures and WiGest, it uses in-
formation readily available from commodity devices, without
requiring the user to hold any device; and similar to RF-IDraw,
it can identify an arbitrary number of fine-grained gestures
without any requirements of a priori learning.

8. DISCUSSION AND LIMITATIONS

Gesture recognition vs. hand motion tracking: In-the-
air user interfaces can be divided into two classes. The first
class is based on defining a limited set of gestures and us-
ing machine learning to learn patterns and classify gestures
into the learned categories [3-5,8,28]. The second class in-
cludes interfaces enabled by systems such as RE-IDraw [7]
and WiDraw. These interfaces require no priori learning and
can track an arbitrary set of hand motions, enabling a much
richer set of applications.

Distance from the receiver’s antenna: Our prototype achieves

satisfactory tracking accuracy if the hand is within 2 feet from
the receiver’s antenna. The error at larger distances can be
reduced if the receiver is equipped with a larger number of
antennas. One way to achieve this is to equip the receiver
with multiple wireless cards [10]. Future mobile devices may
also be equipped with more antennas — the 802.11ac stan-
dard [30] provides support for up to 4 antennas on client
devices.

Number of transmitters: WiDraw requires at least a dozen
of transmitters in order to track the user’s hand with high ac-
curacy. We believe this number is not a challenge in today’s
enterprise and home environments in urban areas. A recent
study [31] reports a median number of 17 and a maximum
number of 78 neighboring APs in dense urban environments.
This number can be further reduced if the receiver is equipped
with a larger number of antennas, which is the current trend
as mentioned above. Alternatively, if the number of APs is not
sufficient, WiDraw may also use nearby clients. We further
emphasize that, similar to other RF-based motion tracking sys-
tems, WiDraw does not require LOS between the transmitter
and the receiver.

Probing overhead: If the number of neighboring APs is not
sufficient, or if we need a higher frequency of CSI sampling,
WiDraw may also probe APs or nearby clients. We believe
that this probing overhead can be kept low. For example,
Table 2 shows that the tracking error does not increase signif-
icantly when the probing frequency is reduced from 25 pack-
ets/second to 10 packets/second (a typical beacon transmis-
sion rate). We leave a detailed study of the impact of probing
on the performance of other ongoing WiFi transmissions as
future work.

Calibration: WiDraw asks the user to turn the laptop for az-
imuth and elevation computation during setup. An alterna-

tive approach we plan to investigate as part of our future
work is to ask the user to perform a set of pre-defined ges-
tures (similar to Leap Motion [2]) and compute the azimuth
and elevation by observing the angle minima.

Depth estimation error: The 3D tracking error of WiDraw
is larger than the 2D error primarily due to the difficulty in
accurately tracking depth changes; improving the depth es-
timation error is part of our future work. However, note
that, while accurate 2D motion tracking is required for en-
abling a virtual touch screen, several applications often need
only a very small set of 3D gestures (e.g., push, pull in gam-
ing), where distinguishing between 2D and 3D motion (which
WiDraw achieves with 97% accuracy) is more critical than ac-
curately tracking the depth change.

9. CONCLUSION

This paper introduced WiDraw, the first hand motion track-
ing system in both LOS and NLOS scenarios using commod-
ity WiFi cards. WiDraw harnesses the AoA values of incom-
ing wireless signals utilizing the intuition that whenever the
user’s hand occludes a signal coming from a certain direction,
the signal strength along that direction will experience a drop.
Unlike prior solutions, WiDraw can be enabled on today’s mo-
bile devices using only a software patch, without requiring
the use of any wearable or any dedicated hardware setup.
Our prototype using commodity wireless cards can track the
user’s hand with less than 5 cm error on average. We also
use WiDraw to implement an in-air handwriting application
that achieves an average word recognition accuracy of 91%.
We believe that WiDraw can open up a whole new class of
applications in human-computer interaction.
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