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Width-Modulated Square-Wave Pulses for

Ultrasound Applications
Peter R. Smith, Student Member, IEEE, David M. J. Cowell and Steven Freear, Senior Member, IEEE

Abstract—A method of output pressure control for ultrasound
transducers using switched excitation is described. The method
generates width-modulated, square-wave pulse sequences that
are suitable for driving ultrasound transducers using MOSFET
devices or similar. Sequences are encoded using an optimized
level-shifted, carrier-comparison, pulse-width modulation (PWM)
strategy derived from existing PWM theory, and modified
specifically for ultrasound applications. These modifications are:
a reduction in carrier frequency so that the least amount
of pulses are generated and minimal switching is necessary;
alteration of a linear carrier form to follow a trigonometric
relationship in accordance with the expected fundamental output;
and application of frequency modulation to the carrier when
generating frequency modulated, amplitude tapered signals.

The PWM method permits control of output pressure for
arbitrary waveform sequences at diagnostic frequencies (approx-
imately 5 MHz) when sampled at 100 MHz, and is applicable
to pulse shaping and array apodization. Arbitrary waveform
generation capability is demonstrated in simulation using convo-
lution with a transducer’s impulse response, and experimentally
with hydrophone measurement. Benefits in coded imaging are
demonstrated when compared with fixed-width square-wave
(pseudo-chirp) excitation in coded imaging, including reduction
in image artifacts and peak sidelobe levels for two cases, showing
10 dB and 8 dB reduction in peak sidelobe level experimentally,
compared to 11 dB and 7 dB reduction in simulation with
the Field II package. In all cases the experimental observations
correlate strongly with simulated data.

I. INTRODUCTION

A
N ultrasound system uses a transducer to convert electri-

cal signals into pressure waves which propagate through

a medium, such as human tissue, and reflect back towards the

transducer when encountering an impedance mismatch. The

transducer converts the reflected pressure waves into electrical

signals that are captured and processed to enable non-invasive

measurement or imaging. Imaging transducers often contain

arrays of elements, each of which ideally requires a transmitter

circuit for greatest flexibility, thus necessitating an array of

transmitter circuits. Advances in areas of ultrasound such as

high frequency imaging [1] and portable, low-cost system

development [2], [3], place a burden on the complexity and

requirements of an ultrasound transmitter, particularly when

the design is required to be scaled over many channels.

Complexity may also increase as future trends seek to integrate

excitation electronics into the transducer probe head which has

a number of benefits, including improved impedance matching
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and reducing the unwieldy cable bundle between system and

probe [4].

High frequency linear power amplifiers are well-suited to

the electrical requirements of ultrasound transmitters, how-

ever are often large, bulky and expensive components. An

alternative transmitter solution to linear power amplifiers is

the use of MOSFET semi-conductor pulser devices. These

components use switched excitation to select between sev-

eral positive and negative voltage levels. Switching between

discrete levels results in square-wave or staircase (stepped)

pulses which approximate sinusoidal signals as described

in [1]–[11]. MOSFETs are advantageous particularly over

linear power amplifiers as they are capable of delivering high

currents to piezo-electric loads [12], in small scale, low-cost,

integrated packages and are more suited for use with arrays

of channels. The nature of MOSFET switched excitation often

results in pulses with uniform fixed amplitude. Whilst it is

possible to adjust switching levels between firings, it is often

desirable to control pulse amplitude throughout the duration of

the excitation for several applications within therapeutic and

diagnostic ultrasound.

An example application that requires amplitude control, or

arbitrary waveform capability is transmit array apodization.

This technique is known to improve diagnostic imaging, by

reducing pressure around the mainlobe, thus lowering scatter-

ing from targets outside the intended beam. Array apodization

requires a different amplitude weighting to be applied to each

element [13], [14], thus requiring per-element transmit flexibil-

ity. A second example application includes coded imaging - an

established technique of increasing SNR in ultrasound systems

which has been well discussed in previous literature such as

[15] and set of papers [16]–[18]. In general, the technique

relies upon the correlation between the transmitted pulse and

received signal to distinguish between low intensity echoes

generated by weak scatterers and the ambient noise floor. Most

often, linear frequency modulated (LFM) signals are chosen

over phase modulated signals as they do not require multiple

transmissions and do not contain abrupt changes in phase. In

the case of frequency modulated signals, the embedded ‘code’

is the rate of the increase (or decrease) from a start frequency

to the stop frequency, over time. Frequency Modulated coded

transmissions benefit greatly from amplitude tapering at the

start and end of the pulse. This technique therefore requires a

transmitter capable of generating frequency modulated trans-

mission signals and applying a desired tapering function.

Pulse width modulation (PWM) is an established technique

used throughout engineering to control switched mode output.

In its simplest form, the duty cycle or on/off ratio of a square

wave is adjusted in proportion to a desired, time-averaged
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output. PWM has a wide range of applications due to its

relatively low cost, ease of implementation and high effi-

ciency. Previous literature has described adjusting switching

thresholds (and hence pulse widths) of square wave pulses

to eliminate harmonics in the transmitted output [8]. The

objective of [8] was not to control pulse shape or amplitude

however, but to reduce harmonic content. A recent paper [11]

discussed the advantages of MOSFET bipolar pulsers, partic-

ularly with respect to the large amplitude outputs available,

but dismissed the use of MOSFETs for generating arbitrary

excitation, stating a lack of control over pulse characteristics.

In contrast, authors such as Persson have previously described

varying the width and shape of very short square-wave pulses

to effect the transmitted pressure output [19] which showed

potential for amplitude control. It is the objective of this

work to investigate the use of PWM strategies for ultrasound

applications, thus providing control of pulse characteristics and

arbitrary waveform capability, using high-voltage switched-

mode sequences.

There are many forms and implementations of PWM, par-

ticularly in power converters where a wealth of literature is

available as summarized in [20]. For ultrasound applications a

number of aspects differ from conventional implementations.

Traditional PWM strategies use a multitude of pulses to de-

scribe the modulating waveform. This requires rapid switching

of the transmitter circuit at a rate much greater than the output

frequency and is often used in combination with an output

filter [21]. This form of rapid switching and reconstruction is

similar to a sigma-delta modulation strategy as proposed by

Huang and Li [22]. A sigma-delta implementation generates

multiple switching events in response to an integration stage

operating on a sample by sample basis. The train of pulses

are time-averaged over the duration of the half cycle, with the

density of the pulses defining the resultant output amplitude.

Consequently, for low- or mid-amplitude signals, multiple

sparsely distributed pulses are generated with durations that

are very small. The technique proposed in this work differs,

as it seeks to minimize the number of switching events to one

pulse per half cycle as in a pseudo-chirp representation, but

modulate the width of each of the pulses in the sequence.

Widths are modulated by using the characteristics of the

transducer as a bandpass filter and considering the transducer’s

response to a square-wave input. The transducer’s bandwidth

is of key importance, as it’s frequency response restricts which

frequencies within a square-wave are transmitted into the

medium. The PWM method described provides a solution to

address the reported inflexibility of high voltage bipolar pulser

devices for generation of windowed or arbitrary waveforms,

as described in recent literature such as [10] and [11].

The paper is structured as follows: Section II discusses a

simple form of PWM sequence generation using a carrier

based comparison method [23]. Modifications to the conven-

tional carrier are described to make the output suitable for

ultrasound with an adjusted algorithm defined. Section III

demonstrates how pressure control can be obtained using the

PWM strategy with potential applications in both diagnostic

and therapeutics. Section IV further modifies the carrier to

accommodate frequency modulated sequences, with improve-

Fig. 1. Examples of Triangular (sawtooth) Symmetrical Pulse Width
Modulation. Consisting of a carrier (dotted line), and a desired output level
(grey solid line). A comparison algorithm using the carrier and a desired
level, generating a width modulated pulse (black solid line). The triangular
form of the carrier generates symmetrically modulated PWM with both the
leading-edge, and trailing-edge of the square-wave modulated.

Fig. 2. Diagram of conventional carrier-based PWM featuring the carrier
c(t) and modulating wave m(t).

ments in coded imaging demonstrated using PWM to apply

pulse tapering as described by [16], [17]. The paper ends with

a discussion of the method and a summary of conclusions.

II. PWM AND MULTILEVEL PWM

A. Overview of carrier-based PWM

Conventional carrier-based PWM compares a carrier of

known form to a desired output level or modulating wave

thus generating pulses of varying widths [23]. Fig. 1 shows

three examples of modulation with an often-used triangular

carrier generating three symmetrically modulated pulses after

comparison with desired d.c voltage levels.

The conventional triangular carrier assigns a pulse width

from a desired output level in a linear fashion. The width of

the pulse is therefore directly proportional to the desired d.c.

level. A linear triangular carrier may be defined as:

c(t) = A · |(2/π)(sin−1(sin(ωt + φ)))| + L (1)

where A is a scaling factor, t is time, φ is phase, L is

an arbitrary d.c. offset and ω = 2πf with f representing

frequency. The triangular carrier described by (1) can be used

to modulate the widths of successive pulses by comparing

said carrier to a modulating wave m(t). With this method,

the square wave is ‘high’ or ‘on’ whilst c(t) < m(t). In most

applications m(t) is of much lower frequency than the carrier,

resulting in multiple pulses of varying widths, with the ratio

of carrier frequency to modulating frequency determining the

number of pulses per cycle, as demonstrated in Fig. 2.

In digital implementations of PWM, both the carrier and

modulating wave are discrete representations of a continuous

signal. A second relationship then exists between c(t), m(t)
and the overall sampling frequency fs. For this work, due to

the high frequency of the excitation signal to be described, a
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single pulse per half cycle relationship was defined, resulting

in two width-modulated (i.e. one positive and one negative)

pulses for a single cycle. This reduces switching losses, lowers

the required sampling frequency and relaxes the specification

of the transmit output circuitry.

For ultrasound applications, and for a single half cycle

square-wave pulse, it can be shown that whilst output pressure

is proportional to the width of the pulse, it is not directly or

linearly proportional to the width of the pulse. That is to say

that a linear relationship between pulse width and pressure

output does not exist, with a percentage increase in pulse

width not providing the same percentage increase in output

pressure. Therefore a triangular or sawtooth carrier as defined

in (1) and shown in Fig. 1 and Fig. 2 is not appropriate. This

can be explained by considering the transducer as a bandpass

filter with a defined bandwidth within which it is sensitive

to a particular range of frequencies. The resultant pressure

wave can be modelled as a convolution between the input

signal, and the impulse response of the transducer which has

a defined bandwidth. Frequencies outside of the transducer’s

bandwidth are heavily attenuated with almost no out-of-band

energy transmitted by the transducer through the medium. It is

therefore the relationship between a linearly increasing pulse

width, and the output magnitude of the frequencies within the

transducer’s bandwidth which must be considered.

The relationship between harmonic content and switching

angle for square wave signals can be calculated using Fourier

series analysis [21]. Fig. 3 shows a bipolar square wave with

variable angle δ and Fourier series

f (t) =
a0

2
+

∞
∑

n=1

(an cos nt + bn sin nt) (2)

a0 = 0,

an = 0,

bn =
2V

nπ
cos(nδ) [1 − (−1)

n
] (3)

f(t) =

∞
∑

n=1

(

2V

nπ
cos(nδ) [1 − (−1)

n
] sinnt

)

(4)

where a0, an and bn are Fourier series coefficients, and a0

and an are equal to zero due to a lack of d.c. component and

rotational symmetry respectively, and V is the peak amplitude.

If δ is varied linearly between 0 and π/2, then the magnitude

of the bn in (3) decreases as shown in Fig. 4 and described

previously for power converters by Bedford and Hoft [21]. It

can be seen from Fig. 4 that the relationship between a linearly

increasing switching threshold or square wave pulse width, and

the magnitude of harmonic component that the relationship

between the pulse width and fundamental output is indeed not

linear, but trigonometric.

If we consider that the magnitude of the fundamental is of

most importance due to the influence of the transducer, then

pulse widths must be assigned according to this relationship,

and not using a linear carrier as discussed in conventional

−π −π+δ −δ 0 δ π−δ π

−V

0

V

Bipolar square wave with variable switching angle δ

Fig. 3. Bipolar square wave with variation of switching angle δ
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Fig. 4. Harmonic energy within a Pulse Width Modulated square wave of
increasing width with switching angle. Absolute values are normalized to the
fundamental [21].

PWM. For carrier comparison PWM, this requires a change

in carrier form.

B. Trigonometric Carrier Definition

Optimization of the carrier to provide a non-linear increase

in pulse width for a linearly increasing desired output can be

defined like so:

c(t) = A · | cos(ωt + φ) | + L (5)

When the carrier defined by (5) is used in a carrier-

comparison PWM method, symmetrically modulated PWM

sequences are generated, with both the leading and trailing

edges modulated simultaneously [23]. Fig. 5 demonstrates

the difference between a traditional triangular carrier and the

proposed trigonometric carrier, with both carriers scaled within

the range 0 ≤ c(t) ≤ 1.
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Fig. 5. Comparison of a triangular (grey dashed) vs a trigonometric (black
solid) carrier.

C. Extension to Multiple Level PWM

Typically, several d.c. voltage levels are used to describe the

desired excitation. Indeed the use of multiple level MOSFET

switching circuits is commonplace for switching inverters [24]

but also applies to ultrasound [10], [25]. The use of multiple

levels is advantageous for PWM as it increases the number of

available states with which to describe the desired amplitude,

at a cost of increased hardware.

For multi-level carrier comparison PWM, strategies exist

in power converter theory which are applicable to ultrasound.

In the case of level-shifted carrier comparison PWM, each

switching leg or MOSFET is assigned a carrier, with the carri-

ers scaled to cover the defined region of switching, contiguous

in amplitude, but with a d.c. offset [23] as described in (5).

Examples of three-level and five-level carrier definitions using

level-shifted carriers are shown in Fig. 6.

D. Generation of PWM Sequences

The carrier comparison methods generate PWM sequences

using an algorithmic approach. It is therefore appropriate to

first explain conventional algorithms as discussed in common

literature before explaining the proposed algorithmic change.

Therefore, bipolar (three-level) PWM sequences can be gener-

ated with two, level-shifted carriers and an algorithm as shown

in (6).

PWM(t) =







1, m(t) ≥ cPOS(t)
−1, m(t) ≤ cNEG(t)
0, otherwise

(6)

where m(t) is the modulating signal and cPOS(t) and cNEG(t)
are carriers which span the positive and negative regions

respectively. This algorithm can then be extended for multiple

levels by introducing additional carriers and levels as described

by (7).

PWM(t) =























1, m(t) ≥ cPOS2(t)
0.5, m(t) ≥ cPOS1(t)
−1, m(t) ≤ cNEG2(t)
−0.5, m(t) ≤ cNEG1(t)
0, otherwise

(7)

where cPOS1(t) and cPOS2(t) are carriers that span the positive

ranges between 0 to 0.5 and 0.5 to 1 respectively and cNEG1(t)
and cNEG2(t) span the ranges between 0 to −0.5 and 0.5 to

−1 respectively.
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(a) Three-Level Single Frequency Optimised Carrier
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(b) Five-Level Single Frequency Rectified Cosine Carrier

Fig. 6. Carrier scaling for multi-level PWM generation using the proposed
trigonometric carrier. The carrier is replicated a number of times, scaled and
then level-shifted in order to span the range of the modulating signal m(t)

The algorithms described in (6) and (7) take a conventional

low frequency signal and generate multiple pulses per cycle.

For ultrasound, due to the high frequency output signal the

proposed method modifies traditional algorithms to generate a

single, width-modulated pulse per half cycle. The proposed

algorithm compares two signals: a sinusoidal signal and a

desired amplitude function with the carrier setup. Two versions

of the desired amplitude function are created, the original

which spans from 0 to 1, and the inverse from −1 to 0. The

full algorithm is shown in (8):

PWM(t) =















































if s(t) ≥ 0
1, mPOS(t) ≥ cPOS2(t)
0.5, mPOS(t) ≥ cPOS1(t)
0, otherwise

else

−1, mNEG(t) ≤ cNEG2(t)
−0.5, mNEG(t) ≤ cNEG1(t)
0, otherwise

(8)

where s(t) = A · sin(ωt + φ) and is scaled from −1 to 1,

and where mPOS(t) and mNEG(t) are positive and negative (or

inverse) versions of the desired window function respectively.

For clarity an example is shown in Fig. 7. In the proposed

method, frequency information is within the carrier, with
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(a) Desired Signal (b) s(t) (top) and m(t) (bottom)

(c) mPOS(t) and mNEG(t) with
multi-level trigonometric carriers

(d) PWM(t) sequence

Fig. 7. Example to show application of the algorithm to generate the
proposed ultrasound sequences. The desired waveform 7(a) is a tone burst
with an applied window function, and can be split into its constituent parts
s(t) and m(t) as shown in 7(b). Using these constituent parts the carrier and
positive and negative window functions are created 7(c). Using the sign of
s(t) comparison between either positive or negative aspects are performed to
generate the resultant PWM sequence as shown in 7(d).

amplitude information stored within the modulating function.

III. MULTILEVEL PWM FOR PRESSURE AMPLITUDE

CONTROL

Using the algorithm defined in (8), multi-level arbitrary

waveform sequences can be designed which give the desired

output signal once filtered by a transducer. It is possible to

simulate the filtering effect of the transducer by measuring its

impulse response, and convolving this with the PWM signal.

The simulated pressure output can then be compared with the

measured output.

Fig. 8 shows an example arbitrary waveform sequence

of a 4.8 MHz, 10 µs tone-burst with a desired linearly

increasing ramp modulating function m(t). Fig. 8(a) shows the

generated PWM sequence derived using the process previously

described. Fig. 8(b) shows a simulated output performed in

MATLAB (Mathworks, Natick, MA) when the PWM se-

quence, designed using the proposed trigonometric carrier

setup, is convolved with the measured impulse response of

a linear array transducer (128 Elements, L3-8 40EP, Prosonic,

Korea, 57% Average Bandwidth, Average Center Frequency

4.8 MHz). Fig. 8(c) shows the experimentally measured pres-

sure wave obtained with a 1 mm needle hydrophone (Preci-

sion Acoustics, Dorset, UK) in counjunction with a LeCroy

Waverunner 64xi digital oscilloscope (LeCroy Corporation,

Chestnut Ridge, NY, USA). The transducer was excited with

PWM sequences, uploaded to the UARP system (University

of Leeds, Leeds, UK) [25], [26]. It can be seen that the

simulated and experimentally obtained pressure outputs are

closely matched, with a slight difference in peak positive and

negative amplitudes seen due to non-linear propagation.

A second application that requires generation of sequences

with amplitude control, such as that demonstrated in Fig.
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(a) Five-level PWM sequence
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(b) Simulated pressure output
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(c) Experimentally obtained pressure output

Fig. 8. Single frequency (4.8 MHz) 10 µs tone burst with linearly increasing
amplitude function applied, sampled at fs = 100 MHz. PWM Sequences
are encoded using the proposed trigonometric carrier which assigns pulse
widths in accordance to the expected response of the fundamental frequency
when passed through the transducer. Simulation is obtained by convolving the
PWM signal with the measured transducer impulse response. Experimental
measurement is obtained using a needle hydrophone. It can be seen that the
simulated and experimental results are closely matched.

8, is array apodization. Apodization across an array requires

elements to be excited with signals of varying amplitude Fig.

9 shows a plot detailing PWM excitation sequences generated

for apodization of an array aperture for linear imaging using a

linear imaging transducer (128 Elements, L3-8 40EP, Prosonic,
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Korea, 57% Average Bandwidth, Average Center Frequency

4.8 MHz), and also shaping of the transmitted pulse. In this

example a 5-cycle, 5-MHz Gaussian windowed pulse has been

designed with Gaussian apodization across an aperture of 48

elements Fig. 9(a). The ideal (truncated) Gaussian function is

shown in Fig. 9(b) as well as a rectangular weighting function.

Figs. 9(c) and 9(d) show Field II simulation, and experimental

data respectively, comparing the unapodized case (rectangular

- no aperture weighting) and the apodized case (Gaussian

apodization obtained using the PWM strategy). Simulation

using Field II allows the measured transducer response to be

used during simulation, and also can take into account factors

such as focal depth, aperture size and length of excitation

sequence. Experimental measurements were obtained using

the UARP system, in conjunction with a 0.2 mm hydrophone

(Precision Acoustics, Dorset, UK), and a LeCroy WaveRunner

64xi Digital Oscilloscope. The experimental case is averaged

over 50 acquisitions. Both simulated and experimental results

show an expected reduction in sidelobe pressure, and slight

widening of the mainlobe as a result of applied apodization.

Differences between Figs. 9(c) and 9(d) can be attributed to

simulation not accounting for non-linear propagation and for-

mation of ‘shock-waves’, directivity of the needle hydrophone

and the dynamic range of the 8-bit digital oscilloscope (8 bit,

48 dB) during signal acquisition.

The proposed PWM method enables shaping of pulses

and output amplitude control using switched excitation as

demonstrated in Figs. 8 and 9. The PWM method described

can be used to modulate arbitrary pulse sequences by altering

the designed amplitude function in accordance with the desired

pulse shape. Pulse shaping is particularly important in coded

imaging where it is advantageous to taper the pulse to suppress

sidelobes. A more detailed explanation of the role of PWM in

coded imaging is now discussed in Section IV.

IV. MULTILEVEL PWM FOR USE IN CODED IMAGING

Ultrasound coded imaging, as discussed by Misaridis and

Jensen [16]–[18] is a technique that transmits a signal with

an embedded feature or code, such as frequency modulation,

that can be detected in the presence of noise. At the receiver,

a ‘pulse compression’ filter is necessary to detect the coded

signal and indicate correlation or a matched response. The

pulse compression filter is also known as a matched filter. One

optimal design for the matched filter is to use the inverse (or

time-reversed, complex-conjugate) of the transmitted sequence

[16], [17]. Tapering of the excitation pulse and applying a

window to the filter can also provide additional benefits, as

the nature of the taper or window function can offer gains in

SNR at a cost of decreased axial resolution. This section aims

to demonstrate the efficacy of the multi-level PWM discussed

in the previous sections to accurately describe a number of

tapering functions for use in coded ultrasound imaging.

A. Linear Frequency Modulated Chirp Design

Digitally generated LFM signals as described by Misaridis

and Jensen in [17] equation (3) are defined as

s(t) = a(t) · exp

{

j2π

[(

f −
B

2

)

t +
B

2T
t2

]}

(9)

with 0 ≤ t ≤ T

where B is the signal bandwidth, a(t) is an applied win-

dow function or taper and the LFM signal sweeps from

fSTART = f − B/2 to fSTOP = f + B/2 in time T , at

rate k = B/T [17]. For signal detection, an appropriate

pulse compression or matched filter is designed. The pulse

compression filter demodulates the signal, with the output

approximating a sinc function [17]. If no additional tapering

or weighting is applied then the signal is said to have a

rectangular window function. Rectangular window functions

cause sidelobes at approximately -13.2 dB below the peak

in the correlation output response as discussed by numerous

authors [27]. Applying a window function to the match filter

design, by altering a(t) successfully reduces near sidelobes at

a cost of widening the mainlobe. If a rectangular windowed

signal is transmitted, and a window function applied to the

match filter (now called a ‘mis-matched filter’) near sidelobe

levels can be estimated as reported in [27]–[29].

The performance of the pulse compression system is also

defined by the time-bandwidth product TB. For large TB
values (i.e. exceeding 100) the performance of the system

is similar to that discussed in coded radar literature [30].

In ultrasound however, the TB product is limited by the

transducer’s bandwidth, and the signal duration. It is there-

fore unusual to have very high TB products when imaging

closely spaced targets, as their matched filter responses will

overlap in time and frequency as discussed in [31]. Also,

long duration sequences restrict imaging of targets very close

to the transducer. For LFM signals with low TB products

and rectangular window functions, their amplitude spectrum

contains significant Fresnel ripples. These ripples cause dis-

tortion in the pulse compressed output referred to as far

sidelobes that are not removed by the windowed matched

filter. Indeed as reported by Misaridis “Amplitude tapering

is the most efficient way to reduce the Fresnel ripples of

the spectrum, if the power amplifier allows control of the

transmitted pulse rise time” [17]. In this work, tapering of

a frequency modulated excitation can be achieved by using

the PWM strategy previously discussed, but with extension

for use with LFM signals.

B. Windowing and Tapering Functions

The optimum for pulse compression is to taper the exci-

tation signal to reduce Fresnel ripples and far sidelobes, and

design a weighted matched (mis-matched) filter to reduce near

sidelobes. When this is the case, the expected sidelobe level

(ignoring the effect of the transducer) can be estimated by

considering the frequency response of the product of the two

time domain windowing functions. This differs from expected

values reported in [27]–[29].



IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRONICS AND FREQUENCY CONTROL, VOL. X, NO. X, X XXXX 7

10
20

30
40

0

2

4

−1

−0.5

0

0.5

1

Element in Aperture

Five−Level PWM Excitation Sequences

Time (µs)

N
o
rm

a
lis

e
d
 A

m
p
lit

u
d
e

(a)

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Element in Aperture

N
o

rm
a

lis
e

d
 W

e
ig

h
ti
n

g

Ideal Apodization Functions

 

 

Rectangular

Gaussian

(b)

−10 −5 0 5 10
−45

−40

−35

−30

−25

−20

−15

−10

−5

0
Field II Simulation

Lateral Distance (mm)

N
o

rm
a

lis
e

d
 P

e
a

k
 P

o
s
it
iv

e
 P

re
s
s
u

re
 (

d
B

)

 

 

Rectangular

Ideal Gaussian

(c)

−10 −5 0 5 10
−45

−40

−35

−30

−25

−20

−15

−10

−5

0
Experimental Hydrophone Measurement

Lateral Distance (mm)

N
o

rm
a

lis
e

d
 P

e
a

k
 P

o
s
it
iv

e
 P

re
s
s
u

re
 (

d
B

)

 

 

Rectangular

PWM Gaussian

(d)

Fig. 9. Example of PWM encoded sequences for time tapering and array apodization. MOSFET drive sequences are encoded for 5 MHz, 5 cycle Gaussian-
windowed excitations, with Gaussian array apodization over an aperture of 48 elements, Fig. 9(a). The ideal Gaussian function compared with a rectangular
function is shown in Fig. 9(b). Field II simulation of the expected ultrasound field is shown in Fig. 9(c). Simulation and Experimental measurements show
decreased sidelobe levels in the lateral beam plot at 30 mm focus when compared with a rectangular aperture with applied time tapering in both the ideal
simulated case, and using the PWM strategy, Fig. 9(d).

C. Swept Frequency Level Shifted Carrier Comparison

The previous sections discussed generation of PWM se-

quences for amplitude control of single frequency tone-

burst signals with a carrier-comparison method. The carrier

comparison method requires a rectified, scaled and phase-

shifted copy of the desired signal to be used as a carrier.

Therefore to generate PWM sequences of LFM signals with

defined bandwidth it is necessary to apply the same frequency

modulation to the carrier signal. This ensures that a single,

multi-level pulse per half cycle is generated at the correct

position, is symmetrically modulated, and maintains frequency

information. The frequency modulated carrier can therefore be

seen as an extension of (5) and is defined as

c(t) = A · | cos(ω′t + φ) | + L (10)

where ω′ = 2π((f − B

2
) + B

2T
), with B the bandwidth of the

signal. Fig. 10 shows examples of the frequency modulated

carrier arranged for generation of multi-level PWM sequences

which can be used with (8) according to the following process:

• Generate a frequency modulated signal s(t) of desired

duration, center frequency and bandwidth.

• Define the carrier of same duration, center frequency, and

bandwidth, but with a π/2 phase shift.

• Scale and level shift the carriers so they are contiguous

and describe the range -1 to 1.

• Generate an appropriate excitation tapering function or

time window, e.g. Hann, Hamming or Raised Cosine

window as described in [27].

• Create positive and negative versions of the window

function.

• Use the sign of s(t) to switch alternately between com-

parisons of the positive window function to the positive

carriers (when s(t) is positive), to comparisons of the

negative window function to the negative carriers (when

s(t) is negative).

V. LFM CHIRP CODED IMAGING

Examples of coded images using multi-level chirp coded

PWM sequences are described in this section. The PWM se-

quences are encoded with the optimized frequency-modulated,

rectified cosine carrier method described in Section IV. A

wire phantom consisting of five, 0.125 mm diameter titanium

wires, submerged in deionized degassed water and separated
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Fig. 10. Linear frequency modulation of the carrier.

by 1.27 mm is constructed, and imaged with a medical array

transducer (128 Elements, L3-8 40EP, Prosonic, Korea, 57%

Average Bandwidth, Average Center Frequency 4.8 MHz) and

the UARP system. Two examples of coded PWM signals

with applied tapering functions have been designed and used

to excite 96 elements of the medical imaging transducer

following a standard linear imaging principle as described in

[13]. An aperture of 48 elements is sequentially moved across

96 elements of the array transducer using the UARP system,

with a focused beam (focal point 60 mm) transmitted toward

the wire phantom. The focal point was chosen to be at the

middle of the five wires. The same 48 elements of the aperture

are used to receive echoes sampled at 50 MHz. The raw radio

frequency data is then apodized and beamformed according to

standard delay and sum principles to form a single line focused

at 60 mm. A weighted pulse compression filter as described

previously is then used for mismatched filtering. Two signals

have been used in each chirp cases, firstly a fixed-width,

square wave pseudo-chirp [5] [6] fluctuating between two

levels (referred to as ‘Bipolar (Fixed-Width)’) and secondly

a PWM chirp sequence encoded using five levels, using the

trigonometric carrier setup as shown in Fig. 10, according

to the algorithm described in (8). The bipolar ‘fixed-width

pseudo-chirp’ p(t) is defined using
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Fig. 11. Ideal 4-6 MHz chirp signals no window (top) and Hamming
windowed (bottom) used as reference waveforms for the bipolar (fixed-width),
and 5-level PWM-encoded signals. Chirp parameters: f = 5 MHz, T = 10
µs, B = 2 MHz, TB = 20, k = 0.2 MHz/µs.

p(t) =











1 if s(t) > 0,

−1 if s(t) < 0,

0 if s(t) = 0,

(11)

where s(t) is defined as per (9) but with a(t) a constant value.

Both signals are switched-mode square wave excitations which

are subject to the bandpass characteristics of the transducer

and have the same weighted mismatched filter applied. Any

difference between sidelobe level or mainlobe width between

the two signals is therefore as a result of excitation tapering.

Fig. 13 shows experimentally obtained images of the wire

phantom plotted with a 45 dB dynamic range. Each of the five

wires appear as bright spots. Only one of the wires appears

at the focal point. Other wires that are not in focus appear

blurred or spread laterally. The excitation signal used in this

case is a 4-6 MHz Hamming windowed chirp of 5 MHz center

frequency (f ), 2 MHz bandwidth (B), 10 µs duration (T ),

TB =20, k =0.2 MHz/µs. Note that this bandwidth is within

the reported 57% bandwidth of the transducer, which will

also naturally taper the wide-bandwidth signal. Both switched

excitation sequences (fixed-width and width modulated) have

been generated with a 100 MHz sampling frequency. Note in

the case of the ‘fixed-width’ case, the Hamming windowing

does not apply. The corresponding ‘ideal’ chirps are shown

in Fig. 11 with the corresponding bipolar and PWM encoded

MOSFET gate drive-signals shown in Fig. 12. For the fixed-

width pulse case shown in Fig. 13(a), high sidelobes are

apparent in areas between wires. These appear as a lighter

grey regions indicating sidelobes at -30 dB. When compared

with the five-level PWM case 13(b), the sidelobes have been

reduced, however the wire at the focal point (seen at approxi-

mately 65 mm in the reconstructed image) has been lengthened

slightly. This is as a consequence of both the excitation taper

and the filter windowing function as described in [17].

Sidelobe levels can be more accurately compared by plotting

the central line of the image which intersects the five wires.

As these images are produced using a single focus, it is

appropriate to compare the single wire in the focal region.
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Fig. 13. Experimental wire phantom coded images using the ‘bipolar (fixed-
width) pseudo-chirp‘ and PWM-encoded Hamming 4-6 MHz chirp signals.

Fig. 14 shows simulated and experimental results of the image

center line, showing the wire at the focal point. Simulations

are performed in MATLAB using the ultrasound simulation

toolbox, Field II [32], [33]. Care has been taken to ensure

that the simulation environment is as close to the experimental

environment as possible, with the measured transducer impulse

response used in simulation. Analysis of Fig. 14 shows an

expected improvement of 11 dB in peak sidelobe level when

using the PWM signals according to simulation (-26 dB to -37

dB), with an experimentally observed improvement of 10 dB

(-26 dB to -36 dB) in peak sidelobe level. Also noticeable

is an increase in mainlobe width for the PWM case as a

consequence of the applied tapering function.

Fig. 17 shows a second example of experimentally obtained

images of the wire phantom using the same array transducer

as the previous case. The excitation signal used in this case

is a Hamming windowed 3-6 MHz chirp of 4.8 MHz center

frequency (f ), 2.88 MHz bandwidth (B), and 10 µs duration

(T ), TB =28.8, k =0.288 MHz/µs. This value of bandwidth
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Fig. 14. Center line plotted limited to view a single wire at the focal point.
Simulated data in the Fig. 14(a). Experimentally obtained in Fig. 14(b).

was chosen to match the reported bandwidth of the L3-8 40EP

transducer (57%) around its peak frequency. Note that as this

bandwidth is at the edge of the transducer’s bandwidth, both

signals, including the bipolar (fixed width) case will undergo

amplitude tapering at low and high bandwidths. The ideal

chirps are shown in Fig. 15 with the corresponding MOSFET

drive signals shown in Fig. 16. Note that as per the previous

case, the bipolar fixed-width case does not have the Hamming

windowing applied. It can again be seen that the sidelobes in

the region between targets are reduced when comparing the

fixed-width sequence to the PWM sequences.

Fig. 18 shows simulated and experimental results of the

image center line, showing the wire at the focal point. In

this case simulation predicts an improvement in peak sidelobe

level when using PWM sequences of approximately 7 dB (-

30 dB to -37 dB), with experimental measurement showing

an improvement in 8 dB (-30 dB to -38 dB). Also noticeable,

when compared with the previous case in Fig. 14 is a slight

increase in axial resolution as a result of increased bandwidth.

In the case of the PWM results, the mainlobe width is

increased slightly due to amplitude tapering.

VI. DISCUSSION

Sections III and IV have shown that the carrier modifi-

cations and algorithm proposed is suitable for applications
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windowed (bottom) used as reference waveforms for the bipolar (fixed-width),
and 5-level PWM-encoded signals. Chirp parameters: f = 4.8 MHz, T = 10
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0 2 4 6 8 10

−1

−0.5

0

0.5

1

Bipolar (Fixed Width) Pseudo Chirp: 3−6 MHz

N
o
rm

a
lis

e
d
 A

m
p
lit

u
d
e

Time (µs)

0 2 4 6 8 10

−1

−0.5

0

0.5

1

5 Level PWM Encoded Chirp: 3−6 MHz

Time (µs)

N
o
rm

a
lis

e
d
 A

m
p
lit

u
d
e

Fig. 16. MOSFET gate drive signals of the bipolar (fixed-width) 3-6
MHz chirp signal (top) and the 5-level PWM-encoded 3-6 MHz chirp signal
(bottom).
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Fig. 17. Experimental wire phantom coded images using the ‘bipolar (fixed-
width) pseudo-chirp‘ and PWM-encoded Hamming 3-6 MHz chirp signals.

which require transmitter amplitude control. The frequency
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Fig. 18. Center line plotted limited to view a single wire at the focal point.
Simulated data in Fig. 18(a). Experimentally obtained data in Fig. 18(b).

characteristics of the transducer causes filtering of harmonics

within the square-wave, leaving the fundamental component.

Modulation of square-wave pulses in accordance with this

expected response enables the post-transducer pressure output

to be accurately controlled. Section III demonstrated pres-

sure control of arbitrary transmit sequences, with section

IV demonstrating the potential benefit in LFM chirp coded

imaging.

With respect to coded imaging, a number of other factors

affect the performance of the system which have not been

discussed in this work. These factors include the influence of

the time-bandwidth product on the pulse-compressed output,

additional windowing applied to the broadband chirp pulse

by the transducer, and the effect of frequency dependent

attenuation on the signal as it propagates in the medium. When

considering the examples shown in this work, the cases shown

are within, or at the limits of the transducer’s reported band-

width, and are suitable duration for coded imaging without

causing severe overlapping in the time and frequency domains

[31]. These restrictions cause the time-bandwidth product to

be an order of magnitude lower than those found in coded

radar [30] and thus restrict the gain improvement in SNR [17].

Due to the nature of the transducer’s bandwidth, an additional

tapering function will be applied to both signals. This can

be viewed as useful, as increased tapering further reduces
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sidelobes at a cost of widening the mainlobe. Also, as both

signals are subject to the same level of transducer-induced

tapering they are still directly comparable. All of these issues

are discussed in more detail in the literature [16], [17] and

[13]. With respect to the latter two issues, PWM techniques

may be used to counteract for both the transducer bandwidth,

and propagation by pre-distorting the waveform.

The described PWM method provides a best approximation

of a desired waveform similar to that of commercial Digital

to Analogue converters. Consequently, the waveform suffers

from a certain amount of quantization based upon the number

of PWM states available and the effect of comparing two

discrete, sampled signals. The number of PWM states is

dependent on the relationship between sampling frequency,

and fundamental frequency, with a larger ratio between the two

generating reduced quantization error. Additional error may

also be introduced as a result of the carrier signal itself being

a sampled signal. This can result in non-ideal carrier sampling,

and consequently slight errors in the comparison method. The

worst impact of which can be seen as anomalies in the PWM

sequence in the form of missing or additional pulses. The

advantage of the method when compared with other reported

techniques such as Sigma-Delta modulation [22] is that arbi-

trary waveform sequences can be generated that operate at a

fundamental mode, meaning that the frequency of switching,

and hence power dissipation of front end components can be

reduced.

Lastly, the sequences produced by the algorithm are actually

MOSFET drive signals. These signals switch several MOS-

FETs between voltage states. As this is not an instantaneous

transition it is therefore important to consider the rise and fall

times of the MOSFET used, the characteristics of the load and

any voltage drop across protection diodes to ensure maximum

performance.

VII. CONCLUSIONS

Ultrasound array transducers are established transducer

components, and require high-voltage excitation across mul-

tiple channels. A popular transmitter solution is the use of

MOSFET devices operating in a ’switched-mode’, selecting

between a small number of discrete voltage levels. This has

advantages over other ‘analogue’ excitation technologies, such

as size and cost, however is reported to be restrictive in terms

of arbitrary waveform capability and power control.

Several applications and areas exist throughout ultrasound

that benefit from arbitrary waveform capability, or control of

pressure output. Specific examples demonstrated in this work

include arbitrary waveform generation and power control;

apodization in imaging to reduce sidelobes and image artifacts;

and generation of tapered, frequency-modulated, coded signals

for use in coded imaging to increase SNR of weak scatterers.

This work has presented a method of obtaining arbitrary

waveform capability using a carrier-comparison, fundamental-

mode, pulse-width modulation scheme that modulates widths

according to the expected fundamental frequency component

of a square-wave.

A carrier comparison method is a convenient strategy of

encoding PWM sequences and is often used in many areas

of engineering. We have shown that for ultrasound, a carrier

comparison PWM method can successfully be used to control

MOSFET devices common within most ultrasound systems,

and offer amplitude control as an alternative to using DACs

and linear power amplifiers. This has a number of advantages

in terms of size, cost and potential device integration.

This paper discusses a number of ultrasound specific carrier

modifications for generation of PWM sequences for ultrasound

applications. These PWM sequences differ from ‘traditional’

PWM in a number of ways. Firstly, the carrier is modified so

that widths are modulated according to the fundamental energy

in the waveform as opposed to a linear carrier. Secondly, the

carrier frequency is altered as to generate the least number

of width-modulated pulses (single multi-level pulse per half

cycle) necessary to describe the desired waveform. Thirdly,

when used to encode frequency modulated signals, the same

frequency modulation is applied to the carrier.
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