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Width of SL(n,OS, I)

PAVEL GVOZDEVSKY

Abstract. We give an estimate for the width of the congruence subgroup SL(n,OS , I) in
Tits–Vaserstein generators, where OS is a localisation of the ring of integers in a number
field K. We assume that either K has a real embedding, or the ideal I is prime to the
number of roots of unity in K.

1. Introduction

Given a group G with generating set X, the width of G in generators from X is a minimal
number N such that any element of G is a product of at most N elements from X. When
the width is finite, we say that G admits bounded generation with respect to X.

For special linear group, or more generally for Chevalley groups bounded generation with
respect to the elementary generators is known for certain classes of rings. For example this
holds for Dedekind domains of arithmetic type, see [4], [5], [12], [20], [21],[11],[6],[7],[9], [23],
[24], [25],[27],[26], [28]. These results are of great value, for example they are connected to
the congruence subgroup property, see [10],[13]; to Margulis–Zimmer conjecture, see [16];
and have applications in logic, see, for example, [1], [2].

In [17], it was proven that the principal congruence subgroup G(Φ,OS, I) of a classical
Chevalley group with rk Φ 6 2 over a Dedekind domain OS of arithmetic type has finite
width in Tits–Vaserstein generators, provided the fraction field of OS has a real embedding.
Also this result can be deduced from [23]. However, either way the proof relies on results
from [22], which on its turn are not constructive and do not allow to obtain an explicit
estimate of the width in question. In Section 5, we show how one can one can obtain such
a proof directly from the result of [4].

In the main part of the present paper we prove an effective version of the result from
[17] for special linear group, i.e. the width of SL(n,OS, I) will be estimated explicitly.

First we consider the double Õ of the ring O with respect to the ideal I, where O is the ring
of integers in a number field, and adopt the technique from [4] in order to give an estimate

for how many elementary transvections from SL(3, Õ) is enough to present any matrix

from SL(2, Õ) (Theorem 3.1). Then we generalise this result to a localisation OS of the
ring O (Corollary 3.2). After that we use these results to estimate the width of SL(n,OS , I)
in Tits–Vaserstein generators (Corollary 3.5). Finally, considering two ideals A,B E OS,
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we use the proof of Lemma 7 in [30] in order to estimate the width of SL(n,OS, AB) in
generators [ti,j(a), th,k(b)], where 1 6 i 6= j 6 n, 1 6 h 6= k 6 n, a ∈ A and b ∈ B.

The paper is organised af follows. In Section 2 we give the necessary preliminaries and
introduce basic notation. In Section 3 we formulate Theorem 3.1 and prove its corollaries
as described above. In Section 4 we give the proof of Theorem 3.1. In Section 5 we give
some final remarks.

I am grateful to Nikolai Vavilov for optimising the proof of Corollary 3.4.

2. Preliminaries and notation

2.1. Special linear group. For a commutative ring R we denote by SL(n,R) the group
of n × n matrices over R with determinant one. By ti,j(ξ), where 1 6 i 6= j 6 n and
ξ ∈ R, we denote an elementary transvection, i.e. the matrix that has 1 in all the diagonal
positions, ξ in the position (i, j) and 0 in all the remaining positions. By E(n,R) we
denote the elementary group, i.e. the subgroup of SL(n,R) generated by all the elementary
transvections.

2.2. Congruence subgroups. For an ideal I E R, we denote by SL(n,R, I) the prin-
cipal congruence subgroup, i.e the kernel of the reduction homomorphism SL(n,R) →
SL(n,R/I) induced by the projection R → R/I. By E(n, I) we denote the group gener-
ated by all the elementary transvections ti,j(ξ) with ξ ∈ I; and by E(n,R, I) we denote
the elementary congruence subgroup, i.e. the normal closure of E(n, I) in E(n,R).

As a group E(n,R, I) is generated by Tits–Vaserstein generators

{ti,j(ξ)tj,i(ζ) : ξ ∈ I, ζ ∈ OS},

see, for example, Theorem 2 in [29].
In the present paper, we consider the localisation OS of the ring O of integers in a number

field K. We assume that either K has a real embedding, or the ideal I is prime to m,
where m be the number of roots of unity in K. Under these assumptions it follows from
[3] that E(n,OS, I) = SL(n,OS , I). Corollary 3.5 of the present paper gives an estimate
for the width of SL(n,OS, I) in Tits–Vaserstein generators.

2.3. Double of a ring. Let R be a commutative ring, and I ER be an ideal. The double

of the ring R with respect to the ideal I is a subring of R × R that consists of pairs with
elements congruent to each other modulo I:

R̃ = {(a, b) ∈ R ×R : a ≡ b mod I}.

We will use the following lemma.

Lemma 2.1. Let b = (b′, b′′) ∈ R̃ be such that b′ (and hence b′′) is prime to I. Then the

natural map

R̃/bR̃ → R/b′R×R/b′′R

is an isomorphism.
2
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Proof. It is easy to see that Ker(R̃ → R/b′R) = bR̃ + (0, I) and Ker(R̃ → R/b′′R) =

bR̃ + (I, 0). These two ideals are comaximal, because R̃/(I, I) = R/I and by assumption
the image of b in R/I is invertible. Hence we have

bR̃ 6 (bR̃ + (0, I)) ∩ (bR̃ + (I, 0)) = (bR̃ + (0, I))(bR̃ + (I, 0)) 6 bR̃.

So we have

bR̃ + (0, I)) ∩ (bR̃ + (I, 0)) = bR̃.

The statement of the lemma now follows from the Chinese remainder theorem. �

3. Statement of the main theorem and proofs of corollaries.

Let O be the ring of integers in an algebraic number field K. Let D be the discriminant
of K and Cl(K) be its class group. Let m be the number of roots of unity in K. For any
rational prime p set ep = ordp(m), i.e. m =

∏
{p : ep>0} p

ep. Further for any rational prime

p we denote by Lp the extension of K obtained by adjoining a primitive pep+1-th root of
unity. Now set

Sbad = {p ∈ P : p | D and gcd([Lp : K], |Cl(K)|) > 1},

where P denotes the set of rational primes. Finally, set

∆ = max
δ1+δ2+δ3=|Sbad|

(
3∑

i=1

max(1, [ln(δi + 1)/ ln 2])

)
,

where maximum is taken over all triples of nonnegative integers δ1,δ2,δ3 with δ1 + δ2 + δ3 =
|Sbad|.

The main result of the present paper is the following theorem.

Theorem 3.1. In the notation above, let I be a non zero ideal in O. Suppose that either

K has a real embedding, or I is prime to m. Let Õ be the double of the ring O with respect

to the ideal I. Then for any matrix ( a b
c d ) ∈ SL(2, Õ) the matrix



a b 0
c d 0
0 0 1


 ∈ SL(3, Õ)

is a product of at most 68∆ + 4 elementary transvections.

We prove this theorem in Section 4. Now we deduce the corollary for localisations of the
ring O.

Corollary 3.2. In the notation above, let S be a multiplicative system in O, let OS =
O[S−1], and IS be a non zero ideal in OS. Suppose that either K has a real embedding, or

3
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IS is prime to m. Let ÕS be the double of the ring OS with respect to the ideal IS. Then

for any matrix ( a b
c d ) ∈ SL(2, ÕS) the matrix



a b 0
c d 0
0 0 1


 ∈ SL(3, ÕS)

is a product of at most 68∆ + 8 elementary transvections.

Proof. Let I be the preimage of IS in O. Note that any element s ∈ S is prime to I.
Indeed, let I =

∏
pkii be the decomposition of I into a product of primes, and assume that

s belongs to one of the pi, say p1. Then the localisation homomorphism maps
∏

i 6=1 p
ki
i to

IS; hence
∏

i 6=1 p
ki
i 6 I, which is a contradiction.

It follows that, if IS is prime to m in OS , then I is prime to m in O. Indeed, in this
case the ideal mO + I must contain an element s ∈ S; and since mO + I also contains I,
it follows that mO + I = O.

Therefore, Theorem 3.1 can be applied to the ring O and the ideal I. It is easy to see

that ÕS = Õ[S−1], where S is embeded into Õ diagonally; and Õ maps to ÕS injectively.

So it remains to prove that any matrix
(
a1 b1
c1 d1

)
∈ SL(2, ÕS) can be transformed to a matrix

from SL(2, Õ) by 4 elementary transformations.
We perform these transformations as follows. At the first step, we multiply our matrix

from the right by a suitable transvection, so that in the new matrix ( a2 b1
∗ ∗ ) the entry a2

became prime to (IS, IS). This is possible because the ring ÕS/(IS, IS) ≃ O/I is semilocal.
Now let a2 = (a′2, a

′′
2) and b1 = (b′1, b

′′
1). Both a′2 and a′′2 are prime to IS, so in particular,

they are non zero; hence O → Os/a
′
2OS is surjective. Hence we can choose b′2 ∈ O such that

b′2 ≡ b′1 mod a′2OS. Moreover, since a′2 is prime to IS and every element of S is prime to I
in O, it follows that the numerator of a′2 is prime to I in O; hence changing b′2 by a multiple
of that numerator, we may assume that b′2 ≡ 1 mod I. Similarly, we choose b′′2 ∈ O so that

b′′2 ≡ b′′1 mod a′′2OS and b′′2 ≡ 1 mod I. By construction, we have b2 = (b′2, b
′′
2) ∈ Õ. Since

b′2 ≡ b′1 mod a′2OS, b′′2 ≡ b′′1 mod a′′2OS, and a′2 is prime to IS, it follows by Lemma 2.1

that b2 ≡ b1 mod a2ÕS . Therefore, at the second step, we can multiply our matrix from
the right by a suitable transvection to transform it into the matrix ( a2 b2

∗ ∗ ).
Now we factor b′2O = b′1b

′
2, such that no prime divisors of b′1 meet S and such that all

prime divisors of b′2 meet S. Similarly, we factor b′′2O = b′′1b
′′
2. Further choose, v′, v′′ ∈ O

such that v′ ≡ a′2 mod b′2OS and v′′ ≡ a′′2 mod b′′2OS. By the Chinese remainder theorem
we may now choose a′3, a

′′
3 ∈ O such that

a′3 ≡ v′ mod b′1O, a′3 ≡ 1 mod b′2I,

a′′3 ≡ v′′ mod b′′1O, a′′3 ≡ 1 mod b′′2I.

By construction, we have a3 = (a′3, a
′′
3) ∈ Õ. Since a′3 ≡ a′2 mod b′2OS, a′′3 ≡ a′′2 mod b′′2OS,

and b′2 is prime to IS, it follows by Lemma 2.1 that a3 ≡ a2 mod b2ÕS . Therefore, at
4
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the third step, we can multiply our matrix from the right by a suitable transvection to
transform it into the matrix ( a3 b2

∗ ∗ ).
In addition, by construction, we have a′3O+ b′2O = a′′3O+ b′′2O = O. Thus a′3 is invertible

modulo b′2O and a′′3 is invertible modulo b′′2O. It follows then by Lemma 2.1 that a3 is

invertible modulo b2Õ, i.e. a3Õ + b2Õ = Õ. Therefore, at the forth step, we can multiply
our matrix from the left by a suitable transvection to transform it into the matrix from

SL(2, Õ). �

Now we show that the results above allow to estimate the width of the congruence
subgroup SL(n,OS, I). First we consider matrices from the image of the embedding
SL(2,OS, I) → SL(3,OS, I).

Corollary 3.3. In the notation above, let S be a multiplicative system in O, let OS =
O[S−1], and I be a non zero ideal in OS. Suppose that either K has a real embedding, or
I is prime to m. Then for any matrix ( a b

c d ) ∈ SL(2,OS, I) the matrix

g =



a b 0
c d 0
0 0 1


 ∈ SL(3,OS, I)

is a product of at most 68∆ + 8 elements of type ti,j(ξ)h, where ξ ∈ I and h ∈ SL(3,OS).

Proof. Set N = 68∆ + 8. Consider the matrix



(a, 1) (b, 0) (0, 0)
(c, 0) (d, 1) (0, 0)
(0, 0) (0, 0) (1, 1)


 ∈ SL(3, ÕS).

By Corollary 3.2, this matrix is a product of N elementary transvections. Thus there exist
elements ζ ′1,. . .,ζ

′
N ,ζ ′′1 ,. . .,ζ ′′N ∈ OS such that

• ζ ′k ≡ ζ ′′k mod I for all 1 6 k 6 N ,

•
∏N

k=1 tik ,jk(ζ ′k) = g,

•
∏N

k=1 tik ,jk(ζ ′′k ) = e,
for some indices ik, jk.
Set ξk = ζ ′k − ζ ′′k ∈ I. Then we have

g =
N∏

k=1

tik ,jk(ζ ′′k )tik,jk(ξk) =

(
N∏

k=1

tik,jk(ζ ′′k )

)(
N∏

k=1

tik,jk(ξ′′k)hk

)
=

N∏

k=1

tik ,jk(ξk)
hk ,

where hk =
∏N

l=k+2 til,jl(ζ
′′
l ). �

Corollary 3.4. Under the conditions of Corollary 3.3, the matrix g is a product of at most
24 · (68∆ + 8) = 1632∆ + 192 Tits–Vaserstein generators, i.e. elements of type ti,j(ξ)tj,i(ζ),
where ξ ∈ I, ζ ∈ OS .

5
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Proof. Due to Corollary 3.3, it is enough to prove that any element of type ti,j(ξ)h is a
product of at most 24 elements of type ti,j(ξ)tj,i(ζ).

So let g = ti,j(ξ)h. Without loss of generality, we assume that i = 1, j = 2.
We use the technique from [19]. Let

h =



h1,1 h1,2 h1,3

h2,1 h2,2 h2,3

h3,1 h3,2 h3,3


 h−1 =



h′
1,1 h′

1,2 h′
1,3

h′
2,1 h′

2,2 h′
2,3

h′
3,1 h′

3,2 h′
3,3


 .

Then we have

t1,2(ξ) =
3∏

k=1

t1,2(h
′
k,3ξh3,k)t1,3(−h′

k,3ξh2,k).

Thus it is enough to express (t1,2(h
′
k,3ξh3,k)t1,3(−h′

k,3ξh2,k))
h as a product of 8 Tits–

Vaserstein generators. It follows from [19] that

(t1,2(h
′
k,3ξh3,k)t1,3(−h′

k,3ξh2,k))
h = [ti,k(ζ1)tj,k(ζ2), tk,i(ξ1)tk,j(ξ2)]tk,i(ξ3)tk,j(ξ4),

where {i, j, k} = {1, 2, 3}, ξ1 = h′
k,3ξh

′
j,1, ξ2 = −h′

k,3ξh
′
i,1, ξ4 = h′

k,1ξ1, ξ5 = h′
k,1ξ2, ζ1 = h′

i,1,
ζ2 = h′

j,1.
Now we have

(t1,2(h
′
k,3ξh3,k)t1,3(−h′

k,3ξh2,k))
h = (tk,i(ξ1)tk,j(ξ2))

ti,k(−ζ1)tj,k(−ζ2)tk,i(ξ3 − ξ1)tk,j(ξ4 − ξ2).

Thus it remains to express (tk,i(ξ1)tk,j(ξ2))
ti,k(−ζ1)tj,k(−ζ2) as a product of 6 Tits–Vaserstein

generators.
We have

(tk,i(ξ1)tk,j(ξ2))
ti,k(−ζ1)tj,k(−ζ2) = tk,i(ξ1)

ti,k(−ζ1)tj,k(−ζ2)tk,j(ξ2)
ti,k(−ζ1)tj,k(−ζ2),

where

tk,i(ξ1)
ti,k(−ζ1)tj,k(−ζ2) = (tj,i(ξ1ζ2)tk,i(ξ1))

ti,k(−ζ1) = tj,i(ξ1ζ2)tj,k(−ξ1ζ1ζ2)(tk,i(ξ1))
ti,k(−ζ1),

and similarly

tk,j(ξ2)
ti,k(−ζ1)tj,k(−ζ2) = ti,j(ξ2ζ1)ti,k(−ξ2ζ1ζ2)(tk,j(ξ2))

tj,k(−ζ2).

That finishes the proof. �

Now we estimate the width of SL(n,OS , I) for arbitrary n > 3.

Corollary 3.5. In the notation above, let S be a multiplicative system in O, let OS =
O[S−1], and I be a non zero ideal in OS. Suppose that either K has a real embedding, or
I is prime to m. Let n > 3. The the width of SL(n,OS, I) in Tits–Vaserstein generators
{ti,j(ξ)tj,i(ζ) : ξ ∈ I, ζ ∈ OS} is at most 3n(n− 1)/2 + 2n + 1632∆ + 185.

Proof. By Corollary 4.8 in [17], any every element of SL(n,OS, I) can be decomposed into
a product of one element of SL(2,OS, I) and at most 3n(n− 1)/2 + 2n− 7 Tits–Vaserstein
generators. It remains to apply Corollary 3.4 to that one element of SL(2,OS, I). �

6
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Remark 3.6. Similarly one can give an estimate for the width of a congruence subgroup of
the split spin group. Unfortunately, at the time of this writing there are no proven analog of
Corollary 4.8 in [17] for Chevalley groups of type E; however, one can still give an estimate

for the width of a corresponding congruence subgroup as follows. Since the double ÕS of
the ring OS with respect to the ideal I has Krull dimension equal to one, the proofs of the
surjective K1-stability as presented in [18],[14],[15],[8] together with Corollary 3.2 allow to

estimate the width of the Chevalley group over ÕS in elementary generators. This gives an
estimate for the width of a congruence subgroup in conjugates of elementary generators.
After that it is theoretically possible to estimate how many Tits-Vaserstein generators one
need to express such a conjugate in a manner similar to the proof of Corollary 3.4.

Corollary 3.7. In the notation above, let S be a multiplicative system in O, let
OS = O[S−1], let A and B be non zero ideals in OS. Suppose that either K has a
real embedding, or AB is prime to m. Let n > 3. Then the group SL(n,OS , AB) is
generated by commutators [ti,j(a), th,k(b)], where 1 6 i 6= j 6 n, 1 6 h 6= k 6 n,
a ∈ A and b ∈ B; and the width of SL(n,OS, AB) in these generators is at most
12 · (3n(n− 1)/2 + 2n + 1632∆ + 185) = 18n2 + 6n + 19584∆ + 2220.

Proof. Due to Corollary 3.5 it is enough to prove that any Tits–Vaserstein generator for
SL(n,OS, AB) is a product of at most 12 such commutators; and that follows from the
proof of Lemma 7 in [30]. �

Remark 3.8. Similarly, if one calculate an estimate for the width of congruence subgroup
in the spin group or the Chevalley group of type E in Tits–Vaserstein generators, then
multiplying this number by 12 one gets an estimate of the width in elementary commutators
similar to those above.

4. The proof of the main theorem

For a commutative ring R and an ideal J E R we denote by εR(J) the exponent of the
multiplicative group (R/J)∗ with the convention εR(J) = 0 if this exponent is infinite. In
other words, εR(J) is the smallest positive integer such that for any element a ∈ R prime
to J we have aεR(J) ≡ 1 mod J , or zero if such a positive integer does not exists. For any
b ∈ R we set εR(b) = εR(bR). Also we will omit the ring in the index if it is clear from the
context.

The proof of the next proposition is the same as the proof of the main theorem in [4],
so we omit it here.

Proposition 4.1. Let R be a commutative ring; let k, ∆ and m be positive integers; and

let Ω ⊆ R2. Suppose that the two following conditions hold true.

(1) Any row (a1, b1), where a1, b1 ∈ R and a1R+ b1R = R, can be transformed to a row

(am, b), where (a, b) ∈ Ω, by k elementary transvections from SL(2, R).
7
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(2) For any (a, b) ∈ Ω there exist c1, . . . , c∆0
∈ R and γ1, . . . , γ∆0

∈ Z>0, where ∆0 6 ∆,

such that gcd(γ1, . . . , γ∆0
) = 1, and for any 1 6 i 6 ∆0 we have cib ≡ −1 mod aR

and gcd(ε(b), ε(ci)) = mγi.

Then for any matrix ( a b
c d ) ∈ SL(2, R) the matrix


a b 0
c d 0
0 0 1


 ∈ SL(3, R)

is a product of at most 68∆ + k elementary transvections.

In order to proof Theorem 3.1, we apply Proposition 4.1 to the case where R = Õ,
k = 4, ∆ is as above, m is the number of roots of unity in K, and Ω be the set of all pairs

(a, b) = ((a′, a′′), (b′, b′′)) ∈ Õ
2 such that the following conditions hold true

(1) aÕ + bÕ = Õ;
(2) Each of the elements a′,a′′,b′,b′′ is prime to I;
(3) b′O and b′′O are prime ideals of O with residue characteristic prime to m;
(4) The residue characteristic of b′O does not divide εO(b′′), and vice versa.

Therefore it remains to verify conditions 1, 2 of Proposition 4.1 in this setting. The
following lemma verifies the condition 1.

Lemma 4.2. Under the conditions of Theorem 3.1 any row (a1, b1), where a1, b1 ∈ Õ and

a1Õ + b1Õ = Õ, can be transformed to a row (am, b), where (a, b) ∈ Ω, by 4 elementary

transvections from SL(2, Õ).

Proof. Step 1. By one transvection, we transform the row (a1, b1) into a row (a1, b2),

where b2 is prime to the ideal (mI,mI)E Õ. Equivalently, b2 = (b′2, b
′′
2), where both b′2 and

b′′2 are prime to mI.

Clearly, such a transformation is possible, because Õ/(mI,mI) is a semilocal ring.

We shall make use of power norm residue symbols and the m-th power reciprocity law
as described in [3], appendix on number theory. Let p1,. . .,pr be all the rational primes
dividing m. Fix a positive integer N that is so large that, firstly, for any K-prime p lying
over one of the pi any integer element of the completion Kp that is congruent to 1 modulo
pN has an m-th root in Kp; and secondly, powers in the decomposition of I into K-primes
do not exceed N . Further for any pi fix a K-prime pi lying over pi. Then we fix pi-local
units ui, wi such that

ζ =
r∏

i=1

(
ui, wi

pi

)

m

is a primitive m-th root of unity. Existence of such ui and wi follows from [3] proposition
A.17 and the standard properties of power norm residue symbols.

Step 2. By one transvection, we transform the row (a1, b2) into a row (a2, b2) =
((a′2, a

′′
2), (b

′
2, b

′′
2)), where

• a′2 ≡ a′1 mod b′2O and a′′2 ≡ a′′1 mod b′′2O;
8
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• a′2O and a′′2O are prime ideals;
• a′2 ≡ a′′2 ≡ wi mod pNi for i = 1,. . .,r;
• a′2 ≡ a′′2 ≡ 1 mod qN for any prime q such that mI ⊆ q, q 6= pi i = 1,. . .,r;
• a′′2 is positive in every real embedding of K;
• If K has a real embedding, then a′2 is negative in one such embedding and positive in

every remaining real embeddings.

Existence of such a′2 and a′′2 follows from the Chinese remainder theorem and the general-
ized Dirichlet theorem on primes in arithmetic progressions, see A.11 in [3]. By conditions

on a′2 and a′′2, we have a′2 ≡ a′′2 mod I, i.e. a2 = (a′2, a
′′
2) ∈ Õ. Since b′2 is prime to I, it

follows by Lemma 2.1 that a2 ≡ a1 mod b2Õ.

Step 3. By one transvection, we transform the row (a2, b2) into a row (a2, b) =
((a′2, a

′′
2), (b

′, b′′)), where

• b′ ≡ b′2 mod a′2O and b′′ ≡ b′′2 mod a′′2O;
• b′ ≡ b′′ mod I;
• b′O and b′′O are prime ideals;
• b′ and b′′ are prime to mI;
• The residue characteristic of b′O does not divide εO(b′′), and vice versa;
• a′2 is an m-th power modulo b′O, and a′′2 is an m-th power modulo b′′O.

It is enough to prove that such b′ and b′′ exist; then it would follow by Lemma 2.1 that

b ≡ b2 mod a2Õ.
It follows from the proof of Lemma 3 of [4] that there exists an element v′′ ∈ O prime

to m such that the congruence b′′ ≡ v′′ mod mN
O guaranties that a′′2 is an m-th power

modulo b′′O, provided b′′O is a prime ideal and b′′ ≡ b′′2 mod a′′2O. Since it only residue of
v′′ modulo mN that matters, we may assume that v′′ ≡ 1 mod q for any prime q such that
I ⊆ q but m /∈ q. Thus v′′ is prime to mI. Also we may assume that v′′ ≡ b′′2 mod a′′2O.

Further let A = a′′2m
NI and HA denote the ray class group of K that correspond to the

ideal A. By the existence theorem of class field theory there is a finite abelian extension
KA/K for which the Artin reciprocity map gives an isomorphism HA ≃ Gal(KA/K).

Now we choose b′ such that

• b′ ≡ b′2 mod a′2O;
• b′ ≡ v′′ mod I;
• b′O is a prime ideal;
• The extension KA/K is unramified in b′O, i.e. b′ is prime to A;
• b′ is prime to mI;
• a′2 is an m-th power modulo b′O;

Let us prove that such b′ exists. Here we use the conditions of Theorem 3.1, and consider
two cases.

Case 1. The field K has no real embeddings and the ideal I is prime to m.
Similarly to v′′ we can find v′ ∈ O prime to m such that the congruence b′ ≡ v′ mod mN

O

guaranties that a′2 is an m-th power modulo b′O, provided b′O is a prime ideal and b′ ≡ b′2
mod a′2O. Since mO, a′2O and I are pairwise coprime there exist infinitely many prime

9
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elements b′ such that

b′ ≡ b′2 mod a′2O,

b′ ≡ v′′ mod I,

b′ ≡ v′ mod mN
O.

We chose one avoiding the primes that ramifies KA.

Case 2. The field K has a real embedding.
In this case we have m = 2. We search for a suitable b′ among prime elements such that

b′ ≡ b′2 mod a′2O,

b′ ≡ v′′ mod mNI.

The only terms in the quadratic reciprocity law for a′2 and b′ that have not been fixed yet
are the one corresponding to the ideal b′O and the one corresponding to the real embedding
that makes a′2 negative. Therefore, we can guarantee that a′2 is a square modulo b′O by
prescribing certain sign for b′ in this embedding. That still leaves infinitely many prime
elements. We chose one avoiding the primes that ramifies KA.

Now let p be the rational prime lying under b′O. Since KA/K is unramified in b′O and Lp

is totally ramified in b′O it follows that KA∩Lp = K; hence Gal(LpKA/K) = Gal(Lp/K)×
Gal(KA/K). We choose an element σ ∈ Gal(LpKA/K) such that resKA

(σ) = (v′′O, KA/K),
where (v′′O, KA/K) is an Artin symbol, and resLp

(σ) is nontrivial.
By the Tchebotarev density theorem, there exists infinitely many primes p such that

(p, LpKA/K) = σ. Choose one avoiding the ramified primes and the divisors of ε(b′)mI.
Since (p, KA/K) = (v′′O, KA/K), it follows by Artin reciprocity that there exists λ in K

such that it is multiplicatively congruent to 1 mod A and λv′′O = p. Set b′′ = λv′′. Then
b′′ ≡ v′′ mod A and b′′O = p. Since (b′′O, Lp/K) is nontrivial, it follows that ε(b′′) is not
divisible by p, c.f. A.8 of [3].

Step 4. By one transvection, we transform the row (a2, b) into a row (am, b) =
((a′, a′′)m, (b′, b′′)), where (a, b) ∈ Ω.

By the previous step, there exist a′ and a′′ such that (a′)m ≡ a′2 mod b′O and (a′′)m ≡ a′′2
mod b′′O. Since b′ and b′′ are prime to I, we may assume that a′ ≡ a′′ ≡ 1 mod I; hence

(a, b) = ((a′, a′′), (b′, b′′)) ∈ Ω. Finally, by Lemma 2.1 we have am ≡ a2 mod bÕ. �

In order to verify the condition 2 of Proposition 4.1, we need the following lemma.

Lemma 4.3. In the setting of Theorem 3.1, let A be a nonzero ideal of O, let b ∈ O be a

nonzero element such that

(i) bO is a prime ideal with residue characteristic prime to m;

(ii) bO and A are comaximal.

Let S ⊆ P be a finite set of rational primes such that it does not contain the residue

characteristic of bO and one of the following conditions holds: either the Artin symbol

(bO, Lp/K) is non trivial for all p ∈ S; or the Artin symbol (bO, Lp/K) is trivial for all
10
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p ∈ S, but there exists σ1 ∈ Gal(L/K), where L is a composite L =
∏

p∈S Lp, such that

resLp
(σ) is nontrivial for all p ∈ S.

Then there exists c ∈ O such that bc ≡ −1 mod A and ε(c) = mγ, where none of the

primes from S divide γ.

Proof. Let HA denote the ray class group of K that correspond to the ideal A. By the
existence theorem of class field theory there is a finite abelian extension KA/K for which the
Artin reciprocity map gives an isomorphism HA ≃ Gal(KA/K). Consider the composite
LA = LKA.

Now we consider two cases described in the assumptions.
Case 1 The Artin symbol (bO, Lp/K) is non trivial for all p ∈ S.
Applying the Tchebotarev density theorem to the extension LA/K, we conclude that

there are infinitely many K-primes p such that (p, LA/K) = (bO, LA/K)−1. Choose one
avoiding the ramified primes and the divisors of mA.

Let c0 be any element of O such that bc0 ≡ −1 mod A. Then (bO, KA/K)−1 =
(c0, KA/K) and hence (p, KA/K) = (c0O, KA/K). By Artin reciprocity it follows that
there exists λ in K such that it is multiplicatively congruent to 1 mod A and λc0O = p.
Set c = λc0. Then bc ≡ −1 mod A; and since (cO, LA/K) = (bO, LA/K)−1 has nontrivial
restrictions to all the Lp for p ∈ S, it follows that ordp(ε(c)) = ordp(|R/p| − 1) = ordp(m)
for all p ∈ S. Therefore, ε(c) = mγ, where none of the primes from S divide γ.

Case 2 The Artin symbol (bO, Lp/K) is trivial for all p ∈ S, but there exists σ1 ∈
Gal(L/K) such that resLp

(σ) is nontrivial for all p ∈ S.

Choose σ1 ∈ Gal(LA/K) such that resL(σ1) = σ1. Then set σ2 = (bO, LA/K)σ−1
1 .

Applying the Tchebotarev density theorem to the extension LA/K, we conclude that
there are infinitely many K-primes p1, p2 such that σ−1

i = (pi, LA/K), for i = 1, 2. Choose
any two distinct such primes, avoiding the ramified primes and the divisors of mA.

Similarly to the previous case, we obtain that the ideal p1p2 is principal with the gen-
erator c such that bc ≡ −1 mod A. Since both σ1 and σ2 have nontrivial restrictions to
all the Lp for p ∈ S, it follows that ordp(|R/p1| − 1) = ordp(|R/p2| − 1) = ordp(m) for all
p ∈ S. Hence ε(c) = lcm((|R/p1| − 1), (|R/p2| − 1)) = mγ, where none of the primes from
S divide γ.

�

Now we finish the proof of the main theorem. Recall that it remains to verify the
condition 2 of proposition 4.1 in the setting above.

So let (a, b) = ((a′, a′′), (b′, b′′)) ∈ Ω. Since b′ is prime to I, it follows from Lemma 2.1
that

ε
Õ
(b) = lcm(εO(b′), εO(b′′)).

Recall that ep = ordp(m). Set

S0 = {p ∈ P : ordp(εÕ(b)) > ep}.

Note that S0 does not contain residue characteristics of b′O and b′′O. Indeed, all the
primes from S0 are either divisors of ε(b′) or of ε(b′′). A divisor of ε(b′) can not be the residue

11
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characteristic of b′′O by the definition of Ω and it can not be the residue characteristic of
b′O, because |O/b′O| = ε(b′)+1. Similarly, a divisor of ε(b′′) also can not coincide with these
residue characteristics. Therefore, for p ∈ S0 the extension Lp/K is unramified in b′O and
b′′O, and we can consider the Artin symbols (b′O, Lp/K) and (b′′O, Lp/K) ∈ Gal(Lp/K).

By the definition of S0 for any p ∈ S0 we have either ordp(ε(b
′)) > ep or ordp(ε(b

′′)) >
ep. In the first case (b′O, Lp/K) is trivial, and in the second case (b′′O, Lp/K) is trivial.
Therefore, we have

S0 = S1 ⊔ S2 ⊔ S3,

where

S1 = {p ∈ S0 : (b′O, Lp/K) = 1 and (b′′O, Lp/K) 6= 1},

S2 = {p ∈ S0 : (b′O, Lp/K) = (b′′O, Lp/K) = 1},

S3 = {p ∈ S0 : (b′O, Lp/K) 6= 1 and (b′′O, Lp/K) = 1}.

Now for i = 1,2,3 set δi = |Si ∩ Sbad|, and ∆i = max(1, ln(δi + 1)/ ln 2). Finally, set
∆0 = ∆1 + ∆2 + ∆3. Clearly, ∆0 6 ∆.

Let us prove that for any i ∈ {1, 2, 3} we can present Si as such a union

Si =

∆i⋃

j=1

S
(j)
i

that for any 1 6 j 6 ∆i there exists an element σ ∈ Gal(L/K) with resLp
(σ) being

nontrivial for all p ∈ S
(j)
i , where L =

∏
p∈Si

Lp.

Similarly to the proof of Lemma 4 of [4], we obtain that

Gal(L/K) = Gal(Lbad/K) ×
∏

p∈Si\Sbad

Gal(Lp/K),

where Lbad =
∏

p∈Si∩Sbad
Lp.

If δi = 0, then ∆i = 1 and, clearly, we can set S
(1)
i = Si. So assume that δi > 0. Then

by Referee’s Addendum to the paper [4], there exist elements σ1,. . .,σ∆i
∈ Gal(Lbad/K)

such that for any p ∈ Si ∩ Sbad at least one of the σj does not belong to the kernel of the
restriction map Gal( Lbad/K) → Gal(Lp/K). Therefore we can set

S
(j)
i = (Si \ Sbad) ∪ {p ∈ Si ∩ Sbad : resLp

(σj) 6= 1}.

Now by Lemma 4.3 for any 1 6 i 6 3 and 1 6 j 6 ∆i there exist elements c′i,j, c
′′
i,j ∈ O

such that

b′c′i,j ≡ −1 mod a′I,

b′′c′′i,j ≡ −1 mod a′′I,

ε(c′i,j) = mγ′
i,j,

ε(c′′i,j)) = mγ′′
i,j,

where none of the primes from S
(j)
i divides γ′

i,j or γ′′
i,j.

12
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Here we applied Lemma 4.3 for A = a′I resp. A = a′′I; and we used that b′O and a′I are
comaximal, because b′O and a′O are comaximal and b′O and I are comaximal; similarly
b′′O and a′′I are comaximal.

Since the residue characteristics of b′O and b′′O are prime to m, it follows that both ε(b′)
and ε(b′′) are divisible by m. Let

ε
Õ
(b) = lcm(ε(b′), ε(b′′)) = mγ.

Now we set ci,j = (c′i,j, c
′′
i,j) and γi,j = gcd(γ, lcm(γ′

i,j, γ
′′
i,j)). Let us verify that these

elements satisfy the requirements in the condition 2 of Proposition 4.1.

• Since for all i,j we have c′i,j ≡ c′′i,j ≡ −1 mod I, it follows that ci,j ∈ Õ.

• All the primes dividing γi,j also divides γ and thus by definition of S0 they belong

to S0. But the primes from S
(j)
i does not divide γ′

i,j and γ′′
i,j; hence they does not di-

vide lcm(γ′
i,j, γ

′′
i,j); hence they does not divide γi,j. Since S0 =

⋃
i,j S

(j)
i , it follows that

gcdi,j(γi,j) = 1.

• Since b′c′i,j ≡ −1 mod a′O, b′′c′′i,j ≡ −1 mod a′′O and a′ is prime to I, it follows by

Lemma 2.1 that bci,j ≡ −1 mod aÕ.

• Finally, since c′i,j is prime to I, it follows by Lemma 2.1 that ε
Õ
(ci,j) =

lcm(εO(c′i,j , εO(c′′i,j))). Therefore,

gcd(ε
Õ
(b), ε

Õ
(ci,j)) = gcd(mγ, lcm(mγ′

i,j, mγ′′
i,j)) = m gcd(γ, lcm(γ′

i,j, γ
′′
i,j)) = mγi,j.

That finishes the proof of Theorem 3.1.

5. Final remarks

Now we give a quick proof that E(n,OS, I) has finite width in Tits–Vaserstein generators
without any assumptions on K and I that relies only on the result of [4]. This proof is
similar to the one given in [22] for E(Φ, I); and we will see why this proof does not allow
to obtain any explicit estimate.

Proposition 5.1. In the previous notation, let I be a non zero ideal in OS , and let n > 3.
Then the group E(n,OS, I) has finite width in Tits–Vaserstein generators.

Proof. For g ∈ E(n,OS, I) let l(g) be the smallest integer such that g can be expressed as
a product of l(g) Tits–Vaserstein generators.

Note that OS/I is a finite set, so let ζ1,. . .,ζr be representatives of all the classes in OS/I.
By [4] any element g ∈ E(n,OS, I) 6 E(n,OS) is a product of at most N transvections.
We can write it as

g =
N∏

u=1

tiu,ju(ζku + ξu),

where ξu ∈ I. Then we have

g =
N∏

u=1

tiu,ju(ξu)hu ·
N∏

u=1

tiu,ju(ζku),

13
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where hu =
∏u

v=1 tiu,ju(−ζkv). The number l(tiu,ju(ξu)hu) can be estimated in a manner
similar to the proof of Corollary 3.4 with some constant C. Now let Θ be the set of all
elements of the form

N∏

u=1

tiu,ju(ζku),

then Θ is a finite set. Therefore we have.

l(g) 6 CN + max
h∈Θ∩E(n,OS ,I)

l(h).

�

As we can see this estimate is not explicit because we do not know the bound for l(h),
where h ∈ Θ∩E(n,OS, I). We just know that some way to express such h as a product of
Tits–Vaserstein generators exists.

However, we believe that it is possible to generalise the results of the present paper to
the arbitrary ideals in OS, replacing SL(n,OS, I) by E(n,OS, I). The only problem is the
compatibility of certain congruences in step 3 of the proof of Lemma 4.2. Our conjecture is
that those congruences will be compatible automatically if the matrix we start with belong

to E(3, ÕS).
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