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Abstract. As periodic orbit theory works badly on computing the observable averages of dynamical
systems with intermittency, we propose a scheme to cooperate with cycle expansion and perturbation
theory so that we can deal with intermittent systems and compute the averages more precisely.
Periodic orbit theory assumes that the shortest unstable periodic orbits build the framework of
the system and provides cycles expansion to compute dynamical quantities based on them, while
the perturbation theory can locally analyze the structure of dynamical systems. The dynamical
averages may be obtained more precisely by combining the two techniques together. Based on the
integrability near the marginal orbits and the hyperbolicity in the part away from the singularities
in intermittent systems, the chief idea of this paper is to revise intermittent maps and maintain the
natural measure produced by the original maps. We get the natural measure near the singularity
through the Taylor expansions and periodic orbit theory captures the natural measure in the other
parts of the phase space. We try this method on 1-dimensional intermittent maps with single
singularity, and more precise results are achieved.

I. INTRODUCTION

From the perspective of statistical physics, in chaotic systems the long-time evolution of typical initial conditions
leads to the same asymptotic distribution, the so-called natural measure, which is invariant and effectively used
in computing averages of physical observables [1]. Due to the intrinsic difficulty of depicting the natural measure
precisely at different physical states based on system evolution equations [2], great challenges are still present in an
accurate computation of physical averages in non-equilibrium systems. Fortunately, the strange attractor is densely
covered by unstable periodic orbits (UPOs), which could be conveniently used to compute these averages instead
of the natural measure. Periodic orbit theory (POT) [3–7] relates global averages to the eigenvalues of appropriate
evolution operators [4] which is powerful for reliable and accurate analysis in nonlinear chaotic systems.
The method of cycle expansions [3, 4, 7, 8] utilizes short periodic orbits (cycles) to compute the spectrum or

specifically the leading eigenvalue. For uniform hyperbolic systems, cycle expansions converge exponentially or even
super-exponentially [4]. However, for non-hyperbolic systems, the convergence is considerably slowed down [9], which
casts a shadow over possible application of periodic orbit theory and cycle expansions. Non-hyperbolicity is a very
general aspect of dynamics generated near critical points or marginally stable phase space regions in a dynamical
system. For example, in fluid flows, one often observes long periods of regular dynamics (laminar phases) interrupted
by irregular chaotic bursts, with the distribution of laminar phase intervals well described by a power law [10, 11]. This
phenomenon of alternating motion between a chaotic and a regular region in the phase space is called intermittency [12–
14], which invariably leads to drastic dynamical consequences, such as singular natural measures in general, or
localisation and quasi-regular eigenfunctions in semi-classical considerations [15–17].
When the symbolic dynamics of a particular system is unknown or the hyperbolicity is not so uniform, cycle

expansions by stability ordering [18] could be a choice. For some stability cutoffs, the cycle expansion converges
exponentially with cycle length in some regime and usually faster than that based purely on the topological length of
the flow. Nevertheless, some extremely long cycles may need to be involved in the expansion with stability ordering,
and an excessively large cutoff may lead to harmful result. Hence the results of stability-ordered expansions should
always be tested for robustness by varying the stability cutoff and the size of the cycle set, which will greatly increase
the amount of calculation. Besides, several schemes to accelerate the expansion based on analyticity of the spectral
functions have been proposed. The tail resummation technique [9] tries to expand the radius of convergence of cycle
expansion by removing leading poles of the zeta function. However, in the presence of marginally stable cycles, the
tail contribution is led only by a logarithmic convergence thus limiting the accuracy of results. In [19], R. Artuso and
P. Cvitanović et al. discuss the properties of the Perron-Fröbenius operator for intermittent systems, and show that
intermittency induces branch cuts in dynamical zeta functions. Marginally stable orbits are incorporated into cycle
expansions indirectly through infinite sums over infinitely many symbolic regions. The fundamental term determines
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the main structure of the zeta function in terms of the leading order branch cut and can be evaluated by constructing
an analytic continuation through resummation or by integral transformations. However, how to analytically express
curvature contributions to extract the detailed information buried in the intermittent dynamics is faced with difficulty.
In this paper, we discuss an alternative way to deal with intermittency. The marginally stable orbits could be

avoided by punching a role around where the non-hyperbolicity is treated with analytic approximation and cycle
expansions are implemented outside this region, thus retaining the handsome exponential convergence. The key point
is to revise the intermittent map but keep invariant the natural measure as explained in the following. First, the phase
space is separated into a hyperbolic and a non-hyperbolic part. Second, a local approximation of the natural measure
in the non-hyperbolic region is derived through a Taylor expansion while cycle expansions compute the measure in the
hyperbolic part. Finally, a match of the flow out and in could be used to estimate the exchange of measure between
the two parts. The new treatment seems much more accurate than a direct application of the cycle expansion and
thus much subdues the trouble brought by intermittency.
After a brief review of POT in Sect. II, we describe the difficulty associated with intermittency in cycle expansions

in Sect. III. In Sect. IV, we introduce a modification of the dynamics, using the idea of induced map [20] to keep
the natural measure while gaining hyperbolicity. Details of our scheme for computing averages of observables are
discussed in Sect. IVD. In Sect. V, several examples are used to demonstrate the validity of the new technique in
1-d intermittent cases. Finally in Sect. VI, we summarize the paper and point out possible directions for future
investigation.

II. PERIODIC ORBIT THEORY

With physical intuition and mathematical rigor, the POT puts an alternative way to grasp the main characteristics
of nonlinear dynamics and supplies a formalism relating phase space averages to periodic orbits, which carry both
topological and dynamics information.
Usually, the average of an observable a(x) is evaluated [4] along a trajectory from a typical initial point x0 in phase

space M

āx0
= lim

n→∞
An

n
= lim

n→∞
1

n

n−1
∑

i=0

a(f i(x0)) , (1)

where xi+1 = f(xi) is the given map describing the dynamics and An(x0) =
∑n−1

i=0 a(f i(x0)) is the integrated
observable [4]. In this way, a time average may be computed with convenience but the convergence could be very
slow sometimes or even not reliable at all occasionally in the presence of non-hyberbolicity. If a measure ρ(x) exists
in the phase space another average could be defined

〈a〉ρ =

∫

M
a(x)ρ(x)dx , (2)

which is of course dependent on ρ(x). If the dynamics is ergodic, a natural measure ρ0(x) exists for which the two
averages 〈a〉ρ0

= āx0
for almost all x0. Sometimes, for convenience we write 〈a〉ρ0

= 〈a〉. Nevertheless, in the phase
space of a typical nonlinear system, ρ0(x) is a singular function defined on a fractal set, which is hard to compute or
describe.
Interestingly, an alternative approach based on UPOs could be designed to directly compute the averages even

without an explicit evaluation of the natural measure. As a strange attractor is densely covered by UPOs, natural
measure ρ0(x) are fully captured by them. Dynamical features can be extracted from the set of UPOs through the
evolution operator Ln [4], which evolves the density function ρ(x) according to

Ln ◦ ρ(x) =
∫

M
dyδ(x− fn(y))eβA

n(y)ρ(y) , (3)

where n = 1, 2, · · · for discrete mappings. The kernel function Ln(x, y) = δ(x− fn(y))eβA
n

depends on the integrated
quantity An and an auxiliary variable β. If we set β = 0, L is the famous Perron-Fröbenius operator [4].
Denoting the spectrum of L by {sm}m∈N with Re(sm) > Re(sm+1). If the linear operator L can be thought of as

a matrix, high powers of which are dominated by the largest eigenvalue, specifically

LnI(x) =
∑

m

bmφm(x)ensm ∼ b0φ0(x)e
ns0 , n → ∞ , (4)
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where I(x) ≡ 1 is the identity function and expressed as an expansion of the eigenfunctions φm(x) of L, i.e., I(x) =
∑

m bmφm(x). Thus, in terms of the evolution operator, we have

〈eβAn〉I(x) =
∫

M
dxLn ◦ I(x) ∼ ens0 , (5)

as n → ∞, where s0 is the leading eigenvalue which is a function of β. Thus

s0(β) = lim
n→∞

1

n
ln〈eβAn〉I(x) . (6)

Thus, if the system is ergodic, the average

〈a〉 = lim
n→∞

1

n

〈An〉I(x)
〈1〉I(x)

=
ds0(β)

dβ β=0

(7)

is directly related to the leading eigenvalue. So, all we need to do is extract the spectrum of L, especially the leading
one. Through the identity between the determinant and trace of an arbitrary square matrix M in the matrix algebra:
det(M) = exp(tr ln(M)), the spectrum of the linear operator L is determined by solving the resolvent equation
det(1− zL) = 0 from the set of UPOs through the trace [4, 9]

tr(Ln) =

∫

M
dxLn(x, x) =

∫

M
dxδ(x − fn(x))eβA

n

=
∑

fn(xi)=xi

eβA
n(xi)

|det(1−Mn(xi))|
, ∀n ∈ Z

+ , (8)

where xi is a periodic point of period n and Mn(xi) is the Jacobian matrix of fn(x) evaluated at xi. Thus the spectral
determinant [3, 4, 9] is

det(1− zL) = exp(tr ln(1− zL)) = exp

(

−
∞
∑

n=1

zn

n
tr(Ln)

)

= exp(−
∑

p

∞
∑

r=1

1

r

znprerβAp

|det(1−M r
p )|

) , (9)

where p denotes prime cycles which are not repeats of shorter ones and np is the length of the cycle p. Ap and Mp

are the integrated physical quantity and the Jacobian along the prime cycle p. If the system is hyperbolic, we can
make the approximation

1

|det(1−M r
p )|

≈ 1

|Λp|r
, (10)

where Λp =
∏

e Λp,e is the product of expanding eigenvalues of the matrix Mp. With r → ∞, the spectral determinant
Eq. (9) becomes the dynamical zeta function [4, 6]

1

ζ
=
∏

p

(1− tp), (11)

where tp = znpeβAp

|Λp| . The dynamical zeta function is the 0th-order approximation of the spectral determinant and

they have identical leading eigenvalue but different analytic properties [4].
In order to find all the periodic orbits, we have to resort to symbolic dynamics which encodes all the possible

orbits [1]. As an example, let’s consider the tent map

x 7→ f(x) =

{

f0(x) = 2x x ∈ [0, 1
2 )

f1(x) = 2− 2x x ∈ [ 12 , 1]
, (12)

which is uniformly hyperbolic and has a critical point at x = 1/2. We label the two non-overlapping intervals [0, 1/2)
and [1/2, 1] with “0” and “1” respectively so that a trajectory is uniquely associated with a binary symbol sequence
s0s1s2s3..., si ∈ {0, 1} called itinerary according to the intervals which the orbit consecutively visits. A family of orbits
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are denoted as s0s1s2...sk, which start and visit the same intervals within k iterations. For example, the period two
orbit in Fig. 1(a) is described by the infinite sequence 010101..., which may be denoted as 0̄1 and has a topological
length of 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0.8

0.9

1

(a)

0 2 4 6 8 10 12 14
-14

-12

-10

-8

-6

-4

-2

0

(b)

FIG. 1. (a) The tent map f on the unit interval [0, 1] with its symbolic regions denoted by 0 and 1. The fixed points x = 0 and
x = 2/3 are actually period one orbits and represented by 0̄ and 1̄ respectively. The period two orbit has the sequence 0101...
and is denoted by 0̄1. (b) The convergence rates of cycle expansions are marked with the decay of the computation errors with
the truncation length, e.g., in the estimation of the average 〈x〉 (+, exponential decay) or the escape rate (∗, super-exponential
decay). The values obtained with the largest truncation length are considered as the “exact” values in the estimation of errors.

Utilizing the property of orbit shadowing in nonlinear dynamics [4], cycle expansion is often an efficient method for
computing the spectrum, with short periodic orbits capture the major part of the natural measure and longer cycles
deliver systematic curvature corrections. For maps with binary symbolic dynamics, Eq. (11) can be expanded as

1

ζ
=1−

∑

f

tf −
∑

p

cp = 1− t0 − t1 − [(t01 − t0t1)]

−[(t001 − t01t0) + (t011 − t01t1)]− ...,

(13)

where the fundamental terms tf include all unbalanced, not shadowed prime cycles and the rest terms cp, called
curvature corrections, consist of longer prime cycles and pseudo-cycles that shadow them. Cycle expansions are
dominated by fundamental terms, with long orbits shadowed by short orbits, so that curvature corrections decay
exponentially or even super-exponentially (shown in Fig. 1(b)) if uniform hyperbolicity is assumed. The cancellation
between prime cycles and pseudo-cycles reflects the smoothness of the underlying dynamics.
As there often exist infinitely many unstable cycles in a chaotic system, truncation to the spectral functions is also

necessary in practical computation. The usually adopted truncation with cycle length corresponds to a geometric
envelope approximation of the original map [21] and higher order truncations lead to a more accurate evaluation as
shown in Fig. 1(b).

III. DIFFICULTY ASSOCIATED WITH INTERMITTENCY

When a dynamical system is uniformly hyperbolic and its symbolic dynamics is a subshift of finite type, it can
be shown that the evolution operator L has discrete spectra {sm}m∈N and the associated spectral determinants are
entire functions [22, 23] whose zeros {zm}m∈N are related to the eigenvalues via zα = e−sα . The average 〈a〉 or
other dynamical properties can be conveniently computed based on the leading eigenvalue s0 of L through spectral
determinants or dynamical zeta functions. With intermittency, the spectra of evolution operators, however, become
continuous and dynamical zeta functions exhibit branch cuts [4, 19]. Cycle stabilities grow no longer exponentially
with length, but as power laws which leads to poor cancellations, sending cycle expansions awry.
The difficulty of intermittency comes from the marginally unstable periodic orbit embedded in the phase space.

Once the state of the system comes close enough to the marginal orbit, it will stick around for a long time. So
not surprisingly, there will be singularities in natural measure, being located near the marginal orbit. The stability
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eigenvalues of the UPOs near the marginal region are very close or equal to 1, breaking the exponential instability
with respect to the cycle length and rendering the spectral determinant singular. Here is an example of intermittent
map

x 7→ f(x) =

{

f0(x) = x/(1−
√

x/2) x ∈ M0 = [0, 1
2 )

f1(x) = 2− 2x x ∈ M1 = [ 12 , 1]
, (14)

which has a marginally unstable fixed point x = 0, leading to a natural measure singularity at the origin (Fig. 2(b)). f0
and f1 correspond to the two branches of the map. In this paper, we shall restrict our consideration to 1-dimensional
maps which are similar to f(x), with the marginally unstable fixed point x = 0 and the approximation

x 7−→ f(x) ∼ x+ cx1+s (15)

in its neighborhood, which are characterized by the intermittency exponent s. In this kind of maps, x = 0 is a
singularity of the natural measure which takes the form ρ ∼ 1

xs near x = 0, to be shown later. If we further

assume that this kind of maps have complete binary symbolic dynamics, the eigenvalue of the orbit 10m−1 grows
algebraically with its length: Λ10m−1 ∼ m1+1/s, when m is large enough [19]. This quite makes cycle expansions
converge algebraically.
Nevertheless, the integrability near the marginal points of intermittent maps gives us inspiration and becomes the

foundation and starting point of our work. We can easily take advantage of this property in marginal regions, where
the natural measure is computed with perturbation theory in combination with cycle expansions in hyperbolic regions.

IV. SEPARATION AND RECONSTRUCTION SCHEME

After fully appreciating the difficulty associated with intermittency, it may seem natural to separate the phase space
into two parts. One is the marginal part which contains the marginal orbit and the other is a totally hyperbolic part.
Hopefully, the cycle expansion on the hyperbolic part will be accelerated after the marginal orbit is removed. The
natural measure on the hyperbolic part should not be changed. Therefore, a subtle manipulation of the dynamics
defined on this part is needed. We focus on the map f mentioned above and show that for this purpose a comb
structure could be introduced with inspiration from the branch structure in [19].

A. A comb structure

Our scheme is illustrated for the map f(x) in Eq. (14)and certainly applicable to other cases. A convenient and
natural way is to just split the two branches of the map, teating [0, 1/2) as the marginal part and [1/2, 1] as the
hyperbolic part. For the hyperbolic part, we construct a comb structure (Fig. 2(a)) to replace the original map but

keep the natural measure unchanged. The revised map is defined on [1/2, 1] and denoted as f̃(x) given by

f̃(x) =







































f1(x) x ∈ M1 = [q1, q2]

f2(x) = f0(f1(x)) x ∈ M2 = (q2, q3]
...

...

fm(x) = fm−1
0 (f1(x)) x ∈ Mm = (qm, qm+1]

...
...

, (16)

where q1 = 1/2 and qm = f−1
1 (f2−m

0 (q1)),m ≥ 2. The revised map f̃(x) has a nice property that f̃m(Mm) ⊂ [1/2, 1],

which indicates that f̃(x) is self-contained and enjoys a complete symbolic dynamics. In addition, a trajectory of f(x)

is always mapped to that of f̃(x), just by lumping the points in [0, 1/2) to the first point out of this interval along

the trajectory. Furthermore, the natural measure produced by f̃(x) is proportional to that of f(x) on [1/2, 1]

ρ(x) = λ ρ̃(x), x ∈ [1/2, 1], 0 < λ < 1 , (17)

where the constant λ may be computed through cycle expansions. We put the justification and detailed derivation
in App. I. As the maps discussed in this paper are all ergodic, the rough picture of the natural measure may be
constructed from the histogram of map iterations as shown in Fig. 2(b), where a singularity near the origin is clearly
seen.
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FIG. 2. The intermittency map and the natural measure: (a) The map f(x) (Eq. (14), blue line) and the revised map f̃(x)

(Eq. (16), red line). The two images coincide partly on the interval [1/2, 1] and infinite branches of f̃(x) on the right are

supplied to keep the measure invariant. (b) The natural measure of f(x) (blue line) and f̃(x) (red line). Obviously, there is a
singularity at x = 0 in the natural measure of f(x).

B. Redefinition of the observable

After the construction of the revised map f̃ : [1/2, 1] 7→ [1/2, 1], which successfully maintains the natural measure,
the dynamical averages of f(x) can be easily obtained. We could calculate averages in [0, 1/2) and [1/2, 1] by analytical
approximation and cycle expansion separately.
Nevertheless, we are able to take one step further. In fact, the analytical approximation for the natural measure

on [0, 1/2) may be unnecessary, since we may obtain the averages with a redefinition of the observables and restrict
the computation to [1/2, 1]. Denote an observable by a(x) and its average is 〈a〉 =

∫

M a(x)ρ(x)dx, with ρ(x) being
the natural measure. We could redefine the observable on [1/2, 1] as

ã(x) =







































a(x) x ∈ M1 = [q1, q2]

a(x) + a(f1(x)) x ∈ M2 = (q2, q3]
...

...

a(x) +
∑m

n=2 a((f
n−2
0 f1)(x)) x ∈ Mm = (qm, qm+1]

...
...

, (18)

which implies a beautiful equation for ã(x)

〈ã〉 =
∫ 1

1/2

ã(x)ρ̃(x)dx =

∫ 1

0

a(x)
ρ(x)

λ
dx =

〈a〉
λ

, (19)

indicating that all the averages are obtainable with just the revised map f̃(x) (in theory at least). We relegate the
justification to App. II.

C. Dynamical zeta function

For the trajectories of f(x) and f̃(x) have one-to-one correspondence, it is convenient to map the symbol sequences

10l−1 → l; 10l−110m−1 → lm;

10l−110m−110n−1 → lmn; . . . ,
(20)

where m stands for the interval Mm, which has been defined along with f̃(x). The corresponding cycle has the same
stability and integrated observable as the original one but the cycle length is reduced in the revised map. For example,
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if an itinerary of f(x) has a length of m+n, where n stands for the number of points in [0, 1/2), the reduced itinerary

then only has a length of m. These relations make the cycle search quite easy since the new map f̃(x) does not need

to be used. All its periodic orbits can be adapted from those of f(x). The dynamical zeta functions for f(x) and f̃(x)
compare as follows

1

ζf
=
∏

p

(1− tp), tp =
eβAp

|Λp|
zm+n

1

ζf̃
=
∏

p

(1− t′p), t
′
p =

eβAp

|Λp|
zm

, (21)

from which we can clearly see that we just need a small change to get the dynamical zeta function of f̃(x). However,

the infinite branches of f̃(x) still have to be treated as explained below.

D. One convenient approximation

Difficulties still exist in a direct application of Eq. (21) in practice. Firstly, according to Eq. (21), infinite number
of long orbits should be computed which are reducible to short ones in the new map and thus contribute to the
fundamental part in the cycle expansion. This manifests as the infinitely many branches of the comb structure and is
impossible to achieve numerically. For example, orbit 0m−11 with a large enough m will be reduced into a fixed point
located on the mth branch of the revised map. Secondly, the redefined observable ã(x) might be singular at x = 1,
which certainly slows down the convergence of the cycle expansion. As a result, approximations are still needed to
further improve the operation and effectiveness of our scheme.
First, the infinite comb structure is replaced with finitely many branches. For the revised map f̃(x), we replace all

the branches fm(x) (m ≥ n) with just one linear branch f̂n(x) = q1−1
1−qn

(x − qn) + 1, x ∈ Mn = (qn, 1]. Obviously,

f̂n(Mn) ⊂ [1/2, 1]. Here, n describes the level of the approximation, being more accurate for larger n. Nevertheless,
under this approximation, the cycles that pass the interval (qn, 1] cannot be obtained directly from the original map
f(x), but have to be found individually. Second, we save the averages in the neighborhood of x = 0 for different
treatment which effectively removes the above mentioned singularity. To achieve this, we just need to analytically
estimate the natural measure in the interval [0, f1(qn)]. As a result, in the interval Mn, the observable ã(x) could be
redefined as a(x) +

∑

k a((f
k
0 f1)(x)) where k keeps (fk

0 f1)(x) ∈ (f1(qn), q1) and thus finite. The detailed discussion is
seen in App. IV.
The computation of the average 〈a〉0 in the interval [0, f1(qn)] calls for an analytic derivation of the natural measure

ρ(x). Expectedly, the redefinition of the observable greatly reduces the approximation interval, which enables a local
expansion based on the equation

ρ(x) =
ρ(f−1

0 (x))

|f ′
0(f

−1
0 (x))|

+
ρ(f−1

1 (x))

|f ′
1(f

−1
1 (x))|

, x ∈ [0, 1/2) , (22)

since the dynamics near x = 0 is integrable. The detailed derivation of the analytic approximation is given in the
examples below and could also be found in the appendix. Finally, the dynamical average we need is obtained from
〈a〉0 in the neighborhood of x = 0 and 〈ã〉 on the hyperbolic part as

〈a〉 =
∫ f1(qn)

0

ρ(x)a(x)dx + λ

∫ 1

q1

ρ̃(x)ã(x)dx

=〈a〉0 + λ〈ã〉.
(23)

V. SEVERAL EXAMPLES

We show that dynamical averages for an intermittent map can be effectively computed through a series of operations
including separation, reconstruction, redefinition and analytic computation. The revised map behaves much better
than the original one in that the marginal orbit is eliminated and cycle expansion is accelerated. We apply what is
described above to compute the averages of the following intermittent maps to verify its effectiveness. Before doing
that, some details on numerical computation need to be noted.
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A. Details on numerical computation

For all degree n of the approximation, we set a truncation length Lmax = 10 for cycle expansions and found out
all the prime cycles no longer than Lmax. Based on the state space Markov partition [24], symbolic dynamics [25–27]
and multiple shooting method [5] are very effective in cycle searching. Averages obtained with the degree n of the
approximation are used as the “exact” values when estimating the errors of those with lower degrees. Errors vs degree
n are plotted to show the convergence in the logarithmic scale.

On the other hand, dynamical averages are estimated with efforts by time averaging (Eq. (1)) and also with a direct
application of the dynamical zeta function, to compare with the new treatment. For each example, we start from
102 different random initial points and iterate 108 times each to get 102 dynamical averages along these trajectories,
which are then averaged again, with a standard deviation computed to indicate the accuracy.

B. The example model

We continue with the previous example map f(x) as the first demonstration. Near the marginally unstable fixed
point x = 0, the map takes the form

f(x) =
∞
∑

i=0

x(
x

2
)i/2 = x+

x3/2

√
2

+O(x2) (24)

where O(x2) denotes higher order terms. Obviously, we have the intermittency exponent s = 1
2 in this map. To

simplify the calculation, we repartition the interval [0, 1] into the marginal part [0, f−2
0 (q1)) and the hyperbolic part

[f−2
0 (q1), 1]. The revised map f̃(x) is shown in Fig. 2(a) and the redefined observable ã(x) are defined as in Eq. (18),

but with the revision described in Sect. IVD. Based on the new partition, the symbolic dynamics is easily established
and the lengths of many prime cycles are much reduced. As mentioned in Sect. IVD, we merge all the later branches

fm(x), m ≥ n into a linear one f̂n(x).

-1 0

1 m

FIG. 3. The Markov chain of the revised map f̃(x). It marks the density transportation direction and supports the establishment
of symbolic dynamics. The phase space for the hyperbolic dynamics is divided into non-overlapping regions: “−1”, the interval
[f−2

0 (q1), f
−1
0 (q1)], “0”, (f

−1
0 (q1), q1], “1”, (q1, q2] and “m”, the intervals Mm, m ≥ 2.

We try to evaluate the average 〈x〉 via Eq. (23). As mentioned above, we need to calculate 〈x̃〉 and λ through the

dynamical zeta function for f̃(x) in Eq. (21) and cycle expansion (Eq. (13)). The natural measure of f(x) near x = 0
is analytically approximated as ρ(x) = ω0√

2
x−1/2 + ω0

8 + ω0

32
√
2
x1/2 +O(x) for the computation of 〈x〉0 in the interval

[0, f1(qn)], where ω0 is the natural measure supported on the interval (qn, 1] (see App. III). The results are shown in
Fig. 4. Obviously, the average becomes more precise when n is large. 〈x〉 converges to 0.3624 at n = 17 and is closed
to 0.3622..., the time averaging result with the standard deviation equal to 2.457...× 10−4. A direct application of
the dynamical zeta function gets 0.22, which is totally off due to the slow convergence incurred by the intermittency.
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FIG. 4. The change of the average and the error with the approximation level for map Eq. (14) in the new scheme. (a) the
average 〈x〉 becomes more precise as n increases and converges to 0.3624 at n = 17. (b) the logarithmic error with respect to
n.

C. Bernoulli shift map

Another intermittent map is introduced to validate our method with a slightly different treatment. The Bernoulli
shift map [28] is modified to

x 7→ f(x) =

{

f0(x) =
x

1− 3
√

x/4
x ∈ M0 = [0, 12 ]

f1(x) = 2x− 1 x ∈ M1 = [ 12 , 1]
, (25)

which is still denoted by f(x) for convenience. Similarly, the Bernoulli shift map has a marginal unstable fixed point
at x = 0 and takes the asymptotic form

f(x) =

∞
∑

i=0

x(
x

4
)i/3 = x+

x4/3

3
√
4

+O(x5/3), x → 0. (26)
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FIG. 5. The Bernoulli shift map f(x) (blue line) and the revised map f̃(x) (red line, n = 8). The two images coincide

on the interval [f−2
0 (q1), 1/2] and (q2, 1]. Infinite branches of f̃(x) on (1/2, qn] are approximated by just one branch f̂n(x).

Also, f̂n(Mn) ⊂ [f−2
0 (q1), f

−1
0 (q1)], a range shared by all the fm(x)’s. Here n describes the degree of approximation and the

approximation becomes more accurate when n gets larger.

As done above, we set q1 = 1/2 and choose [0, f−2
0 (q1)) as the marginal part and [f−2

0 (q1), 1] as the hyperbolic.
The revised map (Fig. 5) and observable ã(x) is defined on the hyperbolic part accordingly. The natural measure of
f(x) in the interval (q1, qn] is approximated as ρ(x) ≈ ω0 + ω1x via cycle expansion and the lowest-order polynomial
expansion (see App. III). Being accurate enough, the natural measure of f(x) near x = 0 is approximately equal to

ρ(x) = 2ω0+ω1

2 3
√
2

x−1/3 + 2ω0+ω1

24 + 7 3
√
2(2ω0+ω1)

432 x1/3 + O(x2/3). With the current scheme, 〈x〉 converges to 0.3925 at

n = 17 (Fig. 6(a)), which is closed to the time average 0.3921... with the standard deviation 1.238...× 10−4 and much
more precise than 0.32, the result produced by a direct application of the dynamical zeta function.
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FIG. 6. The change of the average and the error with the approximation level for the map Eq. (25) in the new scheme. (a)
The average 〈x〉 becomes more accurate as n increases and converges to 0.3925 when n = 17. (b) The dependence of the error
of 〈x〉 on the degree n.
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VI. SUMMARY

Maps with marginal orbits produce natural measures with singularities and incur bad convergence in cycle expan-
sions. How to deal with singularities and depict the natural measure correctly is the key to obtain dynamical averages
accurately. Essentially, the central idea of this paper is to take advantage of the partial integrability of intermittent
systems and analytically estimate the natural measure near the singularities. We divide the phase space into the
marginal and the hyperbolic parts in which analytic approximation is used in the marginal part and cycle expansions
in the other. As discussed above, we obtained averages of observables very precisely compared to a direct application
of the dynamical zeta function. A comb structure is introduced to maintain the natural measure in the hyperbolic part
and a redefinition of observables reduces greatly the size of the interval for analytical estimation. Cycle expansions
in the hyperbolic part are certainly accelerated due to the removal of singularities.
We test our method on several maps. With a proper analytic computation intermittent near the singularity, we get

the averages accurate up to the order of 10−4, which is far better than a direct application of cycle expansion. With
an increase of the approximation level the error decreases steadily. A possible way to further improve the accuracy

is to replace the last branch f̂n(x) in Mn by a more appropriate nonlinear approximation instead of a simple linear
function as in Sect. IVD. For some other intermittent systems with divergent or non-integrable singularities, however,
the computation of λ and dynamical averages becomes impossible due to the divergence of natural measure near the
singularity.
In this paper, we demonstrate the effectiveness of a new scheme for computing dynamical averages on 1-dimensional

maps with one single singularity. Nevertheless, how to apply the method to 1-dimensional cases with more singularities
or high-dimensional systems or even to flows requires further investigation. In high-dimensional chaotic systems, the
natural measure generated on strange attractors with complex structures and fractal dimensions is hard to be estimated
analytically. In this case, extra techniques have to be invented to deal with the non-hyperbolic part of the dynamics.
Besides, efficient numerical determination of all the shortest periodic orbits in a given nonlinear system is also a major
challenge in the application of cycle expansions. Fortunately, good candidates have to be designed to locate UPOs in
high-dimensional space [29].
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Appendices

I. Justification of Eq. (17)

Denote the natural measure of the original map with ρ(x), and the revised map with ρ̃(x). Obviously, the natural
measure satisfies the relation ρ(x) = Lnρ(x), which means it is invariant under system evolution. For the map f(x),
we have

ρ(x1) =
ρ(x11)

|f ′
1(x11)|

+
ρ(x01)

|f ′
0(x01)|

, x1 ∈ (1/2, 1] (27)

where x11 and x01 denote the preimages of x1 on branch f1 and f0 respectively. Next, by replacing ρ(x01) with the

natural measure on its preimages, ρ(x01) =
ρ(x101)

|f ′

1
(x101)| +

ρ(x001)
|f ′

0
(x001)| , we have

ρ(x1) =
ρ(x11)

|f ′
1(x11)|

+
ρ(x101)

|(f0f1)′(x101)|
+

ρ(x001)

|(f2
0 )

′(x001)|
. (28)

Keep doing this, we finally arrive at

ρ(x1) =
ρ(x11)

|f ′
1(x11)|

+
∞
∑

m=1

ρ(x10m1)

|(fm
0 f1)′(x10m1)|

. (29)

The revised map f̃(x) gives a similar equation for the measure ρ̃(x)

ρ̃(x1) =
ρ̃(x11)

|f ′
1(x11)|

+
∞
∑

m=1

ρ̃(x10m1)

|(fm
0 f1)′(x10m1)|

, (30)

which is obviously satisfied by the measure ρ(x). The uniqueness of the invariant measure indicates that ρ(x) = λρ̃(x)
in the hyperbolic part, where λ is a constant with λ ∈ (0, 1). The equations above are enough to determine the
functional form of ρ(x) and ρ̃(x). It is worth mentioning that we still have ρ(x) ≈ λρ̃(x) in the approximation with
an arbitrarily selected n defined in Sect. IVD. The larger the n, the more accurate the approximation.

II. Justification of Eq. (19)

We expand the natural measure on [0, 1/2] of the map f(x) similar to Eq. (29) above. The result is

ρ(x0) =

∞
∑

m=2

ρ(x10m−1)

|(fm−2
0 f1)′(x10m−1)|

, x0 ∈ [0, 1/2]. (31)
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It’s easy to see that the right-hand side of the equation involves only points and natural measure defined on the
interval [1/2, 1], which indicates that its direct evaluation on [0, 1/2] could be avoided.
The average on [0, 1/2] satisfies

∫ 1/2

0

ρ(x0)a(x0)dx0

=

∞
∑

m=2

∫ 1/2

0

ρ(x10m−1)

|(fm−2
0 f1)′(x10m−1)|

a(x0)dx0

=

∞
∑

m=2

∫ 1

qm

ρ(x10m−1)a((f
m−2
0 f1)(x10m−1))dx10m−1

=

∞
∑

m=2

∫

Mm

ρ(x10m−1)

m
∑

n=2

a((fn−2
0 f1)(x10m−1))dx10m−1

=

∞
∑

m=2

∫

Mm

ρ(x)

m
∑

n=2

a((fn−2
0 f1)(x))dx .

(32)

Recalling the definition of ã(x), we get

< a > =

∫ 1

0

ρ(x)a(x)dx

=

∫ 1/2

0

ρ(x)a(x)dx+

∫ 1

1/2

ρ(x)a(x)dx

=

∫ 1

1/2

ρ(x)ã(x)dx

=

∫ 1

1/2

λρ̃(x)ã(x)dx

= λ < ã > .

. (33)

III. Method to Derive Approximate Natural Measure (Sect. VB, Sect. VC)

For a 1-dimensional map f(x) which takes the form of Eq. (15) near the marginally unstable fixed point x = 0, its
natural measure takes the form ρ ∼ 1

xs near the point. Therefore we can reasonably assume that the expression of
the natural measure is

ρ(x) =
∞
∑

i=0

∞
∑

j>−s

αijx
(i−1)s+j , x → 0, (34)

where αij equals zero when j is a multiple of s to avoid repetition. We select an arbitrary n defined in Sect. IVD
and all the following “≈” are due to this approximation. The natural measure in Mn can be expanded as Legendre
polynomials [30]

ρ(x) =

∞
∑

l=0

clPl(φ(x)), x ∈ Mn = (qn, 1],

with φ(x) =
2

1− qn
x− 1 + qn

1− qn
,

(35)

where φ(x) describes the shift and scaling of the interval Mn being mapped to (−1, 1]. The coefficient cl can be
evaluated through

cl =
2l + 1

2

∫ 1

qn

ρ(x)Pl(φ(x))φ
′(x)dx

≈ 2l + 1

2

∫ 1

qn

λρ̃(x)Pl(φ(x))φ
′(x)dx = λc̃l,

with P0(x) = 1, P1(x) = x,P2(x) =
3

2
x2 − 1

2
, ...

(36)
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In the above equation, 2l+1
2 Pl(φ(x))φ

′(x) is regarded as an observable and cl is computed through cycle expansion
as an average defined by Eq. (2). Substituting Eq. (34), (35) and (36) into Eq. (22), we have

ρ(x) =
ρ(x0)

|f ′
0(x0)|

+
ρ(x1)

|f ′
1(x1)|

≈
∑

∞

i=0

∑

∞

j>−s αijx
(i−1)s+j

|f ′
0(x0)|

+

∑

∞

l=0 λc̃lPl(φ(x1))

|f ′
1(x1)|

≈
∞
∑

i=0

∞
∑

j>−s

αijx
(i−1)s+j , x → 0, (37)

where x0 = f−1
0 (x), x1 = f−1

1 (x), f ′
0 and f ′

1 can all be expanded as series expansions of x. Therefore, the coefficients
αij can be rewritten as αij =

∑∞
l=0 λAijl c̃l, a linear combination of c̃l determined by comparing the coefficients of

each order of x. In practical computation, the more accurate ρ(x) we want, the higher order Eq. (34) needs to be
expanded, e.g., we need to expand Eq. (34) to O(x) to determine the coefficients of ρ(x) in Sect. VB up to O(x1/2).

IV. Method to obtain λ (Sect. IVA)

Actually, the coefficients of ρ(x) we get in App. III contain the undetermined constant λ which needs to be fixed.
Fortunately under the necessary approximation (an arbitrarily selected n described in Sect. IVD), cycle expansions
can also provide what we need. Also for the map f(x), we introduce σ̂ and µ̂ to denote the integral of ρ(x) on different

intervals respectively (ˆ̃σ and ˆ̃µ for ρ̃(x)). We define them as































σ̂ =
∫ 1

0
ρ(x)dx

σ̂h =
∫ 1

q1
ρ(x)dx

σ̂0 =
∫ f1(qn)

0
ρ(x)dx

σ̂i =
∫ f1(qn−i)

f1(qn−i+1)
ρ(x)dx

µ̂i =
∫ 1

qn−i
ρ(x)dx

, i = 1, 2, ..., n− 2, (38)

where qi and f1 are both defined as in Sect. IVA and the subscript 0 and h denote analytic approximation region
and hyperbolic region respectively. Obviously we get

{

σ̂ = σ̂0 +
∑

i σ̂i + σ̂h = 1
ˆ̃σ = ˆ̃σh = 1, ˆ̃σ0 = ˆ̃σi = 0

, i = 1, 2, ..., n− 2. (39)

According to the invariance of the density, we have

∫ f1(qn−i)

0

ρ(x)dx =

∫ f1(qn−i+1)

0

ρ(x)dx +

∫ 1

qn−i

ρ(x)dx

⇒
∫ f1(qn−i)

f1(qn−i+1)

ρ(x)dx =

∫ 1

qn−i

ρ(x)dx

⇒ σ̂i = µ̂i, i = 1, 2, ..., n− 2 (40)

From ρ(x) = λρ̃(x) and ˆ̃σ = ˆ̃σh = 1 in Eq. (39), we get

σ̂h = λˆ̃σh = λ. (41)

Substitute Eq. (41) and (40) into the first equation of Eq. (39), we have

σ̂ = σ̂0 +
∑

i

σ̂i + σ̂h = 1

⇒
∫ f1(qn)

0

ρ(x)dx0 +
∑

i

λ ˆ̃µi + λ = 1

⇒λ =
1

∫ f1(qn)

0

∑∞
i=0

∑∞
j>−s

∑∞
l=0 Aijl c̃lx

(i−1)s+j
0 dx0 + 1 +

∑

i
ˆ̃µi

, (42)
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where both ˆ̃µi =
∫ 1

qn−i
ρ̃(x)dx and c̃l can be obtained through cycle expansions. Aijl are obtained by analytic

approximation in App. III. Further derivation of the dynamical average 〈a〉 is carried out as

〈a〉 =
∫ f1(qn)

0

+

∫ q1

f1(qn)

+

∫ 1

q1

ρ(x)a(x)dx

=

∫ f1(qn)

0

∞
∑

i=0

∞
∑

j>−s

αijx
(i−1)s+ja(x)dx

+

n−1
∑

i=2

∫ qi+1

qi

i
∑

j=2

λρ̃(x)a((f j−2
0 f1)(x))dx +

∫ 1

qn

∑

k

λρ̃(x)a((fk
0 f1)(x))dx

+

∫ 1

q1

λρ̃(x)a(x)dx

=〈a〉0 + λ〈ã〉,

(43)

where k denotes all positive integers such that (fk
0 f1)(x) ∈ (f1(qn), q1]. Thus with the approximation in Sect. IVD,

we change the form of the observable ã(x) in Mn to a(x) +
∑

k a((f
k
0 f1)(x)) accordingly. Finally, the average 〈a〉

we need can be obtained from the analytic approximation 〈a〉0 in the neighborhood of x = 0 and the average of the
observable 〈ã〉 computed on the hyperbolic part through Eq. (23).


	Wielding Intermittency with Cycle Expansions
	Abstract
	I Introduction
	II Periodic Orbit Theory
	III  Difficulty Associated with Intermittency
	IV Separation and Reconstruction Scheme
	A A comb structure
	B Redefinition of the observable
	C Dynamical zeta function
	D One convenient approximation

	V Several examples
	A Details on numerical computation
	B  The example model
	C Bernoulli shift map

	VI summary
	 Acknowledgments
	 References
	I Justification of Eq. (17)
	II Justification of Eq. (19)
	III Method to Derive Approximate Natural Measure (Sect. VB, Sect. VC)
	IV Method to obtain  (Sect. IVA)



