LE MATEMATICHE
Vol. LXII (2007) — Fasc. II, pp. 37-52

WIENER CRITERION AT THE BOUNDARY RELATED TO
P-HOMOGENEOUS STRONGLY LOCAL DIRICHLET FORMS

MARCO BIROLI - SILVANA MARCHI

We state a Wiener criterion at the boundary related to p-homogeneous
strongly local Riemannian type Dirichlet forms.

1. INTRODUCTION

In this paper we prove a Wiener criterion at the boundary for the solutions of a
Dirichlet problem for a Riemannian p-homogeneous (p > 1) Dirichlet form.

For quasilinear elliptic equations with a growth and coercivity condition of
order p the sufficient part of the Wiener criterion has been proved in [13]. The
necessary part of the Wiener criterion at the boundary for quasilinear elliptic
equations with a growth and coercivity condition of order p has been proved in
[14] using an estimate on nonnegative subsolutions of the equation.

The estimate has been generalized in [8] and used in [9] to prove the nec-
essary part of a Wiener criterion for relaxed Dirichlet problems relative to the
subelliptic p-Laplacian. The sufficient part of the criterion has been also proved
using the methods of [13]. A Wiener type criterion at the boundary follows
in the case of boundary data corresponding to functions which have an exten-
sion to RY in a suitable Sobolev space related to the vector fields appearing in
the subelliptic p-Laplacian. A general Wiener criterion at the boundary can be
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proved by similar methods. We remark that the sufficient part of the Wiener
criterion for the subeliptic p-Laplacian has been previously proved in [12].

The notions of p-homogeneous strongly local Dirichlet functionals and forms
are introduced in [10], [4] and in [11] an Harnack inequality for a positive
harmonic function relative to a Riemannian p-homogeneous Dirichlet form is
proved.

In [5] we have proved the estimate of [14] in the general framework of the
Riemannian p-homogeneous (p > 1) Dirichlet forms . The estimate enables us
to prove in this paper the necessary part of the Wiener criterion at the boundary.
The sufficient part of the criterion is proved using a refinement of the methods
in [13], [9].

As an example of possible applications we remark that the form on R

m
/Z | Xiu|P~XuXpv wdx u,v € Hy"™
i=1

where the fields X; are Hormander’s type vector fields with C* coefficients or
Grushin-type vector fields, w is a weight in the A, Muckenhoupt class with re-
spect to the intrinsic distance and Hé’p ¥ is the Sobolev space of order 1 and
power p relative to the fields X;, is a Riemannian p-homogeneous Dirichlet
form, if we choose as distance the intrinsic distance defined by the vector fields
and m(dx) = wdx as measure on RV,

2. ASSUMPTIONS AND PRELIMINARIES RESULTS

Let X be alocally compact separable Hausdorff space X with a metrizable topol-
ogy and a positive Radon measure m on X such that supp[m]= X. We consider
a strongly local Dirichlet form of domain Dy

W(u,v) = /X 1 (u, v) (dx)

relative to a strongly local p-homogeneous Dirichlet functional (p > 1) with the
same domain Dy

() = [ a(v)(d)

as defined in [10] or [4]. A notion of capacity relative to the functional ® (and
to the measure space(X,m)) can be defined in the usual variational way. The
capacity of an open set O is defined as

p—cap(0) =inf{®P(v); vE€ Dy, v>1ae.on O}
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if the set {v € Dy ,v > 1 a.e. on O} is not empty and
p—cap(0) = +ee
otherwise, where ®;(v) = ®(v) + [y |v|’dm . Let E be a subset of X, we define
p—cap(E) = inf{p—cap(0); 0 open set with E C O}.

We recall that the above defined capacity is a Choquet capacity [10]. Moreover
we can prove that every function in Dy is quasi-continuous and is defined quasi-
everywhere [10].

The strong locality property allow us to define the domain of the form with
respect to an open set O, denoted by Dy[O] and the local domain of the form
with respect to an open set O, denoted by D;,.[O]. We recall that, given an open
set O in X foraset E C E C O we can define a Choquet capacity p — cap(E;O)
with respect to the open set O. Moreover the sets of zero capacity are the same
with respect to O and to X. The following properties can be proved [10], [4]:
(a) u(u,v), u,v € Dy is homogeneous of degree p — 1 in u and linear in v; we
have also u(u,u) = pa(u).

(b) Chain rule : if u,v € DyNL=(X,m) and B € C'(R) with B(0) =0 and 8’
bounded on R, then (u), 3(v) belong to Dy and

w(Bu),v) =B (u)|"~2B (u)e(u,v) (2.1)
w(u,B(v)) =B (v)u(u,v) (2.2)

We observe that we have also a chain rule for o
a(B(u)) =B ()" a(u) (2.3)

where the above relations make sense, since u is defined quasi-everywhere.
(c) Truncation property: for every u,v € Dy

.u(quvv) = 1{u>0}”(”7‘}) 2.4)

[.L(M,V+) = 1{v>0}.u(u7v) (2.5)

where such relations make sense, since « and v are defined quasi-everywhere.
(d) Leibniz rule with respect to the second argument: for every u € Dy, v,w €
DoNL”(X,m)

w(u,yw) = v (u,w) +wp(u,v) (2.6)

(e) Leibniz inequality: for every u,v € DoNL*(X,m)

o(uv) < v|Pa(u,w)+ |ul? o (u) (2.7)
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where u,v € DoNL”(X,m).
(f) For every u,v € Dy, any f € L (X,a(u)) and g € LP(X,a(v)) with 1/p+
1/p' =1, fgis integrable with respect to | (u,v)| and Va € R*

el ()l (dx) <277l P|f1P ) (dv) +27 PP gPau(v) (dx)  (2.8)

Taking into account the strong locality property we can replace Dy by Dy, [X]

in the above properties (a)-(f).

Assume that a distance d is defined on X, such that a(d) < m in the sense
of the measures and
(i) The metric topology induced by d is equivalent to the original topology of X
and X is complete with respect to d.
(ii) For every fixed compact set K there exist positive constants ¢y and ry such
that

m(B(x,r)) < com(B(x,s)) (g)v VxeK and O0<s<r<ry, (29)

where we denote by B(x, r) the open ball of center x and radius r (for the distance
d). We can assume without loss of generality p < v.

From the properties of d it follows that there exists a cut-off function of
B(x,r) with respect to B(x,2r), i.e. a function ¢ € Dy[B(x,2r)] with0 < ¢ <1,
¢ = 1on B(x,r) and )

a(e) < i
in the sense of the measures.

We assume also that the following scaled Poincaré inequality holds: for
every fixed compact set K there exist positive constants ¢, r; and k > 1 such
that for every x € K and every 0 < r < ry

/ lu— Ty, |Pm(dix) < cor? / au(u) (dx) (2.10)
B(x,r) B(x,kr)

for every u € Dj,[B(x,kr)], where @, , = m (s, 1 m(dx).

A strongly local p-homogeneous Dirichlet form, such that the above assump-
tions hold, is called a Riemannian Dirichlet form.

As proved in [15] the Poincaré inequality imply the following Sobolev inequal-
ity: for every fixed compact set K there exist positive constants c3, r, and k > 1
such that for every x € K and every 0 <r <

€1
3

P

(m(B(IL 3 /B(x,r) u|f'*m(dx)> < (2.11)
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= e (m(BIZc, r)) /B(x,kr) (u)(dx) + m(B’Z:c, r)) /B(x,r) |u|pm(dx)> E

with p* = vp—jp and c3,r, depending only on ¢y, ¢y, rg, 1. We observe that we
can assume without loss of generality ro = r| = r».

Remark 2.1. (a) From (1.10) we can easily deduce by standard methods that
1 rP

m(B(x,r)) /B(”) |u|Pm(dx) < sz(B(x, PRICELD /B(x,kr) o (u)(dx)

where ¢} is a positive constant depending only on c;.
(b) From (a) it follows that for every fixed compact set K, such that the closed
neighborhood K’ of K of radius ry(K) is compact and strictly contained in X,

/ lulPm(dx) < 5P / au(u) (dx)
B(x,r) B(x,r)

foreveryxe Kand 0 < r < ")(27[(,) where u € Dy[B(x,r)] and ¢; depends only

on c5(K") and ¢o(K").

As a consequence of the assumptions on X and d and of the Poincaré in-
equality we have the following estimate on the capacity of a ball [10]

Proposition 2.2. For every fixed compact set K there exists positive constants
¢4 and c5 such that
m(B(x,r))

B < ap(Bnr) Bl 20) < s

m(B(x,r))
rP

where x € K and 0 < 2r < ry.

The left-hand-side inequality is consequence of Remark 2.1 applied to the
potential of the ball B(x,r) with respect to the ball B(x,2r) (the existence of
such a potential has been proved in [10], [4]).The right-hand-side inequality is
a consequence of the existence of a cut-off function of B(x,r) with respect to
B(x,2r).

3. THE RESULTS

Let Q be an open set in X such that the closed neighborhood Q' of radius
ro(Q) of Q is compact and strictly contained in X. In the following we de-
note ry = ro(ﬁl). Denote by D[Q] the space of the function v in Dj,[Q] such
that [ ot(v)(dx) < oo
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A function g in D[Q)] is continuous on JdQ at xo € JQ with value g(xo) if there
exists an increasing function k(r), 0 < r < R with

limy_ok(r) =0

such that for n € Dy[B(xo,r)] with ¢t(n)(dx) having an L*(B(xo,r),m) density
with respect to m(dx), then 1 (g — (k(r) +g(x0))) " and (g +k(r) — g(x0))~ are
in Do[B(xo,r) N |Omega). We assume without loss of generality that R < r.

Definition 3.1. Let g be a function in D[Q]. The function u € D[Q] is a solution
of the Dirichlet problem relative to u, Q, g if u — g € Dy[Q] and

[ np)ax) =0 G.1)
Q

for any ¢ € Dy[Q].

Definition 3.2. The function u € D;,.[Q] is a local sub-solution of the Dirichlet
problem relative to u, Q if

[ pp)x) <o (32)
Q

for any nonnegative @ € Dy[Q] with supp(¢) C Q.

Remark 3.3. Let g € D[Q] and let u € D[Q] be a solution of the Dirichlet prob-
lem relative to u, Q, g, then

||”‘H£[Q} < Cl\gllﬁ[g] (3.3)
If g € L*(Q,m) we have also

l[ul|=@) < Cllgll=(@)

. Moreover we recall that if u is a local nonnegative sub-solution of the Dirichlet
problem relative to u, Q then

1 q é
sup < Cla) s / . m(a)

B(x,3
for every g > 0.[11]

Definition 3.4. A point xo € dQ is a regular point for (3.1) if for every function
g € D[Q)], which is continuous on dQ at xo € partialQ with value g(xo) the
solution u of (3.1) is continuous at xy with respect to the value u(xp) = g(xo).
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Definition 3.5. A point x in dQ is a Wiener point if

1

/5 T?p oo (3.4)

where
2 cap(B(xO, %)\QaB(XOaP))

é(p) = p—cap(B(xo,5),B(x0,p))

We are now in position to state the main result of this paper

Theorem 3.6. Let xo € dQ. Then the point xg is regular for (3.1) iff x( is a
Wiener point of dQ. Moreover there exist some constants C} Ci and C, such
that for any solution u of (3.1) with g continuous on dQ at xo with value g(x),
we have

SUPB(xy 5) |1t — &(x0)| < (3.5)

<c1exp[ e ["sp If]p| ~ glx0)] + 4k(R) <

< Clexp [—Cg/er(p)dp P m(dx))% +g(x0)+

p ] ((171(13()16(),1@)/3()«0,1?)”

k(R)) + 4k(R)
for0 <2s<r,2r<R,8R <R.

In the section 4 we prove the sufficient part of Theorem 3.1. The section 5
contains the proof of the necessary part of Theorem 3.1.

4. PROOF OF THE SUFFICIENT PART OF TH. 3.6

Let xp € dQ. Assume that u € D[Q] is a weak solution of (3.1). We may assume
without loss of generality that g(xo) = 0. Let uy := (u— k)™ where k = k(R) +
g(xo) and define

M(r) = SUPB(xy,r) Uk
Me(r)=M(r)+e¢

wheres€(0,%),0<r<§<R<§.
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Proposition 4.1. Define v=' = M,(r) —uy. Let p € (1,v] and n € Dy[B(x, %]
with 0 <1 < 1and n =1 on B(xo,5 and a(n) < 2(2)?m in Q. Then there
exists a constant dependent only on Q, p and the structure but independent of &,
r such that

M [ atnv ey < (“.1)
< CM(r) [Mg(r)—Mg(%)+£ et

where 2r <R < % and C is a structural constant.

We assume the Proposition 4.1 and we prove the sufficient part of Theorem
3.6. Let r < R k = supp(y, )8 and let n = 1 on B(xo, 5). Multiplying (4.1) by
M we obtain
rp

m(B(xo,r))

1
My

/ a(nv ) (dx) 42)
Q

r p—1
M6(§)+e}

Taking into account the definition of the p-capacity we

<c [Mg(r) -

where v=1—
obtain

Uk
Me(r)®

1

pcaplat £\ B0
p—Cap(B(X(),%),B(X(),I’)) N

< (20077 [Me(r) = Me(3)

where here and in the following C denotes a possibly different structural con-
stant. Here we assume C > 1. Taking the limit € — 0O in the above inequality
gives

M) |

+e|

M) < [1-o)y 18| M) 43)

where §(r) = £ pci‘z ;(< (Oxof)%\) (x(j‘i’)r))) . It follows

1
SUPB(xp, )0l < {1 (20) 718 (r)7 I}SMPB(xo,r)mfﬂL%(R)

where 0 < r < R. Taking into account that —u is a local solution of (3.1) relative
to —g, we obtain

_ 1 1 _
supsa, pyrau” < [1=(2C) T 18 (1)77 | supiey yoau” +2K(R)

Then
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. 1
05y, pralul < [1-(20) 718 (177 | oscuy nalul +4k(R)  (44)

where 0 < r < R. From (4.4) by iteration [16] we obtain

r d
supsgralul < Crexp |~ [ 800)7 2 | suppisalul + 4401

where 0 < s < 5 <r < R. The first inequality in Theorem 3.6 is so proved.
The second inequality follows observing that (uF (k(R £ g(xo))* are positive
subsolutions in B(xg, R) relative to our form ( we can use the methods in [9]).

Remark 4.2. Let us observe that (3.4) gives an estimate on the velocity of con-
vergence of u to g(xp) as x — xo. In particular if §(p) >¢c> 00 =Cr A1 we

have
ew (¢ [[30)% )~ (2)"

If 0scp(xy,rin008 < CsrP for0 < r < g, then we obtain
supB(xo,r)ﬂQ’u - g(XO)’ < C4ry

=2
for r < 8" where y = (%/\%)

Proof of Proposition 4.1 In the proof C will denote possibly different struc-
tural constants. At first we observe that uy is locally bounded in B(xg,R). By
the same methods used in [9] we can prove that u; is a positive subsolution in
B(xo,R) (relative to our form). We prove now that v is again a positive subsolu-
tion in B(xo, r) (relative to our form). Let ¢ be a positive function in Dy[B(xo, r)].
We have

Jy @0-0Y@0 = [ M)~ 2, 0) () =

B(x,r)
= [ ol (Me(r) =) 24 ()
B(xg,r)
2Ap=1) [ (M) ~) D (M) — ) ) <

< [ (Melr) =)D g, ) (d) < 0
B(xo,r)
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and the result follows. Let now 1 be a positive function in Dy[B(x,s)] where
B(x,s) C B(xo,r). We have

/ a(uy, vP~'nP)(dx) <0 (4.5)
B()C(),S)

Then
| =1 naun? (@) -
B(x0,5)

—(p=1) [ A Dnagr(d) -
B(X(),)
=< [ vrnabn(an) =
B(x,s

=(p=1) [ natiog).log(v))n" (@)

From (4.5) we obtain

[, mretost) toswian) < [ v et @) <

1
< 5/ npvpa(uk,uk)(dx)+4/ a(n,n)(dx) =
B(x,s) B(x,s)
=5 [ anvrapa@ 4 [ amm) =
2 B(x7s) B(.X,S)

N ;/Bu,s) n"a(log(v),log(v))(dx)+4 | a(n,n)(dx)

B(x,s

Let 1) be the cut-off function between B(x, 3s) and B(x,s), we obtain

., 7ot (s).tog(v)) () < Cm(Bx.)

so we obtain that v € BMO;,.(B(xo,r)). As in [6] we obtain that there exists oy
such that for o < oy

4 4

1 1 _
(ot [ @) [ v om(an) <c
m(B(xo, %)) /B(x0.%) m(B(xo, %)) /B(x0. %)
Since v is a positive subsolution, we obtain that
su v < Cl/ vom(dx)s <
pB(X()»Z) — m(B(xo,%)) B(x() 2) =

'8

al—
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1 . _
B0 ) oy )

8
(see [11]). Taking into account the definition of v we obtain

ql—

_ “m(dx
(m(B(xo,%)) /B(xo,ssqv (dx))

ql=

<
,

< C(Me(r) — Mc(2) +e)

We choose now as test-function in (3.1)

¢=n"y
where 1 € Dy[B(xo,r)] with a(n)(dx) with a bounded density and

v (* G

(we observe that y € L*(B(xo,r),m)), [13]. Take n > 0, so ¢ > 0. We obtain

B[ T ) @) < p /

"~y (e, 1) (dx)
B(xo,r)
Since y < v# we have

| lagu@n < p [
B(xo,r) B(

P (g, m) (dx)
)C(),r)
The Young’s inequality gives

/B( )n”“vﬁu(uk,n)(dX)
X0,"
<giri P / PPl a
- P =1 JB(xo.0)

1

(ug) (dx) + 6P~ / WP () (d)
P JB(xo,r)

If6= [3%1, we have

/ 0P i) (dx) < CBP /
B(xo,r) B(

) VPPl o) (d) (4.6)
X0,

From (4.6) choosing 0 < B # p—1, B =1p+p—1, T <0 (then %P <1<0)
we obtain

B(xo,r) npa(vr)(dX) = K(T) /

vra(n)(dx) 4.7
B('x()ﬁr)

47
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where K(7) =~ |t|P +B7P. Given any 0 < s <t < 1, let us take 7 such that
N € Do[B(xo,tr)],0<n <1,n = 11in B(xg,sr), o(n) < ﬁ We obtain

1

B0 7T) o) < 48

CK(1) f
< B Do

where ¥ = -¥—. Using a Moser type iteration method as in [11] we obtain
Y= g yp

1
s —q
m(B(xo,3r/4)) /B(xo,3r/4) v Im(dx) < 4.9)

ale

1
<CO om0 K )

< cc(g) (M£<r>—Mg<§>+e)q

where C(gq) is a finite valued increasing function of ¢ for any 0 < ¢ < (p —
I)VL We are finally able to conclude the proof of Proposition 4.1. Let n €

Do[B(xo, %)) with0 <1 < 1,1 =1 0n B(xo,%) and (1) < 2(%)? and choose
as test function in (3.1) the function @ = n”u;. We have

/ 1P (g (dx) + / upn)?~ (g, ) (dx) = 0
(x0,r/2) B(x0,r/2)

Let us observe that

1
p—1 —
m(B (x0,3r/4))/ PR L B C L)

1

= T 2 AN p=1 —(t+1)(p=1) , (1T
<<x0,3r/4>>/ o n(v©,m)

p—1

<o) (s xa,r/n’”’p“(”)(d"))p

1

! —(t p—1p P
<(('xo73r/4))/x073r/4)v (b a(rl)(dX)> <

1 T
<CM(”>< B 3787 gy E170)
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p—1
P

1 o i
+m(B(xO,r/2))/B(XO73r/4)V a(n)(d ))

1

_ 1 (T (D) o)
'<m(B(XO,3r/4))/B<xo,3r/4> et (d@ ))

< CM(r) [(Mg(i”) —ME(%) +8)Gp r_P} 2l |
[(Me(r) —Mg(%) +8)(“1)(1171)1,, r_p] 1 )

= M (r) (Melr) ~ Me(5) + s)’H o

where we have chosen 7 suitable near enough to (1 — p). Then

[ nratu)a
B(xo,3r/4)

< CMe(r) (Me(r) ~ Me(5) + g)“"*1 rPm(B(xo,r))

Hence we obtain

[ am ) <
B(x0,3r/4)

< CMe(r) (Me(r) ~Me( ) + e)P_] rPm(B(xo, )

forevery 0 <r < % where we use the estimate

/ v Pa(n)(dx) < CrPMe(r) / V=P ()
B(xo,3r/4) B(xo,3r/4)

We have so completed the proof of Proposition 4.1.

5. PROOF OF THE NECESSARY PART OF TH. 3.1

This proof follows by the methods of [14]. Let xo be a regular point in the
boundary of Q. Let f, 5(p)%p be finite. Then the singleton {xo} has to be of
capacity zero with respect to X. Choose € > 0 and r > 0 to be specified later. We
can find a function g € DoNCy(X), such that g(x) <1, g(xo) = 1 and ||g||p, < €.
Let u be a solution of (3.1) relative to g, we have that u is positive in Q. From
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(3.3) we have |[u[|pjq) < Ce. Since g is bounded we have that u is also bounded
and |[|u|z=(om) < 1|1g]|r=(@,m) (see again Remark 3.3). From [5] we have

1 1/p
— fine — limsup,_ u(x) <C 7/ ’m(d +
p=pine = timsup. i) < €1 (i [ lrmta))

10 [ 8(p)™

<G <m(8&0r>)> s+c2/04r5(p)pll‘if

There exists r > 0 such that

In this case choosing € such that

1 r
QQ(MMmaQ €<3

Then )
p— fine — limsup,_.,u(x) < 3 = g(x0)

and a contradiction follows.



(1]

(2]

(3]

(4]

(5]

[6]

[7]

[8]

[9]

[10]

[11]

WIENER CRITERION AT THE BOUNDARY ... 51

REFERENCES

H. Attouch, Variational convergence for functions and operators, Pit-
man, Applicable Mathematics Series, London-Marshfield 1984.

M. Biroli, Nonlinear Kato measures and nonlinear subelliptic
Schroedinger problems, Rend. Acc. Naz. Sc. detta dei XL, Memorie
di Matematica e Appl., 115 Vol. XXI (1997), 235-252.

M. Biroli, Weak Kato measures and Shroedinger problems for a Dirich-
let form, Rend. Acc. Naz. Sc. detta dei XL, Memorie di Matematica e
Appl., 118 Vol. XXIV (2000), 197-217.

M.Biroli, Nonlinear p-homogeneous Dirichlet forms on nonreflexive
Banach spaces, Rend. Acc. Naz. Sc. detta dei XL, Memorie di Mate-
matica e Appl., 123 Vol. XXIX (2005), 55-78.

M. Biroli - S. Marchi, Oscillation estimates relative to p-homogeneous
forms and Kato measures data, Le Matematiche (2007), preprint.

M. Biroli - U. Mosco, A Saint Venant type principle for Dirichlet forms
on discontinuous media, Ann. Mat. Pura Appl., 169 (IV) (1995), 125-
181.

M. Biroli - U. Mosco, Sobolev inequalities on homogeneous spaces,
Potential Anal. (1995), 311-324.

M. Biroli - N. Tchou, Nonlinear subelliptic problems with measure data,
Rend. Acc. Naz. Scienze detta dei XL, Memorie di Matematica e Ap-
plicazioni, XXIII (1999), 57-82.

M. Biroli - N. Tchou, Relaxed Dirichlet problem for the subelliptic p-
Laplacian, Ann. Mat. Pura Appl. (IV), CLXXIX (2001), 39-64.

M. Biroli - P. Vernole, Strongly local nonlinear Dirichlet functionals
and forms, Advances in Mathematical Sciences and Applications, 15
(2005), 655-682.

M. Biroli - P. Vernole, Harnack inequality for harmonic functions rela-
tive to a nonlinear p-homogeneous Riemannian Dirichlet form, Nonlin-
ear Analysis, 64 (2006), 51-68.

D. Danielli, Regularity at the boundary for solutions of nonlinear subel-
liptic equations, Indiana Un. Math. J. 44 (1955), 269-286.



52 MARCO BIROLI - SILVANA MARCHI

[13] R. Gariepy - W. Ziemer, A regularity condition at the boundary for
solutions of quasilinear elliptic equations, Arch. Rat. Mech. Anal. 67
(1977), 25-39.

[14] J. Maly, Pointwise estimates of nonnegative subsolutions of quasilinear
elliptic equations at irregular points, Comm. Math. Univ. Carolinae, 37
(1996), 23-42.

[15] J. Maly - U. Mosco, Remarks on measure-valued Lagrangians on ho-
mogeneous spaces, Ricerche Mat. 48 (1999), Supplemento, 217-231.

[16] U. Mosco, Wiener criterion and potential estimates for the obstacle
problem Indiana Un. Math. J., 36 (1987), 455-494.

MARCO BIROLI

Dipartimento di Matematica F. Brioschi,
Politecnico di Milano, Milano, Italy.
e-mail: marbir@mate.polimi.it.

SILVANA MARCHI

Dipartimento di Matematica, Universitd di Parma,
Viale Usberti, 53/A, Parma, Italy.

e-mail: silvana.marchi@unipr.it



