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WIENER CRITERION AT THE BOUNDARY RELATED TO
P-HOMOGENEOUS STRONGLY LOCAL DIRICHLET FORMS

MARCO BIROLI - SILVANA MARCHI

We state a Wiener criterion at the boundary related to p-homogeneous
strongly local Riemannian type Dirichlet forms.

1. INTRODUCTION

In this paper we prove a Wiener criterion at the boundary for the solutions of a
Dirichlet problem for a Riemannian p-homogeneous (p > 1) Dirichlet form.

For quasilinear elliptic equations with a growth and coercivity condition of
order p the sufficient part of the Wiener criterion has been proved in [13]. The
necessary part of the Wiener criterion at the boundary for quasilinear elliptic
equations with a growth and coercivity condition of order p has been proved in
[14] using an estimate on nonnegative subsolutions of the equation.

The estimate has been generalized in [8] and used in [9] to prove the nec-
essary part of a Wiener criterion for relaxed Dirichlet problems relative to the
subelliptic p-Laplacian. The sufficient part of the criterion has been also proved
using the methods of [13]. A Wiener type criterion at the boundary follows
in the case of boundary data corresponding to functions which have an exten-
sion to RN in a suitable Sobolev space related to the vector fields appearing in
the subelliptic p-Laplacian. A general Wiener criterion at the boundary can be
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proved by similar methods. We remark that the sufficient part of the Wiener
criterion for the subeliptic p-Laplacian has been previously proved in [12].
The notions of p-homogeneous strongly local Dirichlet functionals and forms
are introduced in [10], [4] and in [11] an Harnack inequality for a positive
harmonic function relative to a Riemannian p-homogeneous Dirichlet form is
proved.

In [5] we have proved the estimate of [14] in the general framework of the
Riemannian p-homogeneous (p > 1) Dirichlet forms . The estimate enables us
to prove in this paper the necessary part of the Wiener criterion at the boundary.
The sufficient part of the criterion is proved using a refinement of the methods
in [13], [9].

As an example of possible applications we remark that the form on RN

∫ m

∑
i=1
|Xiu|p−2XiuXiv wdx u,v ∈ H1,p;X

0

where the fields Xi are Hörmander’s type vector fields with C∞ coefficients or
Grushin-type vector fields, w is a weight in the A2 Muckenhoupt class with re-
spect to the intrinsic distance and H1,p;X

0 is the Sobolev space of order 1 and
power p relative to the fields Xi, is a Riemannian p-homogeneous Dirichlet
form, if we choose as distance the intrinsic distance defined by the vector fields
and m(dx) = wdx as measure on RN .

2. ASSUMPTIONS AND PRELIMINARIES RESULTS

Let X be a locally compact separable Hausdorff space X with a metrizable topol-
ogy and a positive Radon measure m on X such that supp[m]= X . We consider
a strongly local Dirichlet form of domain D0

Ψ(u,v) =
∫

X
µ(u,v)(dx)

relative to a strongly local p-homogeneous Dirichlet functional (p > 1) with the
same domain D0

Φ(u) =
∫

X
α(v)(dx)

as defined in [10] or [4]. A notion of capacity relative to the functional Φ (and
to the measure space(X ,m)) can be defined in the usual variational way. The
capacity of an open set O is defined as

p− cap(O) = in f{Φ1(v); v ∈ D0, v ≥ 1 a.e. on O}
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if the set {v ∈ D0 ,v ≥ 1 a.e. on O} is not empty and

p− cap(O) = +∞

otherwise, where Φ1(v) = Φ(v)+
∫

X |v|pdm . Let E be a subset of X , we define

p− cap(E) = in f{p− cap(O);O open set with E ⊂ O}.

We recall that the above defined capacity is a Choquet capacity [10]. Moreover
we can prove that every function in D0 is quasi-continuous and is defined quasi-
everywhere [10].

The strong locality property allow us to define the domain of the form with
respect to an open set O, denoted by D0[O] and the local domain of the form
with respect to an open set O, denoted by Dloc[O]. We recall that, given an open
set O in X for a set E ⊂ E ⊂O we can define a Choquet capacity p−cap(E;O)
with respect to the open set O. Moreover the sets of zero capacity are the same
with respect to O and to X . The following properties can be proved [10], [4]:
(a) µ(u,v), u,v ∈ D0 is homogeneous of degree p− 1 in u and linear in v; we
have also µ(u,u) = pα(u).
(b) Chain rule : if u,v ∈ D0 ∩L∞(X ,m) and β ∈ C1(R) with β (0) = 0 and β

′

bounded on R, then β (u),β (v) belong to D0 and

µ(β (u),v) = |β ′
(u)|p−2

β
′
(u)µ(u,v) (2.1)

µ(u,β (v)) = β
′
(v)µ(u,v) (2.2)

We observe that we have also a chain rule for α

α(β (u)) = |β ′
(u)|pα(u) (2.3)

where the above relations make sense, since u is defined quasi-everywhere.
(c) Truncation property: for every u,v ∈ D0

µ(u+,v) = 1{u>0}µ(u,v) (2.4)

µ(u,v+) = 1{v>0}µ(u,v) (2.5)

where such relations make sense, since u and v are defined quasi-everywhere.
(d) Leibniz rule with respect to the second argument: for every u ∈ D0, v,w ∈
D0∩L∞(X ,m)

µ(u,vw) = vµ(u,w)+wµ(u,v) (2.6)

(e) Leibniz inequality: for every u,v ∈ D0∩L∞(X ,m)

α(uv)≤ |v|pα(u,w)+ |u|pα(u) (2.7)
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where u,v ∈ D0∩L∞(X ,m).
(f) For every u,v ∈ D0, any f ∈ Lp

′
(X ,α(u)) and g ∈ Lp(X ,α(v)) with 1/p +

1/p
′
= 1, f g is integrable with respect to |µ(u,v)| and ∀a ∈ R+

| f g||µ(u,v)|(dx)≤ 2p−1a−p| f |p
′
α(u)(dx)+2p−1ap(p−1)|g|pα(v)(dx) (2.8)

Taking into account the strong locality property we can replace D0 by Dloc[X ]

in the above properties (a)-(f).
Assume that a distance d is defined on X , such that α(d) ≤ m in the sense

of the measures and
(i) The metric topology induced by d is equivalent to the original topology of X
and X is complete with respect to d.
(ii) For every fixed compact set K there exist positive constants c0 and r0 such
that

m(B(x,r))≤ c0m(B(x,s))
(r

s

)ν

∀x ∈ K and 0 < s < r < r0, (2.9)

where we denote by B(x,r) the open ball of center x and radius r (for the distance
d). We can assume without loss of generality p < ν .

From the properties of d it follows that there exists a cut-off function of
B(x,r) with respect to B(x,2r), i.e. a function φ ∈ D0[B(x,2r)] with 0 ≤ φ ≤ 1,
φ = 1 on B(x,r) and

α(φ)≤ 2
rp m

in the sense of the measures.
We assume also that the following scaled Poincaré inequality holds: for

every fixed compact set K there exist positive constants c2, r1 and k ≥ 1 such
that for every x ∈ K and every 0 < r < r1∫

B(x,r)
|u−ux,r|pm(dx)≤ c2rp

∫
B(x,kr)

α(u)(dx) (2.10)

for every u ∈ Dloc[B(x,kr)], where ux,r = 1
m(B(x,r))

∫
B(x,r) u m(dx).

A strongly local p-homogeneous Dirichlet form, such that the above assump-
tions hold, is called a Riemannian Dirichlet f orm.
As proved in [15] the Poincaré inequality imply the following Sobolev inequal-
ity: for every fixed compact set K there exist positive constants c3, r2 and k ≥ 1
such that for every x ∈ K and every 0 < r < r2(

1
m(B(x,r))

∫
B(x,r)

|u|p∗m(dx)
) 1

p∗

≤ (2.11)
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≤ c3

(
rp

m(B(x,r))

∫
B(x,kr)

α(u)(dx)+
rp

m(B(x,r))

∫
B(x,r)

|u|pm(dx)
) 1

p

with p∗ = pν

ν−p and c3,r2 depending only on c0, c2, r0, r1. We observe that we
can assume without loss of generality r0 = r1 = r2.

Remark 2.1. (a) From (1.10) we can easily deduce by standard methods that

1
m(B(x,r))

∫
B(x,r)

|u|pm(dx)≤ c′2
rp

m(B(x,r)∩{u = 0})

∫
B(x,kr)

α(u)(dx)

where c′2 is a positive constant depending only on c2.
(b) From (a) it follows that for every fixed compact set K, such that the closed
neighborhood K′ of K of radius r0(K) is compact and strictly contained in X ,∫

B(x,r)
|u|pm(dx)≤ c?

2rp
∫

B(x,r)
α(u)(dx)

for every x ∈ K and 0 < r < r0(K′)
2 , where u ∈ D0[B(x,r)] and c?

2 depends only
on c′2(K

′) and c0(K′).

As a consequence of the assumptions on X and d and of the Poincaré in-
equality we have the following estimate on the capacity of a ball [10]

Proposition 2.2. For every fixed compact set K there exists positive constants
c4 and c5 such that

c4
m(B(x,r))

rp ≤ p− cap(B(x,r),B(x,2r))≤ c5
m(B(x,r))

rp

where x ∈ K and 0 < 2r < r0.

The left-hand-side inequality is consequence of Remark 2.1 applied to the
potential of the ball B(x,r) with respect to the ball B(x,2r) (the existence of
such a potential has been proved in [10], [4]).The right-hand-side inequality is
a consequence of the existence of a cut-off function of B(x,r) with respect to
B(x,2r).

3. THE RESULTS

Let Ω be an open set in X such that the closed neighborhood Ω
′ of radius

r0(Ω) of Ω is compact and strictly contained in X . In the following we de-
note r0 = r0(Ω

′). Denote by D[Ω] the space of the function v in Dloc[Ω] such
that

∫
Ω

α(v)(dx) < +∞.
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A function g in D[Ω] is continuous on ∂Ω at x0 ∈ ∂Ω with value g(x0) if there
exists an increasing function k(r), 0 < r < R with

limr→0k(r) = 0

such that for η ∈ D0[B(x0,r)] with α(η)(dx) having an L∞(B(x0,r),m) density
with respect to m(dx), then η(g−(k(r)+g(x0)))+ and η(g+k(r)−g(x0))− are
in D0[B(x0,r)∩|Omega]. We assume without loss of generality that R ≤ r0.

Definition 3.1. Let g be a function in D[Ω]. The function u ∈D[Ω] is a solution
of the Dirichlet problem relative to µ , Ω, g if u−g ∈ D0[Ω] and∫

Ω

µ(u,ϕ)(dx) = 0 (3.1)

for any ϕ ∈ D0[Ω].

Definition 3.2. The function u ∈Dloc[Ω] is a local sub-solution of the Dirichlet
problem relative to µ , Ω if ∫

Ω

µ(u,ϕ)(dx)≤ 0 (3.2)

for any nonnegative ϕ ∈ D0[Ω] with supp(ϕ)⊂ Ω.

Remark 3.3. Let g ∈D[Ω] and let u ∈D[Ω] be a solution of the Dirichlet prob-
lem relative to µ , Ω, g, then

||u||pD[Ω] ≤C||g||pD[Ω] (3.3)

If g ∈ L∞(Ω,m) we have also

||u||L∞(Ω) ≤C||g||L∞(Ω)

. Moreover we recall that if u is a local nonnegative sub-solution of the Dirichlet
problem relative to µ , Ω then

sup
B(x, r

2 )
u ≤C(q)(

1
m(B(x,r))

∫
B(x,r

uqm(dx))
1
q

for every q > 0.[11]

Definition 3.4. A point x0 ∈ ∂Ω is a regular point for (3.1) if for every function
g ∈ D[Ω], which is continuous on ∂Ω at x0 ∈ partialΩ with value g(x0) the
solution u of (3.1) is continuous at x0 with respect to the value u(x0) = g(x0).
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Definition 3.5. A point x0 in ∂Ω is a Wiener point if

∫ 1

0
δ (ρ)

1
p−1

dρ

ρ
= +∞ (3.4)

where

δ (ρ) =
p− cap(B(x0,

ρ

2 )\Ω,B(x0,ρ))
p− cap(B(x0,

ρ

2 ),B(x0,ρ))

We are now in position to state the main result of this paper

Theorem 3.6. Let x0 ∈ ∂Ω. Then the point x0 is regular for (3.1) iff x0 is a
Wiener point of ∂Ω. Moreover there exist some constants C1 C′

1 and C2 such
that for any solution u of (3.1) with g continuous on ∂Ω at x0 with value g(x0),
we have

supB(x0,s)|u−g(x0)| ≤ (3.5)

≤C1exp
[
−C2

∫ r

s
δ (ρ)

dρ

ρ

]
supB(x0,r)|u−g(x0)|+4k(R)≤

≤C′
1exp

[
−C2

∫ r

s
δ (ρ)

dρ

ρ

]
((

1
m(B(x0,R))

∫
B(x0,R)

up m(dx))
1
p +g(x0)+

k(R))+4k(R)

for 0 < 2s ≤ r, 2r ≤ R, 8R ≤ R.

In the section 4 we prove the sufficient part of Theorem 3.1. The section 5
contains the proof of the necessary part of Theorem 3.1.

4. PROOF OF THE SUFFICIENT PART OF TH. 3.6

Let x0 ∈ ∂Ω. Assume that u∈D[Ω] is a weak solution of (3.1). We may assume
without loss of generality that g(x0) = 0. Let uk := (u− k)+ where k = k(R)+
g(x0) and define

M(r) = supB(x0,r)uk

Mε(r) = M(r)+ ε

where ε ∈ (0, 1
2), 0 < r < R

2 < R < R
8 .
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Proposition 4.1. Define v−1 = Mε(r)−uk. Let p ∈ (1,ν ] and η ∈ D0[B(x0,
3r
4 ]

with 0 ≤ η ≤ 1 and η = 1 on B(x0,
r
2 and α(η) ≤ 2(4

r )
pm in Ω. Then there

exists a constant dependent only on Ω, p and the structure but independent of ε ,
r such that

rp

m(B(x0,r))

∫
Ω

α(ηv−1)(dx)≤ (4.1)

≤CMε(r)
[
Mε(r)−Mε(

r
2
)+ ε

]p−1

where 2r ≤ R ≤ R
8 and C is a structural constant.

We assume the Proposition 4.1 and we prove the sufficient part of Theorem
3.6. Let r ≤ R k = supB(x0,R)g and let η = 1 on B(x0,

r
2). Multiplying (4.1) by

M−1
ε we obtain

Mp−1
ε

rp

m(B(x0,r))

∫
Ω

α(η ṽ−1)(dx) (4.2)

≤C
[
Mε(r)−Mε(

r
2
)+ ε

]p−1

where ṽ = 1− uk
Mε (r)

. Taking into account the definition of the p-capacity we
obtain

Mε(r)
[

p− cap(B(x0,
r
2)\Ω,B(x0,r))

p− cap(B(x0,
r
2),B(x0,r))

] 1
p−1

≤

≤ (2C)
1

p−1

[
Mε(r)−Mε(

r
2
)+ ε

]
where here and in the following C denotes a possibly different structural con-
stant. Here we assume C ≥ 1. Taking the limit ε → 0 in the above inequality
gives

M(
r
2
)≤

[
1− (2C)−

1
p−1 δ (r)

1
p−1

]
M(r) (4.3)

where δ (r) = p−cap(B(x0,
r
2 )\Ω,B(x0,r))

p−cap(B(x0,
r
2 ),B(x0,r))

. It follows

supB(x0,
r
2 )∩Ωu+ ≤

[
1− (2C)−

1
p−1 δ (r)

1
p−1

]
supB(x0,r)∩Ωu+ +2k(R)

where 0 < r < R. Taking into account that −u is a local solution of (3.1) relative
to −g, we obtain

supB(x0,
r
2 )∩Ωu− ≤

[
1− (2C)−

1
p−1 δ (r)

1
p−1

]
supB(x0,r)∩Ωu−+2k(R)

Then
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oscB(x0,
r
2 )∩Ω|u| ≤

[
1− (2C)−

1
p−1 δ (r)

1
p−1

]
oscB(x0,r)∩Ω|u|+4k(R) (4.4)

where 0 < r < R. From (4.4) by iteration [16] we obtain

supB(x0,s)∩Ω|u| ≤C1exp
[
−C2

∫ r

s
δ (ρ)

1
p−1

dρ

ρ

]
supB(x0,r)∩Ω|u|+4k(r)g

where 0 < s < r
2 < r < R. The first inequality in Theorem 3.6 is so proved.

The second inequality follows observing that (u∓ (k(R± g(x0))± are positive
subsolutions in B(x0,R) relative to our form ( we can use the methods in [9]).

Remark 4.2. Let us observe that (3.4) gives an estimate on the velocity of con-
vergence of u to g(x0) as x → x0. In particular if δ (ρ) ≥ c > 0 α = C2∧ 1 we
have

exp
(
−C2

∫ r

s
δ (ρ)

dρ

ρ

)
∼
( s

r

)α

If oscB(x0,r)∩∂Ωg ≤C3rβ for 0 < r < R
2 , then we obtain

supB(x0,r)∩Ω|u−g(x0)| ≤C4rγ

for r < R
2

2
where γ =

(
α

2 ∧
β

2

)
.

Proof of Proposition 4.1 In the proof C will denote possibly different struc-
tural constants. At first we observe that uk is locally bounded in B(x0,R). By
the same methods used in [9] we can prove that uk is a positive subsolution in
B(x0,R) (relative to our form). We prove now that v is again a positive subsolu-
tion in B(x0,r) (relative to our form). Let φ be a positive function in D0[B(x0,r)].
We have∫

B(x0,r)
α(v,φ)(dx) =

∫
B(x0,r)

(Mε(r)−uk)−2(p−1)
α(uk,φ)(dx) =

=
∫

B(x0,r)
α(uk,(Mε(r)−uk)−2(p−1)

φ)(dx)−

−2(p−1)
∫

B(x0,r)
(Mε(r)−uk)(−2p+1)

φα(uk,(Mε(r)−uk))(dx)≤

≤−
∫

B(x0,r)
(Mε(r)−uk)−4(p−1)

φα(uk,uk)(dx)≤ 0
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and the result follows. Let now η be a positive function in D0[B(x,s)] where
B(x,s)⊂ B(x0,r). We have∫

B(x0,s)
α(uk,vp−1

η
p)(dx)≤ 0 (4.5)

Then ∫
B(x0,s)

(p−1)vp−2
ηα(uk,v)η p(dx) =

= (p−1)
∫

B(x0,s)
vp−2v−2(p−1)

ηα(v,v)η p(dx) =

= (p−1)≤
∫

B(x,s)
v−p

ηα(v,v)η p(dx) =

= (p−1)
∫

B(x,s)
ηα(log(v), log(v))η p(dx)

From (4.5) we obtain∫
B(x,s)

η
p
α(log(v), log(v))(dx)≤

∫
B(x,s)

vp−1
η

p−1
α(uk,η)(dx)≤

≤ 1
2

∫
B(x,s)

η
pvp

α(uk,uk)(dx)+4
∫

B(x,s)
α(η ,η)(dx) =

=
1
2

∫
B(x,s)

η
pv−p

α(v,v)(dx)+4
∫

B(x,s)
α(η ,η)(dx) =

=
1
2

∫
B(x,s)

η
p
α(log(v), log(v))(dx)+4

∫
B(x,s)

α(η ,η)(dx)

Let η be the cut-off function between B(x, 1
2 s) and B(x,s), we obtain∫

B(x,s)
η

p
α(log(v), log(v))(dx)≤Cspm(B(x,s))

so we obtain that v ∈ BMOloc(B(x0,r)). As in [6] we obtain that there exists σ0
such that for σ ≤ σ0

(
1

m(B(x0,
3r
4 ))

∫
B(x0,

3r
4 )

vσ m(dx))(
1

m(B(x0,
3r
4 ))

∫
B(x0,

3r
4 )

v−σ m(dx))≤C

Since v is a positive subsolution, we obtain that

supB(x0,
r
2 )v ≤C

1
m(B(x0,

5r
8 ))

∫
B(x0,

5r
8 )

vσ m(dx)
1
σ ≤
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≤C(
1

m(B(x0,
5r
8 ))

∫
B(x0,

5r
8 )

v−σ m(dx))−
1
σ

(see [11]). Taking into account the definition of v we obtain

(
1

m(B(x0,
3r
4 ))

∫
B(x0,

5r
8 )

v−σ m(dx))
1
σ ≤

≤C(Mε(r)−Mε(
r
2
)+ ε)

We choose now as test-function in (3.1)

ϕ = η
p
ψ

where η ∈ D0[B(x0,r)] with α(η)(dx) with a bounded density and

ψ =

(
vβ −

(
1

Mε(r)

)β
)

(we observe that ψ ∈ L∞(B(x0,r),m)), [13]. Take η ≥ 0, so ϕ ≥ 0. We obtain

β

∫
B(x0,r)

η
pvβ+1

α(uk)(dx)≤ p
∫

B(x0,r)
η

p−1
ψµ(uk,η)(dx)

Since ψ ≤ vβ we have

β

∫
B(x0,r)

η
pvβ+1

α(uk)(dx)≤ p
∫

B(x0,r)
η

p−1vβ
µ(uk,η)(dx)

The Young’s inequality gives∫
B(x0,r)

η
p−1vβ

µ(uk,η)(dx)

≤ θ
p

p−1
p

p−1

∫
B(x0,r)

η
pvβ+1

α(uk)(dx)+θ
−p 1

p

∫
B(x0,r)

vβ−p+1
α(η)(dx)

If θ = β
p−1

p , we have∫
B(x0,r)

η
pvβ+1

α(uk)(dx)≤Cβ
−p
∫

B(x0,r)
vβ−p+1

α(η)(dx) (4.6)

From (4.6) choosing 0 < β 6= p−1, β = τ p+ p−1, τ < 0 (then 1−p
p < τ < 0)

we obtain ∫
B(x0,r)

η
p
α(vτ)(dx)≤ K(τ)

∫
B(x0,r)

vpτ
α(η)(dx) (4.7)
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where K(τ) ' |τ|p + β−p. Given any 0 < s < t ≤ 1, let us take η such that
η ∈ D0[B(x0, tr)], 0 ≤ η ≤ 1, η = 1 in B(x0,sr), α(η)≤ C

rp(t−s)p . We obtain

1
m(B(x0,sr))

∫
B(x0,sr)

vγ pτm(dx)≤ (4.8)

≤ CK(τ)
(t− s)pm(B(x0, tr))

∫
B(x0,tr)

vpτm(dx)

where γ = ν

ν−p . Using a Moser type iteration method as in [11] we obtain

1
m(B(x0,3r/4))

∫
B(x0,3r/4)

v−qm(dx)≤ (4.9)

≤C(q)(
1

m(B(x0,r))

∫
B(x0,r)

v−σ m(dx))
q
σ ≤

≤CC(q)
(

Mε(r)−Mε(
r
2
)+ ε

)q

where C(q) is a finite valued increasing function of q for any 0 < q < (p−
1) ν

ν−p We are finally able to conclude the proof of Proposition 4.1. Let η ∈
D0[B(x0,

3r
4 )] with 0 ≤ η ≤ 1, η = 1 on B(x0,

r
2) and α(η)≤ 2(4

r )
p and choose

as test function in (3.1) the function ϕ = η puk. We have∫
B(x0,r/2)

η
p
α(uk)(dx)+

∫
B(x0,r/2)

uk pη
p−1

µ(uk,η)(dx) = 0

Let us observe that

1
m(B(x0,3r/4))

∫
B(x0,3r/4)

ukη
p−1

µ(uk,η) =

=
1

m(B(x0,3r/4))

∫
B(x0,3r/4)

ukη
p−1v−(τ+1)(p−1)

µ(vτ ,η)

≤CM(r)
(

1
m(B(x0,r/2))

∫
B(x0,r/2)

η
p
α(vτ)(dx)

) p−1
p

(
1

m(B(x0,3r/4))

∫
B(x0,3r/4)

v−(τ+1)(p−1)p
α(η)(dx)

) 1
p

≤

≤CM(r)
(

1
m(B(x0,3r/4))

∫
B(x0,3r/4)

α(ηvτ)(dx) +
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+
1

m(B(x0,r/2))

∫
B(x0,3r/4)

vτ p
α(η)(dx)

) p−1
p

.

.

(
1

m(B(x0,3r/4))

∫
B(x0,3r/4)

v−(τ+1)(p−1)p
α(η)(dx)

) 1
p

≤CM(r)
[(

Mε(r)−Mε(
r
2
)+ ε

)σ p
r−p
] p−1

p
·

[(
Mε(r)−Mε(

r
2
)+ ε

)(τ+1)(p−1)p
r−p
] 1

p

=

= CM(r)
(

Mε(r)−Mε(
r
2
)+ ε

)p−1
r−p

where we have chosen τ suitable near enough to (1− p). Then∫
B(x0,3r/4)

η
p
α(uk)(dx)

≤CMε(r)
(

Mε(r)−Mε(
r
2
)+ ε

)p−1
r−pm(B(x0,r))

Hence we obtain ∫
B(x0,3r/4)

α(ηv−1)(dx)≤

≤CMε(r)
(

Mε(r)−Mε(
r
2
)+ ε

)p−1
r−pm(B(x0,r))

for every 0 < r < R
2 where we use the estimate∫

B(x0,3r/4)
v−p

α(η)(dx)≤Cr−pMε(r)
∫

B(x0,3r/4)
v(1−p)m(dx)

We have so completed the proof of Proposition 4.1.

5. PROOF OF THE NECESSARY PART OF TH. 3.1

This proof follows by the methods of [14]. Let x0 be a regular point in the
boundary of Ω. Let

∫ 1
0 δ (ρ)dρ

ρ
be finite. Then the singleton {x0} has to be of

capacity zero with respect to X . Choose ε > 0 and r > 0 to be specified later. We
can find a function g∈D0∩C0(X), such that g(x)≤ 1, g(x0) = 1 and ||g||D0 < ε .
Let u be a solution of (3.1) relative to g, we have that u is positive in Ω. From
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(3.3) we have ||u||D[Ω] ≤Cε . Since g is bounded we have that u is also bounded
and |||u||L∞(Ω,m) ≤ |||g||L∞(Ω,m) (see again Remark 3.3). From [5] we have

p− f ine− limsupx→x0u(x)≤C1

(
1

m(B(x0,r))

∫
B(x0,r)∩Ω

|u|pm(dx)
)1/p

+

+C2

∫ 4r

0
δ (ρ)

1
p−1

dρ

ρ
≤

≤C3

(
1

m(B(x0,r))

)1/p

ε +C2

∫ 4r

0
δ (ρ)

1
p−1

dρ

ρ

There exists r > 0 such that

C2

∫ 4r

0
δ (ρ)

1
p−1

dρ

ρ
<

1
3

In this case choosing ε such that

C1C3

(
1

m(B(x0,r))

)1/p

ε <
1
3

Then
p− f ine− limsupx→x0u(x) <

2
3

= g(x0)

and a contradiction follows.
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