WIENER CRITERION AT THE BOUNDARY RELATED TO P-HOMOGENEOUS STRONGLY LOCAL DIRICHLET FORMS

MARCO BIROLI - SILVANA MARCHI

Abstract

We state a Wiener criterion at the boundary related to p-homogeneous strongly local Riemannian type Dirichlet forms.

1. INTRODUCTION

In this paper we prove a Wiener criterion at the boundary for the solutions of a Dirichlet problem for a Riemannian p-homogeneous ($p>1$) Dirichlet form.

For quasilinear elliptic equations with a growth and coercivity condition of order p the sufficient part of the Wiener criterion has been proved in [13]. The necessary part of the Wiener criterion at the boundary for quasilinear elliptic equations with a growth and coercivity condition of order p has been proved in [14] using an estimate on nonnegative subsolutions of the equation.

The estimate has been generalized in [8] and used in [9] to prove the necessary part of a Wiener criterion for relaxed Dirichlet problems relative to the subelliptic p-Laplacian. The sufficient part of the criterion has been also proved using the methods of [13]. A Wiener type criterion at the boundary follows in the case of boundary data corresponding to functions which have an extension to \mathbf{R}^{N} in a suitable Sobolev space related to the vector fields appearing in the subelliptic p-Laplacian. A general Wiener criterion at the boundary can be

[^0]proved by similar methods. We remark that the sufficient part of the Wiener criterion for the subeliptic p-Laplacian has been previously proved in [12].
The notions of p-homogeneous strongly local Dirichlet functionals and forms are introduced in [10], [4] and in [11] an Harnack inequality for a positive harmonic function relative to a Riemannian p-homogeneous Dirichlet form is proved.

In [5] we have proved the estimate of [14] in the general framework of the Riemannian p-homogeneous ($p>1$) Dirichlet forms. The estimate enables us to prove in this paper the necessary part of the Wiener criterion at the boundary. The sufficient part of the criterion is proved using a refinement of the methods in [13], [9].

As an example of possible applications we remark that the form on \mathbf{R}^{N}

$$
\int \sum_{i=1}^{m}\left|X_{i} u\right|^{p-2} X_{i} u X_{i} v \text { wdx } u, v \in H_{0}^{1, p ; X}
$$

where the fields X_{i} are Hörmander's type vector fields with C^{∞} coefficients or Grushin-type vector fields, w is a weight in the A_{2} Muckenhoupt class with respect to the intrinsic distance and $H_{0}^{1, p ; X}$ is the Sobolev space of order 1 and power p relative to the fields X_{i}, is a Riemannian p-homogeneous Dirichlet form, if we choose as distance the intrinsic distance defined by the vector fields and $m(d x)=w d x$ as measure on \mathbf{R}^{N}.

2. ASSUMPTIONS AND PRELIMINARIES RESULTS

Let X be a locally compact separable Hausdorff space X with a metrizable topology and a positive Radon measure m on X such that $\operatorname{supp}[m]=X$. We consider a strongly local Dirichlet form of domain D_{0}

$$
\Psi(u, v)=\int_{X} \mu(u, v)(d x)
$$

relative to a strongly local p-homogeneous Dirichlet functional $(p>1)$ with the same domain D_{0}

$$
\Phi(u)=\int_{X} \alpha(v)(d x)
$$

as defined in [10] or [4]. A notion of capacity relative to the functional Φ (and to the measure space (X, m)) can be defined in the usual variational way. The capacity of an open set O is defined as

$$
p-\operatorname{cap}(O)=\inf \left\{\Phi_{1}(v) ; v \in D_{0}, v \geq 1 \text { a.e. on } O\right\}
$$

if the set $\left\{v \in D_{0}, v \geq 1\right.$ a.e. on $\left.O\right\}$ is not empty and

$$
p-\operatorname{cap}(O)=+\infty
$$

otherwise, where $\Phi_{1}(v)=\Phi(v)+\int_{X}|v|^{p} d m$. Let E be a subset of X, we define

$$
p-\operatorname{cap}(E)=\inf \{p-\operatorname{cap}(O) ; O \text { open set with } E \subset O\}
$$

We recall that the above defined capacity is a Choquet capacity [10]. Moreover we can prove that every function in D_{0} is quasi-continuous and is defined quasieverywhere [10].

The strong locality property allow us to define the domain of the form with respect to an open set O, denoted by $D_{0}[O]$ and the local domain of the form with respect to an open set O, denoted by $D_{l o c}[O]$. We recall that, given an open set O in X for a set $E \subset \bar{E} \subset O$ we can define a Choquet capacity $p-\operatorname{cap}(E ; O)$ with respect to the open set O. Moreover the sets of zero capacity are the same with respect to O and to X. The following properties can be proved [10], [4]:
(a) $\mu(u, v), u, v \in D_{0}$ is homogeneous of degree $p-1$ in u and linear in v; we have also $\mu(u, u)=p \alpha(u)$.
(b) Chain rule : if $u, v \in D_{0} \cap L^{\infty}(X, m)$ and $\beta \in C^{1}(\mathbf{R})$ with $\beta(0)=0$ and β^{\prime} bounded on \mathbf{R}, then $\beta(u), \beta(v)$ belong to D_{0} and

$$
\begin{gather*}
\mu(\beta(u), v)=\left|\beta^{\prime}(u)\right|^{p-2} \beta^{\prime}(u) \mu(u, v) \tag{2.1}\\
\mu(u, \beta(v))=\beta^{\prime}(v) \mu(u, v) \tag{2.2}
\end{gather*}
$$

We observe that we have also a chain rule for α

$$
\begin{equation*}
\alpha(\beta(u))=\left|\beta^{\prime}(u)\right|^{p} \alpha(u) \tag{2.3}
\end{equation*}
$$

where the above relations make sense, since u is defined quasi-everywhere.
(c) Truncation property: for every $u, v \in D_{0}$

$$
\begin{align*}
& \mu\left(u^{+}, v\right)=\mathbf{1}_{\{u>0\}} \mu(u, v) \tag{2.4}\\
& \mu\left(u, v^{+}\right)=\mathbf{1}_{\{v>0\}} \mu(u, v) \tag{2.5}
\end{align*}
$$

where such relations make sense, since u and v are defined quasi-everywhere.
(d) Leibniz rule with respect to the second argument: for every $u \in D_{0}, v, w \in$ $D_{0} \cap L^{\infty}(X, m)$

$$
\begin{equation*}
\mu(u, v w)=v \mu(u, w)+w \mu(u, v) \tag{2.6}
\end{equation*}
$$

(e) Leibniz inequality: for every $u, v \in D_{0} \cap L^{\infty}(X, m)$

$$
\begin{equation*}
\alpha(u v) \leq|v|^{p} \alpha(u, w)+|u|^{p} \alpha(u) \tag{2.7}
\end{equation*}
$$

where $u, v \in D_{0} \cap L^{\infty}(X, m)$.
(f) For every $u, v \in D_{0}$, any $f \in L^{p^{\prime}}(X, \alpha(u))$ and $g \in L^{p}(X, \alpha(v))$ with $1 / p+$ $1 / p^{\prime}=1, f g$ is integrable with respect to $|\mu(u, v)|$ and $\forall a \in \mathbf{R}^{+}$

$$
\begin{equation*}
|f g \| \mu(u, v)|(d x) \leq 2^{p-1} a^{-p}|f|^{p^{\prime}} \alpha(u)(d x)+2^{p-1} a^{p(p-1)}|g|^{p} \alpha(v)(d x) \tag{2.8}
\end{equation*}
$$

Taking into account the strong locality property we can replace D_{0} by $D_{l o c}[X]$ in the above properties (a)-(f).

Assume that a distance d is defined on X, such that $\alpha(d) \leq m$ in the sense of the measures and
(i) The metric topology induced by d is equivalent to the original topology of X and X is complete with respect to d.
(ii) For every fixed compact set K there exist positive constants c_{0} and r_{0} such that

$$
\begin{equation*}
m(B(x, r)) \leq c_{0} m(B(x, s))\left(\frac{r}{s}\right)^{v} \quad \forall x \in K \quad \text { and } \quad 0<s<r<r_{0} \tag{2.9}
\end{equation*}
$$

where we denote by $B(x, r)$ the open ball of center x and radius r (for the distance $d)$. We can assume without loss of generality $p<v$.

From the properties of d it follows that there exists a cut-off function of $B(x, r)$ with respect to $B(x, 2 r)$, i.e. a function $\phi \in D_{0}[B(x, 2 r)]$ with $0 \leq \phi \leq 1$, $\phi=1$ on $B(x, r)$ and

$$
\alpha(\phi) \leq \frac{2}{r^{p}} m
$$

in the sense of the measures.
We assume also that the following scaled Poincaré inequality holds: for every fixed compact set K there exist positive constants c_{2}, r_{1} and $k \geq 1$ such that for every $x \in K$ and every $0<r<r_{1}$

$$
\begin{equation*}
\int_{B(x, r)}\left|u-\bar{u}_{x, r}\right|^{p} m(d x) \leq c_{2} r^{p} \int_{B(x, k r)} \alpha(u)(d x) \tag{2.10}
\end{equation*}
$$

for every $u \in D_{l o c}[B(x, k r)]$, where $\bar{u}_{x, r}=\frac{1}{m(B(x, r))} \int_{B(x, r)} u m(d x)$.
A strongly local p-homogeneous Dirichlet form, such that the above assumptions hold, is called a Riemannian Dirichlet form.
As proved in [15] the Poincaré inequality imply the following Sobolev inequality: for every fixed compact set K there exist positive constants c_{3}, r_{2} and $k \geq 1$ such that for every $x \in K$ and every $0<r<r_{2}$

$$
\begin{equation*}
\left(\frac{1}{m(B(x, r))} \int_{B(x, r)}|u|^{p^{*}} m(d x)\right)^{\frac{1}{p^{*}}} \leq \tag{2.11}
\end{equation*}
$$

$$
\leq c_{3}\left(\frac{r^{p}}{m(B(x, r))} \int_{B(x, k r)} \alpha(u)(d x)+\frac{r^{p}}{m(B(x, r))} \int_{B(x, r)}|u|^{p} m(d x)\right)^{\frac{1}{p}}
$$

with $p^{*}=\frac{p v}{v-p}$ and c_{3}, r_{2} depending only on $c_{0}, c_{2}, r_{0}, r_{1}$. We observe that we can assume without loss of generality $r_{0}=r_{1}=r_{2}$.

Remark 2.1. (a) From (1.10) we can easily deduce by standard methods that

$$
\frac{1}{m(B(x, r))} \int_{B(x, r)}|u|^{p} m(d x) \leq c_{2}^{\prime} \frac{r^{p}}{m(B(x, r) \cap\{u=0\})} \int_{B(x, k r)} \alpha(u)(d x)
$$

where c_{2}^{\prime} is a positive constant depending only on c_{2}.
(b) From (a) it follows that for every fixed compact set K, such that the closed neighborhood K^{\prime} of K of radius $r_{0}(K)$ is compact and strictly contained in X,

$$
\int_{B(x, r)}|u|^{p} m(d x) \leq c_{2}^{\star} r^{p} \int_{B(x, r)} \alpha(u)(d x)
$$

for every $x \in K$ and $0<r<\frac{r_{0}\left(K^{\prime}\right)}{2}$, where $u \in D_{0}[B(x, r)]$ and c_{2}^{\star} depends only on $c_{2}^{\prime}\left(K^{\prime}\right)$ and $c_{0}\left(K^{\prime}\right)$.

As a consequence of the assumptions on X and d and of the Poincaré inequality we have the following estimate on the capacity of a ball [10]

Proposition 2.2. For every fixed compact set K there exists positive constants c_{4} and c_{5} such that

$$
c_{4} \frac{m(B(x, r))}{r^{p}} \leq p-\operatorname{cap}(B(x, r), B(x, 2 r)) \leq c_{5} \frac{m(B(x, r))}{r^{p}}
$$

where $x \in K$ and $0<2 r<r_{0}$.
The left-hand-side inequality is consequence of Remark 2.1 applied to the potential of the ball $B(x, r)$ with respect to the ball $B(x, 2 r)$ (the existence of such a potential has been proved in [10], [4]).The right-hand-side inequality is a consequence of the existence of a cut-off function of $B(x, r)$ with respect to $B(x, 2 r)$.

3. THE RESULTS

Let Ω be an open set in X such that the closed neighborhood $\bar{\Omega}^{\prime}$ of radius $r_{0}(\bar{\Omega})$ of $\bar{\Omega}$ is compact and strictly contained in X. In the following we denote $r_{0}=r_{0}\left(\bar{\Omega}^{\prime}\right)$. Denote by $D[\Omega]$ the space of the function v in $D_{l o c}[\Omega]$ such that $\int_{\Omega} \alpha(v)(d x)<+\infty$.

A function g in $D[\Omega]$ is continuous on $\partial \Omega$ at $x_{0} \in \partial \Omega$ with value $g\left(x_{0}\right)$ if there exists an increasing function $k(r), 0<r<\bar{R}$ with

$$
\lim _{r \rightarrow 0} k(r)=0
$$

such that for $\eta \in D_{0}\left[B\left(x_{0}, r\right)\right]$ with $\alpha(\eta)(d x)$ having an $L^{\infty}\left(\boldsymbol{B}\left(x_{0}, r\right), m\right)$ density with respect to $m(d x)$, then $\eta\left(g-\left(k(r)+g\left(x_{0}\right)\right)\right)^{+}$and $\eta\left(g+k(r)-g\left(x_{0}\right)\right)^{-}$are in $D_{0}\left[B\left(x_{0}, r\right) \cap \mid O m e g a\right]$. We assume without loss of generality that $\bar{R} \leq r_{0}$.

Definition 3.1. Let g be a function in $D[\Omega]$. The function $u \in D[\Omega]$ is a solution of the Dirichlet problem relative to μ, Ω, g if $u-g \in D_{0}[\Omega]$ and

$$
\begin{equation*}
\int_{\Omega} \mu(u, \varphi)(d x)=0 \tag{3.1}
\end{equation*}
$$

for any $\varphi \in D_{0}[\Omega]$.
Definition 3.2. The function $u \in D_{l o c}[\Omega]$ is a local sub-solution of the Dirichlet problem relative to μ, Ω if

$$
\begin{equation*}
\int_{\Omega} \mu(u, \varphi)(d x) \leq 0 \tag{3.2}
\end{equation*}
$$

for any nonnegative $\varphi \in D_{0}[\Omega]$ with $\operatorname{supp}(\varphi) \subset \Omega$.
Remark 3.3. Let $g \in D[\Omega]$ and let $u \in D[\Omega]$ be a solution of the Dirichlet problem relative to μ, Ω, g, then

$$
\begin{equation*}
\|u\|_{D[\Omega]}^{p} \leq C\|g\|_{D[\Omega]}^{p} \tag{3.3}
\end{equation*}
$$

If $g \in L^{\infty}(\Omega, m)$ we have also

$$
\|u\|_{L^{\infty}(\Omega)} \leq C\|g\|_{L^{\infty}(\Omega)}
$$

. Moreover we recall that if u is a local nonnegative sub-solution of the Dirichlet problem relative to μ, Ω then

$$
\sup _{B\left(x, \frac{r}{2}\right)} u \leq C(q)\left(\frac{1}{m(B(x, r))} \int_{B(x, r} u^{q} m(d x)\right)^{\frac{1}{q}}
$$

for every $q>0$.[11]
Definition 3.4. A point $x_{0} \in \partial \Omega$ is a regular point for (3.1) if for every function $g \in D[\Omega]$, which is continuous on $\partial \Omega$ at $x_{0} \in \operatorname{partial} \Omega$ with value $g\left(x_{0}\right)$ the solution u of (3.1) is continuous at x_{0} with respect to the value $u\left(x_{0}\right)=g\left(x_{0}\right)$.

Definition 3.5. A point x_{0} in $\partial \Omega$ is a Wiener point if

$$
\begin{equation*}
\int_{0}^{1} \delta(\rho)^{\frac{1}{p-1}} \frac{d \rho}{\rho}=+\infty \tag{3.4}
\end{equation*}
$$

where

$$
\delta(\rho)=\frac{p-\operatorname{cap}\left(B\left(x_{0}, \frac{\rho}{2}\right) \backslash \Omega, B\left(x_{0}, \rho\right)\right)}{p-\operatorname{cap}\left(B\left(x_{0}, \frac{\rho}{2}\right), B\left(x_{0}, \rho\right)\right)}
$$

We are now in position to state the main result of this paper
Theorem 3.6. Let $x_{0} \in \partial \Omega$. Then the point x_{0} is regular for (3.1) iff x_{0} is a Wiener point of $\partial \Omega$. Moreover there exist some constants $C_{1} C_{1}^{\prime}$ and C_{2} such that for any solution u of (3.1) with g continuous on $\partial \Omega$ at x_{0} with value $g\left(x_{0}\right)$, we have

$$
\begin{gather*}
\sup _{B\left(x_{0}, s\right)}\left|u-g\left(x_{0}\right)\right| \leq \tag{3.5}\\
\leq C_{1} \exp \left[-C_{2} \int_{s}^{r} \delta(\rho) \frac{d \rho}{\rho}\right] \sup p_{B\left(x_{0}, r\right)}\left|u-g\left(x_{0}\right)\right|+4 k(R) \leq \\
\leq C_{1}^{\prime} \exp \left[-C_{2} \int_{s}^{r} \delta(\rho) \frac{d \rho}{\rho}\right]\left(\left(\frac{1}{m\left(B\left(x_{0}, \bar{R}\right)\right)} \int_{B\left(x_{0}, \bar{R}\right)} u^{p} m(d x)\right)^{\frac{1}{p}}+g\left(x_{0}\right)+\right. \\
k(\bar{R}))+4 k(R)
\end{gather*}
$$

for $0<2 s \leq r, 2 r \leq R, 8 R \leq \bar{R}$.
In the section 4 we prove the sufficient part of Theorem 3.1. The section 5 contains the proof of the necessary part of Theorem 3.1.

4. PROOF OF THE SUFFICIENT PART OF TH. 3.6

Let $x_{0} \in \partial \Omega$. Assume that $u \in D[\Omega]$ is a weak solution of (3.1). We may assume without loss of generality that $g\left(x_{0}\right)=0$. Let $u_{k}:=(u-k)^{+}$where $k=k(R)+$ $g\left(x_{0}\right)$ and define

$$
\begin{gathered}
M(r)=\sup _{B\left(x_{0}, r\right)} u_{k} \\
M_{\varepsilon}(r)=M(r)+\varepsilon
\end{gathered}
$$

where $\varepsilon \in\left(0, \frac{1}{2}\right), 0<r<\frac{R}{2}<R<\frac{\bar{R}}{8}$.

Proposition 4.1. Define $v^{-1}=M_{\varepsilon}(r)-u_{k}$. Let $p \in(1, v]$ and $\eta \in D_{0}\left[B\left(x_{0}, \frac{3 r}{4}\right]\right.$ with $0 \leq \eta \leq 1$ and $\eta=1$ on $B\left(x_{0}, \frac{r}{2}\right.$ and $\alpha(\eta) \leq 2\left(\frac{4}{r}\right)^{p} m$ in Ω. Then there exists a constant dependent only on Ω, p and the structure but independent of ε, r such that

$$
\begin{gather*}
\frac{r^{p}}{m\left(B\left(x_{0}, r\right)\right)} \int_{\Omega} \alpha\left(\eta v^{-1}\right)(d x) \leq \tag{4.1}\\
\leq C M_{\varepsilon}(r)\left[M_{\varepsilon}(r)-M_{\varepsilon}\left(\frac{r}{2}\right)+\varepsilon\right]^{p-1}
\end{gather*}
$$

where $2 r \leq R \leq \frac{\bar{R}}{8}$ and C is a structural constant.

We assume the Proposition 4.1 and we prove the sufficient part of Theorem 3.6. Let $r \leq R k=\sup _{B\left(x_{0}, R\right)} g$ and let $\eta=1$ on $B\left(x_{0}, \frac{r}{2}\right)$. Multiplying (4.1) by M_{ε}^{-1} we obtain

$$
\begin{align*}
& M_{\varepsilon}^{p-1} \frac{r^{p}}{m\left(B\left(x_{0}, r\right)\right)} \int_{\Omega} \alpha\left(\eta \widetilde{v}^{-1}\right)(d x) \tag{4.2}\\
& \quad \leq C\left[M_{\varepsilon}(r)-M_{\varepsilon}\left(\frac{r}{2}\right)+\varepsilon\right]^{p-1}
\end{align*}
$$

where $\widetilde{v}=1-\frac{u_{k}}{M_{\varepsilon}(r)}$. Taking into account the definition of the p-capacity we obtain

$$
\begin{aligned}
M_{\varepsilon}(r) & {\left[\frac{p-\operatorname{cap}\left(B\left(x_{0}, \frac{r}{2}\right) \backslash \Omega, B\left(x_{0}, r\right)\right)}{p-\operatorname{cap}\left(B\left(x_{0}, \frac{r}{2}\right), B\left(x_{0}, r\right)\right)}\right]^{\frac{1}{p-1}} \leq } \\
& \leq(2 C)^{\frac{1}{p-1}}\left[M_{\varepsilon}(r)-M_{\varepsilon}\left(\frac{r}{2}\right)+\varepsilon\right]
\end{aligned}
$$

where here and in the following C denotes a possibly different structural constant. Here we assume $C \geq 1$. Taking the limit $\varepsilon \rightarrow 0$ in the above inequality gives

$$
\begin{equation*}
M\left(\frac{r}{2}\right) \leq\left[1-(2 C)^{-\frac{1}{p-1}} \delta(r)^{\frac{1}{p-1}}\right] M(r) \tag{4.3}
\end{equation*}
$$

where $\boldsymbol{\delta}(r)=\frac{p-\operatorname{cap}\left(B\left(x_{0}, \frac{r}{2}\right) \backslash \Omega, B\left(x_{0}, r\right)\right)}{p-\operatorname{cap}\left(B\left(x_{0}, \frac{\kappa}{2}\right), B\left(x_{0}, r\right)\right)}$. It follows

$$
\sup _{B\left(x_{0}, \frac{r}{2}\right) \cap \Omega} u^{+} \leq\left[1-(2 C)^{-\frac{1}{p-1}} \boldsymbol{\delta}(r)^{\frac{1}{p-1}}\right] \sup _{B\left(x_{0}, r\right) \cap \Omega} u^{+}+2 k(R)
$$

where $0<r<R$. Taking into account that $-u$ is a local solution of (3.1) relative to $-g$, we obtain

$$
\sup _{B\left(x_{0}, \frac{r}{2}\right) \cap \Omega} u^{-} \leq\left[1-(2 C)^{-\frac{1}{p-1}} \delta(r)^{\frac{1}{p-1}}\right] \sup _{B\left(x_{0}, r\right) \cap \Omega} u^{-}+2 k(R)
$$

Then

$$
\begin{equation*}
\operatorname{osc}_{B\left(x_{0}, \frac{r}{2}\right) \cap \Omega}|u| \leq\left[1-(2 C)^{-\frac{1}{p-1}} \boldsymbol{\delta}(r)^{\frac{1}{p-1}}\right] \operatorname{osc}_{B\left(x_{0}, r\right) \cap \Omega}|u|+4 k(R) \tag{4.4}
\end{equation*}
$$

where $0<r<R$. From (4.4) by iteration [16] we obtain

$$
\sup _{B\left(x_{0}, s\right) \cap \Omega}|u| \leq C_{1} \exp \left[-C_{2} \int_{s}^{r} \delta(\rho)^{\frac{1}{p-1}} \frac{d \rho}{\rho}\right] \sup _{B\left(x_{0}, r\right) \cap \Omega}|u|+4 k(r) g
$$

where $0<s<\frac{r}{2}<r<R$. The first inequality in Theorem 3.6 is so proved. The second inequality follows observing that $\left(u \mp\left(k\left(\bar{R} \pm g\left(x_{0}\right)\right)^{ \pm}\right.\right.$are positive subsolutions in $B\left(x_{0}, \bar{R}\right)$ relative to our form (we can use the methods in [9]).

Remark 4.2. Let us observe that (3.4) gives an estimate on the velocity of convergence of u to $g\left(x_{0}\right)$ as $x \rightarrow x_{0}$. In particular if $\delta(\rho) \geq c>0 \alpha=C_{2} \wedge 1$ we have

$$
\exp \left(-C_{2} \int_{s}^{r} \delta(\rho) \frac{d \rho}{\rho}\right) \sim\left(\frac{s}{r}\right)^{\alpha}
$$

If $\operatorname{osc}_{B\left(x_{0}, r\right) \cap \partial \Omega} g \leq C_{3} r^{\beta}$ for $0<r<\frac{\bar{R}}{2}$, then we obtain

$$
\sup _{B\left(x_{0}, r\right) \cap \Omega}\left|u-g\left(x_{0}\right)\right| \leq C_{4} r^{\gamma}
$$

for $r<\frac{\bar{R}^{2}}{2}$ where $\gamma=\left(\frac{\alpha}{2} \wedge \frac{\beta}{2}\right)$.

Proof of Proposition 4.1 In the proof C will denote possibly different structural constants. At first we observe that u_{k} is locally bounded in $B\left(x_{0}, R\right)$. By the same methods used in [9] we can prove that u_{k} is a positive subsolution in $B\left(x_{0}, R\right)$ (relative to our form). We prove now that v is again a positive subsolution in $B\left(x_{0}, r\right)$ (relative to our form). Let ϕ be a positive function in $D_{0}\left[B\left(x_{0}, r\right)\right]$. We have

$$
\begin{gathered}
\int_{B\left(x_{0}, r\right)} \alpha(v, \phi)(d x)=\int_{B\left(x_{0}, r\right)}\left(M_{\mathcal{E}}(r)-u_{k}\right)^{-2(p-1)} \alpha\left(u_{k}, \phi\right)(d x)= \\
=\int_{B\left(x_{0}, r\right)} \alpha\left(u_{k},\left(M_{\mathcal{E}}(r)-u_{k}\right)^{-2(p-1)} \phi\right)(d x)- \\
-2(p-1) \int_{B\left(x_{0}, r\right)}\left(M_{\mathcal{E}}(r)-u_{k}\right)^{(-2 p+1)} \phi \alpha\left(u_{k},\left(M_{\mathcal{E}}(r)-u_{k}\right)\right)(d x) \leq \\
\leq-\int_{B\left(x_{0}, r\right)}\left(M_{\mathcal{E}}(r)-u_{k}\right)^{-4(p-1)} \phi \alpha\left(u_{k}, u_{k}\right)(d x) \leq 0
\end{gathered}
$$

and the result follows. Let now η be a positive function in $D_{0}[B(x, s)]$ where $B(x, s) \subset B\left(x_{0}, r\right)$. We have

$$
\begin{equation*}
\int_{B\left(x_{0}, s\right)} \alpha\left(u_{k}, v^{p-1} \eta^{p}\right)(d x) \leq 0 \tag{4.5}
\end{equation*}
$$

Then

$$
\begin{gathered}
\int_{B\left(x_{0}, s\right)}(p-1) v^{p-2} \eta \alpha\left(u_{k}, v\right) \eta^{p}(d x)= \\
=(p-1) \int_{B\left(x_{0}, s\right)} v^{p-2} v^{-2(p-1)} \eta \alpha(v, v) \eta^{p}(d x)= \\
=(p-1) \leq \int_{B(x, s)} v^{-p} \eta \alpha(v, v) \eta^{p}(d x)= \\
=(p-1) \int_{B(x, s)} \eta \alpha(\log (v), \log (v)) \eta^{p}(d x)
\end{gathered}
$$

From (4.5) we obtain

$$
\begin{aligned}
& \int_{B(x, s)} \eta^{p} \alpha(\log (v), \log (v))(d x) \leq \int_{B(x, s)} v^{p-1} \eta^{p-1} \alpha\left(u_{k}, \eta\right)(d x) \leq \\
& \quad \leq \frac{1}{2} \int_{B(x, s)} \eta^{p} v^{p} \alpha\left(u_{k}, u_{k}\right)(d x)+4 \int_{B(x, s)} \alpha(\eta, \eta)(d x)= \\
& \quad=\frac{1}{2} \int_{B(x, s)} \eta^{p} v^{-p} \alpha(v, v)(d x)+4 \int_{B(x, s)} \alpha(\eta, \eta)(d x)= \\
& \quad=\frac{1}{2} \int_{B(x, s)} \eta^{p} \alpha(\log (v), \log (v))(d x)+4 \int_{B(x, s)} \alpha(\eta, \eta)(d x)
\end{aligned}
$$

Let η be the cut-off function between $B\left(x, \frac{1}{2} s\right)$ and $B(x, s)$, we obtain

$$
\int_{B(x, s)} \eta^{p} \alpha(\log (v), \log (v))(d x) \leq C s^{p} m(B(x, s))
$$

so we obtain that $v \in B M O_{\text {loc }}\left(B\left(x_{0}, r\right)\right)$. As in [6] we obtain that there exists σ_{0} such that for $\sigma \leq \sigma_{0}$

$$
\left(\frac{1}{m\left(B\left(x_{0}, \frac{3 r}{4}\right)\right)} \int_{B\left(x_{0}, \frac{3 r}{4}\right)} v^{\sigma} m(d x)\right)\left(\frac{1}{m\left(B\left(x_{0}, \frac{3 r}{4}\right)\right)} \int_{B\left(x_{0}, \frac{3 r}{4}\right)} v^{-\sigma} m(d x)\right) \leq C
$$

Since v is a positive subsolution, we obtain that

$$
\sup _{B\left(x_{0}, \frac{r}{2}\right)} v \leq C \frac{1}{m\left(B\left(x_{0}, \frac{5 r}{8}\right)\right)} \int_{B\left(x_{0}, \frac{5 r}{8}\right)} v^{\sigma} m(d x)^{\frac{1}{\sigma}} \leq
$$

$$
\leq C\left(\frac{1}{m\left(B\left(x_{0}, \frac{5 r}{8}\right)\right)} \int_{B\left(x_{0}, \frac{5 r}{8}\right)} v^{\left.-\sigma_{m}(d x)\right)^{-\frac{1}{\sigma}}}\right.
$$

(see [11]). Taking into account the definition of v we obtain

$$
\begin{gathered}
\left(\frac{1}{m\left(B\left(x_{0}, \frac{3 r}{4}\right)\right)} \int_{B\left(x_{0}, \frac{5 r}{8}\right)} v^{-\sigma} m(d x)\right)^{\frac{1}{\sigma}} \leq \\
\quad \leq C\left(M_{\varepsilon}(r)-M_{\varepsilon}\left(\frac{r}{2}\right)+\varepsilon\right)
\end{gathered}
$$

We choose now as test-function in (3.1)

$$
\varphi=\eta^{p} \psi
$$

where $\eta \in D_{0}\left[B\left(x_{0}, r\right)\right]$ with $\alpha(\eta)(d x)$ with a bounded density and

$$
\psi=\left(v^{\beta}-\left(\frac{1}{M_{\varepsilon}(r)}\right)^{\beta}\right)
$$

(we observe that $\psi \in L^{\infty}\left(B\left(x_{0}, r\right), m\right)$), [13]. Take $\eta \geq 0$, so $\varphi \geq 0$. We obtain

$$
\beta \int_{B\left(x_{0}, r\right)} \eta^{p} v^{\beta+1} \alpha\left(u_{k}\right)(d x) \leq p \int_{B\left(x_{0}, r\right)} \eta^{p-1} \psi \mu\left(u_{k}, \eta\right)(d x)
$$

Since $\psi \leq v^{\beta}$ we have

$$
\beta \int_{B\left(x_{0}, r\right)} \eta^{p} v^{\beta+1} \alpha\left(u_{k}\right)(d x) \leq p \int_{B\left(x_{0}, r\right)} \eta^{p-1} v^{\beta} \mu\left(u_{k}, \eta\right)(d x)
$$

The Young's inequality gives

$$
\begin{gathered}
\int_{B\left(x_{0}, r\right)} \eta^{p-1} v^{\beta} \mu\left(u_{k}, \eta\right)(d x) \\
\leq \theta^{\frac{p}{p-1}} \frac{p}{p-1} \int_{B\left(x_{0}, r\right)} \eta^{p} v^{\beta+1} \alpha\left(u_{k}\right)(d x)+\theta^{-p} \frac{1}{p} \int_{B\left(x_{0}, r\right)} v^{\beta-p+1} \alpha(\eta)(d x)
\end{gathered}
$$

If $\theta=\beta^{\frac{p-1}{p}}$, we have

$$
\begin{equation*}
\int_{B\left(x_{0}, r\right)} \eta^{p} v^{\beta+1} \alpha\left(u_{k}\right)(d x) \leq C \beta^{-p} \int_{B\left(x_{0}, r\right)} v^{\beta-p+1} \alpha(\eta)(d x) \tag{4.6}
\end{equation*}
$$

From (4.6) choosing $0<\beta \neq p-1, \beta=\tau p+p-1, \tau<0$ (then $\frac{1-p}{p}<\tau<0$) we obtain

$$
\begin{equation*}
\int_{B\left(x_{0}, r\right)} \eta^{p} \alpha\left(v^{\tau}\right)(d x) \leq K(\tau) \int_{B\left(x_{0}, r\right)} v^{p \tau} \alpha(\eta)(d x) \tag{4.7}
\end{equation*}
$$

where $K(\tau) \simeq|\tau|^{p}+\beta^{-p}$. Given any $0<s<t \leq 1$, let us take η such that $\eta \in D_{0}\left[B\left(x_{0}, t r\right)\right], 0 \leq \eta \leq 1, \eta=1$ in $B\left(x_{0}, s r\right), \alpha(\eta) \leq \frac{C}{r^{p}(t-s)^{p}}$. We obtain

$$
\begin{align*}
& \frac{1}{m\left(B\left(x_{0}, s r\right)\right)} \int_{B\left(x_{0}, s r\right)} v^{\gamma p \tau} m(d x) \leq \tag{4.8}\\
\leq & \frac{C K(\tau)}{(t-s)^{p} m\left(B\left(x_{0}, t r\right)\right)} \int_{B\left(x_{0}, t r\right)} v^{p \tau} m(d x)
\end{align*}
$$

where $\gamma=\frac{v}{v-p}$. Using a Moser type iteration method as in [11] we obtain

$$
\begin{gather*}
\frac{1}{m\left(B\left(x_{0}, 3 r / 4\right)\right)} \int_{B\left(x_{0}, 3 r / 4\right)} v^{-q} m(d x) \leq \tag{4.9}\\
\leq C(q)\left(\frac{1}{m\left(B\left(x_{0}, r\right)\right)} \int_{B\left(x_{0}, r\right)} v^{-\sigma} m(d x)\right)^{\frac{q}{\sigma}} \leq \\
\leq C C(q)\left(M_{\varepsilon}(r)-M_{\varepsilon}\left(\frac{r}{2}\right)+\varepsilon\right)^{q}
\end{gather*}
$$

where $C(q)$ is a finite valued increasing function of q for any $0<q<(p-$ 1) $\frac{v}{v-p}$ We are finally able to conclude the proof of Proposition 4.1. Let $\eta \in$ $D_{0}\left[B\left(x_{0}, \frac{3 r}{4}\right)\right]$ with $0 \leq \eta \leq 1, \eta=1$ on $B\left(x_{0}, \frac{r}{2}\right)$ and $\alpha(\eta) \leq 2\left(\frac{4}{r}\right)^{p}$ and choose as test function in (3.1) the function $\varphi=\eta^{p} u_{k}$. We have

$$
\int_{B\left(x_{0}, r / 2\right)} \eta^{p} \alpha\left(u_{k}\right)(d x)+\int_{B\left(x_{0}, r / 2\right)} u_{k} p \eta^{p-1} \mu\left(u_{k}, \eta\right)(d x)=0
$$

Let us observe that

$$
\begin{gathered}
\frac{1}{m\left(B\left(x_{0}, 3 r / 4\right)\right)} \int_{B\left(x_{0}, 3 r / 4\right)} u_{k} \eta^{p-1} \mu\left(u_{k}, \eta\right)= \\
=\frac{1}{m\left(B\left(x_{0}, 3 r / 4\right)\right)} \int_{B\left(x_{0}, 3 r / 4\right)} u_{k} \eta^{p-1} v^{-(\tau+1)(p-1)} \mu\left(v^{\tau}, \eta\right) \\
\leq C M(r)\left(\frac{1}{m\left(B\left(x_{0}, r / 2\right)\right)} \int_{B\left(x_{0}, r / 2\right)} \eta^{p} \alpha\left(v^{\tau}\right)(d x)\right)^{\frac{p-1}{p}} \\
\left(\frac{1}{m\left(B\left(x_{0}, 3 r / 4\right)\right)} \int_{B\left(x_{0}, 3 r / 4\right)} v^{-(\tau+1)(p-1) p} \alpha(\eta)(d x)\right)^{\frac{1}{p}} \leq \\
\leq C M(r)\left(\frac{1}{m\left(B\left(x_{0}, 3 r / 4\right)\right)} \int_{B\left(x_{0}, 3 r / 4\right)} \alpha\left(\eta v^{\tau}\right)(d x)+\right.
\end{gathered}
$$

$$
\begin{gathered}
\left.+\frac{1}{m\left(B\left(x_{0}, r / 2\right)\right)} \int_{B\left(x_{0}, 3 r / 4\right)} v^{\tau p} \alpha(\eta)(d x)\right)^{\frac{p-1}{p}} \\
\cdot\left(\frac{1}{m\left(B\left(x_{0}, 3 r / 4\right)\right)} \int_{B\left(x_{0}, 3 r / 4\right)} v^{-(\tau+1)(p-1) p} \alpha(\eta)(d x)\right)^{\frac{1}{p}} \\
\leq C M(r)\left[\left(M_{\varepsilon}(r)-M_{\varepsilon}\left(\frac{r}{2}\right)+\varepsilon\right)^{\sigma p} r^{-p}\right]^{\frac{p-1}{p}} \\
{\left[\left(M_{\varepsilon}(r)-M_{\varepsilon}\left(\frac{r}{2}\right)+\varepsilon\right)^{(\tau+1)(p-1) p} r^{-p}\right]^{\frac{1}{p}}=} \\
=C M(r)\left(M_{\varepsilon}(r)-M_{\varepsilon}\left(\frac{r}{2}\right)+\varepsilon\right)^{p-1} r^{-p}
\end{gathered}
$$

where we have chosen τ suitable near enough to $(1-p)$. Then

$$
\begin{gathered}
\int_{B\left(x_{0}, 3 r / 4\right)} \eta^{p} \alpha\left(u_{k}\right)(d x) \\
\leq C M_{\mathcal{E}}(r)\left(M_{\varepsilon}(r)-M_{\mathcal{E}}\left(\frac{r}{2}\right)+\varepsilon\right)^{p-1} r^{-p} m\left(B\left(x_{0}, r\right)\right)
\end{gathered}
$$

Hence we obtain

$$
\begin{gathered}
\int_{B\left(x_{0}, 3 r / 4\right)} \alpha\left(\eta v^{-1}\right)(d x) \leq \\
\leq C M_{\mathcal{E}}(r)\left(M_{\varepsilon}(r)-M_{\mathcal{E}}\left(\frac{r}{2}\right)+\varepsilon\right)^{p-1} r^{-p} m\left(B\left(x_{0}, r\right)\right)
\end{gathered}
$$

for every $0<r<\frac{R}{2}$ where we use the estimate

$$
\int_{B\left(x_{0}, 3 r / 4\right)} v^{-p} \alpha(\eta)(d x) \leq C r^{-p} M_{\varepsilon}(r) \int_{B\left(x_{0}, 3 r / 4\right)} v^{(1-p)} m(d x)
$$

We have so completed the proof of Proposition 4.1.

5. PROOF OF THE NECESSARY PART OF TH. 3.1

This proof follows by the methods of [14]. Let x_{0} be a regular point in the boundary of Ω. Let $\int_{0}^{1} \delta(\rho) \frac{d \rho}{\rho}$ be finite. Then the singleton $\left\{x_{0}\right\}$ has to be of capacity zero with respect to X. Choose $\varepsilon>0$ and $r>0$ to be specified later. We can find a function $g \in D_{0} \cap C_{0}(X)$, such that $g(x) \leq 1, g\left(x_{0}\right)=1$ and $\|g\|_{D_{0}}<\varepsilon$. Let u be a solution of (3.1) relative to g, we have that u is positive in Ω. From
(3.3) we have $\|u\|_{D[\Omega]} \leq C \varepsilon$. Since g is bounded we have that u is also bounded and $\left\|\|u\|_{L^{\infty}(\Omega, m)} \leq\right\| \mid g \|_{L^{\infty}(\Omega, m)}$ (see again Remark 3.3). From [5] we have

$$
\begin{gathered}
p-{\text { fine }-\limsup _{x \rightarrow x_{0}} u(x) \leq C_{1}\left(\frac{1}{m\left(B\left(x_{0}, r\right)\right)} \int_{B\left(x_{0}, r\right) \cap \Omega}|u|^{p} m(d x)\right)^{1 / p}+}_{+C_{2} \int_{0}^{4 r} \delta(\rho)^{\frac{1}{p-1}} \frac{d \rho}{\rho} \leq}^{\leq C_{3}\left(\frac{1}{m\left(B\left(x_{0}, r\right)\right)}\right)^{1 / p} \varepsilon+C_{2} \int_{0}^{4 r} \delta(\rho)^{\frac{1}{p-1}} \frac{d \rho}{\rho}}
\end{gathered}
$$

There exists $r>0$ such that

$$
C_{2} \int_{0}^{4 r} \delta(\rho)^{\frac{1}{p-1}} \frac{d \rho}{\rho}<\frac{1}{3}
$$

In this case choosing ε such that

$$
C_{1} C_{3}\left(\frac{1}{m\left(B\left(x_{0}, r\right)\right)}\right)^{1 / p} \varepsilon<\frac{1}{3}
$$

Then

$$
p-\text { fine }- \text { limsup }_{x \rightarrow x_{0}} u(x)<\frac{2}{3}=g\left(x_{0}\right)
$$

and a contradiction follows.

REFERENCES

[1] H. Attouch, Variational convergence for functions and operators, Pitman, Applicable Mathematics Series, London-Marshfield 1984.
[2] M. Biroli, Nonlinear Kato measures and nonlinear subelliptic Schröedinger problems, Rend. Acc. Naz. Sc. detta dei XL, Memorie di Matematica e Appl., 115 Vol. XXI (1997), 235-252.
[3] M. Biroli, Weak Kato measures and Shröedinger problems for a Dirichlet form, Rend. Acc. Naz. Sc. detta dei XL, Memorie di Matematica e Appl., 118 Vol. XXIV (2000), 197-217.
[4] M.Biroli, Nonlinear p-homogeneous Dirichlet forms on nonreflexive Banach spaces, Rend. Acc. Naz. Sc. detta dei XL, Memorie di Matematica e Appl., 123 Vol. XXIX (2005), 55-78.
[5] M. Biroli - S. Marchi, Oscillation estimates relative to p-homogeneous forms and Kato measures data, Le Matematiche (2007), preprint.
[6] M. Biroli - U. Mosco, A Saint Venant type principle for Dirichlet forms on discontinuous media, Ann. Mat. Pura Appl., 169 (IV) (1995), 125181.
[7] M. Biroli - U. Mosco, Sobolev inequalities on homogeneous spaces, Potential Anal. (1995), 311-324.
[8] M. Biroli - N. Tchou, Nonlinear subelliptic problems with measure data, Rend. Acc. Naz. Scienze detta dei XL, Memorie di Matematica e Applicazioni, XXIII (1999), 57-82.
[9] M. Biroli - N. Tchou, Relaxed Dirichlet problem for the subelliptic pLaplacian, Ann. Mat. Pura Appl. (IV), CLXXIX (2001), 39-64.
[10] M. Biroli - P. Vernole, Strongly local nonlinear Dirichlet functionals and forms, Advances in Mathematical Sciences and Applications, 15 (2005), 655-682.
[11] M. Biroli - P. Vernole, Harnack inequality for harmonic functions relative to a nonlinear p-homogeneous Riemannian Dirichlet form, Nonlinear Analysis, 64 (2006), 51-68.
[12] D. Danielli, Regularity at the boundary for solutions of nonlinear subelliptic equations, Indiana Un. Math. J. 44 (1955), 269-286.
[13] R. Gariepy - W. Ziemer, A regularity condition at the boundary for solutions of quasilinear elliptic equations, Arch. Rat. Mech. Anal. 67 (1977), 25-39.
[14] J. Maly, Pointwise estimates of nonnegative subsolutions of quasilinear elliptic equations at irregular points, Comm. Math. Univ. Carolinae, 37 (1996), 23-42.
[15] J. Maly - U. Mosco, Remarks on measure-valued Lagrangians on homogeneous spaces, Ricerche Mat. 48 (1999), Supplemento, 217-231.
[16] U. Mosco, Wiener criterion and potential estimates for the obstacle problem Indiana Un. Math. J., 36 (1987), 455-494.

MARCO BIROLI
Dipartimento di Matematica F. Brioschi, Politecnico di Milano, Milano, Italy. e-mail: marbir@mate.polimi.it.

SILVANA MARCHI
Dipartimento di Matematica, Universitá di Parma,
Viale Usberti, 53/A, Parma, Italy. e-mail: silvana.marchi@unipr.it

[^0]: Entrato in redazione 1 gennaio 2007

