Introduction	β -family	Distribution of extrema	Two-sided	Numerics
000000	000000	000000	00	00000000

Wiener-Hopf factorization and distribution of extrema for a family of Lévy processes

Alexey Kuznetsov

Department of Mathematics and Statistics York University Toronto, Canada

June 24, 2010

Research supported by the Natural Sciences and Engineering Research Council of Canada

Introduction	β -family	Distribution of extrema	Two-sided	Numerics
0000000	000000	000000		00000000

- Wiener-Hopf factorization
- Well-known examples

- **3** Distribution of extrema
- 4 Exit problem for an interval

Introduction	β -family	Distribution of extrema	Two-sided	Numerics
000000				
Wiener-Hopf fac	torization			
D ·	C 1 TT7			

Review of the Wiener-Hopf factorization

The characteristic exponent $\Psi(z)$ is defined as

 $\mathbb{E}\left[e^{\mathrm{i}zX_t}\right] = \exp(-t\Psi(z)),$

The Lévy-Khintchine representation for $\Psi(z)$:

$$\Psi(z) = \frac{\sigma^2 z^2}{2} - i\mu z - \int_{\mathbb{R}} \left(e^{izx} - 1 - izx \mathbb{I}(|x| < 1) \right) \Pi(dx)$$

We define the extrema processes $\overline{X}_t = \sup\{X_s : s \leq t\}$ and $\underline{X}_t = \inf\{X_s : s \leq t\}$, introduce an exponential random variable e(q)with parameter q > 0, which is independent of the process X_t , and use the following notation for the characteristic functions of $\overline{X}_{e(q)}, \underline{X}_{e(q)}$:

$$\phi_q^+(z) = \mathbb{E}\left[e^{\mathrm{i} z \overline{X}_{e(q)}}\right], \quad \phi_q^-(z) = \mathbb{E}\left[e^{\mathrm{i} z \underline{X}_{e(q)}}\right]$$

・ 御 ト ・ 臣 ト ・ 臣 ト … 臣

Introduction	β -family	Distribution of extrema	Two-sided	Numerics
000000	000000	0000000		00000000
Wiener-Hopf fact	orization			

Review of the Wiener-Hopf factorization

Theorem

• Random variables $\overline{X}_{e(q)}$ and $X_{e(q)} - \overline{X}_{e(q)}$ are independent.

•
$$X_{\mathrm{e}(q)} - \overline{X}_{\mathrm{e}(q)} \stackrel{d}{=} \underline{X}_{\mathrm{e}(q)}$$
.

• Random variable $\overline{X}_{e(q)}$ [$\underline{X}_{e(q)}$] is infinitely divisible, positive [negative] and has zero drift.

For $z \in \mathbb{R}$ we have

$$\frac{q}{q+\Psi(z)} = \phi_q^+(z)\phi_q^-(z).$$

(1日) (コン (コン) ヨ)

Introduction	β -family	Distribution of extrema	Two-sided	Numerics
000000	000000	0000000		00000000
Well-known example	s			
Outline				

Introduction Wiener-Hopf factorization Well-known examples

- 2 β -family of Lévy processes
- 3 Distribution of extrema
- 4 Exit problem for an interval
- **5** Numerical examples

The main idea: since the random variable $\overline{X}_{e(q)}$ [$\underline{X}_{e(q)}$] is positive [negative], its characteristic function must be analytic and have no zeros in \mathbb{C}^+ [\mathbb{C}^-], where

$$\mathbb{C}^+ = \{ z \in \mathbb{C} : \operatorname{Im}(z) > 0 \}, \ \mathbb{C}^- = \{ z \in \mathbb{C} : \operatorname{Im}(z) < 0 \}, \ \overline{\mathbb{C}}^\pm = \mathbb{C}^\pm \cup \mathbb{R}.$$

Example:

Let $X_t = W_t + \mu t$. Then $\Psi(z) = \frac{z^2}{2} - i\mu z$ and the equation $q + \Psi(z) = 0$ has two solutions

$$z_{1,2} = \mathrm{i}(\mu \pm \sqrt{\mu^2 + 2q})$$

Introduction	β -family	Distribution of extrema	Two-sided	Numerics
0000000	000000	0000000		00000000
Well-known exam	ples			
WH for]	Brownian	motion with drift		

Function $q/(\Psi(z) + q)$ can be factorized as

$$\frac{q}{q+\Psi(z)} = \frac{q}{\frac{z^2}{2} - i\mu z + q}$$
$$= \frac{\mu + \sqrt{\mu^2 + 2q}}{iz + \mu + \sqrt{\mu^2 + 2q}} \times \frac{\mu - \sqrt{\mu^2 + 2q}}{iz + \mu - \sqrt{\mu^2 + 2q}}$$

Thus

$$\phi_q^+(z) = \frac{-i(\mu - \sqrt{\mu^2 + 2q})}{z - i(\mu - \sqrt{\mu^2 + 2q})}$$

and $\overline{X}_{e(q)}$ is an exponential random variable with parameter $\sqrt{\mu^2 + 2q} - \mu$.

<ロ> (四) (四) (三) (三) (三)

 X_t is a Lévy process with jumps defined by

$$\pi(x) = a_1 e^{-b_1 x} \mathbf{I}_{\{x>0\}} + a_2 e^{b_2 x} \mathbf{I}_{\{x<0\}}$$

Then the characteristic exponent is

$$\Psi(z) = \frac{\sigma^2 z^2}{2} - i\mu z - \frac{a_1}{b_1 - iz} - \frac{a_2}{b_2 + iz} + \frac{a_1}{b_1} + \frac{a_2}{b_2}$$

Thus equation $q + \Psi(z) = 0$ is a fourth degree polynomial equation, and we have explicit solutions and exact WH factorization.

Introduction	β -family	Distribution of extrema	Two-sided	Numerics
000000	000000	0000000		00000000
Well-known examp	oles			
	1 1			

Phase-type distributed jumps

Definition

The distribution of the first passage time of the finite state continuous time Markov chain is called *phase-type* distribution.

$$q(x) = \mathbf{p_0} e^{x\mathcal{L}} \mathbf{e_1}$$

where b_i are eigenvalues of the Markov generator \mathcal{L} . Thus if X_t has phase-type jumps, its characteristic exponent $\Psi(z)$ is a *rational* function, and $q + \Psi(z) = 0$ is reduced to a polynomial equation, and the Wiener-Hopf factors are given in closed form (in terms of the roots of this polynomial equation).

Introduction	β -family	Distribution of extrema	Two-sided	Numerics
0000000	000000	0000000		000000000
Outline				

Introduction

- Wiener-Hopf factorization
- Well-known examples

2 β -family of Lévy processes

- 3 Distribution of extrema
- ④ Exit problem for an interval
- **5** Numerical examples

Introduction	β-family	Distribution of extrema	Two-sided	Numerics
0000000	●00000	0000000		000000000
Definitio	n of the β	-family		

Definition

We define the β -family of Lévy processes by the generating triple (μ, σ, π) , where $\mu \in \mathbb{R}$, $\sigma \geq 0$ and the density of the Lévy measure is

$$\pi(x) = c_1 \frac{e^{-\alpha_1 \beta_1 x}}{(1 - e^{-\beta_1 x})^{\lambda_1}} \mathbf{I}_{\{x > 0\}} + c_2 \frac{e^{\alpha_2 \beta_2 x}}{(1 - e^{\beta_2 x})^{\lambda_2}} \mathbf{I}_{\{x < 0\}}$$

and parameters satisfy $\alpha_i > 0$, $\beta_i > 0$, $c_i \ge 0$ and $\lambda_i \in (0,3)$.

・ 同 ト ・ ヨ ト ・ モ ト ・

Introduction	β-family	Distribution of extrema	Two-sided	Numerics
0000000	0€0000	0000000		0000000000
Lévy pro	cesses sim	ilar to the β -famil	V	

The generalized tempered stable family

$$\pi(x) = c_{+} \frac{e^{-\alpha_{+}x}}{x^{\lambda_{+}}} \mathbf{I}_{\{x>0\}} + c_{-} \frac{e^{\alpha_{-}x}}{|x|^{\lambda_{-}}} \mathbf{I}_{\{x<0\}}.$$

can be obtained as the limit as $\beta \to 0^+$ if we let

 $c_1=c_+\beta^{\lambda_+},\quad c_2=c_-\beta^{\lambda_-},\quad \alpha_1=\alpha_+\beta^{-1},\quad \alpha_2=\alpha_-\beta^{-1},\quad \beta_1=\beta_2=\beta$

Particular cases:

- $\lambda_1 = \lambda_2 \longrightarrow$ tempered stable, or KoBoL processes
- $c_1 = c_2, \lambda_1 = \lambda_2$ and $\beta_1 = \beta_2 \longrightarrow CGMY$ processes

・ロト ・同 ト ・ヨト ・ヨト ・ ヨー うので

Introduction	β -family	Distribution of extrema	Two-sided	Numerics
0000000	00000	0000000	00	000000000

Computing the characteristic exponent

Theorem

If $\lambda_i \in (0,3) \setminus \{1,2\}$ then

$$\Psi(z) = \frac{\sigma^2 z^2}{2} + i\rho z + \gamma$$

- $\frac{c_1}{\beta_1} B\left(\alpha_1 - \frac{iz}{\beta_1}; 1 - \lambda_1\right) - \frac{c_2}{\beta_2} B\left(\alpha_2 + \frac{iz}{\beta_2}; 1 - \lambda_2\right).$

Here $B(x, y) = \Gamma(x)\Gamma(y)/\Gamma(x+y)$ is the beta function.

(本間)) ((日)) ((日)) (日)

Introduction	β-family	Distribution of extrema	Two-sided	Numerics
0000000	000€00	0000000	00	000000000
Properties				

(i) The characteristic exponent $\Psi(z)$ is a meromorphic function which has simple poles at points $\{-i\rho_n, i\hat{\rho}_n\}_{n>1}$, where

$$\rho_n = \beta_1(\alpha_1 + n - 1), \quad \hat{\rho}_n = \beta_2(\alpha_2 + n - 1).$$

(ii) For $q \ge 0$ function $q + \Psi(z)$ has roots at points $\{-i\zeta_n, i\hat{\zeta}_n\}_{n\ge 1}$ where ζ_n and $\hat{\zeta}_n$ are nonnegative real numbers (strictly positive if q > 0).

▲□ → ▲ □ → ▲ □ →

Introduction 0000000	β-family 0000€0	Distribution of extrema	Two-sided	$\frac{Numerics}{0000000000}$
Properties				

(iii) The roots and poles of $q + \Psi(iz)$ satisfy the following interlacing condition

$$\dots - \rho_2 < -\zeta_2 < -\rho_1 < -\zeta_1 < 0 < \hat{\zeta}_1 < \hat{\rho}_1 < \hat{\zeta}_2 < \hat{\rho}_2 < \dots$$

(iv) The Wiener-Hopf factors are expressed as convergent infinite products,

$$\begin{split} \phi_q^+(\mathrm{i}z) &= & \mathbb{E}\left[e^{-z\overline{X}_{\mathrm{e}(q)}}\right] = \prod_{n\geq 1} \frac{1+\frac{z}{\rho_n}}{1+\frac{z}{\zeta_n}} \\ \phi_q^-(-\mathrm{i}z) &= & \mathbb{E}\left[e^{z\underline{X}_{\mathrm{e}(q)}}\right] = \prod_{n\geq 1} \frac{1+\frac{z}{\rho_n}}{1+\frac{z}{\zeta_n}}. \end{split}$$

▲御▶ ▲ 国▶ ▲ 国▶

Introduction	β-family	Distribution of extrema	Two-sided	Numerics
0000000	00000●	0000000		000000000
Meromor	phic Lévy	processes		

A. Kuznetsov, A.E. Kyprianou and J.C. Pardo (2010) "Meromorphic Lévy processes and their fluctuation identities."

The density of the Lévy measure is defined as

$$\pi(x) = \mathbb{I}_{\{x>0\}} \sum_{i=1}^{N} a_i e^{-\rho_i x} + \mathbb{I}_{\{x<0\}} \sum_{i=1}^{\hat{N}} \hat{a}_i e^{\hat{\rho}_i x},$$

where all the coefficients are positive and $N \leq \infty$, $\hat{N} \leq \infty$. In the case $N = \infty \{ \hat{N} = \infty \}$ the series

$$\sum_{i=1}^{\infty} a_i \rho_i^{-3} \quad \left\{ \sum_{i=1}^{\infty} \hat{a}_i \hat{\rho}_i^{-3} \right\}$$

must converge.

伺い イヨン イヨン

Introduction 0000000	β -family 000000	Distribution of extrema	Two-sided	Numerics 000000000
Outline				

1 Introduction

- Wiener-Hopf factorization
- Well-known examples

2 β -family of Lévy processes

- 3 Distribution of extrema
- 4 Exit problem for an interval
- **5** Numerical examples

マロト マヨト マヨト

Introduction	β -family	Distribution of extrema	Two-sided Numer	Numerics
0000000	000000	000000	00	00000000

Main analytical tool: partial fraction decomposition

Lemma

Assume that we have two increasing sequences $\rho = {\rho_n}_{n\geq 1}$ and $\zeta = {\zeta_n}_{n\geq 1}$ of positive numbers which satisfy the following conditions.

- (i) Interlacing condition $\zeta_1 < \rho_1 < \zeta_2 < \rho_2 < \dots$
- (ii) There exists $\alpha > 1/2$ and $\epsilon > 0$ such that $\rho_n > \epsilon n^{\alpha}$ for all integer numbers n.

Then we have the following partial fraction decompositions

$$\prod_{n\geq 1} \frac{1+\frac{z}{\rho_n}}{1+\frac{z}{\zeta_n}} = a_0(\rho,\zeta) + \sum_{n\geq 1} a_n(\rho,\zeta) \frac{\zeta_n}{\zeta_n+z},$$
$$\prod_{n\geq 1} \frac{1+\frac{z}{\zeta_n}}{1+\frac{z}{\rho_n}} = 1 + z b_0(\zeta,\rho) + \sum_{n\geq 1} b_n(\zeta,\rho) \left[1 - \frac{\rho_n}{\rho_n+z}\right],$$

- 4 同 ト - 4 ヨ ト - 4 ヨ ト

Introduction 0000000	β -family 000000	Distribution of extrema 0000000	$T_{wo-sided}$	$\frac{Numerics}{000000000000000000000000000000000000$

Main analytical tool: partial fraction decomposition

where

$$\begin{aligned} \mathbf{a}_{0}(\rho,\zeta) &= \lim_{n \to +\infty} \prod_{k=1}^{n} \frac{\zeta_{k}}{\rho_{k}}, \quad \mathbf{a}_{n}(\rho,\zeta) = \left(1 - \frac{\zeta_{n}}{\rho_{n}}\right) \prod_{\substack{k \ge 1 \\ k \ne n}} \frac{1 - \frac{\zeta_{n}}{\rho_{k}}}{1 - \frac{\zeta_{n}}{\zeta_{k}}}, \\ \mathbf{b}_{0}(\zeta,\rho) &= \frac{1}{\zeta_{1}} \lim_{n \to +\infty} \prod_{k=1}^{n} \frac{\rho_{k}}{\zeta_{k+1}}, \quad \mathbf{b}_{n}(\zeta,\rho) = -\left(1 - \frac{\rho_{n}}{\zeta_{n}}\right) \prod_{\substack{k \ge 1 \\ k \ne n}} \frac{1 - \frac{\rho_{n}}{\zeta_{k}}}{1 - \frac{\rho_{n}}{\rho_{k}}}. \end{aligned}$$

・ 同 ト・ イヨート・ イヨート

Introduction	β -family	Distribution of extrema	Two-sided	Numerics
0000000	000000	0000000		000000000
Vector/n	natrix not	ation		

Everything will depend on the coefficients $\{a_n(\rho,\zeta), a_n(\hat{\rho}, \hat{\zeta})\}_{n\geq 0}$ and $\{b_n(\zeta, \rho), b_n(\hat{\zeta}, \hat{\rho})\}_{n>0}$. We define for convenience a column vector

$$\bar{\mathbf{a}}(\rho,\zeta) = \left[\mathbf{a}_0(\rho,\zeta),\mathbf{a}_1(\rho,\zeta),\mathbf{a}_2(\rho,\zeta),\ldots\right]^T$$

and similarly for $a(\hat{\rho}, \hat{\zeta})$, $b(\zeta, \rho)$ and $b(\hat{\zeta}, \hat{\rho})$. Next, given a sequence of positive numbers $\zeta = \{\zeta_n\}_{n \geq 1}$, we define the column vector $\bar{v}(\zeta, x)$ as a vector of distributions

$$\bar{\mathbf{v}}(\zeta, x) = \left[\delta_0(x), \zeta_1 e^{-\zeta_1 x}, \zeta_2 e^{-\zeta_2 x}, \dots\right]^T,$$

where $\delta_0(x)$ is the Dirac delta function at x = 0.

・ 同 ト ・ モ ト ・ モ ト

Introduction 0000000	β -family 000000	Distribution of extrema 0000000	Two-sided	Numerics 000000000
Distribut	tion of ext	rema		

Corollary

(i) For $x \ge 0$

$$\begin{split} \mathbb{P}(\overline{X}_{\mathbf{e}(q)} \in \mathrm{d}x) &= \bar{\mathbf{a}}(\rho, \zeta)^T \times \bar{\mathbf{v}}(\zeta, x) \mathrm{d}x \\ \mathbb{P}(-\underline{X}_{\mathbf{e}(q)} \in \mathrm{d}x) &= \bar{\mathbf{a}}(\hat{\rho}, \hat{\zeta})^T \times \bar{\mathbf{v}}(\hat{\zeta}, x) \mathrm{d}x \end{split}$$

- (ii) a₀(ρ, ζ) (equiv. a₀(ρ̂, ζ̂)) is nonzero if and only if 0 is irregular for (0, ∞) (equiv. (-∞, 0)).
- (iii) $b_0(\zeta, \rho)$ (equiv. $b_0(\hat{\zeta}, \hat{\rho})$) is nonzero if and only if the process X_t creeps upwards. (equiv. downwards)

・ 同 ト・ イヨート・ イヨート

Introduction	β -family	Distribution of extrema	Two-sided	Numerics
0000000	000000	0000000		000000000
Distribu	tion of ext	rema: notation		

Expression in vector/matrix form

$$\mathbb{P}(\overline{X}_{\mathbf{e}(q)} \in \mathrm{d}x) = \bar{\mathbf{a}}(\rho, \zeta)^T \times \bar{\mathbf{v}}(\zeta, x) \mathrm{d}x$$

is equivalent to

$$\mathbb{P}(\overline{X}_{\mathbf{e}(q)}=0) = \mathbf{a}_0(\rho,\zeta)$$

and

$$\frac{\mathrm{d}}{\mathrm{d}x}\mathbb{P}(\overline{X}_{\mathrm{e}(q)} < x) = \sum_{n \ge 1} \mathrm{a}_n(\rho, \zeta)\zeta_n e^{-\zeta_n x}$$

(日) (四) (王) (王)

Introduction	β -family	Distribution of extrema	Two-sided	Numerics
0000000	000000	0000000		000000000
Computi	ng roots			

(日) (四) (王) (王) (王)

Introduction β -family0000000000000	β -family	Distribution of extrema	Two-sided	Numerics
	000000	00	00000000	

Joint distribution of the fpt and the overshoot

Define
$$\tau_a^+ = \inf\{t > 0 : X_t > a\}.$$

Theorem

Define a matrix $\mathbf{A} = \{a_{i,j}\}_{i,j\geq 0}$ as

$$a_{i,j} = \begin{cases} 0 & \text{if } i = 0, \ j \ge 0\\ \mathbf{a}_i(\rho, \zeta) \mathbf{b}_0(\zeta, \rho) & \text{if } i \ge 1, \ j = 0\\ \frac{\mathbf{a}_i(\rho, \zeta) \mathbf{b}_j(\zeta, \rho)}{\rho_j - \zeta_i} & \text{if } i \ge 1, \ j \ge 1 \end{cases}$$

Then for c > 0 and $y \ge 0$ we have

$$\mathbb{E}\left[e^{-q\tau_c^+}\mathbb{I}\left(X_{\tau_c^+} - c \in \mathrm{d}y\right)\right] = \bar{\mathbf{v}}(\zeta, c)^T \times \mathbf{A} \times \bar{\mathbf{v}}(\rho, y)\mathrm{d}y.$$

Introduction	β -family	Distribution of extrema	Two-sided	Numerics
0000000	000000	0000000		000000000
Outline				

Introduction

- Wiener-Hopf factorization
- Well-known examples

2 β -family of Lévy processes

- 3 Distribution of extrema
- 4 Exit problem for an interval
- **5** Numerical examples

Introduction	β -family	Distribution of extrema	Two-sided	Numerics
0000000	000000	0000000	●0	000000000
Two-side	ed exit pro	blem		

Theorem

Let a > 0 and define a matrix $\mathbf{B} = \mathbf{B}(\hat{\rho}, \zeta, a) = \{b_{i,j}\}_{i,j \ge 0}$ with

$$b_{i,j} = \begin{cases} \zeta_j e^{-a\zeta_j} & \text{if } i = 0, \ j \ge 1\\ 0 & \text{if } i \ge 0, \ j = 0\\ \frac{\hat{\rho}_i \zeta_j}{\hat{\rho}_i + \zeta_j} e^{-a\zeta_j} & \text{if } i \ge 1, \ j \ge 1 \end{cases}$$

and similarly $\hat{\mathbf{B}} = \mathbf{B}(\rho, \hat{\zeta}, a)$. There exist matrices \mathbf{C}_1 , \mathbf{C}_2 and $\hat{\mathbf{C}}_1$, $\hat{\mathbf{C}}_2$ such that for $x \in (0, a)$ we have

$$\mathbb{E}_{x}\left[e^{-q\tau_{a}^{+}}\mathbb{I}\left(X_{\tau_{a}^{+}}\in\mathrm{d}y\;;\;\tau_{a}^{+}<\tau_{0}^{-}\right)\right]$$
$$=\left[\bar{\mathrm{v}}(\zeta,a-x)^{T}\times\mathbf{C}_{1}+\bar{\mathrm{v}}(\hat{\zeta},x)^{T}\times\mathbf{C}_{2}\right]\times\bar{\mathrm{v}}(\rho,y-a)\mathrm{d}y$$

Introduction	β -family	Distribution of extrema	Two-sided	Numerics
0000000	000000	0000000	○●	000000000
Two-side	ed exit pro	blem		

These matrices satisfy the following system of linear equations

$$\begin{cases} \mathbf{C}_1 &= \mathbf{A} - \hat{\mathbf{C}}_2 \mathbf{B} \mathbf{A} \\ \hat{\mathbf{C}}_2 &= -\mathbf{C}_1 \hat{\mathbf{B}} \hat{\mathbf{A}} \end{cases} \qquad \begin{cases} \hat{\mathbf{C}}_1 &= \hat{\mathbf{A}} - \mathbf{C}_2 \hat{\mathbf{B}} \hat{\mathbf{A}} \\ \mathbf{C}_2 &= -\hat{\mathbf{C}}_1 \mathbf{B} \mathbf{A} \end{cases}$$

This system of linear equations can be solved iteratively with exponential convergence.

Introduction	β -family	Distribution of extrema	Two-sided	Numerics
0000000	000000	0000000		000000000
Outline				

1 Introduction

- Wiener-Hopf factorization
- Well-known examples

2 β -family of Lévy processes

- 3 Distribution of extrema
- 4 Exit problem for an interval
- **5** Numerical examples

マロト マヨト マヨト

Introduction 0000000	β -family 000000	Distribution of extrema	Two-sided	Numerics ●000000000
Paramete	ers			

We use a process from the β -family with parameters

$$(\sigma, \mu, \alpha_1, \beta_1, \lambda_1, c_1, \alpha_2, \beta_2, \lambda_2, c_2) = (\sigma, \mu, 1, 1.5, 1.5, 1, 1, 1.5, 1.5, 1)$$

Here $\mu = \mathbb{E}[X_1]$ and σ is the Gaussian coefficient, the other parameters define the density of a Lévy measure, which has exponentially decaying tails and $O(|x|^{-3/2})$ singularity at x = 0, thus this process has jumps of infinite activity but finite variation. We define the following four parameter sets

Set 1:
$$\sigma = 0.5, \mu = 1$$

Set 2: $\sigma = 0.5, \mu = -1$
Set 3: $\sigma = 0, \mu = 1$
Set 4: $\sigma = 0, \mu = -1$

Introduction	β -family	Distribution of extrema	Two-sided	Numerics
0000000	000000	0000000		000000000
Double-s	ided exit	problem		

(i) density of the overshoot if the exit happens at the upper boundary

$$f_1(x,y) = \frac{\mathrm{d}}{\mathrm{d}y} \mathbb{E}_x \left[e^{-q\tau_1^+} \mathbb{I}\left(X_{\tau_1^+} \le y \ ; \ \tau_1^+ < \tau_0^- \right) \right]$$

(ii) probability of exiting from the interval [0, 1] at the upper boundary

$$f_2(x) = \mathbb{E}_x \left[e^{-q\tau_1^+} \mathbb{I} \left(\tau_1^+ < \tau_0^- \right) \right]$$

(iii) probability of exiting the interval [0, 1] by creeping across the upper boundary

$$f_{3}(x) = \mathbb{E}_{x} \left[e^{-q\tau_{1}^{+}} \mathbb{I} \left(X_{\tau_{1}^{+}} = 1 \ ; \ \tau_{1}^{+} < \tau_{0}^{-} \right) \right]$$

Introduction	β -family	Distribution of extrema	Two-sided	Numerics
0000000	000000	0000000		000000000
Details o	f the alrge	orithm		

- Truncate coefficients $a_i(\rho, \zeta)$ and $a_i(\hat{\rho}, \hat{\zeta})$ at i = 200; coefficients $b_j(\zeta, \rho)$ and $b_j(\hat{\zeta}, \hat{\rho})$ at j = 100.
- In order to compute coefficients $a_i(\rho, \zeta)$, $a_i(\hat{\rho}, \hat{\zeta})$, $b_j(\zeta, \rho)$ and $b_j(\hat{\zeta}, \hat{\rho})$ we truncate the corresponding infinite products at k = 400
- All the computations depend on precomputing $\{\zeta_n, \hat{\zeta}_n\}$ for n = 1, 2, ..., 400 (solving $q + \Psi(iz) = 0$).
- The code was written in Fortran and the computations were performed on a standard laptop (Intel Core 2 Duo 2.5 GHz processor and 3 GB of RAM).
- Time to produce the three graphs for each parameter set: 0.15 sec.

(本部) (本語) (本語) (二語

Introduction	β -family	Distribution of extrema	Two-sided	Numerics
0000000	000000	000000	00	000000000

Double sided exit: $\sigma > 0$ and positive drift

Figure: Unbounded variation case ($\sigma = 0.5$): computing the density of the overshoot $f_1(x, y)$ ($x \in (0, 1), y \in (0, 0.5)$), probability of first exit $f_2(x)$ and probability of creeping $f_3(x)$ for parameter Set 1, positive drift $\mu = 1$

・ 同 ト ・ ヨ ト ・ モ ラ ト

Introduction	β -family	Distribution of extrema	Two-sided	Numerics
0000000	000000	0000000	00	0000000000

Double sided exit: $\sigma > 0$ and negative drift

Figure: Unbounded variation case ($\sigma = 0.5$): computing the density of the overshoot $f_1(x, y)$ ($x \in (0, 1)$, $y \in (0, 0.5)$), probability of first exit $f_2(x)$ and probability of creeping $f_3(x)$ for parameter Set 2, negative drift $\mu = -1$.

・ 同 ト ・ ヨ ト ・ モ ラ ト

Introduction	β -family 000000	Distribution of extrema	Two-sided	Numerics
0000000	000000	000000	00	0000000000

Double sided exit: bounded variation and positive drift

Figure: Bounded variation case ($\sigma = 0$): computing the density of the overshoot $f_1(x, y)$ ($x \in (0, 1), y \in (0, 0.5)$), probability of first exit $f_2(x)$ and probability of creeping $f_3(x)$ for parameter Set 3, positive drift $\mu = 1$.

Introduction	β -family	Distribution of extrema	Two-sided	Numerics
0000000	000000	0000000		000000€00

Double sided exit: bounded variation and negative drift

Figure: Bounded variation case ($\sigma = 0$): computing the density of the overshoot $f_1(x, y)$ ($x \in (0, 1), y \in (0, 0.5)$), probability of first exit $f_2(x)$ and probability of creeping $f_3(x)$ for parameter Set 4, positive drift $\mu = -1$.

Price of the rebate barrier option with the exponential maturity

$$\pi_X(x,q) = \mathbb{E}_x \left[\mathbb{I}(\tau_a^+ < \mathbf{e}(q)) f(X_{\tau_a^+}) \right]$$

Define a time-changed process $Y_s = X_{T_s}$, $s \ge 0$, where we assume that T_s is continuous and independent of X_t . Define s_a^+ to be the first passage time of process Y_s above a. Then the price of the option with the deterministic maturity u is given by

$$\pi_Y(y,u) = \mathbb{E}_y\left[\mathbb{I}(s_a^+ < u)f(Y_{s_a^+})\right] = \frac{1}{2\pi \mathrm{i}} \int_{q_0 + \mathrm{i}\mathbb{R}} \pi_X(y,q)\mathbb{E}\left[e^{qT_u}\right]q^{-2}\mathrm{d}q$$

$\frac{Introduction}{0000000}$	β -family 000000	Distribution of extrema 0000000	Two-sided	Numerics 000000000
Reference	s:			

A. Kuznetsov (2009)

"Wiener-Hopf factorization and distribution of extrema for a family of Lévy processes." to appear in Ann. Appl. Probab.

A. Kuznetsov (2009)

"Wiener-Hopf factorization for a family of Lévy processes related to theta functions." *preprint*

A. Kuznetsov, A.E. Kyprianou and J.C. Pardo (2010)

"Meromorphic Lévy processes and their fluctuation identities." preprint

A. Kuznetsov, A.E. Kyprianou, J.C. Pardo, and K. van Schaik (2010)

"A Wiener-Hopf Monte Carlo simulation technique for Lévy process." preprint

www.math.yorku.ca/~akuznets