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Abstract

We give the closed form of the ruin probability for a Lévy processes,
possibly killed at a constant rate, with completely arbitrary positive dis-
tributed jumps, and finite intensity negative jumps with distribution char-
acterized by having a rational Laplace or Fourier transform.

Abbreviated Title: WH-factors of Lévy processes with rational jumps.

1 Introduction

1.1 Lévy processes and Wiener-Hopf factorization

Let X = {Xt}t≥0 be a real valued stochastic process defined on a stochastic
basis B = (Ω,F ,F = (Ft)t≥0, P ). Assume that X is càdlàg, adapted, X0 = 0,
and for 0 ≤ s < t the random variable Xt − Xs is independent of the σ-field
Fs with a distribution that only depends on the difference t − s. Assume that
B satisfies the usual conditions. The stochastic process X is a process with
stationary independent increments (PIIS), or a Lévy process.

If u ∈ R, Lévy-Khinchine formula states E(eiuXt) = etψ(u), where the char-
acteristic exponent of the process is

ψ(u) = iau− 1
2
σ2u2 +

∫
R

(
eiux − 1− iuh(x)

)
Π(dx). (1)

Here the truncation function h(x) = x1{|x|≤1} is fixed, and the parameters
characterizing the law of the process are: the drift a, an arbitrary real number;
the standard deviation of the Gaussian part of the process σ ≥ 0; and the
Lévy jump measure Π, a non negative measure, defined on R \ {0} such that
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AMS 2000 classifications: 60G51, 60J50.
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∫
(1∧x2)Π(dx) < +∞. We always assume that the process does not degenerate,

i.e. σ 6= 0 or Π 6= 0.
Denote by τ(q) an exponential random variable with parameter q > 0, inde-

pendent of the process X, and for q = 0, denote τ(0) = ∞. Our main interest
in this paper is the determination of the law of the following random variables:

Mq = sup
0≤t<τ(q)

Xt and Iq = inf
0≤t<τ(q)

Xt (2)

called the supremum and the infimum of the process, respectively, killed at rate
q if q > 0. When q = 0, the random variables (possibly degenerated) M0 and
I0 are the overall supremum and infimum of the process respectively. Their
characteristic functions are given by

φ+
q (u) = E(eiuMq ), φ−q (u) = E(eiuIq ). (3)

A relevant instrument to study these distributions is the Wiener-Hopf factor-
ization, obtained by Rogozin (1966), that, for q > 0, states

q

q − ψ(u)
= φ+

q (u)φ−q (u), (4)

where φ+
q (u) is also called the positive Wiener-Hopf factor and φ−q (u) the nega-

tive Wiener-Hopf factor. Although this factorization is valid only in case q > 0,
we use the definitions in (3) for all q ≥ 0. A feature of using this the Wiener-
Hopf factorization in order to find the distributions of Mq and Iq is that both
factors must be determined simultaneously, and, in general, this requires more
restrictions on the class of processes considered. Another relevant instrument
in order to compute the distribution of the supremum (or infimum) of a Lévy
process is the formula obtained by Baxter and Donsker (1957), that we analyze
in 4.2.

The main result of our paper is Theorem 2.1 where we give a closed formula
for φ−q (u), that can be easily inverted to yield the density of Iq for a wide class
of Lévy processes. This class is characterized by having finite intensity negative
jumps with a distribution with rational Laplace transform, completely arbitrary
positive jumps, and possibly gaussian part. The results presented generalize
the ones obtained in Mordecki (2003), Mordecki (2002a), and can be applied to
compute prices of Perpetual American Options in Lévy markets applying the
results in Mordecki (2002b).

For general reference on the subject we refer to Jacod and Shiryaev (1987),
Skorokhod (1991), Bertoin (1996) or Sato (1999).

1.2 Rational transform type random variables

In order to introduce the class of Lévy processes to be considered we need the
following definition.

Definition 1.1. We say that a random variable U is of the rational transform
type when its characteristic function is a rational function, i.e. the quotient of
two polynomials.
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This type of distribution is widely known and used in applications. It must
be said that in this paper we do not address the question of which rational
functions are the characteristic function of some random variable. Let us recall
some facts about rational type distributions, also in order to fix some notations.

Lemma 1.1. Consider a negative random variable U with density p(x) (x < 0)
and characteristic function p̂(u) =

∫ 0

−∞ eiuxp(x)dx. The following two state-
ments are equivalent:

(a) The characteristic function has the form

p̂(u) =
n∑
k=1

mk∑
j=1

ckj

( −iαk
u− iαk

)j
=
Q(u)
R(u)

, (5)

where 0 < α1 ≤ <(α2) ≤ · · · ≤ <(αn),

R(u) = (u− iα1)m1 · · · (u− iαn)mn ,

Rk(u) =
R(u)(−iαk)mk

(u− iαk)mk
(k = 1, . . . , n).

and Q(u) is a complex polynomial of degree strictly less than the pole count
P = m1 + · · ·+mn. The relation between coefficients and polynomials is
given by

ck,mk−j =
(−iαk)j

j!

[ ∂j
∂uj

Q

Rk

]
u=iαk

(k = 1, . . . , n; j = 0, . . . ,mk − 1).

(b) The density function has the form

p(x) =
n∑
k=1

mk∑
j=1

ckj
(
αk
)j (−x)j−1

(j − 1)!
eαkx (x < 0). (6)

Remark 1.1. The Lemma follows from routine (omitted) computations. How-
ever, the Lemma does not cover the whole class of non-negative distributions
of the rational transform type. The remaining situation is when the random
variable has an atom in x = 0 with a certain probability c00. In this case the
density in (6) has an additional term of the form c00δ(dx), where δ(dx) is Dirac
delta at point x = 0, and, accordingly, a constant term c00 should be added in
its Fourier Transform in (5).

1.3 Lévy processes with negative jumps of the rational
transform type

We now consider the class of processes of interest in the paper. Assume that X
is a Lévy process with jump measure given by

Π(dx) =

 π+(dx) if x > 0,

π−(dx) = λp(x)dx if x < 0.
(7)
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where π+ is an arbitrary Lévy measure concentrated on the set (0,+∞) de-
scribing the behaviour of positive jumps. Negative jumps have finite intensity
λ > 0,

p(x) =
n∑
k=1

mk∑
j=1

ckj
(
αk
)j (−x)j−1

(j − 1)!
eαkx, x < 0, (8)

is the density of a negative random variable of the rational transform type, and
the paramenters αk and cjk are as in Lemma 1.1

The characteristic exponent of the process is

ψ(u) = iau− 1
2
σ2u2 +

∫ ∞

0

(eiux − 1− iuh(x))π+(dx) + λ(p̂(u)− 1). (9)

where, according to Lemma 1.1

p̂(u) =
∫ 0

−∞
eizup(x)dx =

n∑
k=1

mk∑
j=1

ckj

( −iαk
u− iαk

)j
. (10)

Observe that, for a Lévy process with negative jumps of the rational trans-
form type the expectation can always be defined as

E(X1) = −i lim
u→0+

ψ(iu)
u

= a+
∫ ∞

1

xπ+(dx) + λ

∫ 0

−∞
xp(x)dx, (11)

that can take the value +∞.
In order to formulate the following result consider a Lévy process X+ with

no negative jumps and characteristic exponent given by

ψ+(u) = iau− 1
2
σ2u2 +

∫ ∞

0

(eiux − 1− iuh(x))π+(dx).

Observe that the characteristic exponent in (1) can be analytically continued
to the strip 0 ≤ =(z) < α1, and more generally, it can be continued to a
meromorphic function

ψ(z) = ψ+(z) + λ
[ n∑
k=1

mk∑
j=1

ckj

( −iαk
z − iαk

)j
− 1
]
.

defined for =(z) ≥ 0 with the exception of the poles located at iα1, . . . , iαn.
The following result is important in what follows.

Lemma 1.2 (Roots). Given q ≥ 0 the equation q − ψ(z) = 0 has, in the
half-plane =(z) > 0, N distinct roots

iβ1(q), . . . , iβN (q), with multiplicities n1, . . . , nN , (12)

ordered such that 0 < <(β1) ≤ <(β2) ≤ · · · ≤ <(βN ). The root iβ1 is purely
imaginary. Furthermore, the total root count Z =

∑N
j=1 nj satisfies:
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(S) Z = P when X+ is a subordinator.

(NS) Z = P + 1 when X+ is not a subordinator.

All proofs may be found in Sec. 4. Note that we frequently omit the explicit
display of q-dependencies in roots.

2 Main Results

Theorem 2.1. Let X be a Lévy process with characteristic exponent given by
(9), and q ≥ 0. Assume that E(X1) > 0 when q = 0. Then, the characteristic
function φ−q of the infimum Iq is of rational transform type, and satisfies

φ−q (u) =
n∏
k=1

(
u− iαk
−iαk

)mk N∏
j=1

(
−iβj
u− iβj

)nj

, (13)

where the α1, . . . , αn are the parameters of the density in (8), and β1, . . . , βN
are the roots given in (12).

Remark 2.1. We want to examine when the distribution of Iq has an atom at
x = 0. As Iq ≤ 0, the function φ−q (u) = E(eiuIq ) can be analytically extended
to the half-space =u < 0. This, in particular, gives

lim
u→∞

φ−q (−iu) = lim
u→∞

E(euIq ) = P (Iq = 0).

We then conclude that in case (NS), when Z = P + 1 the density has no atom
at x = 0.

In case (S), as Z = P , we have the limit

P (Iq = 0) = lim
u→∞

φ−q (−iu) =

∏N
j=1 (βj)

nj∏n
k=1 (αk)

mk
.

In other terms, in case (S) the process is not recurrent, and in case (NS) it is
recurrent (at x = 0).

Remark 2.2. Let us examine in particular the case q = 0, included in the pre-
vious result. In this case I0 is the overall infimum of the process. Furthermore,
condition 0 < E(X1) ≤ +∞ ensures that I0 is a proper random variable, i.e.
the process drifts to +∞, or equivalently P (I0 > −∞) = 1 (see Rogozin (1966)).

The density of I0 can be obtained applying Lemma 1.1, and can be integrated
to yield the ruin probability,

R(x) = P (∃t ≥ 0: x+Xt ≤ 0) = P (I0 ≤ −x) =
∫ −x

∞
f0(y)dy x ≥ 0. (14)

For instance, in case (NS), when Z = P + 1, we have

f0(x) =
N∑
k=1

nk∑
j=1

dkj(0)
(
βk
)j (−x)j−1

(j − 1)!
eβkx (x < 0),
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with the various dkj(0) given by applying Lemma 1.1 to (13) at q = 0. Notice
finally that f0(x) essentially replicates the functional form of p(x) from (7); that
is: exponentials times polynomials. Now the exponents have switched from the
αks to βjs, and the polynomials have generally different orders and coefficients.
Both expressions have rational transforms.

In particular, the leading coefficient determines the x → −∞ asymptotics,
which we discuss in Sec. 3. For now, we simply note that, by ‘leading’, we mean
coefficient(s) associated to β1, whose exponentials have has the slowest decay.
Moreover, as it turns out (see the remark in page 8), there is really only one
such coeffciient (the multiplicity n1 = 1). Given that, we find, using Lemma
1.1, that the leading behavior comes with a coefficient:

d11(0) =

∏n
k=1(1−

β1
αk

)mk∏N
j=2(1−

β1
βj

)nj

. (15)

2.1 Phase type distributed jumps

In this section we assume that the negative jumps of the process X are phase
type distributed. Consider then a random variable of phase-type, and repre-
sentation (a,T, d), where d is a positive integer, a = (a1, . . . , ad) is the initial
probability distribution, and the intensity matrix T, and asociated exit rates
vector t, are given by

T =

 t11 · · · t1d
...

...
...

td1 · · · tdd

 , t =

 t1
...
td

 ,
where t satisfies tj+

∑d
k=1 tjk = 0 (j = 1, . . . , d). For details and general results

on phase-type distributions we refer to Asmussen (1997).
In this case, the distribution of the negative jumps in (9) is determined by

p̂(u) =
∫ 0

−∞
eiuxp(x)dx = a(−iuI−T)−1t.

Phase type distributions are a wide class of probability distributions, including
practically all exponential-like distributions (exponential, mixtures of exponen-
tials, Erlang and Cox distributions, see Asmussen (1997) ). However, the class
of rational type distributions is wider, as shown by the example density defined
for t ≥ 0 by

Ke−t(1− cos t),

for a convenient K > 0, that is not of phase type, due to the fact that it vanishes
(see Shaked and Shanthikumar (1985)).

Computing the inverse of the matrix −iuI −T by Cramer’s rule we obtain
that

p̂(u) =
Q(z)

det(−iuI−T)
,
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where Q is a polynomial of degree less or equal than d− 1. Furthermore, as the
matrix T has dimension d× d, it has d complex eiguenvalues, say iα1, . . . , iαd,
possibly coincident. In consequence

det(−izI−T) =
d∏
k=1

(−iz + αk).

Applying Lemma 1.2, we know that the equation q − ψ(z) = 0 has N different
roots, say iβ1, . . . , iβN with multiplicities n1, . . . , nN , and Z = P or P + 1
according to the behavior of X+. Then, the characteristic function of Iq is
given by

φ−q (z) =
d∏
k=1

(
z − iαk
−iαk

) N∏
k=1

(
−iβk
z − iβk

)nk

=
det(−iz −T)

det(−T)

N∏
k=1

(
−iβk
z − iβk

)nk

,

obtaining the the infimum of the Lévy process with phase type negative jumps
has a rational transform type distribution. This result was obtained in the paper
by Asmussen, Avram, and Pistorius (2004).

The distribution of the maximum of a Lévy processes with positive phase-
type jumps was obtained in Mordecki (2002a). There, using fluctuation Theory
for Lévy processes, a phase type representation for the distribution of the max-
imum is found, such that if the jump distribution has d phases, the distribution
of the maximum has d or d+ 1 phases.

3 Asymptotics for the ruin probability

There is a large literature and interest, especially in insurance, regarding the
asymptotic behavior of (ultimate) ruin probabilities R(x) = R0(x) as x → ∞
in various models. In the classic insurance model for a firm’s capital, X is
compound Poisson; i.e., the Lévy process with σ2 = 0, drift to +∞, no positive
jumps, and π−(dx) admitting an intensity λ. Asymptotics for the insurance
model were developed in the 1930s under Cramér’s condition: there exists 0 <
ω <∞ with ψ(iω) = 0. Under that condition, Cramér and Lundberg established
that

lim
x→∞

eωxR(x) = lim
x→∞

eωxP (I < −x) = C,

where I is the ultimate minimum and C is an explicitly given constant.
Many extensions have been developed. A very attractive one is Doney (1991)

generalization: the Cramér-Lundberg result holds for any Lévy process with (i)
no positive jumps, (ii) drift to +∞, and (iii) with the very simple C = µ/|µ∗|.
Here µ = E(X1) > 0 is precisely the condition that Xt drifts to +∞. And
µ∗ = E(X∗

1 ) < 0 is the drift of an associated Lévy process X∗, namely the one
with Lévy exponent ψ∗(z) = ψ(z + iω). Of course, since E(X1) = −iψ′(0),
Doney’s result may be written C = −ψ′(0)/ψ′(iω).

It is simple to verify that our main result is in agreement with Doney’s
formula in the special case where there are no positive jumps. In the rational
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transform model with drift to +∞, that Cramér’s condition holds and R(x) ∼
Ce−ωx, with ω = β1 = β1(0) is clear. It then remains to show that Doney’s C
equals our d11(0) from (15). To see that, note that with no positive jumps, the
rational transform model reduces to

ψ(z) =
1
2
σ2z(z − iω)

∏N
k=2(z − iβk)nk∏n
k=1(z − iαk)mk

, (16)

where βk = βk(0). Simple differentiation yields

C = − ψ′(0)
ψ′(iω)

=

∏n
k=1(1−

ω
αk

)mk∏N
k=2(1−

ω
βk

)nk

,

which is indeed (15).
The restriction to one-sided jumps was afterwards removed in the paper by

Bertoin and Doney (1994), who showed R(x) ∼ Ce−ωx in any Lévy process
admitting Cramér’s condition. However, in that general case, their formula for
C is much less explicit. Here we give an alternative general formula for C,
not just for the rational transform model, but for any Lévy process admitting
Cramér’s condition.

Remark 3.1. Bertoin and Doney’s result establishes the earlier fact, used at
(15) that the leading term comes with unit multiplicity.

Consider (13) again , but in the limit q → 0. This limit will exist under the
positive drift condition, and writing β1(0) = ω,

φ−0 (z) =
∫ 0

−∞
eizxfI(x)dx, =z < ω. (17)

Now by Bertoin and Doney’s result, we know that there exists a C < ∞ such
that fI(x) ∼ Cω eωx as x→ −∞. Suppose that, in fact, fI(x) = Cω eωx. Then,
the integral is easy, and it shows that φ−0 (z) is indeed analytic for =z < ω,
and develops a simple pole as z → iω from below, with residue −iCω. This
suggests the following statement

Lemma 3.1. Suppose F (dx) is the density of a distribution with support on
(−∞, 0], such that F (−∞, x) ∼ Aeωx as x → −∞ for some ω > 0. Then, its
characteristic function Φ(z) =

∫ 0

−∞ eizxF (dx) is analytic in H = {z : =z < ω}.
Moreover, limz→iω(z − iω)Φ(z) = −iAω as z approaches iω from within H.

The analyticity statement is a well-known consequence of the fact that F (dx)
is of exponential type. The statement about the pole is established in Korevar
(2002, Proposition 3.1). As a simple consequence, the asymptotic constant C
in general Lévy models with positive drift (admitting Cramér’s condition), is
given by

C =
i

ω
lim
z↑iω

(z − iω)φ−0 (z), (18)
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where the up-arrow means that the approach is from below. Note that one
could also define an inverse factor χ(z) = 1/φ−0 (z). Then, an alternative, but
equivalent formula is C = i/(ω χ′(iω)), where the prime denotes the derivative
obtained with an approach from below.

Finally, specializing again to our rational transform model, the last formula
again yields C = d11(0).

4 Proofs

4.1 Proof of Lemma 1.2

We begin recalling some standard results.

Theorem 4.1 (Extended Rouche’s Theorem). Let two functions f(z) and
g(z) be meromorphic inside and analytic on a simple closed contour C, and
suppose that |g(z)| < |f(z)| at each point on C. Then, f(z) and f(z) + g(z)
have the same winding number W = Z − P , counting multiplicities, inside C.

We take following classical result from Petrov (1987, Lemma I.3.2),

Lemma 4.1. A distribution with characteristic function p̂(u) is lattice if and
only if there exists u0 6= 0 such that |p̂(u0)| = 1.

Proof of Lemma 1.2. The proof of Lemma 1.2 is based on Extended Rouche’s
Theorem, choosing

f(z) = λ+ q − ψ+(z) = q + λ− iaz +
1
2
σ2z2 +

∫ ∞

0

(1 + izh(x)− eizx)π+(dx),

g(z) = −λp̂(z),

with f(z)+g(z) = q−ψ(z), the full model. The idea is to establish that |g| < |f |
on a contour of the form

{z = reiθ, 0 ≤ θ ≤ π} ∪ {=(z) = 0, r ≤ |z| ≤ R} ∪ {z = Reiθ, 0 ≤ θ ≤ π} (19)

with 0 ≤ r < R (r small, R big), that contains all the poles of q − ψ, in order
to obtain that the winding numbers of f and f + g = q − ψ coincide, in our
notation Wf = Wq−ψ. This would ensure the proof of the Lemma. To prove
|g| < |f | on (19) we proceed by steps.

Step 1. We verifiy Wf = 0 in case (S). In fact, as X+ is a subordinator

ψ+(z) = iaz +
∫ ∞

0

(eizx − 1)π+(dx),

for some a ≥ 0. Denote z = u+ iv and observe that when v = =z > 0 we have

|f(z)| ≥ <f(z) = λ+ q + av +
∫ ∞

0

(
1− e−vx cosux

)
π+(dx) ≥ λ+ q. (20)
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This means that f has no zeros in =z > 0. It obviously has no poles, so the
winding number for any simple closed curve in the half plane =z > 0 is zero, in
other terms Wf = 0.

Step 2. We verify Wf = 1 in case (NS). When X+ is not a subordinator,
the equation f(z) = q − ψ+(z) = 0 has exactly one purely imaginary root in
the half-plane =(z) > 0 if q > 0, or, if q = 0 and E(X1) > 0 (Bertoin (1996, see
VII.1)).

Step 3. Assume q > 0. We prove that |g| < |f | when =(z) = 0, in both
cases (S) and (NS). Denote z = u + iv and observe that, due to the fact that
the distribution with rational transform is non lattice (as it has density), due
to Lemma 4.1

|g(u)| < λ if u 6= 0.

On the other side,

|f(u)| ≥ <f(u) ≥ f(0) = λ+ q > λ,

completing the proof of the step.
Step 3. Assume q = 0. The preceding argument does not work only in case

u = 0, when |g(0)| = λ. But in this case, condition

EX1 = −iψ′(i0+) = a+
∫ ∞

1

xπ+(dx) + λ

∫ 0

−∞
xp(x)dx > 0

ensures that

f ′(i0+) = −i
(
ψ+
)′(i0+) = a+

∫ ∞

1

xπ+(dx)

> −λ
∫ 0

−∞
xp(x)dx = g′(i0+).

As the limit in the derivative is taken with z → 0 and =(z) > 0, this tell us that
there exists a small enough r > 0 such that the inequality |f(z)| > |g(z)| holds
for z = reiθ (0 ≤ θ ≤ π). This means that in this case the countor should have
a modification to exclude z = 0 of the form z = reiθ (0 ≤ θ ≤ π).

Step 4. Let us now verify, for R big enough, first in case σ > 0, that

|g(z)| < |f(z)| when z = Reiθ (0 ≤ θ ≤ π). (21)

To begin notice that, as the distribution of U is of rational transform type, with
no atom at zero

lim
|z|→∞

g(z) = −λ lim
|z|→∞

p̂(z) = 0. (22)

As, by dominated convergence we obtain that

lim
|z|→∞

∫ ∞

0

eizx − 1− izh(x)
|z|2

π+(dx) = 0,
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we conclude that f(z) = −(σ2/2)z2 + o(|z|2) when =z > 0. Taking (22) into
account we obtain (21).

Step 5. Let us consider now the case σ = 0. In case (S) equation (20) gives
that |f | ≥ λ, and this ensures condition (21) to hold. Assume now that X+ is
not a subordinator, i.e. we are in case (NS). In this situation we know that∫ 1

0

xπ+(dx) = ∞.

This ensures the existence of c ∈ (0, 1) such that

ac = a−
∫ 1

c

xπ+(dx) < 0.

Consider now

ψ+(z)
iz

= ac +
∫ c

0

eizx − 1− izx

iz
π+(dx) +

∫ +∞

c

eizx − 1
iz

π+(dx).

We will consider |z| → ∞ with =z > 0. It is clear that

lim
|z|→∞

∣∣∣∣∫ ∞

c

eizx − 1
iz

π+(dx)
∣∣∣∣ ≤ lim

|z|→∞

2
∫∞
c
π+(dx)
|z|

= 0.

Furthermore, we check that

<
(1 + izx− eizx

iz

)
=
∫ x

0

<(1− eizt)dt ≥ 0

to obtain:
|f(z)|
|z|

≥ <f(z)
iz

= −ac +
∫ c

0

<
(1 + izx− eizx

iz

)
π+(dx) + o(1) ≥ −ac + o(1).

As −ac > 0, in view of (22) we obtain that |g| < |f | over Reiθ (0 ≤ θ ≤ π), for
R big enough. This concludes the proof of the Lemma.

4.2 Baxter and Donsker formula revisted

Our main tool to prove (13) is a formula obtained by Baxter and Donsker (1957)
that gives the double Laplace transform of the distribution of the supremum of
a Lévy process in terms of a double integral. In the following result we adapt
this formula to our context, and in the proof of the Theorem we simply compute
both integrals.

More precisely, the first step of the proof is a result of independent inter-
est. We show that in formula (1.3) of Baxter and Donsker, giving the Laplace
transform of Mq, it is always possible, under their assumptions, to reverse the
order of integration, to obtain the “slightly more elegant result” they suggest.
Observe that in this result we use Laplace instead of Fourier transforms. The
precise result follows.

11



Lemma 4.2. Consider a Lévy process X = {Xt}t≥0 with characteristic expo-
nent ψ given in (1) and such that,

for some δ > 0, the integral
∫ δ

−δ

∣∣∣∣ψ(ξ)
ξ

∣∣∣∣ dξ <∞. (23)

Then, for u > 0

φ+(iu) = E(e−uMq ) = exp
{

1
2π

∫ ∞

−∞

u

ξ(ξ − iu)
log
(

q

q − ψ(ξ)

)
dξ

}
, (24)

and for u < 0

φ−(iu) = E(e−uIq ) = exp
{

1
2π

∫ ∞

−∞

u

ξ(ξ − iu)
log
(

q

q − ψ(ξ)

)
dξ

}
. (25)

Proof. We begin by (24). Formula (1.3) in Baxter and Donsker (1957) states

E(e−uMq ) = exp

{
1
2π

∫ ∞

q

ds

∫ ∞

−∞

u

ξ(ξ − iu)
ψ(ξ)

s
(
s− ψ(ξ)

)dξ} . (26)

As ∫ ∞

q

ψ(ξ)
s
(
s− ψ(ξ)

)ds = log
(

q

q − ψ(ξ)

)
,

we only need to prove that, for the interated integral in (26), the hypothesis of
Fubini’s Theorem for iterated integrals hold (see, for instance, Rudin (1987)).
This amounts to prove ∫ ∞

−∞
dξ

∫ ∞

q

|I(s, ξ)|ds <∞

where we denote the integrand by

I(s, ξ) =
u

ξ(ξ − iu)
ψ(ξ)

s
(
s− ψ(ξ)

) .
We first integrate on the set |ξ| ≤ δ. As

|I(s, ξ)| ≤ 1
s2

∣∣∣∣ψ(ξ)
ξ

∣∣∣∣ ,
we obtain ∫ δ

−δ
dξ

∫ ∞

q

|I(s, ξ)|ds ≤ 1
q

∫ δ

−δ

∣∣∣∣ψ(ξ)
ξ

∣∣∣∣ dξ <∞,

according to our assumption (23) on the behaviour of the characteristic exponent
in a neighborhood of the origin.

To estimate the integral over the set |ξ| ≥ δ, denote

a(ξ) = <
(
ψ(ξ)

)
, b(ξ) = =

(
ψ(ξ)

)
,

12



and observe the following bounds, that hold for all s ≥ q, and all real ξ:

a(ξ) = −1
2
σ2ξ2 +

∫
R

(
cos(ξx)− 1

)
Π(dx) ≤ 0,∣∣s− ψ(ξ)

∣∣ =√(s− a(ξ))2 + b(ξ)2 ≥ s− a(ξ) > 0,∣∣s− ψ(ξ)
∣∣ ≥√s2 + b(ξ)2.

Using this bounds, we obtain∣∣∣∣∣ ψ(ξ)
s
(
s− ψ(ξ)

) ∣∣∣∣∣ ≤ −a(ξ)
s
(
s− a(ξ)

) +

∣∣b(ξ)∣∣
s
√
s2 + b(ξ)2

,

and, as max
(
− a(ξ), |b(ξ)|

)
≤ kξ2 for a certain constant k, we have∫ ∞

q

∣∣∣∣∣ ψ(ξ)
s
(
s− ψ(ξ)

) ∣∣∣∣∣ ds ≤
∫ ∞

q

−a(ξ)
s
(
s− a(ξ)

)ds+
∫ ∞

q

∣∣b(ξ)∣∣
s
√
s2 + b(ξ)2

ds

= log
(
q − a(ξ)

q

)
+ log

(
2
q

(
|b(ξ)|+

√
q2 + b(ξ)2

))
≤ 2 log(k1 + k2ξ

2),

for k1 and k2 convenient constants. From this follows that∫
|ξ|≥δ

dξ

∫ ∞

q

|I(s, ξ)|ds ≤
∫
|ξ|≥δ

2|u|
|ξ|
√
u2 + ξ2

log(k1 + k2ξ
2)dξ <∞,

concluding the proof of (24).
The formula (25) for the negative factor is obtained from the previous

one with the help of the dual process X̂ = {−Xt}t≥0. Observe that M̂q =
sup0≤t<τ(q)(−Xt) = −Iq, and ψ̂(u) = ψ(−u), where ψ̂ is the characteristic ex-
ponent of the dual process. Take then u < 0 and apply (24) to the dual process,
to obtain

E(e−uIq ) = E(e−(−u)M̂q ) = exp

{
1
2π

∫ ∞

−∞

(−u)
ξ(ξ − i(−u))

log

(
q

q − ψ̂(ξ)

)
dξ

}

= exp
{

1
2π

∫ ∞

−∞

u

v(v − iu)
log
(

q

q − ψ(v)

)
dv

}
where we changed variables according to ξ = −v in the last integral, concluding
the proof.

4.3 Proof of the Theorem

Proof of the Theorem. Consider the case q > 0, and first assume that our char-
acteristic exponent satisfies condition (23). By Lemma 1.2 we know that the

13



equation q − ψ(z) = 0 has Z roots iβ1, . . . , iβN with multiplicities n1, . . . , nN ,
with root count Z = n1 + · · ·+ nN = P in case (S) or P + 1 in case (NS).

Denote

G−q (z) =
n∏
k=1

(
z − iαk
−iαk

)mk N∏
j=1

(
−iβj
z − iβj

)nj

,

and define G+
q (z) by the relation

q

q − ψ(z)
= G+

q (z)G−q (z). (27)

As G−q is an infinitely divisibly characteristic function with support on (−∞, 0],
Rogozin’s factorization (4) suggests that this is the correct factorization. If
we knew that G+

q (z) is also an infinitely divisibly characteristic function (with
support on [0,∞)), the uniquness of the factorization in (4) would give the
answer. As we do not have this information, we apply Baxter and Donsker
formula (25). From the definition (27) we observe that

• G+
q (0) = 1,

• G+
q (z) is a nonvanishing analytic function on the half-plane =(z) > 0, and

continuous on =(z) ≥ 0.

• There exists δ > 0 such that
∫ δ
−δ

∣∣∣ logG+
q (u)

u

∣∣∣ du <∞,

• G+
q (z) is a bounded function on the half-plane =(z) ≥ 0.

This properties ensures that both integrals

I±(u) =
1
2π

∫ ∞

−∞

u

ξ(ξ − iu)
log
(
G±q (ξ)

)
dξ

are convergent. As (25) states that E(e−uIq ) = exp(I+(u) + I−(u)) for u < 0,
our result (13) will follow from the evaluation of the integrals

I+(u) = 0, I−(u) = logG−(iu). (28)

For z ∈ C, define the contours

C+
R = {−R ≤ <(z) ≤ R,=(z) = 0} ∪ {z = Reiθ : 0 ≤ θ ≤ π},

C−R = {−R ≤ <(z) ≤ R,=(z) = 0} ∪ {z = Reiθ : π ≤ θ ≤ 2π},

In order to obtain the first integral in (28) observe that∫
C+

R

u

z(z − iu)
log
(
G+
q (z)

)
dz = 0,

because the integrand is analytic in the interior of the contour.
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In order to obtain the second integral in (28) observe that

1
2πi

∫
C−R

iu

z(z − iu)
log
(
G−q (z)

)
dz

= Res
[

iu

z(z − iu)
log
(
G−q (z)

)
; z = iu

]
= logG−q (iu).

This concludes the proof under condition (23). As our process does not necessary
satisfies (23), to conclude the proof we proceed by approximation, considering a
Lévy process with positive jumps restricted to an interval [ε, 1/ε] (0 < ε < 1),
and obtain the general result taking ε→ 0.

Denote then, for 0 < ε < 1,

π+,ε(dy) = 1[ε,1/ε](y)π+(dy).

All notations with the superscript ε refer to a Lévy process with jump measure
given in (7) with π+,ε instead of π+. In particular

ψε(u) = iau− 1
2
σ2u2 +

∫
[ε,1/ε]

(eiux − 1− iuh(x))π+(dx) + λ(p̂(u)− 1). (29)

Lemma 4.3. The characteristic exponent defined in (29) satisfies the following
properties.

(a) There exists δ > 0 such that
∫ δ
−δ

∣∣∣ψε(u)
u

∣∣∣du <∞.

(b) The equation q − ψε(z) = 0 has P + 1 roots, say βε1, . . . β
ε
P+1, possibly

coincident, and such that

P+1∏
j=1

(z − iβεj) →
N∏
j=1

(z − iβj)nj (ε→ 0).

Proof. We use the following bounds, valid for all real u:∣∣eiu − 1
∣∣ ≤ min(|u|, 2),

∣∣eiu − 1− iu
∣∣ ≤ 1

2
u2. (30)

In order to verify (a) we have, for |u| < 2ε,∣∣∣ ∫
[ε,1/ε]

(eiux − 1− iuh(x))π+(dx)
∣∣∣

≤
∫

[ε,1)

∣∣eiux − 1− iux
∣∣π+(dx) +

∫
[1,1/ε]

∣∣eiux − 1
∣∣π+(dx)

≤ |u|2
∫

[ε,1)

y2π+(dx) + |u|
∫

[1,1/ε]

|x|π+(dx).
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Furthermore p̂(u)−1
u → p̂′(0) (u→ 0), so for δ small enough, and for all |u| ≤ δ∣∣∣ψε(u)

u

∣∣∣ ≤ |b|+ 1
2
σ2|u|+ λ

(
|p̂′(0)|+ 1

)
+ |u|

∫
[ε,1)

y2π+(dy) +
∫

[1,1/ε]

|y|π+(dy),

giving (a). In order to conclude (b) it is enough to verify that for each j =
1, . . . , N equation q − ψε(z) = 0 has nj roots converging to βj as ε→ 0.

In order to do this, take δ arbitrarily small and consider the disk D =
D(βj , δ) with center βj and radius δ. In particular δ is small enough such that
the equation q − ψ(z) = 0 has the only root βj in D, and D is contained in
=(z) > 0.

Based on (30) and (30), and for ε small enough,∣∣ψε(z)− ψ(z)
∣∣ ≤ ∫

[0,ε)

∣∣eizy − 1− izy
∣∣π+(dy) +

∫
(1/ε,∞)

∣∣eizy − 1
∣∣π+(dy)

≤ |z|2
∫

[0,ε)

y2π+(dy) + 2
∫

(1/ε,∞)

π+(dy) → 0 (ε→ 0),

where the convergence is uniform over compact sets. So, taking g = ψε−ψ and
f = q − ψ we obtain |g| < |f | on ∂D, and in consequence q − ψε has nj roots
inside D. These roots converge to βj becuse δ was arbitrarily small, concluding
(b) and the proof of the Lemma.

In order to conclude the proof of the Theorem, we must take limits as ε→ 0
in both sides of

E
(
eizI

ε)
=

n∏
k=1

(z − iαk
−iαk

)mk
P+1∏
j=1

( −iβεj
z − iβεj

)
,

to obtain our result, i.e.

φ−q (z) = E
(
eizI

)
=

n∏
k=1

(
z − iαk
−iαk

)mk N∏
j=1

(
−iβj
z − iβj

)nj

.

The limit of the r.h.s. is given by (b) in Lemma 4.3.
In order to obtain the limit in the l.h.s., as ψε(u) → ψ(u) for all real u we

have Xε
1 ⇒ X1 (where ⇒ denotes weak convergence). From Corollary VII.3.6

in Jacod and Shiryaev (1987) we obtain Xε ⇒ X, the weak convergence of the
processes. As the infimum over an interval is a continuous functional in the
Skorokhod space, we also obtain the weak convergence

inf
0≤s≤t

Xε
s ⇒ inf

0≤s≤t
Xs (ε→ 0).

Finally, to obtain Iε ⇒ I, observe that

E
(
eiuI

ε)
=
∫ ∞

0

E
(
eiu inf0≤s≤t X

ε
s
)
qe−qtdt

→
∫ ∞

0

E
(
eiu inf0≤s≤t Xs

)
qe−qtdt = E

(
eiuI

)
,
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concluding the proof of the Theorem in case q > 0.
Case q = 0 follows by approximation as follows. Observe that (1/q)τ(1) has

exponential distribution with parameter q if τ(1) has exponential distribution
with parameter 1. As τ(q) →∞ (a.s.), this shows that we can find exponential
times such that Iq → I0 (a.s.). In consequence,

φ−q (u) → φ−0 (u) (q → 0).

Furthermore, as when q → 0 we know that q − ψ(z) converges uniformly over
compacts to −ψ(z), and we know the number of roots of equation −ψ(z) = 0
on the set =z > 0, a similar reasoning as the one done in the proof of Lemma
4.3, denoting in this case by β(q)j the roots of q − ψ(z) = 0, gives

P+1∏
j=1

( −iβ(q)j
z − iβ(q)j

)
→

N∏
j=1

( −iβ(0)j
z − iβ(0)j

)nj

(q → 0).

This concludes the proof of the Theorem.
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