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Wiener index of graphs with fixed number of

pendant or cut vertices

Dinesh Pandey∗ Kamal Lochan Patra

Abstract

The Wiener index of a connected graph is defined as the sum of the distances between all
unordered pair of its vertices. In this paper, we characterize the graphs which extremize the
Wiener index among all graphs on n vertices with k pendant vertices. We also characterize
the graph which minimizes the Wiener index over the graphs on n vertices with s cut vertices.
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1 Introduction

Throughout this paper, graphs are finite, simple, connected and undirected. Let G be a graph
with vertex set V (G) and edge set E(G). For a vertex v ∈ V (G), NG(v) denotes the set of all
neighbours of v in G. A vertex of degree one is called a pendant vertex. A vertex v of G is
called a cut-vertex if G \ v is disconnected. The distance between two vertices u, v ∈ V (G),
denoted by dG(u, v) or d(u, v) (if the context is clear), is the number of edges in a shortest
path joining u and v. The distance of a vertex v ∈ V (G), denoted by DG(v), is defined as
DG(v) =

∑
u∈V (G) dG(u, v). We refer to [18] for undefined notations and terminologies.

The Wiener index of G, denoted by W (G), is defined as the sum of distances between all
unordered pair of its vertices. i .e.

W (G) =
∑

{u,v}⊆V (G)

dG(u, v) =
1

2

∑

v∈V (G)

DG(v).

Different names such as graph distance [6], transmission [10], total status [3] and sum of
all distances [7, 23] have been used to study the graphical invariant W (G). Apparently, the
chemist H. Wiener was the first to point out in 1947 (see [22]) that W (G) is well correlated
with certain physio-chemical properties of the organic compound from which G is derived. The
mean distance [5, 19] or the average distance [1, 4] between the vertices is a quantity closely
related to W (G). By considering G as an interconnection network connecting many processors,
the average distance of G between the nodes of the network is a measure of the average delay
for traversing the messages from one node to another.

In Mathematical literature, the Wiener index is first studied by Entringer et al. in [6]. This
gave an important direction to the researchers to characterize the graphs with extremal Wiener
index in certain classes of graphs. In last 20 years a lot of studies for the optimal graphs in
different classes of trees and unicyclic graphs have been done (see [9, 11, 13, 16, 17, 20, 21, 24, 25]).
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Apart from trees and unicyclic graphs, some other classes of graphs are also studied for the
characterization of graphs having extremal Wiener index. Wiener index of graphs with fixed
maximum degree is studied in [14]. The graphs with maximum and minimum Wiener index
among all Eulerian graphs on n vertices are characterized in [8].

Wiener index of unicyclic graphs with fixed number of pendent vertices or cut vertices is
studied in [17]. In this paper, we characterize the graphs having maximum and minimum
Wiener index over all connected graphs on n vertices with k pendant vertices. We also obtain
the graph which minimizes the Wiener index among all connected graphs on n vertices with s
cut-vertices.

1.1 Main results

We first construct some classes of graphs. For g < n, let Up
n,g be the graph obtained by attaching

n− g pendant vertices at one vertex of the cycle Cg and U l
n,g be the graph obtained by joining

an edge between a pendant vertex of the path Pn−g with a vertex of Cg.
Let Hn,k denote the class of all connected graphs on n vertices and k pendant vertices. Let

Tn,k be the subclass of Hn,k containing all the trees on n vertices and k pendant vertices.
The path [v1v2 . . . vn] on n vertices is denoted by Pn. For positive integers k, l, d with

n = k + l + d, let T (k, l, d) be the tree obtained by taking the path Pd and adding k pendant
vertices adjacent to v1 and l pendant vertices adjacent to vd. Note that T (1, 1, d) is a path on
d+ 2 vertices.

We define a specific subclass of graphs in Hn,0 as follows. Let m1,m2 and n be positive
integers withm1,m2 ≥ 3 and n ≥ m1+m2−1. If n > m1+m2−1, take a path on n−(m1+m2)+2
vertices and identify one pendant vertex of the path with a vertex of Cm1

and another pendant
vertex with a vertex of Cm2

. If n = m1 +m2 − 1, then identify one vertex of Cm1
with a vertex

of Cm2
. We denote this graph by Cn

m1,m2
.

In this paper, we prove the following results:

Theorem 1.1. Let 0 ≤ k ≤ n− 2 and let G ∈ Hn,k. Then

(i) for 2 ≤ k ≤ n − 2, W (G) ≤ W
(
T (⌊k2⌋, ⌈

k
2⌉, n − k)

)
and equality happens if and only if

G = T (⌊k2⌋, ⌈
k
2 ⌉, n− k). Furthermore, W

(
T (

⌊
k
2

⌋
,
⌈
k
2

⌉
, n− k)

)
=

{(
n−k+1

3

)
+ k2

4 (n− k + 3) + k
2 [(n − k)2 + n− k − 2] if k is even(

n−k+1
3

)
+ k2−1

4 (n− k + 3) + k
2 [(n − k)2 + n− k − 2] + 1 if k is odd.

(ii) for k = 1, W (G) ≤ W (U l
n,3) and equality holds if and only if G = U l

n,3. Furthermore,

W (U l
n,3) =

n3 − 7n+ 12

6
.

(iii) for k = 0 and n ≥ 7, W (G) ≤ W (Cn
3,3) and equality holds if and only if G = Cn

3,3.
Furthermore,

W (Cn
3,3) =

n3 − 13n+ 24

6
.

For 0 ≤ k ≤ n− 3 and n ≥ 4, let P k
n be the graph obtained by adding k pendant vertices at

one vertex of the complete graph Kn−k.

Theorem 1.2. Let 0 ≤ k ≤ n− 2 and let G ∈ Hn,k. Then
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(i) for 0 ≤ k ≤ n−3, W (P k
n ) ≤ W (G) and equality holds if and only if G = P k

n . Furthermore,

W (P k
n ) =

(
n− k

2

)
+ k2 + 2k(n − k − 1).

(ii) for k = n−2, W (T (1, n−3, 2)) ≤ W (G) and equality holds if and only if G = T (1, n−3, 2).
Furthermore,

W (T (1, n − 3, 2)) = n2 − n− 2.

Let Tn,k ∈ Tn,k be the tree that has a vertex v of degree k and Tn,k \ v = rPq+1 ∪ (k− r)Pq,
where q = ⌊n−1

k
⌋ and r = n− 1− kq. Here, we have 0 ≤ r < k.

Theorem 1.3. Let 2 ≤ k ≤ n − 2 and T ∈ Tn,k. Then W (Tn,k) ≤ W (T ) and equality holds if
and only if T = Tn,k.

Let Cn,s be the set of all connected graphs on n vertices and s cut vertices. For 2 ≤ m ≤ n,
let v1, v2, . . . , vm be the vertices of a complete graph Km. For i = 1, 2, . . . ,m consider the paths
Pli such that l1 + l2 + · · ·+ lm = n. Identify a pendant vertex of the path Pli with the vertex vi,
for i = 1, 2, . . . ,m to obtained a graph on n vertices and we denote it by Kn

m(l1, l2, . . . , lm).

Theorem 1.4. Let 0 ≤ s ≤ n−3 and i, j ∈ {1, 2, . . . , n−s}. Then the graph Kn
n−s(l1, l2, . . . , ln−s)

with |li − lj | ≤ 1 has the minimum Wiener index over Cn,s.

In the next section we will discuss some results related to Wiener index of graphs which are
useful to prove our main theorems.

2 Preliminaries

We start this section with the following lemma.

Lemma 2.1. Let G be a graph and u, v ∈ V (G) are non adjacent. Let G′ be the graph obtained
from G by joining the vertices u and v by an edge. Then W (G′) < W (G).

It follows from Lemma 2.1 that among all connected graphs on n vertices, the Wiener index
is minimized by the complete graph Kn and maximized by a tree. Among all trees on n vertices,
the Wiener index is minimized by the star K1,n−1 and maximized by the path Pn (see [18],
Theorem 2.1.14). It is easy to determine the Wiener index of the following graphs(see [18]):
(i)W (Kn) =

(
n
2

)
(ii) W (Pn) =

(
n+1
3

)
(iii) W (K1,n−1) = (n− 1)2. The Wiener index of the cycle

Cn is (see [10],Theorem 5)

W (Cn) =

{
1
8n

3 if n is even
1
8n(n

2 − 1) if n is odd.
(1)

Also for u ∈ V (Cn)

DCn(u) =

{
n2

4 if n is even
n2−1

4 if n is odd.
(2)

The following lemma is very useful.

Lemma 2.2. ([2],Lemma 1.1) Let G be a graph and u be a cut vertex in G. Let G1 and G2 be
two subgraphs of G with G = G1 ∪G2 and V (G1) ∩ V (G2) = {u}. Then

W (G) = W (G1) +W (G2) + (|V (G1)| − 1)DG2
(u) + (|V (G2)| − 1)DG1

(u).
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Corollary 2.3. Let G and H be two connected graphs having at least 2 vertices each. Let
u, v ∈ V (G) and w ∈ V (H). Let G1 and G2 be the graphs obtained from G and H by identifying
the vertex w of H with the vertices u and v of G, respectively. If DG(v) ≥ DG(u) then W (G2) ≥
W (G1) and equality happens if and only if DG(v) = DG(u).

Proof. By Lemma 2.2,

W (G1) = W (G) +W (H) + (|V (G)| − 1)DH(w) + (|V (H)| − 1)DG(u)

and
W (G2) = W (G) +W (H) + (|V (G)| − 1)DH(w) + (|V (H)| − 1)DG(v).

So
W (G2)−W (G1) = (|V (H)| − 1)(DG(v)−DG(u))

and the result follows.

Let G be a connected graph on n ≥ 2 vertices. Let v be a vertex of G. For l, k ≥ 1, let Gk,l

be the graph obtained from G by attaching two new paths P : vv1v2 · · · vk and Q : vu1u2 · · · ul of
lengths k and l respectively, at v, where u1, u2, . . . , ul and v1, v2, . . . , vk are distinct new vertices.
Let G̃k,l be the graph obtained from Gk,l by removing the edge {vk−1, vk} and adding the edge

{ul, vk}. Observe that the graph G̃k,l is isomorphic to the graph Gk−1,l+1. We say that G̃k,l is
obtained from Gk,l by grafting an edge.

Consider the path Pn : v1v2 . . . vn on n vertices with vi adjacent to vi−1 and vi+1 for 2 ≤ i ≤
n− 1. Then for i = 1, 2, . . . , n,

DPn(vi) = DPn(vn−i+1) =
(n− i)(n− i+ 1) + i(i− 1)

2
.

So, if n is odd, then

DPn(v1) > DPn(v2) > · · · > DPn(vn+1

2

) < DPn(vn+3

2

) < · · · < DPn(vn−1) < DPn(vn)

and if n is even, then

DPn(v1) > DPn(v2) > · · · > DPn(vn
2
) = DPn(vn+2

2

) < · · · < DPn(vn−1) < DPn(vn).

The next result follows from the above and Corollary 2.3.

Corollary 2.4. ([13],Lemma 2.4) If 1 ≤ k ≤ l, then W (Gk−1,l+1) > W (Gk,l).

The following result compares the Wiener index of two graphs, where one is obtained from
the other by moving one component from a vertex to another vertex.

Lemma 2.5. ([12],Lemma 2.4) Let H,X, Y be three connected pairwise vertex disjoint graphs
having at least 2 vertices each. Suppose that u and v are two distinct vertices of H, x is a vertex
of X and y is a vertex of Y. Let G be the graph obtained from H,X, Y by identifying u with x
and v with y, respectively. Let G∗

1 be the graph obtained from H,X, Y by identifying vertices
u, x, y and let G∗

2 be the graph obtained from H,X, Y by identifying vertices v, x, y (see figure
1). Then W (G∗

1) < W (G) or W (G∗
2) < W (G).

Corollary 2.6. Let G be a connected graph on n ≥ 2 vertices and let u, v ∈ V (G). For
n1, n2 ≥ 0, let Guv(n1, n2) be the graph obtained from G by attaching n1 pendant vertices at u
and n2 pendant vertices at v. If n1, n2 ≥ 1 then

W (Guv(n1 + n2, 0)) < W (Guv(n1, n2)) or W (Guv(0, n1 + n2)) < W (Guv(n1, n2)).
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Figure 1: Movement of a component from one vertex to other

In [24], Lemma 2.6, if we take G0 = Pn0
and u0 and v0 as two distinct pendant vertices of

G0, then G0
∼= G1

∼= G2. So, W (G0) = W (G1) = W (G2), hence the statement of the mentioned
lemma is not true. In the following result, we have given a proof of the corrected version of it.

Lemma 2.7. Let G be a connected graph on n ≥ 3 vertices and u, v ∈ V (G). For l, k ≥ 1, let
Gp

uv(l, k) be the graph obtained from G by identifying a pendant vertex of the path Pl with u and
identifying a pendant vertex of the path Pk with v. Suppose l, k ≥ 2. If G is not the u-v path
and DG(u) ≥ DG(v) then

W (Gp
uv(l + k − 1, 1)) > W (Gp

uv(l, k)).

Proof. First consider the graph Gp
u,v(l, 1) as H and let w be the pendant vertex of H corre-

sponding to Pl. Then by Lemma 2.2,

W (Gp
u,v(l, k)) = W (H) +W (Pk) + (|V (H)| − 1)DPk

(v) + (k − 1)DH(v)

and

W (Gp
u,v(l + k − 1, 1)) = W (H) +W (Pk) + (|V (H)| − 1)DPk

(w) + (k − 1)DH(w).

As DPk
(v) = DPk

(w) we get,

W (Gp
u,v(l + k − 1, 1)) −W (Gp

u,v(l, k)) = (k − 1)(DH(w) −DH(v)).

Now
DH(w) = DPl−1

(w) + (l − 1)|V (G)| +DG(u)

and
DH(v) = DG(u) + (l − 1)(dG(u, v) + 1) +DPl−1

(u′)

where u′ is the vertex on the path Pl adjacent to u. Since DPl−1
(w) = DPl−1

(u′), so

DH(w) −DH(v) = (l − 1)(|V (G)| − dG(u, v)− 1) +DG(u)−DG(v).

As l ≥ 2 and G is not the u-v path, so (l − 1)(|V (G)| − dG(u, v) − 1) > 0. Hence the result
follows from the given condition DG(u) ≥ DG(v).

5



The Wiener index of Up
n,g and U l

n,g are useful for our results and can be found in [24]( see
Theorem 1.1).

W (Up
n,g) =

{
g3

8 + (n− g)(g
2

4 + n− 1) if g is even
g(g2−1)

8 + (n− g)(g
2−1
4 + n− 1) if g is odd

(3)

W (U l
n,g) =

{
g3

8 + (n− g)(n
2+ng+3g−1

6 − g2

12 ) if g is even
g(g2−1)

8 + (n− g)(n
2+ng+3g−1

6 − g2

12 − 1
4) if g is odd

(4)

We next calculate the Wiener index of some more trees, which we need for the extremal
bounds in some of our results. Let Sd,k be the tree obtained by identifying a pendant vertex of
the path Pd with the central vertex of the star K1,k. By using Lemma 2.2, it is easy to see that

W (Sd,k) =

(
d+ 1

3

)
+ k2 + (d− 1)k +

d(d − 1)k

2
. (5)

Then by Lemma 2.2 and using the value of W (Sd,k) and W (K1,l), we get

W (T (l, k, d)) =

(
d+ 1

3

)
+ l2 + k2 +

(d2 + d− 2)(k + l)

2
+ (d+ 1)kl. (6)

For l ≥ 2 and q ≥ 1, let T q
l be the tree on lq + 1 vertices with l pendant vertices having one

vertex v of degree l and T q
l − v = lPq (l copies of Pq). Note that T q

1 is the path Pq+1. Then

DT
q

l
(v) = l + 2l + · · ·+ ql =

lq(q + 1)

2
. (7)

Now by lemma 2.2,

W (T q
l ) = W (T q

l−1) +W (T q
1 ) + (l − 1)qDT

q
1
(v) + qDT

q

l−1
(v)

= W (T q
l−1) +

(
q + 2

3

)
+ (l − 1)q2(q + 1).

Solving this recurrence relation we get,

W (T q
l ) = l

(
q + 2

3

)
+

q2l(q + 1)(l − 1)

2
. (8)

3 Proofs of Theorem 1.1,Theorem 1.2 and Theorem 1.3

We first recall three known results related to Wiener index of graphs.

Theorem 3.1. ([15],Theorem 4) For 2 ≤ k ≤ n− 2, the tree T (⌊k2⌋, ⌈
k
2⌉, n − k) maximizes the

Wiener index over Tn,k.

Theorem 3.2. ([24],Corollary 1.2) Among all unicyclic graphs on n > 4 vertices, the graph
U l
n,3 has the maximum Wiener index.

Theorem 3.3. ([10],Theorem 5) Let G be a two connected graph with n vertices then W (G) ≤
W (Cn) and equality holds if and only if G = Cn.

We now compare the Wiener index of the graphs Cn
3,3 and Cn.

Lemma 3.4. For n ≥ 6, W (Cn) ≤ W (Cn
3,3) and equality happens if and only if n = 6.

6



Proof. By (4), we have W (U l
n,3) =

n3−7n+12
6 . If u is the pendant vertex of U l

n,3 then DU l
n,3

(u) =

DPn−2
(u)+2(n− 2) = (n−3)(n−2)

2 +2n− 4 = n2−n−2
2 . For n ≥ 6, let u be the cut-vertex common

to C3 and U l
n−2,3 of Cn

3,3. Then by Lemma 2.2,

W (Cn
3,3) = W (C3) +W (U l

n−2,3) + 2DU l
n−2,3

(u) + 2(n− 3)

= 3 +
(n − 2)3 − 7(n− 2) + 12

6
+ (n− 2)2 − (n− 2)− 2 + 2n− 6

=
n3 − 13n + 24

6
(9)

By (1) and (9), we have

W (Cn
3,3)−W (Cn) =

{
n(n2−52)

24 + 4, if n is even
n(n2−49)

24 + 4, if n is odd.

Hence the result follows.

Lemma 3.5. Let m1,m2 ≥ 3 be two integers and let n = m1 + m2 − 1. Then W (Cn) >
W (Cn

m1,m2
).

Proof. Let v be the vertex of degree 4 in Cn
m1,m2

. First suppose n is even. Then one of m1 or m2

is odd and other is even. Without loss of generality, suppose m1 is odd and m2 is even. Then
by Lemma 2.2, (1) and (2) we have

W (Cn
m1,m2

) = W (Cm1
) +W (Cm2

) + (m2 − 1)DCm1
(v) + (m1 − 1)DCm2

(v)

=
m3

1 −m1

8
+

m3
2

8
+ (m2 − 1)

m2
1 − 1

4
+ (m1 − 1)

m2
2

4

=
1

8
(m3

1 +m3
2 + 2m2

1m2 + 2m1m
2
2 − 2m2

1 − 2m2
2 −m1 − 2m2 + 2)

and

W (Cn) =
1

8
(m1 +m2 − 1)3

=
1

8
(m3

1 +m3
2 + 3m2

1m2 + 3m1m
2
2 − 3m2

1 − 3m2
2 − 6m1m2 + 3m1 + 3m2 − 1)

The difference is

W (Cn)−W (Cn
m1,m2

) =
1

8
(m2

1m2 +m1m
2
2 −m2

1 −m2
2 − 6m1m2 + 4m1 + 5m2 − 3)

=
1

8

(
(m2 − 1)m2

1 + (m1 − 1)m2
2 + 4m1 + 5m2 − 6m1m2 − 3

)

An easy calculation gives

W (Cn)−W (Cn
m1,m2

)

{
= 1

4m2(m2 − 2), if m1 = 3

≥ 1
8(3(m1 −m2)

2 + 4m1 + 5m2 − 3), if m1 ≥ 5

which is greater than 0.

7



Now suppose n is odd. Then there are two possibilities.
Case 1: Both m1 and m2 are even.

W (Cn
m1,m2

) = W (Cm1
) +W (Cm2

) + (m2 − 1)DCm1
(v) + (m1 − 1)DCm2

(v)

=
m3

1

8
+

m3
2

8
+ (m2 − 1)

m2
1

4
+ (m1 − 1)

m2
2

4

=
1

8
(m3

1 +m3
2 + 2m2m

2
1 + 2m1m

2
2 − 2m2

1 − 2m2
2)

W (Cn) = W (Cm1+m2−1)

=
1

8

(
(m1 +m2 − 1)3 − (m1 +m2 − 1)

)

=
1

8
(m3

1 +m3
2 + 3m2

1m2 + 3m1m
2
2 − 3m2

1 − 3m2
2 − 6m1m2 + 2m1 + 2m2)

The difference is

W (Cn)−W (Cn
m1,m2

) =
1

8

(
(m1 − 1)m2

2 + (m2 − 1)m2
1 − 6m1m2 + 2m1 + 2m2

)

≥
1

8

(
3(m1 −m2)

2 + 2m1 + 2m2

)

> 0

Case 2: Both m1 and m2 are odd.

W (Cn
m1,m2

) =
m3

1 −m1

8
+

m3
2 −m2

8
+ (m2 − 1)

m2
1 − 1

4
+ (m1 − 1)

m2
2 − 1

4

=
1

8
(m3

1 +m3
2 + 2m2m

2
1 + 2m1m

2
2 − 2m2

1 − 2m2
2 − 3m1 − 3m2 + 4)

and the difference is

W (Cn)−W (Cn
m1,m2

) =
1

8

(
(m1 − 1)m2

2 + (m2 − 1)m2
1 − 6m1m2 + 5m1 + 5m2 − 4

)
.

An easy calculation gives

W (Cn)−W (Cn
m1,m2

)





> 1
8

(
3(m1 −m2)

2 + 5m1 + 5m2 − 4
)
, if m1,m2 ≥ 5

= 1
8 (2m

2
2 − 4m2 + 2), if m1 = 3

= 1
8 (2m

2
1 − 4m1 + 2), if m2 = 3

which is greater than 0 and this completes the proof.

Lemma 3.6. Let u be the pendant vertex and v be a non-pendant vertex of the unicyclic graph
U l
n,g. Then DU l

n,g
(u) > DU l

n,g
(v).

Proof. Let g be the vertex of degree 3 in U l
n,g and let g + 1 be the vertex adjacent to g not on

the g-cycle of U l
n,g. Then

DU l
n,g

(u) = DPn−g+1
(u) + (g − 1)(n − g) +DCg (g). (10)

If v is a vertex on the cycle Cg of U l
n,g then

8



DU l
n,g

(v) = DCg (v) + d(v, g)(n − g) +DPn−g+1
(g)

and if w is a non pendant vertex of U l
n,g which is not on the cycle then

DU l
n,g

(w) = DPn−g+1
(w) + d(w, g)(g − 1) +DCg (g)

Since DPn−g+1
(u) = DPn−g+1

(g),DPn−g+1
(u) > DPn−g+1

(w) and DCg (g) = DCg (v), so

DU l
n,g

(u)−DU l
n,g

(v) = (n− g)(g − 1− d(v, g)) > 0

DU l
n,g

(u)−DU l
n,g

(w) > (g − 1)(n − g − d(w, g)) > 0.

The next corollary follows from Lemma 3.6 and Corollary 2.3.

Corollary 3.7. Let G be a connected graph with at least two vertices and let u ∈ V (G). Suppose
v is the pendant vertex of U l

n,g and w is a non-pendant vertex of U l
n,g. Let G1 and G2 be the

graph obtained from G and H by identifying u of G with the vertices with v and w of U l
n,g,

respectively. Then W (G1) > W (G2).

Lemma 3.8. Let u be a vertex of a connected graph G. For m ≥ 4, let G1 be the graph obtained
by identifying the vertex u of G with the pendant vertex of U l

m+1,m and G2 be the graph obtained

by identifying the vertex u with the pendant vertex of U l
m+1,3. Then W (G2) > W (G1).

Proof. By Lemma 2.2, we have

W (G1) = W (G) +W (U l
m+1,m) + (|V (G)| − 1)DU l

m+1,m
(u) +mDG(u)

and
W (G2) = W (G) +W (U l

m+1,3) + (|V (G)| − 1)DU l
m+1,3

(u) +mDG(u).

By Theorem 3.2, W (U l
m+1,3) > W (U l

m+1,m). So, the difference is

W (G2)−W (G1) > (|V (G)| − 1)(DU l
m+1,3

(u)−DU l
m+1,m

(u)).

By (10), we have DU l
m+1,3

(u) = (m−1)(m+2)
2 and

DU l
m+1,m

(u) =

{
m+ m2

4 if n is even

m+ m2−1
4 if n is odd.

So,

DU l
m+1,3

(u)−DU l
m+1,m

(u) =

{
m2−2m−4

4 if m is even
m2−2m−3

4 if m is odd

which is greater than 0 and this completes the proof.

Corollary 3.9. Let m1,m2 ≥ 3 be two integers and let m1 + m2 ≤ n. Then W (Cn
3,3) ≥

W (Cn
m1,m2

) and equality happens if and only if m1 = m2 = 3.
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Proof of Theorem 1.1: (i) Let G ∈ Hn,k. Construct a spanning tree G′ from G by deleting
some edges if required. Then by Lemma 2.1, W (G′) ≥ W (G). The number of pendent
vertices of G′ is greater than or equal to k. Suppose G′ has more than k pendant vertices.
Since k ≥ 2, G′ has at least one vertex of degree greater than 2 and two paths attached to it.
Consider a vertex v of G′ with d(v) ≥ 3 and two paths Pl1 , Pl2 , l1 ≥ l2 attached at v. Using
grafting of edge operation on G′, we get a new tree G̃ with number of pendant vertices
one less than the number of pendant vertices of G′ and by Corollary 2.4, W (G̃) > W (G′).
Continue this process till we get a tree with k pendant vertices from G̃. By Lemma 2.4,
every step in this process the Wiener index will increase. So, we will reach at a tree of order
n with k pendant vertices. Hence the result follows from Theorem 3.1. Then replacing d, l
and k by n− k, ⌊k2 ⌋ and ⌈k2⌉, respectively in (6), we get W

(
T (⌊k2⌋, ⌈

k
2 ⌉, n − k)

)
.

(ii) Let G ∈ Hn,1. Since G is connected and has exactly one pendent vertex, it must contain
a cycle. Let Cg be a cycle in G. If G has more than one cycle, then construct a new
graph G′ from G by deleting edges from all cycles other than Cg so that the graph remains
connected. Then by Lemma 2.1, W (G′) > W (G) and G′ is a unicyclic graph on n vertices
with girth g. By Theorem 3.2, W (U l

n,3) ≥ W (G′) and equality happens if and only if

G′ = U l
n,3. As U

l
n,3 ∈ Hn,1, so the result follows and we get the value of W (U l

n,3) from (4).

(iii) Let n ≥ 7 and let G ∈ Hn,0. Then we have two cases:

Case 1: For some integers m1,m2 ≥ 3 with n = m1 +m2 − 1 and Cn
m1,m2

is a subgraph
of G.

Since Cn
m1,m2

is a subgraph of G, by deleting some edges from G we get Cn
m1,m2

∈ Hn,0 and
by Lemma 2.1 W (G) < W (Cn

m1,m2
). Again by Lemma 3.5, W (Cn

m1,m2
) < W (Cn). Now the

result follows from Lemma 3.4.

Case 2: There is no integers m1,m2 ≥ 3 with n = m1 + m2 − 1 such that Cn
m1,m2

is a
subgraph of G.

If G is a two connected graph then by Theorem 3.3, W (G) ≤ W (Cn) and the result follows
from Lemma 3.4. So let G has at least one cut vertex.

Claim: W (G) ≤ W (Cn
g1,g2

) for some g1, g2 ≥ 3 and the equality holds if and only if
G = Cn

g1,g2
.

Since G has a cut-vertex and no pendant vertices, so G contains two cycles with at most
one common vertex. Let Cg1 and Cg2 be two cycles of G with at most one common vertex.
Since Cn

m1,m2
with m1 +m2 − 1 = n is not a subgraph of G, so g1 + g2 ≤ n. Clearly G has

at least n+ 1 edges.

If G has exactly n + 1 edges, then there is no common vertex between Cg1 and Cg2 and
G = Cn

g1,g2
. So, let G has at least n+2 edges. Suppose |E(G)| = n+k, where k ≥ 2. Choose

k − 1 edges {e1, . . . , ek−1} ⊂ E(G) such that ei /∈ E(Cg1) ∪ E(Cg2), i = 1, . . . , k − 1 and
G \ {e1, . . . , ek−1} is connected. Let G1 = G \ {e1, . . . , ek−1} (G1 may have some pendant
vertices). Then by Lemma 2.1, W (G1) > W (G). If G1 has no pendant vertices then
G1 = Cn

g1,g2
.

Let G1 has some pendant vertices. Then for some l < n, C l
g1,g2

is a subgraph of G1. By
grafting of edges operation(if required), we can form a new graph G2 from G1 where G2

is a connected graph on n vertices obtained by attaching some paths to some vertices of
C l
g1,g2

. Then by Corollary 2.4, W (G2) > W (G1). If more than one paths are attached to

10



different vertices of C l
g1,g2

in G2, then using the graph operation as mentioned in Lemma

2.7, form a new graph G3 from G2, where G3 has exactly one path attached to C l
g1,g2

.

Then by Lemma 2.7, W (G3) > W (G2). Let the path attached to the vertex u in C l
g1,g2

of
G3. Then again we have two cases:
Case-i: u ∈ V (Cg1) ∪ V (Cg2)
Without loss of generality, assume that u ∈ V (Cg1). Then the induced subgraph of G3

containing the vertices of Cg1 and the vertices of the path attached to it, is the graph U l
k,g1

for some k > g1. Let v be the pendant vertex of U l
k,g1

. Since the two cycles Cg1 and Cg2

have at most one vertex in common, so we have two subcases:

Subcase-1: V (Cg1) ∩ V (Cg2) = {w}

Let H1 be the induced subgraph of G3 containing the vertices {V (G3) \ V (U l
k,g1

)} ∪ {w}.

Clearly H1 is the cycle Cg2 . Then identify the vertex v of U l
k,g1

with the vertex w of H1 to
form a new graph G4. By Corollary 3.7, W (G4) > W (G3) and G4 is the graph Cn

g1,g2
.

Subcase-2: V (Cg1) ∩ V (Cg2) = φ

Let H2 be the induced subgraph of G3 containing the vertices V (G3) \ V (U l
k,g1

). In G3

exactly one vertex w1 ∈ U l
k,g1

adjacent to exactly one vertex w2 of H2. Form a new graph
G5 from G3 by deleting the edge {w1, w2} and adding the edge {v,w2}. By Corollary 3.7,
W (G5) > W (G3) and G5 is the graph Cn

g1,g2
.

Case-ii: u /∈ V (Cg1) ∪ V (Cg2)
Let w be the pendant vertex of G3 and let w3 be a vertex in C l

g1,g2
of G3 adjacent to u.

Form a new graph G6 from G3 by deleting the edge {u,w3} and adding the edge {w,w3}.
By Corollary 3.7, W (G6) > W (G3) and G6 is the graph Cn

g1,g2
. This proves our claim.

Now from Corollary 3.9, it follows that W (G) ≤ W (Cn
3,3) and by (9) W (Cn

3,3) =
n3−13n+24

6 .
This completes the proof.

It can be checked easily that for n ≤ 5, the cycle Cn has the maximum Wiener index over Hn,0

and for n = 6, the Wiener index is maximized by both the graphs C6 and Cn
3,3.

Proof of Theorem 1.2: (i) Let G ∈ Hn,k and let v1, v2, . . . , vn−k be the non-pendant ver-
tices of G. If the induced subgraph G[v1, v2, . . . , vn−k] is not complete, then form a new
graph G′ from G by joining all the non-adjacent non-pedant vertices of G with new edges.
Then G′ ∈ Hn,k and by Lemma 2.1 W (G′) < W (G). If G′ = P k

n then we are done, oth-
erwise G′ has at least two vertices of degree greater than or equal to n − k. Form a new
graph G′′ from G′ by moving all the pendant vertices to one of the vertex v1, v2, . . . , vn−k.
Then G′′ = P k

n and by Corollary 2.6, the result follows. Let u ∈ V (P k
n ) be a vertex of

degree n− 1. Then by Lemma 2.2, we have

W (P k
n ) = W (Kn−k) +W (K1,k) + (|V (Kn−k)| − 1)k + kDKn−k

(u)

=

(
n− k

2

)
+ k2 + 2k(n − k − 1).

(ii) Let G ∈ Hn,n−2. Then G is isomorphic to a tree T (k, l, 2) for some k, l ≥ 1. If k and l both
greater than or equal to 2 then form the tree T (1, n − 3, 2) from G by moving pendant
vertices from one end to other. The by Corollary 2.6, W (T (1, n − 3, 2)) < W (G) and by
taking d = 2, l = 1 and k = n− 3 in (6), we have W (T (1, n− 3, 2)) = n2 − n− 2.
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Proof of Theorem 1.3. We first prove that for k ≥ 3, if T ∈ Tn,k has minimum Wiener index
then there is a unique vertex v ∈ V (T ) with d(v) ≥ 3. Let there be two vertices u, v ∈ V (T )
with d(u) = n1 ≥ 3, d(v) = n2 ≥ 3. Let NT (u) = {u1, u2, . . . , un1

} and NT (v) = {v1, v2, . . . , vn2
}

where u1 and v1 lie on the path joining u and v (u1 may be v and v1 may be u). Let T1 be
the largest subtree of T consisting of u, u2, u3, . . . , un1−1 but not u1, un1

and T2 be the largest
subtree of T containing v, v2, v3, . . . , vn2−1 but not v1, vn2

. We rename the vertices u ∈ V (T1)
and v ∈ V (T2) by u′ and v′, respectively. Let H = T \ {u2, u3, . . . , un1−1, v2, v3, . . . , vn2−1}.
Construct two trees T ′ and T ′′ from H, T1 and T2 by identifying the vertices u, u′, v′ and
v, u′, v′, respectively. Clearly both T ′, T ′′ ∈ Tn,k and by Lemma 2.5, either W (T ′) < W (T ) or
W (T ′′) < W (T ) which is a contradiction.

Let T be the tree which minimizes the Wiener index in Tn,k. For k = 2, the only possible
tree is the path Pn which is isomorphic to Tn,2. So assume 3 ≤ k ≤ n − 2. Then there exists a
unique vertex v ∈ V (T ) with d(v) ≥ 3. Hence the result follows from Corollary 2.4.

For r = 0, the tree Tn,k is isomorphic to the tree T q
k and hence by (8),

W (Tn,k) = k

(
q + 2

3

)
+

q2(q + 1)k(k − 1)

2
.

For 1 ≤ r < k, by Lemma 2.2, we have

W (Tn,k) = W (T q+1
r ) +W (T q

k−r) + r(q + 1)DT
q

k−r
(v) + (k − r)qD

T
q+1
r

(v),

where v is the vertex of Tn,k with Tn,k \ v = rPq+1 ∪ (k − r)Pq. Thus by using (7) and (8) the
value of W (Tn,k) can be obtained.

4 Proof of Theorem 1.4

Any graph on n vertices has at most n − 2 cut vertices. The path Pn is the only graph on n
vertices with n− 2 cut vertices. Hence for Cn,s, we consider 0 ≤ s ≤ n − 3. Let Ct

n,s be the set
of all trees on n vertices with s cut vertices. In a tree every vertex is either a pendant vertex or
a cut vertex. So, Ct

n,s = Tn,n−s. Hence the next result follows from Theorem 3.1 and Theorem
1.3.

Theorem 4.1. For 0 ≤ s ≤ n− 3, the tree T (⌊n−s
2 ⌋, ⌈n−s

2 ⌉, s) maximizes the Wiener index and
the tree Tn,n−s minimizes the Wiener index over Ct

n,s.

A block in a graph G is a maximal connected component without any cut vertices in it. Let
BG be the graph corresponding to G with V (BG) as the set of blocks of G and two vertices u
and v of BG are adjacent whenever the corresponding blocks contains a common cut vertex of
G. A vertex of G with minimum eccentricity is called a central vertex. We call a block B in
G, a pendant block if there is exactly one cut vertex of G in B. The block corresponding to a
central vertex in BG is called a central block of G.

Lemma 4.2. Let G be a graph which minimizes the Wiener index over Cn,s. Then every block
of G is a complete graph.

Proof. Let B be a block of G which is not complete. Then there are at least two non adjacent
vertices in B. Let u and v be two non adjacent vertices in B. Form a new graph G′ from G
by joining the edge {u, v}. Clearly G′ ∈ Cn,s and by Lemma 2.1 W (G′) < W (G), which is a
contradiction.

12



Lemma 4.3. Let G be a graph which minimizes the Wiener index over Cn,s. Then every cut
vertex of G is shared by exactly two blocks.

Proof. Let c be a cut vertex in G shared by more than two blocks say B1, B2, . . . , Bk, k ≥ 3.
Construct a new graph G′ from G by joining all the non adjacent vertices of ∪Bi, i = 2, 3, . . . , k.
Then G′ ∈ Cn,s and by Lemma 2.1, W (G′) < W (G) which is a contradiction.

Lemma 4.4. Let m ≥ 3. For i, j ∈ {1, 2, . . . ,m}, if li ≤ lj − 2, then

W (Kn
m(l1, . . . , li + 1, . . . , lj − 1, . . . , lm)) < W (Kn

m(l1, . . . , li, . . . , lj , . . . , lm)).

Proof. Let u be the pendant vertex of Kn
m(l1, . . . , li+1, . . . , lj −1, . . . , lm) on the path Pli+1 and

v be the pendant vertex of Kn
m(l1, . . . , li, . . . , lj , . . . , lm) on the path Plj . Let w1 and w2 be the

vertices adjacent to u and v, respectively. Then using Lemma 2.2 we have

W (Kn
m(l1, . . . , li + 1, . . . , lj − 1, . . . , lm))−W (Kn

m(l1, . . . , li, . . . , lj , . . . , lm))

= D
Kn−1

m (l1,...,li,...,lj−1,...,lm)(w1)−D
Kn−1

m (l1,...,li,...,lj−1,...,lm)(w2).

Since li < lj − 1 and m ≥ 3, so the result follows.

Let G be a graph in which every cut vertex is shared by exactly two blocks. Then BG is
a tree. So, BG has either one central vertex or two adjacent central vertices and hence G has
either one central block or two central blocks with a common cut vertex.

Lemma 4.5. Let G be a graph which minimizes the Wiener index over Cn,s. If s ≥ 2, then
every pendant block of G is K2.

Proof. All the blocks in G are complete by Lemma 4.2. Suppose B is a pendant block of G
which is not K2. Let V (B) = {v1, v2, . . . , vm} with m > 2. Assume v1 is the cut vertex of
G in B which is shared by another block B′ with V (B′) = {v1 = u1, u2, . . . , ur} and r ≥ 2.
Construct a new graph G′ from G as follows: Delete the edges {v2, vj}, j = 3, 4, . . . ,m and add
the edges {vj , ui}, j = 3, 4, . . . ,m and i = 2, 3, . . . r. When G changes to G′ the only type of
distances which increase are d(v2, vj), j = 3, 4, . . . ,m. Each such distance increases by one and
hence the total increment in distances for vj, j = {3, . . . ,m} is exactly m − 2. The distance
d(vj , ui), j = 3, 4, . . . ,m i = 2, 3, . . . r decreases by one. Since r ≥ 2, the total distance decreases
by such pair of vertices is at least m− 2. Since s ≥ 2 there exists a vertex w belonging to some
other block B′′ such that d(vj , w), j = 3, 4, . . . m decreases by one. So W (G′) < W (G), which is
a contradiction.

Let G be a graph in which every block is complete and every cut vertex is shared by exactly
two blocks. Let B be a central block in G. Let B1 be a non central non pendant block of G and
c1, c2 ∈ V (B1) be two cut vertices of G. Suppose that the vertex c1 is identified by a pendant
vertex of a path Pl and c2 is shared by another block B2 such that the vertices corresponding
to B1, B2 and B in the tree BG lie on a path. Let V (B1) = {c1 = u1, u2, . . . , um1

= c2} and
V (B2) = {v1, v2, . . . , vm2

= c2}. Construct a new graph G′ from G as follow: Delete the edges
{c1, ui} for all ui ∈ V (B1) \ {c1, c2} and add the edges {ui, vj} for all ui ∈ V (B1) \ {c1, c2} and
vj ∈ V (B2) \ {c2}.

Lemma 4.6. Let G and G′ be the graphs defined as above.Then W (G′) < W (G).

Proof. For i = 2, . . . ,m1−1, letHi be the maximal connected component of G containing exactly
one vertex ui of B1. Let Pl : t1t2 · · · tl be the path with t1 identified with c1. When G changes to
G′, the only type of distances which increase in G′ are dG′(u, tj) where u ∈ ∪m1−1

i=2 V (Hi) and j =
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1, 2, . . . , l. Each such distance increases by one in G′. For any other pair of vertices, the distance
between them either decreases or remains the same. Since B1 is not a central block, for each

tj, j = 1, 2, . . . , l there exists a vertex t′j ∈ V (G)\
(
∪m1−1
i=2 V (Hi) ∪ {t1, t2, . . . , tl, v1, v2, . . . , vm2

}
)

such that dG′(u, t′j) decreases by one where u ∈ ∪m1−1
i=2 V (Hi). So, the increment in distance by

the pairs u, tj are neutralized by the pairs u, t′j. Apart from this at least the distances dG′(ui, vj)
for i = 2, 3, . . . ,m1 − 1 and j = 1, 2, . . . ,m2 − 1 decreases by one. So W (G′) < W (G).

Proof of Theorem 1.4: Let G be a graph which minimizes the Wiener index over Cn,s. we
first claim that G is isomorphic to Kn

n−s(l1, . . . , ln−s) for some l1, l2, . . . , ln−s.
By Lemma 4.2 and Lemma 4.3, every block of G is complete and every cut vertex of G is

shared by exactly two blocks. If s = 0, then G has exactly one block and G = Kn also Kn is
isomorphic to Kn

n (1, 1, · · · , 1).
For s = 1, G has exactly two complete blocks with a common vertex w (say). Let B1 and B2

be the two blocks of G. If any of B1 or B2 is K2 then G is isomorphic to Kn
n−1(2, 1, . . . , 1). Oth-

erwise, let V (B1) = {u1, u2, . . . , um1
= w} and V (B2) = {v1, v2, . . . , vm2

= w} with m1,m2 > 2.
Construct a new graph G′ from G as follow: Delete the edges {u1, ui}, i = 2, 3, . . . ,m1 − 1
and add the edges {ui, vj}, i = 2, 3, . . . ,m1 − 1; j = 1, 2, . . . ,m2 − 1. Clearly G′ ∈ Cn,s. Then
the only type of distances which increase are d(u1, uj), j = 2, 3, . . . um1−1 and each such dis-
tance increases by one. So total increment in distance is exactly m1 − 2. Also each distance
d(ui, vj), i = 2, 3, . . . ,m1 − 1; j = 2, 3, . . . m2 − 1 decreases by one. The total decrement is
(m1 − 2)(m2 − 1). Since m1,m2 > 2, so W (G′) < W (G), which is a contradiction. Hence G is
isomorphic to Kn

n−1(2, 1, . . . , 1).
Now suppose s ≥ 2. Then G has s+1 blocks and also G has either one central block or two

adjacent central blocks.
Claim: All non central blocks of G are K2.

Suppose B is a non central block of G which is not K2. Then by Lemma 4.5, B must be a non
pendant block. Construct G′ from G as in Lemma 4.6. Clearly G′ ∈ Cn,s and by Lemma 4.6,
W (G′) < W (G) which is a contradiction.

If G has exactly one central block, then G is isomorphic to Kn
n−s(l1, . . . , ln−s) for some

l1, l2, . . . , ls. Suppose G has two central blocks and G is not isomorphic to Kn
n−s(l1, . . . , ln−s)

for any l1, l2, . . . , ln−s. Then each of the central blocks of G has at least 3 vertices. Let B1

and B2 be the two central blocks with a common vertex w. Let V (B1) = {u1, u2, . . . , um1
= w}

and V (B2) = {v1, v2, . . . , vm2
= w} with m1,m2 > 2. Let H1(H2) be the maximal connected

component of G containing exactly one vertex w of B2(B1). Let Pl : wu1t3 · · · tl be the longest
path in H1 starting at w containing u1 such that non of the vertex t3, . . . , tl belongs to B1. Take
w as t1 and u1 as t2 in Pl. Since B1 and B2 are central blocks, so there exists a path P ′

l : t
′
1t

′
2 · · · t

′
l

on l vertices in H2 starting at w = t′1 and containing exactly two vertices of B2. Construct a
new graph G′ from G as follow: Delete the edges {u1, ui}, i = 2, 3, . . . ,m1− 1 and add the edges
{ui, vj}, i = 2, 3, . . . ,m1 − 1; j = 1, 2, . . . ,m2 − 1. Clearly G′ ∈ Cn,s. The only type of distances
which increase in G′ are dG′(u, tj) where u ∈ V (H1) \ V (Pl) and j = 2, . . . , l also each such
distance increases by one. The distance dG′(u, t′j) decreases by one where u ∈ V (H1) \ V (Pl)
and j = 2, . . . , l. So, the increment in distance by the pairs u, tj are neutralized by the pairs
u, t′j . Since m2 ≥ 3, there exist at least one vertex w′ in B2 which is not in P ′

l . For each
u ∈ V (H1) \ V (Pl), the distance dG′(u,w′) decreases by one. So, W (G′) < W (G), which is
a contradiction. Hence G is Kn

n−s(l1, . . . , ln−s) for some l1, l2, . . . , ln−s. Now the result follows
from Lemma 4.4.
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