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The results obtained earlier have been generalized to show that the path integral for the affine 

coherent state matrix element of a unitary evolution operator exp( - iTH) can be written 

as a well-defined Wiener integral, involving Wiener measure on the Lobachevsky half-plane, 

in the limit that the diffusion constant diverges. This approach works for a wide class of 

Hamiltonians, including, e.g., - d 2/dx2 + Vex) on L 2(R+), with V sufficiently singular 

atx = O. 

I. INTRODUCTION 

The observables that are the quantum kinematical oper

ators are usually defined to have commutation relations 
analogous to the Poisson bracket structure of the associated 

classical kinematical variables. Examples are a single ca

nonical pair and the Heisenberg commutation relation, or 

angular momentum variables and the Lie algebra of angular 

momentum operators. We shall say that p, q are classical 

affine variables if q > 0 (or p > 0), for example, with the oth

er variable p (or q) being unrestricted. Since one variable is 

the generator of translations of the other, it follows that 

some conflict with the range restriction is possible, a situa

tion that reflects itself in the quantum theory by the fact that 

the operators Q and P cannot both be observables (self-ad

joint operators) satisfying the Heisenberg commutation re

lation if Q>O (or P>O). An acceptable substitute for the 

nonobservable operator is the dilation operator 

D = !(QP + PQ), which can always be chosen self-adjoint 

along with the positive operator. The Lie-algebra relation 

[Q,D] = iQ with Q > 0 is just the quantum image of the Pois

son-bracket relation {q,d} = q, q> 0, where d = qp. The 

generator D preserves the positivity of Q just as the classical 

counterpart d preserves the positivity of q. The indicated Lie 

algebra relation is that of the affine group, sometimes called 

the (ax + b)-group, which is the group of translations (b) 

and scale changes without reflection (a > 0) of the real line 

into itself, x - x' = ax + b. Thus we refer to Q (or P) and D 

as quantum affine kinematical variables, and in view of the 

simple relation between d, p, and q, we loosely refer to p, q 

with q > 0 (or p > 0) as classical affine kinematic variables as 

noted earlier. 
Focusing on the p > 0 case for the moment, we may ima

gine a formal phase-space path integral quantization of such 

a system given by 

ff-J exp{i J [pq-H(p,q)] dt} If [dptdqrJ, (Ll) 

0) "Bevoegdverklaard Navorser" at the National Foundation for Scientific 

Research. Belgium. 

where all paths satisfy the condition p(t) > O. This expres

sion is plagued by two problems. The first problem relates to 

what (1.1) could possibly represent since it cannot be the 

propagator expressed in the Q-representation for the simple 

reason that if [Q,P] = i and P> 0 then no Q-representation 

is possible. A satisfactory answer to the first problem was 

given earlier! in which ( 1.1) was formally interpreted as the 

propagator expressed in the affine coherent-state representa

tion (which makes fundamental use of the operators P and D 

rather than P and Q; see Refs. 2, 3). The second problem 

with ( 1.1 ) pertains to the formal nature of the path integral. 

In Ref. 1 meaning was given to (1.1) as the limit of a fairly 

standard lattice-space regularization. This approach made 

little direct contact with paths defined for continuous time as 

in the classical theory, and besides, it was relatively heuris

tic. On the other hand, in recent work4 pertaining to the 
usual canonical case (and also for spin kinematical vari

abies), it was shown how the appropriate coherent-state rep

resentation of the propagator can be defined as the limit of 

well-defined path integrals over pinned Brownian-motion 

measures as the diffusion constant diverges. The purpose of 

the present paper is to extend this alternative form of regu

larization and its associated rigorous definition of a path

integral representation to systems involving affine variables. 

To begin with, however, it is useful to give a brief description 

of the construction in Ref. 4 for the canonical case. 

For a given Hamiltonian H, we defined4 the path inte

grals 

21Te v (,"-t')/2 J exp[ ~ J (pdq-qdp) 

- i J h(p,q)dt ] dp'W(p)dp'W(q) , (1.2) 

where dp'W (p) and dp'W (q) are Wiener measures associated 

to two independent Brownian processes (one in p, one in q) 

with diffusion constant v, and pinned at p',q' for t = t', at 

p" ,q" for t = t ". The function h in (1.2) is the antinormal 

ordered symbol2 of H. For finite v, (1.2) is a perfectly well

defined path integral on phase space. It has been proved4 

that for a wide class of Hamiltonians, the limit for v- 00 of 

( 1.2) gives the coherent state matrix element 
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(p" ,q" lexp[ - iCt" - t ')H] ~J',q') . 

This procedure is not restricted to only the canonical 

kinematical variables. In Ref. 5 an outline is given of how the 

above construction can be extended to general semisimple 

Lie groups. One has then to use the corresponding general

ized coherent states.6 One can define a metric on the group 

manifold associated to these coherent states,5 and use the 

corresponding Laplace-Beltrami operator to define a gener

alized Wiener measure. Examples of interest outlined in Ref. 

3 are (i) the Weyl-Heisenberg group, (ii) the group SU(2), 

and (iii) the affine (ax + b)-group, corresponding to, re

spectively, canonical, spin, and affine kinematic variables. 

The first two were extensively discussed in Ref. 4. Here we 

present a more detailed study of the affine variable case. In 

particular, we derive explicit conditions characterizing the 

class of Hamiltonians that can be treated by our methods, 

and we give several examples as well. 

This paper is organized as follows. In Sec. II we review 

the definition and some properties of the coherent states as
sociated with the (ax + b)-group.2.3 We shall adopt nota

tion related to that in Ref. 3, which is different from the 

notation in Refs. 1 and 2. We shall also indicate how to pass 

from one notation to the other. It is convenient to break the 

construction into two parts. In Sec. III we study the path 

integral for zero Hamiltonian. We introduce the Brownian 

process on the half plane, use it to construct the path inte

gral, and show that in the limit of diverging diffusion con

stant the path integral converges to the coherent state over

lap function [as it should, since exp ( - itH) = 1 if H = 0] . 

In Sec. IV we discuss the path integral with a nonzero Ham

iltonian, and we derive sufficient conditions on the Hamilto

nian so that the limit for diverging diffusion constant leads to 
the appropriate coherent-state matrix element of the evolu

tion operator. 

II. THE (ax+b)-GROUPAND THE AFFINE COHERENT 

STATES 

Let us review the definition of the (ax + b) -group and 

the associated coherent states, and give some of their proper

ties. Most of this discussion is analogous to what happens for 

the Weyl-Heisenberg group and its associated coherent 

states, the more familiar canonical coherent states. Both the 

affine and the canonical coherent states are examples of the 

construction of coherent states associated with general Lie
groups.6 

A. The (ax+b)-group 

The "(ax + b)-group" is the setM +: = lR~ XlR, where 

lR~ = (0,00 ), with the group law 

(a",b") (a',b') = (a"a',b" + a"b') . 

This group has two (faithful) inequivalent irreducible uni

tary representations U + and U _. We shall consider their 

following realizations on L 2(lR+). For t/!EL 2(lR+), one de
fines 

[U± (a,b)t,b] (x) =aI/2e±ibxt,b(ax). (2.1 ) 

We shall mainly use U +, except when specified otherwise. 

The subscript + will often be dropped. 
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Both representations U + and U _ are square integrable. 

This means7 that there exists an (unbounded) positive self

adjoint operator Con L 2(lR+) such that 

"iIt,b I ,t,b2ED ( C 1/2), "iI¢I'¢2EL 2(lR+): 

f dj1(a,b) (¢I'U ± (a,b)t,bl)(U ± (a,b)t,b2'¢2) 

= (C 1/2t,b2'C 1/2t,bl) (¢h¢2) . (2.2) 

Here dj1(a,b) = (1I21T)a- 2 da db is the left-invariant mea

sure on the (ax + b) -group. The operator C is given by 

(Ct,b) (x) = x-1t,b(x) . (2.3) 

In particular (2.2) implies that, for all t,bED( C 1/2), 11t,b11 = 1, 

f dj1(a,b)U± (a,b) It,b) (t,bIU± (a,b)* = c(t,b) 1 , (2.4) 

with 

c(t,b) = IC-1/2t,b12 = L" dx(llx)It,b(xW· (2.5) 

The closed spaces JIl" ± spanned by the sets 

{(U± (.,)t,b,¢); t,bED(C I/2 ), ¢EL2(lR+)} 

are mutually orthogonal subspaces of L 2(M+) 

: = L 2(M+;dj1). Together, JIl" + and JIl" _ span the whole 

space L 2 (M + ). This can easily be checked by explicit calcu

lation. 
All this enables us to build orthonormal bases of 

L 2(M +), starting from orthonormal bases in L 2(lR+). Let 

{¢j: jEN}, {t,bj: jEN} be two orthonormal bases in L 2(lR+) 

such that t,bj ED ( C -1/2) for all j. Define elements f if of 

L 2 (M+) by 

(2.6) 

It is clear that for all i, j, fijEJll"E (€ = + or - ). On the 

other hand, both {f if; i,jEN} and {f;;; i,jEN} are ortho

normal sets, as a consequence of (2.2). One easily checks 

that, for € = + or -, {fij; i,jEN} constitutes a basis for 

JIl"E' The set {fij; i,j3N, € = + or -} is therefore an 

orthonormal basis for L 2 (M + ). 

Let now B be a Hilbert-Schmidt operator on L 2(lR+) 
such that C -1/2B is trace class. Then 

B= IAjlt,b)(¢jl, 
j 

where {¢j; jEN}, {t,bj; jEN} are orthonormal bases in 

L 2(lR+), with t,bj ED(C-1/2) for all j, 2.jIAjI2< 00. Since 
C -1/2 B is trace class we can define 

[F(B)](a,b) = (l/vL)Tr[(U+(a,b) + U_(a,b»)C- 1/2B] 

= (l/vL) I Aj(¢j,U
E

(a,b)C-1/2t,b) . 
j,E 

(2.7) 

From the preceding paragraph it is clear that (2.7) can be 

considered as an expansion of F(B) with respect to an ortho

normal base in L 2 (M + ). Since the sequence of coefficients is 

square summable, 2.j.E IAj 12 = 2 Tr(B *B), we immediately 
see that F(B)EL 2(M +), with 
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J d,u(a,b) 1 [F(B) ](a,b) 12 = J... L IAj 12 = Tr(B *B) . 
2 j.€ 

(2.8) 

The set of Hilbert-Schmidt operators B for which C - 1/2 B is 

trace class is dense in the space 72 of Hilbert-Schmidt opera

tors. One can use this to extend the mapB-+F(B) to all of 72. 

This extension is a unitary map from 72 to L 2 (M + ). This is 

the (ax + b)-group analog of a well-known result for the 

Weyl-Heisenberg group. 8 

B. The affine coherent states 

A special role in our path integral results below will be 

played by extremal-weight vectors for the unitary represen

tation under consideration (see Ref. 5). In our case these are 

the vectors I (normalized to 1) 

'I/Ip(x) =2
p
r(2f3)-1/2xP- 1I2e- x

. (2.9a) 

In order for cp ==c('I/Ip) to be finite, one has to impose,8>!. 

One finds 

Cp = (,8 _ p-I . (2.9b) 

We shall use these minimal weight vectors '1/113 as "fidu

cial vectors" 6 for the construction of the affine coherent 

states, 

la,b;l3) = U(a,b)'I/Ip. 

From (2.4) one now immediately has the affine coherent 

state resolution of the identity 

Cp I J d,u(a,b) la,b;l3) (a,b;l31 = 1 . (2.10) 

The "overlap function" of different coherent states 

(same value of,8) is given by 

(a" ,b ";I3la',b ';13) 

= [a" + a' + i(b" - b ') ] -213 

2~a"a' 

= [ 1 + cosh d(!",b ";a',b ') r 
X exp - 2f3i tan-I , ( btl - b') 

a" +a' 
(2.11 ) 

where d denotes the metric distance9 on the Lobachevsky 

half-plane M + 

d(a",b ";a',b') 

= cosh -I 1 + ....:.----=-......:...-=---......:.-
[

(a" - a')2 + (b " - b ')2] . 
2a"a' 

(2.12) 

For every f3 >! one can define the following map on 

L
2

(lR+): 

(Up¢J )(a,b) = Cp- 1/2(a,b;l3I¢J) 

= Cp-
1I22P [r(2,8)] -1/2ap 

X 100 

dx xP- 1I2e- (a + ib)X¢J(X) . (2.13) 

It is clear from (2.10) that Up is an isometry from L 2 (lR + ) 

toL 2(M +). These maps Up are the analogs of the Bargmann 

transform for the Weyl-Heisenberg case.lO The image 

Yr'p == UpL 2(lR+) consists of exactly those elements f of 
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L 2 (M +) that can be written as 

f(a,b) = ap¢J(a + ib) , 

where ¢J(z) is an entire analytic function on the half-plane 

Rez>O. 
The Hilbert space Yr'p is a reproducing kernel Hilbert 

space,!1 with reproducing kernel cp-'(a",b ";I3la',b';I3). In 

other words, for I in Yr'P' 

I(a,b) =cp-
I J d,u(a',b')(a,b;l3la',b';I3)f(a',b'). 

This means in particular that the orthogonal projection op

erator Pp mappingL 2(M +) ontoYr'p is an integral operator 

with integral kernel 

Pp(a",b";a',b') =cp-'(a",b";I3la',b';I3). (2.14) 

C. Correspondence with the pq-notation 

We mentioned in the Introduction that our notation 

would not coincide with that in Ref. 1. To conclude this 

section we give the correspondence between our present no

tation and the pq-notation in Ref. 1. 

For fixed,8, define p = ,8a-I, q = - b. We shall also 

rescale the measure; dji(p,q) is the image of cp- 'd,u(a,b), 

i.e., 

d - ( ) - , ,8 -I dp dq 1 - l/2f3 d d 
p p,q =cp ~= 21T P q. 

With this change of notation, (2.13) becomes, for instance, 

(Up'l/l)(p,q) = (2f3)p [r(2f3)] -1/2p-P 

X 100 

dkkpe-k(pr'-iq)'I/I(k). (2.15 ) 

This corresponds exactly with Eq. (24) in Ref. 1. 

Using this correspondence every result we shall obtain 

here can be translated into the pq-notation used in Ref. 1, 
and vice versa. At the end of Sec. IV D we shall state our 

main result inpq-notation as well as in the ab-notation which 

will be used throughout this paper. 

III. THE PATH INTEGRAL FOR ZERO HAMILTONIAN 

In the ab-notation, with the correspondence rules of 

Sec. II C, (1.1) becomes 

.AI-I J exp [ - i,8 J a-I db - J h(a,b) dt] 1} da~~bc , 

(3.1) 

where A > 0 throughout the integration domain. We shall 

give a sense to this expression by a regularization that leads 

to a Wiener measure, on the Lobachevsky half-plane, for 

diffusion constant v. In the end we take the limit V-+ 00. For 

related ideas (regularization by extra factors that formally 

disappear in the limit as a diffusion constant diverges), see 

Ref. 12. 

In this section we restrict ourselves to the case h = O. 

The general case h =1= 0 will be handled in the next section. 

Let us first define the Wiener measure on the Loba

chevsky half-plane. The Laplace-Beltrami operator is given 

by 

(3.2) 

Daubechies, Klauder, and Paul 87 

Downloaded 25 Apr 2012 to 147.65.105.210. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



(in the pq-notation, fl. = a
p 

p2 a
p 
+ f3 2p-2 a ~). This is a 

symmetric operator in L 2(M +), essentially self-adjoint on 

CO' (M + ), the COO-functions on M + with compact support 

away from a = ° (this essential self-adjointness is most easi

ly checked in the pq-notation). 

The heat kernel for this Laplace-Beltrami operator is 
given by9 

K t (a" ,b ";a' ,b ') = [exp(tfl.)] (a" ,b ";a',b ') 

e-tl4 (00 xe-x2/4t 

= JD ~, 
2fi1it 3/2 D ~cosh x - cosh 8 

(3.3 ) 

where 8 = d(a",b ";a'b') is the metric distance (2.12). We 

define the affine (pinned) Wiener measure with diffusion 

constant v, denoted dllv,ifa",b";a',b" as the measure on path 
space, pinned at a' ,b ' for t = 0, at a" ,b " for t = T, such that 

fd v,T K ("b" 'b') IlW;a",b";a',b' = vT a, ;a, . (3.4 ) 

Requiring (3,4) for all (a",b "), (a',b ')EM+, and all T>O 

defines dll"w unambiguously. We shall drop the super- and 

subscripts T, a", b " , a', and b ' in the sequel. 

We use this measure to regularize (3.1) in the following 
way. We define 

ge (a" ,b ";a',b ';T) 

= cpe
vTP 

f exp( - if3 f a-I db ) dll"w(a,b) . (3.5) 

The expression Sa - I db should be considered as a stochastic 

integral, to be calculated using the Stratonovich (midpoint 

rule) procedure. Formally (3.5) can be written as 

ge (a" ,b ";a',b ';T) 

=fff exp[ -if3fa-Ibdt- ~fa-2(a2+b2)dt] 

rr
daj dbt 

X --2-' 
t at 

where the factors cp and eVTBhave been absorbed in the (infi

nite) normalization constant ff. This formal expression 

shows how (3.5) can indeed be viewed as a regularization of 

(3.1) (for the case h = 0). In the final step of our regulariza

tion procedure we take the limit for v-- 00; in this limit the 

regularizing factor in the above formal expression vanishes. 

It is our aim in this section to prove that 

lim ge(a",b";a',b';T) = (a",b";I3la',b';I3). (3.6) 
v_ 00 

This is exactly what the general expression (3.1) or (1.1) 

should lead to l in the case h = 0. 

We start by studying ge for finite v. 

Lemma 3.1: cp- I ge is the integral kernel of a semi

group on L 2(M +): 

ge(a",b";a',b';T) =cp[exp( -vTA)](a",b";a',b'). 

(3.7) 

The operator A is given by 

A = -f3-a2[a; + (ab +if3/a)2] (3.8a) 
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In particular, A is a positive self-adjoint operator, with do

main D( -fl.). 

Proof: It is clear that the ci 1 ge satisfy a semigroup 

property, i.e., 

f dll(a,b) ge (a" ,b ";a,b;t2) ge (a,b;a',b ';t l ) 

= cp ge (a" ,b ";a',b ';t l + t2) . 

On the other hand, we have 

ICi 1ge (a,b;a',b ';t) I <evtPKvt (a,b,a',b') . 

This already implies that ci 1 ge is the integral kernel of a 

semigroup of operators, i.e., Eq. (3.7), with 

A>-f3+!. (3.9) 

Here we have used that - fl.>! on the Lobachevsky half

plane. Following the standard procedure, and using the mid

point rule for the stochasticintegral Sa - 1 db, one obtains the 

following differential equation for ge: 
at ge (a,b;a',b ';t) 

= { - f3 - a2[ a; + (ab + if3 /a)2]}ge (a,b;a',b ';t) . 

This implies that the infinitesimal generator A is given by 

(3.8). We have 

A = - fl. - f3 + f3 2 - 2if3aab • 

Since, for all ifJED ( - fl.), and for all E > 0, 

Ilaab ¢11 2 = - (¢,a2a~¢)«¢,( -fl.)¢) 

<Ell - fl.¢11
2 + (1/4E) 11¢11

2 
, 

we see that A - ( - fl.) is ( - fl.) -bounded with infinitesi

mally small bound. Hence A is self-adjoint, with domain 

D( - fl.). Finally it follows from (3.8b) that A is positive. 

Note: It follows from the proof that every core for - fl. 

is a core for A. In particular, A is essentially self-adjoint on 

CO' (M + ), the set of COO-functions on M + with compact 

support away from a = 0. 

We shall see below that we can do much better than 

Lemma 3.1. We shall see that A has an isolated eigenvalue at 

0. Ifwe denote by Po the projection onto the eigenspace of A 

for the eigenvalue 0, we then see that 

This will then lead to statement (3.6). 

To carry out this program, we have to determine the 

spectrum of A and the corresponding eigenspaces. We shall 

reduce this to a spectral problem on L 2 (lR+) rather than on 

L
2
(M+). 

We first introduce the infinitesimal generators of 

U ± (a,b). Both V ± (b) = U ± (l,b) and W(a) = U(e"',O) 

are strongly continuous unitary one-parameter groups. 

Their generators are, respectively, Q and D, i.e., 

V ± (b) = e±ibQ , W(a) = ei",D, 

where Q and D are defined by 

(Q¢)(x) =x¢(x) , 

(D¢)(x) = - ix¢'(x) - (i/2)¢(x) . 

One easily checks that these are indeed self-adjoint operators 
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onL 2(R +). The set CO' (R+) of all C "'-functions with com

pact support away from 0 is a core for both D and Q. Then 

U ± (a,b) can be written in terms of Q, D as follows: 

U ± (a,b) = e ± ibQei(logalD 

= ei(logalDe ± (ib/alQ • (3.10) 

Note that C = Q - I. With the help of all this we prove the 

following lemma. 

Lemma 3.2: On L 2(R+) we define the operators 

D 2 + Q 2 += 2{3Q + (fJ - !)2, with domain CO' (R+). These 

are symmetric operators; we denote their closures by H ± . 

Then 

( 1) H ± are self-adjoint, 

(2) V"p,tjJeCO' (R+), (U± (',)C- 1/2"p,tjJ)eD(A), 

and 

A (U± (a,b)C- 1/2"p,tjJ) = (U± (a,b)C- 1/2H± "p,tjJ). 

(3.11 ) 

Proof To prove the first statement it is convenient to 
I 

We have 

make a unitary transformation fromL 2(R+) toL 2(R). We 

define, for"peL 2(R+), 

(U"p)(s) = e'/2"p(e') . (3.12) 

Accordingly UC 0' (R +) = CO' (R), the set of C '" -functions 
with compact support. On the other hand, 

U [D 2 + Q 2 + 2fJQ + (fJ _ !) 2] U - I 

= _ ~ + e2s + 2{3e' + (fJ _ .!.)2 . 
ds2 2 

(3.13) 

Since the potential V ± (s) = 2es + 2{3e' + (fJ - !)2 is the 
sum of a bounded potential and a positive smooth potential, 

the operators (3.13) are essentially self-adjoint on Co(R) 

by Theorem X.29 in Ref. 13. This proves the first statement. 

It is easy to check that for "p,tjJeC a (R+) the functions 

fJ.",(a,b) = (U± (a,b)C- 1/2!/1,tjJ) are well-defined C"'

functions in a,b. Their support is contained in a set of the 

form [C I ,C2 ] XR, with CI > 0; they decrease more rapidly in b 

than any inverse polynomial, and this uniformly in a. This is 

sufficient to ensure that f J.",eD( - Il) = D(A), and also to 

justify the calculations below. 

(AfJ.",)(a,b) =a2« -iaa +ab -ifJ/a)( -iaa -ab +ifJ/a)U± (a,b)QI/2!/1"tjJ) 

=a2« -iaa +ab -ifJ/a)U± (a,b)(lIa)(D +iQ+ifJ)QII2!/1,tjJ) 

=a2(U± (a,b)[a- 2(D±iQ-ifJ)(D +iQ+ifJ) +ia-2
(D +iQ+ifJ)]QI/2"p,tjJ) 

= (U± (a,b)(D±iQ-ifJ+i)(D +iQ+ifJ)QI/2"p,tjJ) 

= (U ± (a,b)Q 1/2(D ± iQ - ifJ + i/2)(D + iQ + ifJ - i/2)!/I,tjJ) 

= (U± (a,b)QI/2[D 2 + Q 2+2fJQ+ (fJ-!)2]!/I,tjJ), 

where we have repeatedly used that [D,Qa] = - iaQa. 

Hence (3.11) follows. As a consequence of (3.11) the sub

spaces K ± are invariant subspaces for A. Moreover the 

spectrum of A Iy ± is exactly the spectrum of H ± . 0 

Lemma 3.3: Let A ± be the restrictions of A to K ± ' 

with domains D( -Il) nK ± . Then £T(A ± ) = £T(H ± ). 

Proof Let P if be the family of spectral projection oper

ators associated with H ± . 

Let "pj be an orthonormal base in L 2 (R + ), with 

!/IjeD(H
2
±). This ensures that !/IjeD(C- 1/2 ) and H±!/Ij 

eD(C -112). Define now Pif on K ± by 

Pif (? Cjk (U ± (',)C -1/2"pj,,,pk») 
j,k 

(3.14 ) 

Using (2.2) one finds IPifl<1 and (Pif)* = Pd'. On the 

other hand clearly (p,;t )2 = P if, Pi = Iy , and p,;t P if 
",,, ± ""I 2 

= P 5. no,' This implies that the family {p if ; n. Borel set in 
R} is the set of spectral projection operators for some self

adjoint operator on K ± . It follows from (3.11) that this 

self-adjoint operator is exactly A ± . Since it is clear from 

(3.14) thatthe two projection-valued measuresP ± and P ± 

have the same support, £T(A ± ) = £T(H ± ) follows immedi

ately. 0 
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Remark: Suppose that A. is an isolated eigenvalue of H + 

(we shall see below thatH _ has only continuous spectrum) 

with eigenvector tjJ}. (we assume the multiplicity of A. to be 

1). Then A. is an isolated eigenvalue of A +. It follows from 

the proof of Lemma 3.3 that the associated eigenspace E}. of 

A + is given by 

E}. = {(U(-,)C -1I2tjJ;..tjJ); tjJeL 2(R+)}, (3.15) 

E}. is an infinite-dimensional closed subspace of K +' and 
every eigenvalue of A + is infinitely degenerate. This is com

pletely analogous to what happens in the Weyl-Heisenberg 

case.4 In order to find the spectrum of A and the associated 

eigenspaces we have thus only to determine the spectrum 

and eigenspaces for H ± . This turns out to be very easy, 

because H ± are related to the exactly solvable Morse Schro

dinger operator. 14 

Lemma 3.4: (1) H _ has only the continuous spectrum 

£T(H_) = [(fJ-D 2
,oo), (3.16) 

and (2) H + has the same continuous spectrum, and If! + 11 
eigenvalues lying below it: 

£T(H+) = {(fJ - p2 - (fJ - n - p2; n = 0,1, ... ,~ - iJ) 

U[(fJ-!)2,oo). (3.17) 

Note: Here we have used the notation Lx J for the largest 

integer strictly smaller than x: 
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Ixl = max{nEN; n <x}. 

Proof: Again it will be convenient to consider 
UH ± U - I rather than H ± itself, with U as defined by 

(3.12). We have [see (3.13)] 

d
2 

UH ± U -I = + V () - ds'2 ± S , 

with V ± (s) = e
2s += 2/3e' + (/3 _ !)2 . 

Since /3 > 0, V _ (s) is a continuous, monotonously in
creasing function of s, tending to (/3 - p2 for s- - 00 

and to 00 for s - 00 . It is clear therefore that 
u(H_) C [(/3 - p2,(0). On the other hand wave functions 

with support in [ - 2L, - L ], with L very large, will "see" 

only the constant part (/3 - p2 of the potential V _. This 
means that the spectrum of H _ will at least contain 

Hence (3.16). 

The operator - d 2/ ds'2 + v + (s) is really the Morse op
erator. 14 Putting several constants equal to 1, one finds in 
Ref. 14 that the operator 

-!!..:... + D(e- 2y - e- Y ) on L 2(R) 
dy2 

has discrete spectrum 

{- [v'D - (n + 1»)2; nEN, n <V'D -!}. 

(3.18 ) 

Its continuous spectrum is [0, 00 ). Putting s = - y + log /3, 
D = /3 2

, one finds that - d 2/ds2 + V + (s) - (/3 - !)2 re
duces to (3.18). Hence 

u(H+) =0-( - :s: + V+(S») 

= {(/3 - !)2 - (/3 -! - n)2; nEN, n </3 - n 
u [(/3 - !)2,00) . 0 

Remark: Reference 14 also gives explicit formulas for 

the eigenvectors of - d 2/dy2 + D(e- 2y - e- Y ). We shall 

only need the ground state. This is given by 

rPo( y) = [r(2v'D - 1)] -1/2(2v'De- Y ),[D -1I2e -,[De-
Y

• 

Substituting y = - s - log /3, and making the inverse 
transformation U - I, we find the ground state rPo of H +: 

rPo(x) = [r(2/3 - 1)] - 1/22.8 - 1I2X.8 - lex. (3.19) 

If we bring together the results of Lemmas 3.2,3.3, and 3.4 
we see indeed that A ;;..0 and that 0 is an isolated eigenvalue of 
A. The associated eigenspace Eo is given by [see (3.15)] 

Eo={<U(·,)C- 1/2rPo, rP); rPEL2(R+)}. 

Here rPo is the ground state of H +, as defined by (3.19) . Note 
that 

(C -1/2rPO )(X) = [r(2/3 - 1)] - 1/22.8- 1I2X.8 - 1I2e - x 

= ~/3 - ! [r(2/3)] -1/22.8x.8 - 1I2e - x 

= c;; 1I2tP.8 (x) , 

with cp , tPp as defined by (2.9). 
Hence, with the notations of Sec. II B, 
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(3.20) 

Eo ={<a,b;[3lrP); rPEL2(R+)} 

= U.8L 2(R+) =~.8 . 

This implies that the spectral projection operator P 0+ of A 

associated with the eigenvalue 0 is exactly P.8' Since A;;..O, 

and since the eigenvalue 0 of A is isolated, we have therefore 

s-lim exp( - vTA) = P.8 (T>O). 
v-oo 

This implies at least in a distributional sense, convergence of 
the corresponding integral kernels. In other words, and tak
ing into account (2.14) and (3.7), 

9~(a",b";a',b';T) - <a",b";[3la',b';[3) (T>O). 

This is exactly what we set out to prove [see (3.6)]. 

We can do better, however, than only distributional 
convergence. In order to prove pointwise convergence of the 

9~, we first derive a formula relating the integral kernel of 
exp( - vAT) with H ± . This is done in the following two 

lemmas. 
Lemma 3.5: For t>O, the operators C- 1/2 

X exp [ - tH ± ] C -112 are trace class. 

Lemma 3.6: 

[exp( - At) ](a" ,b ";a',b ') 

L Tr[ U€ (a",b") -IU€ (a',b ')C -1/2 
E= +.-

(3.21 ) 

Proof of Lemma 3.6: We shall first derive (3.21), al
ready assuming that C - 112 exp [ - tH ± ] C - 112 are trace 

class. 
Let {tPj; jEN} be an orthonormal base of L 2 (R +) such 

that tPjED(C + 1/2) nD( C -1/2) for all j. Define, as in (2.6), 

f if (a,b) = <U ± (a,b)C -1/2tPiOtPj ) . 

The f if constitute an orthonormal base of L 2 (M + ). Hence, 

at least in a distributional sense, 

[exp( - At) ](a" ,b ";a',b ') 

= L Lfij(a",b")(fij, e-A'fl/) fl/(a',b'). 
i.j.€ k,l.€' 

(3.22) 
It is clear from the proof of Lemma 3.3 that 

(e-A'fl/)(a,b) = (U€,(a,b)C- 1/2e-
H

E"tPkotP/)' (3.23) 

Note that C - 1/2e - HE"tPk is well defined. since tPk ED( C 1/2). 

hence tPk=C- 1/2rPk for some rPko and since 
C- 1

/2 exp( -H€,t)C- 1/2 is a bounded (even trace-class) 

operator. From (3.23). (2.2). and the orthogonality of ~ + 

and ~ _ we obtain 

(f € -A'f€') _ '" '" ( -H.'.I, .1,) ij.e kl - u€,€,ujI e 'f'k.'f'i' 

Substituting this into (3.22) leads to 

[exp( -At)](a".b";a'.b') 

= L (U€(a",b")C- 1/2 tPi •tP) 
E,i.j,k 

X (tPj.U€ (a'.b')C -1/2tPk ) (e - H"tPk .tP;) 

= L Tr[ U€ (a",b") -IU€ (a',b ')C - 1/2e -H"C -1/2] . 
€ 
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Since the final result of this calculation is clearly a con

tinuous function in (a",b "), (a',b '), we may conclude 

(3.21) pointwise, even though a priori (3.22) was true only 

in a distributional sense. 0 

We now tum to the proof of Lemma 3.5. In the 

course of the proof we shall not only prove that 
C -1/2 exp( - tH ± )C -1/2 are trace class, but also calcu

late an estimate of the trace. The method used in this estima

tion will be useful again in the next section, as well as the 

estimate itself. 

Proof of Lemma 3.5: Again it is convenient to use the 

unitary transfonn (3.12). We have 

UC- 1I2U- 1 = (21T)- 1I2e'12, 

UH ± U -I = _ d: + V ± (s) , 
ds 

with V ± (s) = e2s + 2/3e' + (/3 _ p2. 
We thus have to study 

e'12 exp [ - T( - !:J. + V ± )] e'12 

on L 2(R). By the Feynman-Kac fonnula 

exp [ - t( - !:J. + V ± )] and therefore also 

e'12 [ - T( - !:J. + V ± )] e'12 has a positive integral kernel. 

It is therefore trace class if and only if this integrable kernel is 

integrable, i.e., if 

J~ 00 ds e'12{exp[ - T( -!:J. + V ± ) ]}(S,s)e'/2 < 00 • 

(3.24) 

By the Feynman-Kac fonnula we have (see, e.g., Refs. 13 

and 15) 

{exp[ - T( -!:J. + V ± ) ]}(s,s) 

= J dpW,T;S,s exp { - iT dt V ± [w(t)]} . (3.25) 

Here dpW.T;S"s, is the familiar pinned Wiener measure. We 

have denoted it by p in order to distinguish it from our Wie

ner measure df.L"w on the Lobachevsky half-plane. The mea

sure dpW,T;S"s, is pinned at Sl for t = 0, at S2 for t = T. It is a 
Gaussian measure with normalized connected con variance 

(t1<t2 ) 

(W(tI)W(t2»C= (W(tI)W(t2» - (W(tI»(W(t2» 

= 2t I (1 - t21T) . 

Substituting (3.25) into (3.24) gives 

J~ 00 ds e
S J dpW,T;s,s exp { - iT dt V ± [w(t)]} 

<J~ 00 ds e' J dpW,T;S,s T -I iT dt 

X exp{ - TV ± [w(t)]} (by Jensen's inequality) 

= J~oo dse
s J dpW,T;O,O T-

I 
iT dt 

X exp{ - TV ± [w(t) + s]} 

= J dpW,T;O,O T-
I 
iT dt J:oo dse' 
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X exp{ - TV ± [w(t) + s]} 

= J dp . T -I iT dt Joo ds e' - ",(I) W,T;O,O 
o - 00 

X exp[ - TV ± (s)] 

[translates s -s + w (t) for every t]. (3.26) 

(This technique, using first Jensen's inequality and then, 

after pennuting the integrals over t and s, shifting s by w (t), 

was used by Lieb l6 to derive bounds on the number of bound 

states for -!:J. + V; see also the discussion of the Lieb in

equality in Ref. 15.) 

One easily calculates 

J

dP e-",(I) =_I_ et(T-t)IT 
W,T;O,O , 

.j1iT 
(3,27) 

and 

T- I iT dtet(T-t)IT = il dreTr(l-r)<eTI4. (3.28 ) 

On the other hand, 

J: 00 ds e' exp[ - TV ± (s)] 

= i oo 

dx exp{ - T [X2 + 2/3x + 0 -+ y]} 
< ~ exp[ (/3 - ! )T ] . (3.29) 

Putting together (3.26), (3.27), (3.28), and (3.29) shows 

that condition (3.24) is fulfilled. This means that 
C- 1

/2 exp ( -H± T)C- 1/2 is trace class, and 

Tr[C- I
/2 exp ( -H± T)C- 1/2] <(1IT)eliT . (3.30) 

o 
With the help of Lemmas 3,5 and 3.6, and of estimate (3.30), 

we can prove (3.6) pointwise. 

Proposition 3.7: Let 9~ be defined by (3.5). Then, for 

all T> 0, and for all (a" ,b "), (a',b ')EM +, 

lim ge (a",b ";a',b ';T) = (a",b ";{3la',b';{3) . 

Proof By the definition of the affine coherent states in 

Sec. II B, and by (3.20), we have 

(a" ,b "; /3la',b'; /3) 

= (tPP IU+ (a",b ")-1 U+(a',b')tPp) 

= cp (C -1/2</>01U + (a" ,b ") -I U + (a',b ')C -1/2</>0) 

= cp Tr[ U + (a",b") -I U + (a',b ')C -1/2 PoC -1/2] , 

(3.31) 

where Po = 1</>0) (</>01 is the zero-eigenvalue spectral projec

tion operator of H +. 

Comparing (3.31) with Lemma 3.6, we find 

ICp-
1 [9~(a",b";a',b';T) - (a",b";{3la',b';{3)]1 

< ITr[ U _ (a",b ") -IU _ (a',b ')C -1/2e - vH_'C -1/2] I 

+ ITr[U+(a",b ,,)-IU+(a',b') 

XC- 1/2(e- vH
+

T -Po)C- 1/2 ]1 
<ITr[ C -1/2e - vHJC -1/2] I 

+ ITr[C- 1/2(e- vH
+

T -P
O
)C- 1/2]1· (3.32) 
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The estimate (3.30) is not sufficient to conclude that this 

converges to 0 for V--+ 00. We can improve this estimate in 

the following way. For all AE[0,1], 

e - H_'.;;;t!l-A' lie - H_(I -A)' II 

.;;;e- H_A'e-(I-A)({3-I/2)" . 

Hence, for all AE [ 0, 1 ] , 

Tr[ C -1/2e - H_'C -1/2] 

';;;e - (\ -A)({3 - 112)', Tr[ C -1/2e - AH_'C -1/2] 

/' _ ({3-112)', exp{[ ({3 - 1/2)2 + {3 ]At} 
~e . 

Ut 

If t> [{3 2 + 1/4] - I, we can choose A = [t ({3 2 + 1/4)] - I 

.;;; 1, and we find 

Tr[ C -1/2e - H_'C -1/2].;;; ({32 + Del - ({3- 112)" . 

If t.;;; [{3 2 + l] - I, we take A = 1, and we find 

Tr[C -1/2e -H_,C -1/2] ';;;(elt) e- ({3-112)". 

(3.33 ) 

(3.34 ) 

Combining (3.33) and (3.34) we find that there exists a 

constant ¢ such that, for all t> 0, 

Tr[C -1/2e -H_,C -1/2] .;;;¢(l + t -I)e- ({3-112)". 

(3.35) 

The same can be done for e - H +' - Po. There, the basic in

equality is 

e- H+' _ Po';;; (e- H+A' - PoHle- H+(\ -A)' - Poll 

.;;;e-H+A'·exp[ - (l-A)B(/3)t] , 

with 

{

({3 - p2, if {3 < ~ , 

B({3) = 2({3 - 1), if {3> ~. (3.36) 

This distinction is due to the fact that H + has more than one 

bound state if {3 > ~. In this case 2 ({3 - 1) is the energy dif

ference between the ground state and the first excited state. 

The estimate for H +, corresponding to the inequality (3.35) 
for H _, is then 

( 3.37) 

Substituting the estimates (3.37) and (3.35) into (3.32) 

leads to 

1ge(a",b";a',b';T) - (a",b";{3la',b';{3)1 

.;;;¢[1- (vT)-I]exp[ -B({3)vT] , (3.38) 

where ¢ denotes a constant [not the same as in (3.37) or 

(3.35)] which depends on {3, but not on v or T. It is clear 

that (3.38) --+0 for V--+ 00. This concludes our proof. 

For zero Hamiltonian, we have thus achieved our aim. 

We have given a sense to the formal expression (3.1) by 

regularizing it by means of a Wiener measure with diffusion 

constant v, and we have proved that we obtain the expected 

result for v --+ 00 • 
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IV. THE PATH INTEGRAL FOR NONZERO 

HAMILTONIAN 

For nonzero Hamiltonians our strategy will essentially 

be the same as for the zero-Hamiltonian case. We regularize 

(3.1) by means of a Wiener measure with diffusion constant 

v, i.e., we define 

9~ (a" ,b ";a',b ';T) = c{3evT{3 J exp [ - i{3 J a-I db 

- i f h(a,b)dt ] dp,"w(a,b). (4.1) 

Again the stochastic integral Sa-I db should be understood 

in the Stratonovich sense. We shall show that in the limit for 

v tending to 00, 9 ~ tends to the affine coherent state matrix 

element (a" ,b ";{3lexp( - iTH) la',b ';{3), where 

H=ci l f dp,(a,b)la,b;{3)h(a,b)(a,b;{3l· (4.2) 

Our proof of this statement will run along the same lines 

as for the Weyl-Heisenberg case, in Ref. 2. We shall there

fore not repeat the whole argument. We shall prove some 

basic estimates and show how, given these estimates, the 

proofs in Ref. 4 carry over to the affine path integrals studied 

here. 

The proof, in Ref. 4 of the convergence, for V--+ 00, of the 

v-dependent path integral 9 ~ proceeded in essentially three 

steps. First it was shown that 9 ~ was the integral kernel of a 

contraction semigroup. Then strong convergence, as V--+ 00, 

of these contraction operators was proved; this led to conver

gence of the 9~ in a distributional sense. Finally, pointwise 

convergence of the 9~ was proved. For these three steps, 

different conditions of a technical nature were imposed on 

the function h. 

We shall distinguish these same three steps here. We 

start however with a subsection listing different conditions 

on h and estimates following from these conditions. These 

estimates will be needed in the following three subsections, 

outlining the proof of our main result. 

A. Conditions on the function h and various estimates 

The first estimate will ensure that 9 ~ is a well-defined 

expression, i.e., that 

exp { - i iT dt h [a(t),b(t)] } 

is integrable with respect to dp, "w. For this it is sufficient that 

J dp,"w iT dt Ih [a(t),b(t)] 1< 00 . (4.3a) 

This can be rewritten as 

iT dt f dp,(a,b)KT_, (a",b ";a,b) 

X Ih(a,b)IK,(a,b;a',b ') < 00, 

with K, as defined by (3.3). 

(4.3b) 

The following lemma gives a sufficient condition on h 

for (4.3) to hold. 

Lemma 4.1: Define 
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_ [1+a
2
+b

2
] D(a,b): = d(a,b;l,O) = cosh I 2a (4.4) 

[see (2.12)]. If, for all a> 0, 

ka (h) = I djL(a,b) Ih(a,b) 12 exp[ - aD(a,b)2] < 00 , 

(4.5) 

then, for all (a',b '), (a" ,b ")EM +, and all T> 0, 

iT dt I djL(a,b)KT_, (a",b ";a,b) Ih(a,b) IK, (a,b;a'b') 

<;¢ [k(l6n-' (h)] 1/2 

X exp{1I16T [D(a',b ')2 + D(a" ,b ,,)2]} . (4.6) 

Note: We shall, throughout this section, denote all con

stants by ¢ without further identification. A constant ¢ may 

depend on {3. Occasionally as in (4.6) the constant ¢ may 

also depend on T. In all the cases where the T dependence is 

important, however, we shall explicitly keep track of it. 

Proof' By (3.3) we have 

iT dtKT_,(a",b";a,b)K,(a,b;a',b') 

roo -X'IBT 

<;¢ J~ dx --;:::::=:;::x=e==:::=;;-;-
~' ~cosh x - cosh 8' 

roo - JlIBT 
X J~ dy ye I(x,y) , 

~" ~coshy - cosh 8" 

where 8' = d(a,b;a',b '), 8" = d(a,b;a",b "), and with 

I(x,y) given by 

I(x,y) = iT dt[t(T_t)]-3/2 e -X'IBt e - JlIB(T-,) 

[ 

T] -3/2 {T12 
<; 2 e- JlIBT Jo dt t -3/2 e-x'IB, 

[ 

T] -3/2 (T12 
+ 2 e-x'IBT Jo dt t -3/2 e- JlIB' 

<;¢T -3/2(X- 1 + y-I) i
OO 

ds S-3/2 e - IIBs 

<;¢T-3/2(X- 1 + y-I) . 

On the other hand 

lOO d e-
ax

' 

o x ~coshx _ cosh 8 
1 roo e-a(u+O)' 

<; Jo du-------
~sinh 8 0 .JU 

-aO' 
<;¢a- I/4 _e __ 

~sinh 8 

loo d xe- ax
' 

o x ~coshx _ cosh 8 

roo (u + 8)e- a (u+O)' 

= 1 du~~=;~~===;;=~~~~== 
o ~cosh 8(cosh u - 1) + sinh 8 sinh u 
- ao' i oo - ao'8 

<; e du u + e ¢a-I/4 

~cosh 8 0 ~cosh u - 1 ~sinh 8 
<; (1 + a- I/4 8 1/2)e - ao' <;¢(1 + a- I/2)e - a~'12 . 
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Hence 

iT dt K T_, (a",b ";a,b)Kt (a,b;a',b') 

<;¢T-5/4(1 + T- I/2) [ 1 + 1 ] 
~sinh 8' ~sinh 8" 

_ (0" + 0-')/16T 
Xe . (4.7) 

This implies 

iT dt I djL(a,b)KT_t(a",b";a,b)lh(a,b)IK,(a,b;a',b') 

<;¢T-5/4(1 + T- I/2) 

X ([I djL(a,b) Ih(a,bWe - d(a,b;a',b')'IBT f/2 

X [IdjL(a,b) e-d(a,b;a-,b-)'IBT ]1I2} 
sinh [d(a,b;a",b ")] 

+ idem with roles of a' ,b ' and a" ,b " reversed. 

Since 

D(a,b) <;d(a,b;a'b ') + D(a',b') 

hence 

_ d(a,b;a',b ')2;;;. _ ¥J(a,b)2 + D(a',b ')2, 

the first factor is finite by (4.5). We only need to prove still 

that, for all a > 0, 

I

djL(a,b) e-ad(a,b;a',b')' < 00 , 

sinh [d(a,b;a',b ')] 

in order to conclude (4.6). Since both the measure djL(a,b) 

and the metric distance d are (left) invariant, it suffices to 

prove, for all a > 0, 

I

e - aD(a,b)' 
djL(a,b) < 00 • 

sinhD(a,b) 
(4.8) 

A careful analysis of the singularities of the integrand in 

(4.8), using the definition (4.4) of D(a,b), shows that this 

integral is indeed finite. 

Remark: We shall also need the following similar esti

mate. From (4.7) we obtain 

iT dt I djL(a,b)KT_, (a",b ";a,b) Ih(a,b) IK, (a.b;a',b') 

<;¢T-5/40 + T- I/2) (I djL(a,b) Ih(a,b) 12 

X exp{ l~T [d(a,b;a',b ')2 + d(a,b;a" ,b ")2] }) 112 

X {I djL(a,b) [sinhD(a,b)]-1 

[ 
1 ]}1I2 X exp - 16TD(a,b)2 . 

(4.9) 

Using the triangle inequality for the metric d one finds that 

d(a,b;a',b ')2 + d(a,b;a" ,b ")2 

;;;.! D(a,b)2 +! D(a',b ')2 _ D(a",b,,)2. 

Inserting this into (4.9) we find 
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iT dt J dfL(a,b)KT_t(a",b ";a,b)lh(a,b)IKt(a,b;a',b') 

<>:;¢ exp[ (1/8T)D(a" ,b ")2 

- (1/40T)D(a',b')2] [k(80n-' (h) r /2 
. (4.10) 

We shall impose conditions on the function h other than 

only (4.3). To formulate them, we first need the following 

definitions. 
For (a',b')EM +, and t > 0, we define the following func

tions onM+: 

¢a',b';t(a,b) = [exp( -tA)](a,b;a',b') , 

¢a'.b';oo (a,b) = cp-l(a,b;[J la',b ';[J) 

= Pp (a,b;a',b ') . 

It is clear that 

¢a',b';t(a,b) = ¢a,b;t(a',b ') , 

¢a',b';oo (a,b) =¢a,b;oo (a',b'). 

( 4.11) 

( 4.12) 

Some of the calculations in Sec. III can be viewed as esti

mates on the L 2_ and L 00 -norms of these vectors and their 

difference. We have 

II¢a',b';oo II = Cp-
1/2 

[by (2.10)], 

II¢a',b';t - ¢a',b';oo 112 

= J dfL(a,b) I [exp( - tA) - Pp] (a,b;a',b 'W 

= [exp( -2tA) -Pp] (a',b';a',b') 

= Tr{C-1/2[(e-2tH+ -Po) +e-2tH_]C-1/2} 

(4.13 ) 

[by Lemma 3.6 and (3.31)] 

<>:;¢(1_t- l )e- 2B(P)t [by (3.35), (3.37)], 

where 

R(P) = {(P - 1/2)2, if p<>:;~, 

2 (P - 1), if P> ~ . 

Hence 

lI¢a',b';t - ¢a',b';oo 11<>:;¢(1 - t -1/2)e- B(P)t, 

II¢a',b';tll<>:;cp-
1I2 + ¢(1 + t -1/2)e- B

(fJ)t. 

(4.14 ) 

(4.15 ) 

( 4.16) 

On the other hand, the estimate (3.38) can be rewritten as 

IW',b';t - ¢a',b';oo 1100 = sup I (¢a',b';t - ¢a',b ';00 )(a,b) I 
a.beM+ 

<>:;¢(1 + t -I)exp[ - R(P)t]. 

( 4.17) 

In the following three sections we shall consider the 

multiplication operator h on L 2(M +) defined by 

(hi )(a,b) = h (a,b) I(a,b) . 

We shall restrict ourselves to real functions h. Then the mul

tiplication operator is self-adjoint, with domain 

In the remainder of this subsection we shall determine 

sufficient conditions on h ensuring that ¢a',b';oo and ¢a',b';t 

are elements of D(h), i.e., 
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J dfL(a,b)lh(a,b)1
2

1¢a',b';00 (a,b)1
2< 00 , 

J dfL(a,b)lh(a,b)1
2
1¢a',b';t(a,b)1

2
< 00. 

(4.18 ) 

( 4.19) 

We shall also estimate IIh(¢a',b';t - ¢a',b';oo ) II. We start with 
( 4.18), the easiest one. 

Lemma 4.2: If 

J
dfL(a,b)lh(a,b)1

2
[ ~ 2]2

P

<00, (4.20) 
1 +a +b 

then (4.18) is satisfied, and 

[ 
1 + a'2 + b ,2 ]P 

IIh¢.',b,JI<>:;¢ 20' . (4.21) 

Proof: By (2.11), we find 

Ilh¢.',b,JI 2 
= J dfL(a,b) Ih(a,b Wcp- 21 (a,b;[J la',b ';[J W 

=Cp-2 J dfL(a,b)lh(a,b)1
2 

X [1 + cosh ~(a,b;a',b ')] - 2P 

<>:;¢Jd
fL

(a,b)lh(a,b)1 2 [ 1 +coshD(a,b) ]-2fJ 
1 + cosh D(a',b ') 

[use D(a,b) <>:;d(a,b;a',b ') + D(a',b ')] 

<>:;¢ ( 1 + a::- b ,2 Yp J dfL(a,b) Ih(a,b) 12 

[ 
20 ]2P 

X <00. 
1 + a2 + b 2 

o 

The other two estimates involve some additional calculation. 

We start by estimating weighted L P-norms of ¢a'.b';t. 

Lemma 4.3: For A> 1, fL > 0, one has 

1).,1' (t) = f dfL(a,b) I [exp( -tA)](a,b;I,O)I). 

X [ 1 + a:a + b 2 r 
(4.22) 

with 

E(A fL) = A (p _~) + max [(1 - ,1,)2 + (fL + 1/2)2 
, 4 4 A-I' 

M0+ 1 ~A)+ 4(A~ 1)]' 

where, for all aER, M(a) = max(a,a2
). 

Proof: We first estimate I [exp ( - tA) ] (a,b; 1,0) I, using 

the same technique as in the proof of Lemma 3.5. By Lemma 

3.6 

[exp( - tA) ](a,b;I,O) 

= [exp( - tA) ] (1,O;a,b) 

= LTr[ UE(a,b)C-1/2e-H.rC-1/2] . 

E 

Using again the unitary transform (3.12) we can rewrite this 

as (using the Feynman-Kac formula) 
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[exp( - TA) J( 1,0;0,b) where 

= r f'" ds ei€be' _1_ e' + (112 Jln a 

" - 00 21T 

00 = iT dt elw(ll > 01 = piT dt eW(t) , 

X exp[ - T( - :s: + V€ )](S+ Ina,s) 
02=p

2T, 

Hence 

= ¢ ~ J"" ds eiEbe
' eS + (1I2J1na J dfl . k r W, T;O,ln a 

E - 00 

[exp( - TA)}( 1,0;0,b) 

= ¢ ra e(/3 -1/41Tf dr> . 0 - 112 eiba,/<IQ 
yu rW,T;O,Jna 0 

x exp { - iT dt v. [s + w(t)] } 

= ~ i"" dx eiEbx..[a, f dpW.T;O,lna 

xe-bZ/4aoe-az+a1lao. (4.24) 

X exp{ - iT dt VE[w(t) +lnX]} 

= ¢ f: 00 dx e
ib

:< Fa f dpW,T;O,lna 

X exp{ - iT dt vE(X) [wet) + Inlx! J } , 

where €(x) = xllxl for x=r60. Since 

VE(X) [w(t) + InJxl J 

(4.23) 

From the Cauchy-Schwarz inequality 

af =,82Tz[iT ~ ew(t) r <JJ2T2 iT d; e2w
(t) , 

hence - 02 + oi /00 <0. Hence 

I (exp(-TA)] (o,b; 1,0) I 

<Ii 'iieCP - 1I4)TJdr> . [0 (W»)-1/2 )lU r W,T;O,ln a 0 

xexp[- b
2 

]. 
4ao(w) 

with 

ao(w) = iT dte2OJ
(t). 

= xV"'(t) _ 2,8£(x) Ixjew(t) + (,8 _ !)2 

= x 2e2<vU) _ 2/3xe"'(t) + (,8 _ !)2 , 
Since A > 1, we find (useeitherJensen'sor Young'sinequali

ty) 

[f df1 . [a (W)]-ll2 e -b
Z
/4aOCW l]A 

r W. T;O,ln 11 0 
we have 

[exp( - TA)J(l,O;o,b) 
<¢ T - (A - 1)12 exp[ _ A 4-;.,1 (In 0)2] 

= ¢.J(1 e(/3-1/4)Tf dr> 
rW,T;O,lna 

xfdf1 . (a (w)] -AI2 e -Ab
Z

/4aoCw). 
rW,T;O,lna 0 

1 
Hence [see (4.22)], 

X (1 + all-' + b 2;t)exp [ - A-IOn 0)2J f df1 . [a (w)] -A/2 e - Ab'/4ao(wl 4 T r W,T;O,ln a 0 

<¢ e-<T(P- J!4JT - (X - 1)12 1'" do f d'P OAI2 - 2-1' 
W,T;O,lna 

o 

xexp [ - '\-;, 
1 

(In 0)2]{ (1 + a2;t) [aO(w) ] (1 -A)12 + [aO(w)]P + (\ - A)/2} , 

Let us estimate 

Jti,T(X) == f dpW,T;O,x (iT dt e
2VJ

(t) r· 
If either 8<0 or 8 > 1 we can apply Jensen's inequality and obtain 

J (X)<fd'P . T t3
-

l lT dte2tiw
(tJ ti,T W,T;O,x 

o 
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(4.2S) 

(4.26) 
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If 0<8<1, then, by Young's inequality, 

J.5,T(X)<[I dpW,T;O,x iT dte2W
(t) r[I dpW,T;O.x r -.5 <¢ T.5-112e.5T e.5x. 

Combining (4.26) with (4.27) we obtain, with M(8) = max(8,82) , 

J.5,T(X)<¢ T.5-112 e.5x ~(.5)T. 

Substituting this into (4.25) we find 

(4.27) 

I (T) <¢ f!'T({3- 114) T -A + 112 JOO dx exp [ _ A-I x 2 +~] [eT(I -,1)'/4 e -I-'X( 1 + e2f'X) + Tl-'e™(1-' + (I -,1)/2)] 
,1,1-' _ 00 4T 2 

<¢ TI-Af!'T({3-1/4) 1 [exp{T[ (l-A)2 + (f-l + 1!2)2]} 
~-1 4 A-I 

+ Tl-'exp{T[MG + 1 ;A) + 4(A ~ 1)]}]' 
It is easy to see that this leads to (4.22). 

With the help of Lemma 4.3 we can now estimate 

Ilh(tPa',b';t -tPa'.b';oo)II, 

Lemma 4.4: Let h be a function satisfying 

Cl-'r(h)=Idf-l(a,b)lh(a,b)12+r[ ~ 2]1-' <00, 
, l+a+b 

for positive parametes r,f-l satisfying the following conditions: 

f-l <r(f3 -~) + 2f3, 

sup [2( 1 _ a)B(f3) _ _ r_ E(a 2(1T + 2) , 2f-l )] >0, 
aE(m,l) r+ 2 r r 

where 

m = r max(l, 1 + 2f-llr) . 
2(1T+2) f3 

Here 

E(A,r)=A(f3_1.)+max[(1-A)2 + (r+1!2)2, M( + l-A)+ 1 ] 
4 4 A-I r -2- 4(A - 1) , 

with M(8) = max(8,82
), and B(f3) = (f3 - !)2 if f3<~, B({3) = 2(f3 - 1) if f3>~. 

Then there exist constants ¢ I' ¢2 > 0 such that 

(
1 +a'2+b'2)I-'/(r+2) 

Ilh("', '. -"', '. )II<¢ [1+t- l +r/[2(r+2)I]e-¢,t . 
'l'a ,b ,t 'l'a ,b ,00 I 2a' 

Proof' 

< [CI-',r(h)]21(r+2) s~r I [tPa',b';t -tPa',b';oo ](a,b)1 2(1-a) 

o 

(4.28) 

(4.29a) 

(4.29b) 

(4.30) 

{ 
I 

}

rl(r+ 2) 
X df-l (a,b) I [tPa',b';t - tPa',b ';00 ] (a,b) 12a(r+ 2)lr[ cosh D(a',b ')cosh d(a,b;a',b ') ] 21-'Ir 

(
1+ '2+b'2)21-'/(r+2) < ¢ [1 + t - 2(1 - a)] e - 2(1 - a)B({3)t _-,--a_-,--_ 

2a' 

X {I df-l(a,b) [ltPl,O;t (a,b) 12a(r+ 2)lr + ItPI,O;oo (a,b) 12a(r+ 2)lr] ( 1 + : + b 2 YI-'/T/(r+ 2) 

[use (4.17) and the left invariance of the measure df-l ]. This holds for all aE [0,1 ]. If we choose a such that a > m, with m as 

defined above, then 2af3(r + 2)/r - 2f-llr> 1, hence 
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f dILI¢l,o;oo (a,b)1 2a(r+2)/r( 1 +a~+b2rl'lr 

- f ( 20 )2ap(r+2)/r-21'Ir 
-¢ dIL 2 2 <00. 

1 +a +b 

On the other hand a> m also implies 2a(r + 2)/r> 1. Us
ing Lemma 4.3 leads then to 

11h(¢a',b';t - ¢a',b';oo )11 

<¢[ 1 + t - (I-a)] [1 + t r/[2(r+2») -a] 

(

1 + a,2 + b,2 )21'/(r+ 2) X e - 2( 1- a)B(p)t 

20' 

X [ 1 + f 2a(r + 2)/r,21'Ir ] rl(r + 2) 

(
1 + a'2 + b'2 )21'/(r+2) <¢[l +t -1+r/[2(r+2»)] 

2a' 

xexp [ - (1 - a)B({3)t + r tE 
2(r + 2) 

x (2a(rr+ 2) , ~)] . 

This holds for all aE(m,l]. It is clear from this that (4.30) 

follows if the conditions (4.29) are satisfied. • 
Remark: The conditions (4.29) are sufficient condi

tions on the pair (r,IL), given{3, ensuring that (4.30) holds. 
The conditions (4.29) are however rather complicated, and 

may not be easy to check. It is possible, of course, to only 
consider one value for a, instead of the whole interval (m, 1). 

This considerably simplifies the condition on r,p., but may be 
too restrictive. One possibility of choosing such a fixed value 
for a is, e.g., a = r/(r + 2). It is then sufficient that 

IL <r({3 -!) , 

4B({3) 
r< , 

E(2,2{3 - 1) 

to ensure that the conditions ( 4.29) are satisfied. This allows 
only a finite range for the parameter r, however, and is thus 

very restrictive. It turns out that it is easier to proceed in the 
inverse direction, i.e., to start from the pair (r,IL) and to 
determine for which values of {3 the conditions (4.29) are 

satisfied. One finds that the following conditions imply 
(4.29): 

{3>r(1 + 2IL/r)/2(r + 2)] , 

{3> ~, (4.31a) 

p> 1 [4-~a+-r-E(2a r+2, 2IL)] , 
2(2 - 3a) r + 2 r r 

for some a satisfying 

r d _r..:.-(1_+.:....-!2IL--,/_r",-) 
----<a<jan a< 
2(r + 2) 2{3(r + 2) 

(4.31b) 

Here E is defined by 

E(A,y) = E(A,y) - A({3 - !) 

[ 
(1-A)2 (y+ 1/2)2 

= max + , 
4 A-I 

(
I-A) 1] 

M y+-2- + 4(A-l) , 
(4.31c) 

withM(x) = max(x,x2). 
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Note that the second condition on a in (4.31 b) is an 
implicit condition, since it contains {3 again, and {3 is bound

ed below by a function depending on a. In the explicit exam
ples below (see Remark 2 at the end of Sec. IV) we shall first 
disregard this extra condition on a, compute a lower bound 

on {3, and then verify that the condition is satisfied. 

Our last estimate involves IIh¢a',b ';t II. From Lemma 4.2 
and 4.4 one immediately has 

( 
1 + ,2 + b ,2 )21'1r 

Ih¢, '. 1< ¢ [1 + t - 1 + r/2(r+ 2)] _,--a---,-__ 
a,b ,t 20' 

(4.32) 

if h satisfies (4.28), where IL, r, {3 fulfill either the conditions 

(4.29) or the conditions (4.31). 
All in all we have three different technical conditions on 

h. The first one, (4.5), ensures that ;?JJ~ is well defined. The 

second one, (4.20), ensures that ¢a'.b';oo ED(h) for all 
(a',b ')EM+. The third one, (4.28), ensures that 

¢a',b';tED(h) for all (a',b ')EM+, and all t>O. Note that 
(4.28) -+ (4.20) -+ (4.5). 

In what follows we shall always assume that (4.28) is 

satisfied. 

B. The path as Integral kernel of a contraction 
semlgroup 

Since h satisfied condition (4.28), hence condition 

(4.5), we know by Lemma 4.1 that ;?JJ~ is well-defined. 

Copying the argument in Ref. 4 the following proposition 
can be proved. 

Proposition 4.5: Let h be a real function satisfying condi
tion (4.28). Then there exists a strongly continuous semi
group of contractions E( v,h;t) on L 2(M +;dIL) such that 

[E( v,h;t) ](a" ,b ";a',b') = Cp- 1 ;?JJ~ (a" ,b ";a',b ';t) . 

(4.33 ) 

These contraction operators are related to exp( - vAn by 
the integral equation 

(f2,E(v,h;T)fl) = (f2,e- VATfl) -i iT dt 

X(/z,E(v,h;T-t)he-VATfl)' (4.34) 

This integral equation holds if fl' /zEC 0 (M +) or if flED 

and f2EC 0 (M + ) U D. Here D is the finite linear span of the 

vectors ¢a,b;oo defined by (4.12). 
Proof: This proposition is completely analogous to prop

osition 2.1 in Ref. 24, and the proof runs along exactly the 

same lines. We shall therefore only outline the main argu

ments, and fill in the technical details only where the present 
situation is different from that in Ref. 24. 

Equation (4.33) is proved in three steps: for 

hEC 0 (M + ), for hEL 00 (M + ), and finally for all h satisfying 
(4.28). 

For hEC 0 (M +) one uses the Trotter product formula 

to show that 
;?JJ~ (a" ,b ",a',b ';T) 

= cp{exp[ - (vA + ih)T]}(a",b ";a',b') . (4.35) 

Since h is bounded, the operator vA + ih is well defined, and 

generates a semigroup. Since A >0, and h is a real function, 

this is a semigroup of contractions. 
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Using the dominated convergence theorem for gP~, and 

strong resolvent convergence for exp [ - (vA + ih) T], one 

can extend (4.35) to all bounded functions h. 

In a next step one uses again dominated convergence 

arguments to show that, for all functions h satisfying (4.5), 

there exists a strongly continuous semigroup of 

contractions E( v, h; t) satisfying (4.33). These operators 

are constructed as s-limn _ 00 exp [ - (vA + ihn)t ], where 

hn(a,b) =h(a,b) if Ih(a,b)l<n, hn(a,b) =nsgnh(a,b) 

otherwise. (See Ref. 4; the arguments given there carryover 

without problems.) 

To prove (4.31), we use the fact that the integral kernel 

of E( v, h; t) is given by a path integral, i.e., (4.33). We have, 

for all (a', b '), (a", b " ) EM + for all T> 0 (see Ref. 4), 

gPh (a" b "'a' b "T) 
v , " , T 

= gP~(a",b";a',b';T) -iC(3-1 i dt f d,u(a,b) 

X gP~ (a",b ";a,b;T - t)h(a,b) gP~ (a,b;a',b ';t) . 

(4.36) 

Take now II> 12EC(;,(M+). We multiply (4.35) by 

h(a",b") II(a',b') and integrate over d,u(a',b') 

xd,u(a" ,b "). Using the upper bound (valid for all h [this 

follows from (4.1) ] ) 

IgP~ (a",b ";a',b ';t) I <cf3 evlf3 KVI (a",b ";a',b '), (4.37) 

and the estimate (4.6), one sees that the resulting integral 

converges absolutely. This allows us to change the order of 

the integrations, and leads to (4.34), for all/l,J2EC (;' (M + ). 

We can extend this to the case where/lEiJ. To do this, 

we use (4.10). Take/lEiJJ2EC (;' (M +). Again we multiply 

(4.36) by 12(a" ,b ") II (a',b ') and integrate over d,u(a',b ') 

X d,u (a" ,b " ). Since the resulting integral is absolutely con

vergent by (4.37) and (4.10), we may again reverse the or

der of the integrations. We thus obtain 

([2,E( v,h;T)I,) 

= ([2,e- VA 'iI) -iCf3-2 iT dt f d,u(a",b")/2(a",b") 

X f d,u(a,b)gP~(a",b ";a,b;T- t)h(a,b) 

X f d,u(a',b ') gP~ (a,b;a',b ';t)/1 (a',b '). 

We know however that 

(4.38) 

hence e - vA'!1 = II for all t. This means in particular that 

e - vA'!IEiJ(h) for all t, so that we may rewrite (4.38) in the 

form (4.34). 

Once (4.34) is obtained for/lEiJ,J2EC (;' (M +), one uses 

a straightforward approximation argument, using again that 

e - vA'!1 =1" together with the fact that C (;' (M +) is dense, 

to conclude (4.34) for/lJ2EiJ. 

Remark: By exactly the same arguments one can also 

prove that for all I, J2EC (;' (M +) 

(/2,E(v,h;T)(1-P(3)/,) 

= (/2,e-
vAT

(1-P(3)/I) 

+ i iT dt ([2,E( v,h;T - t)he - vAI(1 - Pf3 )/,) . 

(4.39) 

C. Operator convergence of E(v,h;7) for v-+ 00 

The proof of the strong operator convergence of 

E( v,h;T) hinges on Eg. (4.34). Again the proof in Ref. 4 can 

essentially be taken over, without major problems. The only 

difference is that we have to be a little more careful, because 

the operator A had a purely discrete spectrum in the Weyl

Heisenberg case, and we could therefore conveniently use an 

orthonormal basis consisting of eigenvectors of A. This is not 

possible here. We shall therefore, in our proof of Proposition 

4.6 below (the analog of Proposition 2.2 in Ref. 4) payatten

tion only to those technical details where our argument 

differs from that in Ref. 4. 

Proposition 4. 6: Let h be a real function on M + satisfying 

(4.28). Define the operator Pf3hP(3 on the domain {(; 

P pfEiJ(h)}. Clearly D, the finite linear span of the ¢a,b;oo , 

satisfies DCD(Pf3 hPf3 ). If P(3hP(3 is essentially self-adjoint 

on D Ell ?r~, then, for all T> 0, 

s-limE(v,h;T) = P(3 exp[ - iP(3hPf3T]P(3 . ( 4.40) 
v- 00 

Proof To prove (4.40), the operator E(v,h;T) is split 

into three parts, 

E(v,h;T) =E(v,h;T)(l-P(3) +P(3E(v,h;T)P(3 

+ (l-Pf3)E(v,h;T)Pf3. 

The treatment of the last two terms is completely analogous 

to the proof of Proposition 2.2 in Ref. 4. We shall therefore 

restrict ourselves here to a discussion of the first term and an 

N estimate related to it. 
J; = L cj¢aA,oo &7t"f3 ' F (439) b' i" Ill" f j~1 rom . weo tam,lora )1' 2EC(;,(M+), 

__________________________________________ -J
1 

T 

1(f;,E(v,h;T)(I-Pf3)/I)I<IV211'lle-VAT(I-Pf3)II'11/111 + 11/211·i dtllhe-vAI(l-Pf3)/III· 

We have lie - vAT(l - P(3) II <e - vTB(f3), with B(P) as defined by (4.14), and 

Ilhe - vAI(l - Pf3 )/111 2 
= Ilh(e - vAl - P(3 )/1112<f d,u(a',b ') f d,u (a" ,b ") VI «a',b ') I VI (a" ,b ") I 

X [f d,u(a,b) Ih(a,bWI (¢a',b';vl - ¢a',b';oo )(a,bW] 1/2 

X [f d,u(a,b) Ih(a,b) 1
2
1¢a",b";vl - ¢a",b";oo (a,bW] 1/2 

< ¢[ 1 + (vt) -, + r/[2(r+2)Jj2e- 2kvl [f d,u(a,b) 1/1(a,b) I [ 1 + ~a+ b 2 rr ' 
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by Lemma 4.4. Substituting this into (4.41) leads to 

IIE(v,h;T)(1-Pp )/111 

<e - vTB(.Bl IlflII + ~ I kl' [ 1 + a:a + b z rill 
X 1"0 dt [1 + t -I +rIZ(r+Z)]e- kl • ( 4.42) 

This holds for all/IEC 0' (M +). Since CO' is a dense subspace 

of L z(M +;d f.l) and since the operators E( v,h;T) are con

tractions, this implies, for all T> 0, 

s-lim E( v,h;T) (1 - Pp) = 0 . 
v-oo 

From (4.42) we can clearly also conclude that 

!~~ IT dt I (/z,E(v,h;T - t) (l - Pp )/1) I = 0, 

for all/I JzEC 0' (M +), and hence (by the same density argu

ments as above) for all/l,JzEL 2(M +;df.l). This estimate is 

needed in the discussion of PpE(v,h;T)Pp (see Ref. 4). 

As already mentioned above, the remainder of the proof 

is a transcription of the proof of Proposition 2.2 in Ref. 4. 

D 

Our ultimate goal is to link .9'~, at least in the limit for 

v ..... 00, to the unitary group exp( - iTH) generated by a 

HamiltonianH onL 2(lR+). This isin fact achieved by Prop

osition 4.6. To see this, write the integral kernel of PphPp, I 

D. Pointwise convergence of 9~ for v .... 00 

(PphPp) (a",b ";a',b') 

=cp-
z J df.l(a,b) 

<a",b ";[3la,b;{J )h(a,b)(a,b;[3la',b ';(J) . 

One easily checks from (2.13) that this is exactly the integral 

kernel of UpHU~, with 

H = cp-
I J df.l(a,b) la,b;{J )h(a,b) (a,b;l31 . 

ThusPphPp = UpHUl The condition thatPphPp be essen

tially self-adjoint on D ffi :Jr p is exactly equivalent to the con

dition that H be essentially self-adjoint on Dc> the finite lin

ear span of the (affine) coherent states la,b;{J). 

The conclusion (4.40) can now be rewritten in terms of 
H. One finds (see also Ref. 4) 

[Pp exp( - iPphPp T)Pp ] (a" ,b ";a',b ') 

=cp-l(a"b";{Jlexp( -iHT)la',b';{J). 

The strong convergence (4.40) implies, in particular, con

vergence of the corresponding integral kernels, in a distribu

tional sense (i.e., when evaluated on test functions). We 

have therefore, at least in a distributional sense, 

lim .9'~ (a" ,b ";a',b ';T) = (a" ,b ";{J Ie - iHTla'b ';[3) . 

(4.43 ) 

This result will be sharpened to pointwise convergence in the 

next subsection. 

To prove (4.43) for all points (a" ,b "), (a',b ')EM +, rather than ina distributional sense, we again use an integral equation 

relating .9' ~ and .9'~, obtained by combining (4.36) with the complex conjugate version of (4.36) for - h. 

9~ (a" ,b ";a',b ';T) = .9'~ (a" ,b ";a',b ';T) - i cp- I IT dt J df.l (a,b).9'~ (a" ,b ";a,b;T - t)h(a,b).9'~ (a,b;a',b ';t) 

- Cp- 2IT dtz f' dt l J df.l (al,b l ) J df.l(az,bz) 9~ (a" ,b ";a2,bz;T - tz)h(az,bz) 

X .9' ~ (az,bz;a Ibl;tZ - tl)h (a l,bl).9'~ (al,bl;a',b ';t I) . 

Rewriting this in terms of rp a,b;1 and rp a,b; 00 , and combining it with an analogous integral equation for the coherent state matrix 

elements of exp ( - iTH) leads to (see Ref. 4) 

Cp- I [ .9'~ (a",b ";a',b ';T) - (a" ,b ";13 Ie - iTH la',b ';13) ] 

= (tPa",b";vT - rpa",b";oo )(a',b ') 

- i IT dt (rpa",b";v(T-Iph(rpa',b';VI - rpa',b';oo) - i IT dt (rpa",b";v(T-t) - rpa",b";oo ,hrpa',b';oo) 

-IT dtz f' dtl (hrpa",b ";v(T- I,) ,E( v,h;tz - tl)h [rpa',b ';VI, - rpa',b ';00 ]) 

( (" - Jo dtz Jo dtl(h [tPa",b";v(T-I,) -rpa",b";oo ],E(v,h;tz-tl)hrpa',b';oo) 

( 4.44) 
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Denote the six terms in the right-hand side of (4.45) by 

a l , ... ,a6 • We show that aj -+ v- "" 0 for j = 1, ... ,6. 
The estimates (4.15) and (4.30) can be rewritten as 

Ill,6a.b;t -l,6a,b;"" 11.if(t) , 

IIh (l,6a,b;t -l,6a,b;"" ) II <g(a,b;t) , 

where the functionsf(·) and g(a,b;') [(a,b) fixed] are 

monotonically decreasing in t, and integrable, 

i"" dtf(t) < 00 , 

i"" dt g(a,b;t) < 00 • 

On the other hand, (4.13) and Lemma 4.2 tell us that 

IIl,6a,b;"" II = Cp- 112 [for all (a,b)] , 

and [(a',b'), (a",b") fixed] 

Ilhl,6a',b ';"" II <¢, Ilhl,6a',b';"" II <¢ . 

We now discuss the terms a l , ... ,a6 one by one. 

Using (3.38) we have immediately 

v- "" 

The next four terms can be estimated in terms off, g, 

a2 <¢ iT dt [1 + f(v( T - t) )]g(a',b ';vt) 

1 i"" <¢- dt g(a',b ';t) 
v 0 

+ ¢f( v;) ~ i"" dt g(a',b ';t) 

+¢g(a',b';v;) ~ i"" dtf(t) 

«J...)¢ -+ 0, 
v v_ 00 

a3<¢(Tdtf(v(T-t)«J...)¢ -+ 0, 
Jo v v_ 00 

a4 <¢ iT dt2 1" dtl [1 + g(a",b ";v(T - t2»)]g(a',b ';vtl ) 

<¢ iT dtlg(a',b';vtl)'(T- tl ) 

x~¢[i"" dt~(a",b";t2)]'[i"" dtlg(a',b';tl )] 

<¢(~~)+¢TJ... ("" dtlg(a',b';tl ) -+ 0, 
v- v Jo V-oo 

( (" as<Jo dt2 Jo dt l g(a",b";v(T-t2») 

<TJ... ("" dtg(a",b";t) -+ O. 
v Jo v __ 00 

Finally, a6 -+ 0 follows from Proposition 4.5 and the domi-

nated convergence theorem. This completes the proof of our 
main result. 

Theorem 4.6: Let h be a real function on M +. Suppose 
that (1) h satisfies condition (4.28), (2) the operator 
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H = Cp-
I J dJ.l(a,b) la,b;/3 )h(a,b) (a,b;/31 (4.45 ) 

is essentially self-adjoint on Dc, the finite linear span of the 
affine coherent states. Then, for all (a',b '), (a" ,b ")EM + and 

for all T>O 

!~~ cpe
vTfJ J exp [ - if3 J a-Idb - i J h(a,b)dt ] 

XdJ.l"w (a,b) = (a" ,b ";/3 Ie - iTH la',b ';/3) . 

E. Remarks 

1. The main result in the pq-notation 

We define Ep =f3 -I app2 ap + f3p-2 a~. 

Let Kt be the associated heat kernel, in 
L 2(M +; [(1 - l/2{3)/21T ]dp dq), 

Kt (p" ,q"; p' ,q') == [ exp( tEp) ] (p" ,q" ;p' ,q') 

e - t 14Pf3 3/2 

2/2ii(f3 - pt 3/2 

l
"" xe - px'/4t 

X dx, 
fj ~cosh x - cosh.5 

where 

.5 = d(p",q";p',q') 

= COSh-l{ 1 + P";" [(p,-I - p"-1)2 + f32(q' _ q" )2]}. 

Define dfi,W;',qu;p',q' to be the associated Wiener process 
with diffusion constant v, pinned at p' ,q' for t = 0, at p" ,q" 

for t = T. In particular dfi,"w satisfies 

f d- v T K- (" " , ') J.lw;p',q';p',q' = vT P ,q ;p ,q , 

1 - l/2{3 fd d d- v,T,-! d-v,~ ." 21T P q J.l W;p ,q ;p,q J.l W,p,q,p ,q 

- dijV,T 
- r- W;pU,q" ;p',q' . 

Let h be a function on M + satisfying 

f dPdqlh(P,q)12+r[ 2P 2 ]1-' < 00, (4.46) 
1 + P (q + 1) 

for some J.l,r satisfying condition (4.29). 
Let Hbe the operator on L 2 (R+) defined by 

H = 1 - l/2{3 f dp dqlP,q;/3> h(p,q) <p,q;/3l, 
21T 

where, for t/JEL 2 (R+), 

(P,q;/3It/J) = (2{3)P[r(2{3)]-1/2p-P 

xi"" dkkPe-k(pr'-iq)t/J(k) 

[see (2.14)]. 

Define the path integral 

f!jJh (p" q" , , T) v ,;p ,q; 

= e
vTI2 f exp[i f pdq - i f h(p,q)dt ]dfi,W;.,q';p"q, 
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[ this differs by a factor C /3 from (4.1 ); this factor is absorbed 
in the measure in the pq-notation]. 

Translated into the pq-notation, the main theorem now 
reads ( 1) if h satisfies (4.45), and (2) if H is essentially self

adjoint on Dc, the finite linear span of the Ip,q;/3), then, for 
all (p" ,q"), (pl,q')EM +, for all T> 0, 

lim 9Z (p" ,q" ;pl,q';T) 

= (p" ,q";/3 I exp ( - iTH) IP' ,q';/3 ). 

2. Examples 

(a) The simplest example is, of course, provided by 
bounded functions h(a,b), 

Ih(a,b)I<M. 

In this case the operator H defined by ( 4.45) is also bounded 

by M; H is thus clearly essentially self-adjoint on Dc. More
over the condition (4.28) is satisfied for arbitrary r> 0 and 
for all,u > 1. Let us now determine from (4.29) or (4.31) the 
restrictions imposed on /3 by the condition,u > 1. Two possi

bilities have to be distinguished: ! </3< ~ or /3>~. In the first 
case we have R(/3) = (/3-!)z in (4.29b), leading to the 
condition 

2(1-a)/3Z-2/3+!>_r_ i (2a r+2 ,2,u), (4.47) 
r+2 r r 

with i as defined by (4.31c). It turns out there is no set of 

values (a,r,,u) with r/2(r + 2) <a < 1, and,u > 1, such that 

( 4.4 7) is satisfied for /3E q, H. 
For /3> ~ we have to determine /3 satisfying the condi

tions (4.31). One has then to choose (a,r,,u) so as to produce 

the smallest possible lower bound on /3 consistent with the 

other conditions. For,u > 1, r = !, and a = j one finds that 

(4.31a) reduces to /3 > 2.06, while all the other conditions 

are fulfilled also. 
This means that Theorem 4.6 allows us to conclude that, 

for bounded Hamiltonians H associated to bounded func

tions h(a,b), 

!~~ c/3e
v

T/3 f exp [ - i/3 f a-I db - i f h(a,b)dt ] 

xd,u'{y(a,b) = (a",b ";/3leiTH la',b ';/3), (4.48) 

for all /3 > 2.06. 
We believe that, for bounded functions h, (4.48) should 

hold for all/3>!, since it holds for h = const whenever /3>!. 
The 2.06-bound found here is probably an artifact of our 

method of proof, which uses Young's and Jensen's inequal

ities several times (in the proof of Lemma 4.3). 
(b) We next tum to examples of the form 

d 2 

H= --+ Vex) 
dxz 

on L Z(R+). 

In order for this operator to be essentially self-adjoint on 

Dc, V must have a singularity at the origin. More precisely, 
H will be essentially self-adjoint on Dc (regardless of /3), 

e.g., for Vex) of the form 

Vex) = Clx- a, + Czxa" 
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where either a l > 2, CI > 0 or a l = 2, CI>~' and either 
0<az<2, Cz arbitrary, or a z > 2, Cz>O. In all these cases V 

has a strong singularity at x = 0; for x ..... 00, V may tend to 

00 , a constant, or - 00, depending on the values chosen for 
the different parameters. 

Let us now construct the corresponding functions 
h(a,b), and determine the values of /3 for which Theorem 
4.6 applies. The function ho(a,b) corresponding to - d Z

/ 

dxz is given by 

ho(a,b) = b z - (l/2/3)az 

[one easily checks that substitution of ho into (4.45) leads to 
- d Z / dxZ

]. Similarly, the function ha (a,b) associated with 
x - a is given by 

h ( b) 
= 2

a
r(2/3 - 1) a 

a a, a . 
r(2/3+a-1) 

Hence the function h(a,b) corresponding to the Hamilto
nian - (d Z / dxz) + V, with Vas above, is given by 

h(a,b) = b Z __ 1_ aZ + C
I 

2
a
'r(2/3 - 1) aa, 

2/3 r(2/3 + a l - 1) 

+C
z 

2-
a
'r(2/3-1) a-a,. 

r(2/3-az -1) 

If Cz#O we have to impose the additional restriction 
2/3 - a z - lEI: - N. 

We shall restrict ourselves to one particular case now. 

We take Cz = 0, a l = 2, and CI>~' The Hamiltonian H is 
essentially self-adjoint, and 

h(a b) = b Z +J.. (~_J..)az. 
, /3 /3-! 2 

The pairs (r,,u) for which this function satisfies the condi

tion (4.28) are restricted by the condition,u > 2 (r + 2). We 

have thus to find (r,a,,u) satisfying this condition as well as 
the conditions (4.31b); this then enables us, from (4.31a) to 

compute a/3o such that Theorem 4.6 applies, for this Hamil

tonian, for all /3 > /30' For a = j,r = 1, and,u > 6, one finds 
that (4.31a) becomes /3> 27.33. It is easy to check that all 
the other conditions are satisfied as well. Hence Theorem 4.6 
applies toH = - dZ/dxz + Cx- z, C>a, if/3> 27.33. Again 

we believe that this is not optimal. The true lower bound /30 

on/3 for which (4.48) would hold, whenever /3 > /30' is prob
ably much smaller than the here computed value 27.33, 
though possibly larger than !. 

3. A formula giving the function h from the operator H 

Formula (4.45) defines the operator H for a given func

tion h. Ifwe define the function H(a,b) to be the diagonal 

coherent state matrix elements of H, 

H(a,b) = (a,b;/3IH la,b;/3), 

then (4.45) leads to 

H(a,b) =cii l f d,u~,';b') h(a',b l)l(a,b;/3lal,b ';/3)iZ 

= c- J f d,u(a',b ') hea' b ') 
/3 a'z ' 
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This formula can be inverted. Using results in Ref. 17 one 

finds 

h(a,b) = (TH) (a,b), ( 4.49) 

where the operator T, acting on the function H, is given by 

T- 1- , 00 [ a ] 
- )Jo (2{3 + n + 1)( 2{3 + n + 2) 

(4.50) 

with a = a2 (a ~ + a ~ ), the Laplace-Beltrami operator on 

the Lobachevsky plane. 
It turns out that this infinite product can be rewritten in 

terms of r -functions. One way to see this is to use the corre

spondence (4.49) for a family of special cases. For H = x - a 

we know already that 

h( b) 
- 2ar(2{3-1) a 

a, - a. 
r(2{3+a-1) 

On the other hand, the corresponding function H(a,b) is 

2ar(2{3 - a) 
H(a,b) = (a,b;l3lx-

a
la,b;l3) = r(2{3) 

This implies that 

00 [ - a(a - 1) ] 

)Jo 1 + (2{3 + n + 1) (2{3 + n + 2) 

r(2{3)r(2{3-1) 

r(2{3 - a)r(2{3 + a - 1) 

By analytic continuation one finds that, for all t> 0, 

00 [ t2+114 ] 
)Jo 1 + (2{3 + n + 1) (2{3 + bn + 2) 

r(2{3)r(2{3 - 1) 

r(2{3 - it - !)r(2{3 + it - !) 
B(2{3,2{3 - 1) 

B(2{3 - it - !,2{3 + it - !) 
(4.51) 

Since the spectrum of - a = - a2 (a ~ + a ~ ) on the Loba
chevsky plane is [1,00), (4.51) determines (4.50) complete

ly. For particular values of {3, (4.51) and hence (4.50) can 

be further simplified. For {3 = 1, e.g., we find 

B(2,1) 1T 

B(~ - it, ~ + it) 

This can then be used to give an integral representation for T. 
We have, e.g., 

[d cos tx 1T 
X ----

o cosh x/2 - cosh t1T ' 
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hence 

00 [ -a] 
)Jo 1+ (n+3)(n+4) 

= ( _ a + 2) - I roo dt cos [t ~ - a + !] , 
Jo cosh t /2 

with 

cos[t~-a+! ] 

= f (- 1) n t In( _ a + J.. )n. 
n=O (2n)! 4 
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