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WIENER’S LEMMA FOR INFINITE MATRICES

QIYU SUN

Abstract. The classical Wiener lemma and its various generalizations are im-
portant and have numerous applications in numerical analysis, wavelet theory,
frame theory, and sampling theory. There are many different equivalent for-
mulations for the classical Wiener lemma, with an equivalent formulation suit-
able for our generalization involving commutative algebra of infinite matrices
W := {(a(j − j′))j,j′∈Zd :

∑
j∈Zd |a(j)| < ∞}. In the study of spline approx-

imation, (diffusion) wavelets and affine frames, Gabor frames on non-uniform
grid, and non-uniform sampling and reconstruction, the associated algebras
of infinite matrices are extremely non-commutative, but we expect those non-

commutative algebras to have a similar property to Wiener’s lemma for the
commutative algebra W. In this paper, we consider two non-commutative alge-
bras of infinite matrices, the Schur class and the Sjöstrand class, and establish
Wiener’s lemmas for those matrix algebras.

1. Introduction

The classical Wiener lemma states that if a periodic function f has an absolutely
convergent Fourier series and never vanishes, then 1/f has an absolutely convergent
Fourier series ([39]).

There are many different equivalent formulations for the classical Wiener lemma.
An equivalent formulation of the classical Wiener lemma suitable for our general-
ization involves matrix algebra: A ∈ W and A−1 ∈ B2 imply A−1 ∈ W . Here

(1.1) W :=
{

A := (a(j − j′))j,j′∈Zd , ‖A‖W :=
∑
j∈Zd

|a(j)| < ∞
}

,

and Br, 1 ≤ r ≤ ∞, is the set of all bounded operators on the space �r of all
r-summable sequences and is equipped with the usual operator norm ‖ · ‖Br .

The matrix algebra W in the matrix formulation of the classical Wiener lemma
is a commutative Banach algebra. In the study of spline approximation and projec-
tion ([15, 16]), wavelets and affine frames ([9, 26]), Gabor frame ([3, 23, 24]), and
non-uniform sampling, the associated matrix algebras are extremely non-commuta-
tive but they are still expected to have the same property as the commutative
matrix algebra W . We are motivated by the above expectation, and by the im-
portance of Wiener’s lemma in the study of (Gabor) frames on non-uniform grids
and of non-uniform sampling and the reconstruction problem. For instance, we ap-
ply Wiener’s lemma established in this paper to show the well-localization of dual
(tight) frame generators of a locally finitely-generated space ([37]), and robustness

Received by the editors April 15, 2005.
2000 Mathematics Subject Classification. Primary 42C40, 41A65, 41A15.
Key words and phrases. Wiener’s lemma, Banach algebra, inverse of infinite matrices.

c©2007 American Mathematical Society
Reverts to public domain 28 years from publication

3099

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3100 QIYU SUN

and finite implementation of an average (ideal) sampling and the reconstruction
process ([38]).

In this paper, we introduce two non-commutative matrix algebras of infinite
matrices of the form

(1.2) A := (a(x, y))x,y∈X ,

the Schur class and the Sjöstrand class, and establish Wiener’s lemmas for those
matrix algebras. The Schur class and the Sjöstrand class have

Ap,w :=
{

(a(j, j′))j,j′∈Zd : sup
j∈Zd

( ∑
j′∈Zd

|(aw)(j, j′)|p
)1/p

+ sup
j′∈Zd

( ∑
j∈Zd

|(aw)(j, j′)|p
)1/p

< ∞
}

(1.3)

and

(1.4) Cp,w :=
{
(a(j, j′))j,j′∈Zd :

( ∑
k∈Zd

sup
j−j′=k

|(aw)(j, j′)|p
)1/p

< ∞
}

as their models respectively, where 1 ≤ p ≤ ∞ and w is a weight. We use a space
of homogenous type as the index set of the infinite matrix A instead of Zd in the
above model (see Sections 2 and 6 for details), because the index set of the infinite
matrix A in frame theory and sampling theory carries some important information,
such as the center of generators in frame theory and the sampling location in the
average (ideal) sampling process, and hence it is unsuitable to be re-indexed as Zd

or its subsets, [37, 38].
The classical Wiener lemma and its various generalizations (see, for instance,

[3, 4, 5, 16, 23, 24, 25, 26, 33]) are important and have numerous applications
in numerical analysis, wavelet theory, frame theory, and sampling theory. For
example, the classical Wiener lemma and its weighted variation ([25]) were used to
establish the decay property at infinity for dual generators of a shift-invariant space
([1, 27]); the Wiener lemma for matrices associated with twisted convolution was
used in the study the decay properties of the dual Gabor frame for L2 ([3, 23, 24]);
the Jaffard’s result ([26]) for infinite matrices with polynomial decay was used in
numerical analysis ([8, 34, 35]), wavelet analysis ([26]), time-frequency analysis
([19, 20, 21]) and sampling ([2, 14, 21]); and Sjöstrand’s result ([33]) for infinite
matrices was used in the study of pseudo-differential operators and Gabor frames
([3, 22, 33]). We will apply Wiener’s lemma for infinite matrices of Schur type
and of Sjöstrand type in the study of (Gabor) frame property for locally finitely-
generated spaces, and non-uniform sampling and stable reconstruction for signals
with finite rate of innovations; see the subsequent papers [37, 38].

The paper is organized as follows. In the first part of the paper (Sections 2 – 5),
we introduce the Schur class Ap,w of infinite matrices (Section 2), study the asymp-
totic behavior of An, n ≥ 1, for a matrix A ∈ Ap,w (Section 3), establish Wiener’s
lemma for infinite matrices A in the Schur class: A ∈ Ap,w and A−1 ∈ B2 implies
A−1 ∈ Ap,w (Section 4), and discuss some useful variations and generalizations of
the above Wiener lemma (Section 5). In the second part of the paper (Section 6),
we introduce the Sjöstrand class of infinite matrices and establish Wiener’s lemma
for infinite matrices in the Sjöstrand class.
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In this paper, the capital letter C, if not specified, denotes an absolute constant
which may be different at a different occurrence.

2. Infinite matrices of Schur type

In this section, we discuss the index set X that has a quasi-metric ρ and a Borel
measure µ, introduce the Schur class Ap,w(X, ρ, µ) of infinite matrices, and establish
some basic results for the Schur class Ap,w(X, ρ, µ) with different exponents p and
weights w (Theorem 2.4).

2.1. Index set of infinite matrices. For infinite matrices of the form (1.2), we
introduce a quasi-metric ρ on the index set X to measure how far a location (x, y)
in the matrix A is from the diagonal. Here we recall that a quasi-metric on X
is a function ρ : X × X �−→ [0,∞) such that (i) ρ(x, x) = 0 for all x ∈ X; (ii)
ρ(x, y) = ρ(y, x) for all x, y ∈ X; and (iii) there exists a positive constant L such
that ρ(x, y) ≤ L(ρ(x, z) + ρ(z, y)) for all x, y, z ∈ X. A qausi-metric ρ is said to be
a metric if the triangle inequality (iii) holds for L = 1. The space (X, ρ) is known
as a quasi-metric space.

We introduce a non-negative Borel measure µ on the quasi-metric space (X, ρ)
that has polynomial growth property: there exist positive constants D and d such
that

(2.1) µ(B(x, τ)) ≤ Dτd for all x ∈ X and τ ≥ 1,

where B(x, τ) := {y ∈ X : ρ(x, y) < τ} is the open ball of radius τ around x. The
polynomial growth assumption is an important assumption for our establishment
of Wiener’s lemma. For the model cases (1.3) and (1.4), we use Zd as the index set
and the counting measures µc as the Borel measure on the index set.

Remark 2.1. A non-negative Borel measure µ on a quasi-metric space (X, ρ) is said
to be a doubling measure if

(2.2) 0 < µ(B(x, τ)) ≤ D1µ(B(x, τ/2)) < ∞ for all τ > 0 and x ∈ X,

where D1 is a positive constant. A quasi-metric space (X, ρ) with a non-negative
doubling Borel measure µ, to be denoted by (X, ρ, µ), is known as a space of ho-
mogenous type ([13, 28, 29]). If the Borel measure µ on the space of homogenous
type (X, ρ, µ) further satisfies uniform boundedness conditions, that is, there exist
two positive constants D2, D3 such that D2 ≤ µ(B(x, 1)) ≤ D3 for all x ∈ X, then
it has polynomial growth property. We remark that for any space of homogenous
type (X, ρ, µ), an equivalent quasi-metric ρ̃ to the quasi-metric ρ, in the sense that
quasi-metric spaces (X, ρ) and (X, ρ̃) have the same topology, can be found so that
the new quasi-metric ρ̃ satisfies the uniform boundedness condition ([28, 29]).

2.2. Admissible weights. For infinite matrices of the form (1.2), we use a weight
w on X × X to measure the importance of a location (x, y) ∈ X × X, while in
most situations it is used to measure the off-diagonal decay. Here a weight w is a
positive symmetric measurable function on X × X that satisfies

1 ≤ w(x, y) = w(y, x) < ∞ for all x, y ∈ X,(2.3)

D(w) := sup
x∈X

w(x, x) < ∞,(2.4)
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and

(2.5) sup
ρ(x,x̃)+ρ(y,ỹ)≤C0

w(x, y)
w(x̃, ỹ)

≤ D(C0, w) < ∞

for all C0 ∈ (0,∞).

Example 2.2. Typical examples of weights include:
(i) The functions wα, α ≥ 0,

(2.6) wα(x, y) = (1 + ρ(x, y))α,

are weights on X × X, which are known as polynomial weights; see also
Example A.2.

(ii) The functions eD,δ with D ∈ (0,∞) and δ ∈ (0, 1),

(2.7) eD,δ(x, y) = exp(Dρ(x, y)δ),

are weights on X × X provided that ρ is a quasi-metric, which are known
as subexponential weights; see also Example A.3.

To establish Wiener’s lemma for infinite matrices in the Schur class and the
Sjöstrand class, we need a technical assumption on the weight w. Let 1 ≤ p, r ≤ ∞.
We say that a weight w is (p, r)-admissible if there exist another weight v and two
positive constants D ∈ (0,∞) and θ ∈ (0, 1) such that

w(x, y) ≤ D(w(x, z)v(z, y) + v(x, z)w(z, y)) for all x, y, z ∈ X,(2.8)

sup
x∈X

‖(vw−1)(x, ·)‖p′ + sup
y∈X

‖(vw−1)(·, y)‖p′ ≤ D,(2.9)

and

(2.10) inf
τ>0

ar′(τ ) + bp′(τ )t ≤ Dtθ for all t ≥ 1,

where p′ = p/(p − 1), r′ = r/(r − 1),

ar′(τ ) = sup
x∈X

‖v(x, ·)χB(x,τ)(·)‖r′ + sup
y∈X

‖v(·, y)χB(y,τ)(·)‖r′ ,(2.11)

bp′(τ ) = sup
x∈X

‖(vw−1)(x, ·)χX\B(x,τ)(·)‖p′ + sup
y∈X

‖(vw−1)(·, y)χX\B(y,τ)(·)‖p′ ,

(2.12)

χE is the characteristic function on the set E, and ‖ · ‖p is the usual norm on
Lp := Lp(X, µ), the space of all p-integrable functions on X. Clearly a (p, r)-
admissible weight is (p, r̃)-admissible for any r ≤ r̃ ≤ ∞. More discussion on the
(p, r)-admissibility of a weight w will be given in the Appendix. For instance, we
show in Examples A.2 and A.3 that the polynomial and subexponential weights
in Example 2.2 are (p, r)-admissible if the exponent α in the polynomial weight
wα and the exponents D and δ in the subexponential weight eD,δ satisfy certain
conditions.

2.3. Schur class of infinite matrices. Take p ∈ [1,∞]; we define

(2.13) Ap,w(X, ρ, µ) :=
{
A := (a(x, y))x,y∈X : ‖A‖Ap,w

< ∞
}
,

where

‖A‖Ap,w
:= sup

x∈X
‖(aw)(x, ·)‖p + sup

y∈X
‖(aw)(·, y)‖p.(2.14)
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We use Ap,w for the brevity of Ap,w(X, ρ, µ). We call Ap,w(X, ρ, µ) the Schur class
and an infinite matrix in Ap,w(X, ρ, µ) as being of Schur type because, for p = 1,
Ap,w(X, ρ, µ) becomes the usual Schur class; see Remark 2.3 below.

Remark 2.3. A large class of non-commutative matrix algebras has been introduced
recently, and Wiener’s lemma is established on those matrix algebras. Here are some
examples of those non-commutative matrix algebras:

(1) The Schur class

A1
v =

{
(ak,l)k,l∈X : sup

k∈X

∑
l∈X

|ak,l|v(k − l) + sup
l∈X

∑
k∈X

|ak,l|v(k − l) < ∞
}

where v is a positive (radial) function Rd and X ⊂ Rd ([24]).
(2) The Sjöstrand class

C =
{

(ak,l)k,l∈Zd :
∑
l∈Zd

sup
k∈Zd

|ak,k−l| < ∞
}

([5, 6, 33]).
(3) The Jaffard class

As =
{

(ak,l)k,l∈X : sup
k,l∈X

|ak,l|(1 + |k − l|)s < ∞
}

where s ∈ R and X ⊂ Rd ([24, 26]).

2.4. Schur classes with different exponents and weights. Let Br be the
space of all bounded operators on Lr(X, µ), 1 ≤ r ≤ ∞, and ‖ · ‖Br denote the
usual operator norm. For any A = (a(x, y))x,y∈X ∈ Ap,w(X, ρ, µ), we define its
transpose A∗ by A∗ :=

(
a(y, x)

)
x,y∈X

.
For Schur classes Ap,w(X, ρ, µ) with different exponents p and weights w, we

have the following basic properties, which will be used later in the proofs.

Theorem 2.4. Let 1 ≤ p ≤ ∞, let X be an index set that has a pseudo-metric ρ
and a Borel measure µ with the polynomial growth property, let the weights u, v and
w on X × X satisfy ( 2.3), ( 2.4) and ( 2.5), let the weight w0 be as in ( 2.6), and
let the Schur class Ap,w(X, ρ, µ) be as in ( 2.13). Then

(i) A ∈ Ap,w(X, ρ, µ) if and only if its transpose A∗ ∈ Ap,w(X, ρ, µ).
(ii) Ap,u(X, ρ, µ) ⊂ Aq,v(X, ρ, µ) if vu−1 ∈ A(p/q)′,w0(X, ρ, µ) and p ≥ q, where

(p/q)′ = pq/(p − q).
(iii) A1,w0(X, ρ, µ) ⊂ Br for all 1 ≤ r ≤ ∞.
(iv) Ap,w(X, ρ, µ) ⊂ Br for all 1 ≤ r ≤ ∞ and w−1 ∈ Ap/(p−1),w0 .

Proof. The first statement follows from the definition of the transpose A∗ of a
matrix A ∈ Ap,w(X, ρ, µ). Moreover, the transpose A∗ has the same norm in
Ap,w(X, ρ, µ) as the one of A,

(2.15) ‖A∗‖Ap,w
= ‖A‖Ap,w

.
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Take any A = (a(x, y))x,y∈X ∈ Aq,v(X, ρ, µ); we have

‖(av)(x, ·)‖q ≤ ‖(au)(x, ·)‖p‖(vu−1)(x, ·)‖r, x ∈ X,(2.16)

where r−1 = q−1 − p−1. Thus

(2.17) ‖A‖Ap,u
≤ ‖vu−1‖Ar,w0

‖A‖Aq,v
for all A ∈ Aq,v.

The second statement then follows.
A matrix in A1,w0(X, ρ, µ) clearly defines a bounded operator on Lr, 1 ≤ r ≤ ∞.

Moreover,

(2.18) max
(
‖A‖Br , ‖A∗‖Br

)
≤ ‖A‖A1,w0

for all A ∈ A1,w0(X, ρ, µ) and 1 ≤ r ≤ ∞. Hence the third statement is proved.
The fourth statement holds because the second and third statements are true. �

3. Power of infinite matrices in the Schur class

In this section, we establish an asymptotic estimate for the power of infinite
matrices in the Schur class (Theorem 3.1), and an equality of various spectral radii
for infinite matrices in the Schur class (Theorem 3.3). The asymptotic estimate
(3.2) of An, n ≥ 1, for an infinite matrix A in the Schur class is crucial for the
establishment of our Wiener lemma in the next section.

Theorem 3.1. Let 1 ≤ p, r ≤ ∞, let X be an index set that has a pseudo-metric ρ
and a non-negative Borel measure µ with the polynomial growth property, let w be
a (p, r)-admissible weight on X ×X, and let the Schur class Ap,w(X, ρ, µ) be as in
( 2.13). Assume that A ∈ Ap,w(X, ρ, µ), and that

(3.1) ‖An‖Ar,w0
≤ P (n) max

(
‖An‖Br , ‖(A∗)n‖Br

)
for all n ≥ 1,

where P (n) ≥ 1 is a polynomial. Then the asymptotic estimate,

‖An‖Ap,w
≤ C0

(
C0‖A‖Ap,w

max(‖A‖Br , ‖A∗‖Br )

) 1+θ
θ nlog2(1+θ)

×max
(
‖A‖n

Br , ‖A∗‖n
Br

)
, n ≥ 1,(3.2)

holds for some positive constant C0, which depends only on the parameters p, r ∈
[1,∞], the constants D and θ in ( 2.8)–( 2.10), and the polynomial P (n) in ( 3.1).

Proof. Take any A := (a(x, y))x,y∈X , B := (b(x, y))x,y∈X ∈ Ap,w(X, ρ, µ), and set
AB := (c(x, y))x,y∈X . Noting that

|(cw)(x, y)| ≤ D

∫
X

|(aw)(x, z)||(bv)(z, y)|dµ(z)

+D

∫
X

|(av)(x, z)||(bw)(z, y)|dµ(z)

by (2.8), we then have the following compensated compactness estimate:
(3.3)
‖AB‖Ap,w

≤ D‖A‖Ap,w
‖B‖A1,v

+ D‖A‖A1,v
‖B‖Ap,w

for all A, B ∈ Ap,w(X, ρ, µ).

(A similar compensated compactness estimate has been used in [7] to establish an
equality for spectral radii of an operator in two Banach algebras.)

By (2.9) and Theorem 2.4, we obtain

(3.4) ‖A‖A1,v
≤ ‖vw−1‖Ap′,w0

‖A‖Ap,w
for all A ∈ Ap,w(X, ρ, µ).
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For any n ≥ 1, it follows from (2.9), (2.17), (2.18), and (3.1) that

(3.5) max(‖An‖Br , ‖(A∗)n‖Br) ≤ ‖An‖A1,w0
≤ ‖w−1‖Ap′,w0

‖An‖Ap,w
,

and ∫
X

|an(x, y)|v(x, y)dµ(y)

=
(∫

ρ(x,y)≤τ

+
∫

ρ(x,y)>τ

)
|an(x, y)|v(x, y)dµ(y)

≤ ‖an(x, ·)‖r‖v(x, ·)χB(x,τ)(·)‖r′

+‖an(x, ·)w(x, ·)‖p‖(vw−1)(x, ·)χX\B(x,τ)(·)‖p′

≤ ar′(τ )‖An‖Ar,w0
+ bp′(τ )‖An‖Ap,w

≤ ar′(τ )P (n) max(‖An‖Br , ‖(A∗)n‖Br) + bp′(τ )‖An‖Ap,w

≤ P (n)
(
ar′(τ ) max(‖An‖Br , ‖(A∗)n‖Br) + bp′(τ )‖An‖Ap,w

)
,(3.6)

where τ > 0 and An = (an(x, y))x,y∈X . Thus combining (2.10), (3.5) and (3.6), we
reach the following interpolating estimate:

‖An‖A1,v
≤ P (n) inf

τ>0

(
ar′(τ ) max(‖An‖Br , ‖(A∗)n‖Br) + bp′(τ )‖An‖Ap,w

)
≤ CP (n)

(
max(‖An‖Br , ‖(A∗)n‖Br)

)1−θ(‖An‖Ap,w
)θ

≤ CP (n) max
(
(‖A‖Br)n(1−θ), (‖A∗‖Br)n(1−θ)

)
(‖An‖Ap,w

)θ.(3.7)

(A similar interpolating estimate has been established by Jaffard in [26].)
By (3.3), (3.4), and (3.7), we obtain that

‖A2n‖Ap,w
≤ C‖An‖Ap,w

‖An‖A1,v

≤ D1n
D2‖An‖1+θ

Ap,w

(
max

(
‖A‖Br , ‖A∗‖Br

))n(1−θ)(3.8)

and

‖A2n+1‖Ap,w
≤ C‖A2n‖Ap,w

‖A‖Ap,w

≤ D1n
D2‖A‖Ap,w

‖An‖1+θ
Ap,w

(
max

(
‖A‖Br , ‖A∗‖Br

))n(1−θ)(3.9)

for all n ≥ 1, where D1, D2 are positive constants. Therefore the sequence {bn}, to
be defined by

(3.10) bn = D
1/θ
1 nD2/θ‖An‖Ap,w

(
max(‖A‖Br , ‖A∗‖Br))−n, n ≥ 1,

satisfies

(3.11) b2n ≤ b1+θ
n and b2n+1 ≤ c0b

1+θ
n for all n ≥ 1,

where c0 = max(3D2/θ, D
1/θ
1 )‖A‖Ap,w

(
max

(
‖A‖Br , ‖A∗‖Br

))−1. This implies that

bn ≤ c
∑k

i=0 εi(1+θ)i

0

for n =
∑k

i=0 εi2i, where εi ∈ {0, 1}, 0 ≤ i ≤ k. Therefore the desired estimate
(3.2) follows. �

From the proof of Theorem 3.1, particularly (3.3) and (3.4), we conclude that
Ap,w(X, ρ, µ) is a Banach algebra.
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Proposition 3.2. Let 1 ≤ p ≤ ∞, let X be an index set that has a pseudo-metric
ρ and a non-negative Borel measure µ with the polynomial growth property, and let
w be a weight on X × X such that there exists another weight v satisfying ( 2.8)
and ( 2.9). Then Ap,w(X, ρ, µ) is a Banach algebra. Moreover, the inequality,

(3.12) ‖AB‖Ap,w
≤ C1‖A‖Ap,w

‖B‖Ap,w
for all A, B ∈ Ap,w(X, ρ, µ),

holds for some positive constant C1 that depends only on the exponent p and the
constant D in ( 2.8) and ( 2.9).

Define

(3.13) ρp,w(A) := lim sup
n→∞

(‖An‖Ap,w
)1/n

for any A ∈ Ap,w(X, ρ, µ), and

(3.14) ρBr (A) := lim sup
n→∞

(‖An‖Br)1/n

for A ∈ Br. Using (3.3), (3.4), and (3.6), we have the following equality for various
spectral radii associated with infinite matrices in the Schur class Ap,w(X, ρ, µ).

Theorem 3.3. Let X, ρ, µ, p, r, w, v, w0 be as in Theorem 3.1. Assume that A ∈
Ap,w(X, ρ, µ). Then

(3.15) ρ1,v(A) = ρp,w(A).

If A is further assumed to satisfy ( 3.1), then

(3.16) ρr,w0(A) = max(ρBr (A), ρBr (A∗)) = ρp,w(A).

Proof. By (3.3) and (3.4), there is a positive constant C such that

(3.17) ‖An‖A1,v
≤ C‖An‖Ap,w

and

(3.18) ‖An‖Ap,w
≤ C‖A[n/2]‖Ap,w

‖A[n/2]‖A1,v
, n ≥ 1,

where [x] is the integral part of the real number x. This proves (3.15).
If A is further assumed to satisfy (3.1), then

(3.19) ‖A‖Ar,w0
≤ P (n) max(‖An‖Br , ‖(A∗)n‖Br ) ≤ P (n)‖An‖A1,v

,

and

(3.20) ‖An‖A1,v
≤ C(‖An‖Ar,w0

)1−θ(‖An‖Ap,w
)θ for all 1 ≤ n ∈ Z

by (2.18), (3.1), and (3.6). Thus (3.16) follows from (3.15), (3.19), and (3.20). �

We conclude this section with two remarks.

Remark 3.4. For the special case that p = ∞, X is a relatively-separated subset
of Rd (see (A.2) for the definition), ρ is the usual Euclidean metric | · |, µ is the
counting measure µc and w is the polynomial weight (1+ | · |)α with α > d, Jaffard
used a rather delicate bootstrap argument, which depends highly on the geometrical
structure of the Euclidean space, to prove that

(3.21) ρ
B2 (A) = ρ∞,α0+ε(A)

for some sufficiently small number ε, where α0 is the largest integer strictly smaller
than α ([26, Lemma 4]). Clearly, the above result (3.21) follows from (3.16) and
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the observation: ρ
B2 (A) ≤ ρ∞,α0+ε(A) ≤ ρ∞,α(A). For the special case that p =

1, r = 2 and w is the polynomial weight (1 + ρ(·, ·))α with 0 < α ≤ 1, the equality

(3.22) ρB2(A) = ρp,w(A),

the second part of equality (3.16), follows from Lemma 4.6 in [4]. For the case that
p = 1, r = 2, the index set X is a relatively-separated subset of Rd, the weight w
is of the form exp(κ(|x− y|)) for some continuous concave function κ that satisfies
κ(0) = 0, limt→∞ κ(t)/t = 0 and κ(t) ≥ δ ln(1+ t)−D for some positive constants δ
and D, and the equality in (3.22) is established in [24, Theorem 3.1]. For the above
case, the weight w is of the form exp(κ(|x−y|)). We see from Theorem A.1 that the
above assumption on the concave function κ is a bit weaker than our assumption
on the existence of another weight v satisfying (2.8), (2.9), and (2.10) in Theorem
3.1, but both conditions are satisfied for polynomial weights and subexponential
weights; see Examples A.2 and A.3.

Remark 3.5. For the special case that p = 1, w = w0 and the matrix A =
(a(j−j′))j−j′∈Z ∈ W in (1.1) with

∑
j∈Z a(j)e−ijξ being the reciprocal of a trigono-

metric polynomial Q, Newman proved the following better estimate than the one
in (3.2) for the A1,w0 norm of An: ‖An‖A1,w0

≤ Cn2‖A‖n
B2 for all n ≥ 1, where C

is a positive constant depending on the degree of the polynomial Q ([30]). We also
remark that from the equality of various spectral radii in Theorem 3.1, a weaker
estimate than the one in (3.2) follows: for any A ∈ Ap,w(X, ρ, µ), there exists a
nonnegative number qn(A) for any n ≥ 1 such that limn→∞ qn(A)1/n = 1 and
‖An‖Ap,w

≤ qn(A)(max(ρBr (A), ρBr (A∗)))n for all n ≥ 1 (cf. [4, 7, 24, 26]).

4. Wiener’s lemma for infinite matrices in the Schur class

In this section, we establish the principal result of the paper, Wiener’s lemma
for infinite matrices in the Schur class.

Theorem 4.1. Let 1 ≤ p ≤ ∞, let X be a discrete set that has a pseudo-metric
ρ and a usual counting measure µc with polynomial growth property, let w be a
(p, 2)-admissible weight, and let Ap,w(X, ρ, µc) be the Schur class defined by ( 2.13).
If A ∈ Ap,w(X, ρ, µc) and A−1 ∈ B2, then A−1 ∈ Ap,w(X, ρ, µc). Moreover,

(4.1) ‖A−1‖Ap,w
≤ C2

holds for some constant C2 which depends only on the exponent p ∈ [1,∞], the
constant D(w) in ( 2.4), the constant D(C0, w) in ( 2.5), the constants D, θ in
( 2.8)–( 2.10), and the norms ‖A‖Ap,w

and ‖A−1‖B2 .

The above Wiener lemma for infinite matrices in the Schur class follows in a
standard way from the Banach algebraic properties (Proposition 3.2), and the as-
ymptotic estimate of An, n ≥ 1, for A ∈ Ap,w(X, ρ, µ) (Theorems 3.1 and 3.3). We
include a proof for the completeness.

Proof. By (2.3), (2.4), and (2.5), the unit matrix I belongs to Ap,w(X, ρ, µc),

(4.2) I ∈ Ap,w(X, ρ, µc).

By Theorem 2.4 and Proposition 3.2, we have that A∗A ∈ Ap,w(X, ρ, µc). Therefore
the matrix B, to be defined by

(4.3) B := I − A∗A

‖A∗A‖
B2

,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3108 QIYU SUN

satisfies

(4.4) ‖B‖
B2 ≤ 1 − 1

‖A‖2
B2‖A−1‖2

B2

and

(4.5) ‖B‖Ap,w
≤ C3

‖A‖2
Ap,w

‖A‖2
B2

,

where C3 is a positive constant that depends on the constants D in (2.9), C1 in
(3.12), and D(w) in (4.1).

Since X is a discrete set and µc is the counting measure, the delta sequence δx0

belongs to �2(X) and has norm one for any x0 ∈ X. This together with the fact
that Bnδx0 = (bn(x, x0))x∈X implies that

(4.6) ‖Bn‖A2,w0
≤ max(‖Bn‖

B2 , ‖(B∗)n‖
B2 ) = ‖Bn‖

B2 , n ≥ 1,

where, as usual, Bn =: (bn(x, y))x,y∈X . Therefore the estimate (3.1) in Theorem
3.1 holds for the matrix B and r = 2.

By (4.2), (4.4), (4.5), (4.6), and Theorem 3.1, we then obtain the following crucial
estimate for Bn, n ≥ 1:

‖Bn‖Ap,w
≤ C4

(
C4‖A‖2

Ap,w

‖A‖2
B2

) 1+θ
θ nlog2(1+θ)

×
(

1 − 1
‖A‖2

B2‖A−1‖2
B2

)n− 1+θ
θ nlog2(1+θ)

,(4.7)

where C4 is a positive constant that depends only on the constants C0 in (3.2) and
C3 in (4.5). Hence

‖(I − B)−1‖Ap,w
=

∥∥∥ ∞∑
n=0

Bn
∥∥∥
Ap,w

≤ C5 < ∞,

where the constant C5 depends only on ‖A‖Ap,w
, ‖A−1‖B2 , the condition number

‖A‖B2‖A−1‖B−1 , and the constant C4 in (4.7). This together with (4.3) yields that
(A∗A)−1 ∈ Ap,α(X, ρ, µc). Therefore the desired conclusion A−1 ∈ Ap,w(X, ρ, µc)
follows from (3.3), (3.4), and the facts that A−1 = (A∗A)−1A∗ and (A∗A)−1 ∈
Ap,w(X, ρ, µc). �

We conclude this section with some remarks.

Remark 4.2. Let A0
1,w0

(X, ρ, µ) contain all infinite matrices

(a(x, y))x,y∈X ∈ A1,w0(X, ρ, µ)

such that limm→∞ ‖Am‖A1,w0
= 0, where Am = (am(x, y))x,y∈X and

am(x, y) =
{

a(x, y), if ρ(x, y) ≤ m,
0, if ρ(x, y) > m.

Define
A0

2,wα
(X, ρ, µ) = A2,wα

(X, ρ, µ) ∩ A0
1,w0

(X, ρ, µ).
Clearly

A2,wα
(X, ρ, µ) = A0

2,wα
(X, ρ, µ) if α > d(X, ρ, µ)/2,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



WIENER’S LEMMA 3109

where d(X, ρ, µ) is defined as in (A.16). For 0 < α ≤ 1, Barnes ([4, Theorem
4.8]) proved that A ∈ A0

2,wα
(X, ρ, µ) and A−1 ∈ B2 imply A−1 ∈ A0

2,wα
(X, ρ, µ).

Therefore for p = 2, and w = wα with d(X, ρ, µ)/2 < α ≤ 1, the conclusion in
Theorem 4.1 follows from Theorem 4.8 in [4].

Remark 4.3. Let p = 1 and X is a relatively-separated subset of Rd. For the
case that the weight w is of the form w(x, y) = exp(κ(|x − y|)) for a continuous,
concave function κ on [0,∞) satisfying κ(0) = 1, κ(t) ≥ δ ln(1 + t) − D for some
D, δ ∈ (0,∞) and limt→∞ κ(t)/t = 0, Gröchenig and Leinert proved in [24] that
A ∈ A1,w(X, | · |, µc) and A−1 ∈ B2 imply A−1 ∈ A1,w(X, | · |, µc) (see [4] for
the case that κ(t) = δ ln(1 + t) for some δ ∈ (0, 1]). The difference between the
conclusion in Theorem 4.1 with p = 1 and the above conclusion by Gröchenig and
Leinert is on the weight w: (i) the weight w in Theorem 4.1 need not be radical
but satisfy some complicated conditions not easily verified in general, while the
weight w in [24] is essentially radical (hence it could be difficult to establish similar
results for infinite matrices whose index set is not a discrete subset of Rd); (ii) the
polynomial weights with κ(t) = α ln(1 + t), α > 0, and the subexponential weights
w with κ(t) = Dtδ, D ∈ (0,∞), δ ∈ (0, 1), satisfy the requirements in Gröchenig and
Leinert’s result and also the ones in Theorem 4.1 by Examples A.2 and A.3; (iii)
the weight function w with κ(t) = t/ ln(e+t) satisfies all requirements in Gröchenig
and Leinert’s result, but not the ones in Theorem 4.1 by Theorem A.1.

Remark 4.4. For the case that p = ∞, X is a relatively-separated subset of Rd, and
the weight w is of the form w(x, y) = exp(κ(|x−y|)+s ln(1+|x−y|)) with s > d and
a continuous, concave function κ on [0,∞) satisfying κ(0) = 1, κ(t) ≥ δ ln(1+t)−D
for some D, δ ∈ (0,∞) and limt→∞ κ(t)/t = 0, Gröchenig and Leinert proved in
[24] that A ∈ A∞,w(X, | · |, µc) and A−1 ∈ B2 imply A−1 ∈ A∞,w(X, | · |, µc) (see
[26, Proposition 3] for the case that κ(t) = δ ln(1 + t) for some δ > 0, and [5, 6] for
the generalization of Jaffard’s result in Hilbert spaces).

Remark 4.5. A baby version of Theorem 4.1 is established in [36], where X = Zd,
ρ is the usual Euclidean metric | · |, µ is the standard accounting measure µc, and
w is a polynomial weight (1 + | · |)α with α > d(1 − 1/p), 1 ≤ p ≤ ∞.

Remark 4.6. The upper bound estimate (4.1) for A−1 is important to obtain a
scale-independent Riesz and frame bounds in the study of non-stationary multires-
olution analysis, wavelets on intervals (domains), and diffusion wavelets on mani-
folds, where the index sets X and the quasi-metrics ρ vary according to the scales
([9, 11, 10, 12, 26, 31, 37]). For the case that p = ∞, X is a relatively-separated
subset of Rd, and the weight w is of the form w(x, y) = (1 + |x − y|)s with s > d,
the upper bound estimate (4.1) is not mentioned in [26], but can be obtained by
keeping track of the constants in the argument.

Remark 4.7. There are many different approaches to establish Wiener’s lemma for
infinite matrices in the Schur class Ap,w(X, ρ, µ). Here are three of them: (i) the
indirect approach, such as using Gelfand’s technique to estimate spectral radius
ρp,w(A) ([4, 17, 18, 23, 24]); (ii) the semi-direct approach, such as the bootstrap
argument ([26]); (iii) the direct approach, such as the direct estimate of ‖An‖Ap,w

in Theorem 3.1 (see [36] for the baby version of that approach). Each approach
has its advantages and disadvantages. For instance, the indirect approach works
for the extreme case A1,w0(X, ρ, µ), but provides an upper bound estimate for A−1
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depending on the structure of the space X implicitly. The semi-direct and direct
approaches do not work for the extreme case, but they work for infinite matrices
with index set X having complicated geometrical structures, and they give the
upper bound estimate for A−1 depending on the space X explicitly (hence Wiener’s
lemma can be used to obtain certain uniformity; see Remark 4.6).

5. Variations and generalizations of Wiener’s lemma

In this section, we discuss some straightforward (but useful) variations and gen-
eralizations of Wiener’s lemma for infinite matrices in the Schur class (Theorem
4.1), including Moore-Penrose pseudo-inverse (Theorem 5.1), Wiener-Levy lemma
(Theorem 5.3), Wiener’s lemma on product spaces (Theorem 5.5), and Wiener’s
lemma for twisted convolutions (Theorem 5.7).

5.1. Moore-Penrose pseudo-inverse.

Theorem 5.1. Let X, ρ, µc, p, w and Ap,w(X, ρ, µc) be as in Theorem 4.1. Assume
that A ∈ Ap,w(X, ρ, µc) satisfies

(5.1) A∗ = A,

and that there exist a Hilbert subspace H of �2(X) and a positive constant D with
the property that

(5.2) ‖Ac‖ ≥ D‖c‖ for all c ∈ H,

and

(5.3) PA = AP = A,

where P is the projection operator from �2 to H. Then the Moore-Penrose pseudo-
inverse A† of the matrix A, that is, PA† = A†P = A† and AA† = A†A = P, belongs
to Ap,w(X, ρ, µc).

Theorem 5.1 follows from Wiener’s lemma for Ap,w(X, ρ, µc) (Theorem 4.1),
the Banach algebra property of Ap,w(X, ρ, µc) (Proposition 3.2), and the standard
holomorphic calculus ([32]). We include a proof for the completeness of the paper.

Proof of Theorem 5.1. By (5.2) and (5.3), the spectrum of the positive operator A
on �2(X) is contained in {0} ∩ [m, M ], where 0 < D ≤ m ≤ M = ‖A‖B2 < ∞. Let
C be the circle of radius M/2 centered at (m + M)/2 in the complex plane. Define
the operator B, as an operator on �2(X), by

(5.4) B =
1

2πi

∫
C
(zI − A)−1dz.

By standard holomorphic calculus ([32]), B is the Moore-Penrose pseudo-inverse of
the matrix A. Therefore it suffices to prove that B ∈ Ap,w(X, ρ, µc). Since zI − A
is invertible as an operator on �2(X) for any z ∈ C, we then have that

(5.5) (zI − A)−1 ∈ Ap,w(X, ρ, µc)

by Theorem 4.1. Given any z0 ∈ C, we obtain from (3.3) and (3.4) that

‖(zI − A)−1 − (z0I − A)−1‖Ap,w

≤ ‖(z0I − A)−1‖Ap,w

∞∑
n=1

|z0 − z|n(C‖(z0I − A)−1‖Ap,w
)n

≤ C|z − z0|‖(z0I − A)−1‖2
Ap,w

(1 − C|z − z0|‖(z0I − A)−1‖Ap,w
)−1(5.6)
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for any complex number z with |z − z0| sufficiently small, where C is a positive
constant. Therefore the claim B ∈ Ap,w(X, ρ, µc) follows from (5.4), (5.5), and
(5.6). �
Remark 5.2. The generalization of the Wiener lemma (Theorem 5.1), the replace-
ment of the invertibility of the matrix A by the pseudo-invertibility, is important
for the applications to (Gabor) frame ([37]), since the Gram matrix associated
with frame generators does not have bounded inverse in general, but does have
bounded pseudo-inverse. We remark that the above generalization from invertibil-
ity to pseudo-invertibility in Wiener’s lemma holds for any Banach algebra; see
[18] for the holomorphic calculus approach used in the proof, and also for another
approach from Banach algebra.

5.2. Wiener-Levy lemma and non-integer power.

Theorem 5.3. Let X, ρ, µc, p, w and Ap,w(X, ρ, µc) be as in Theorem 4.1. If A ∈
Ap,w(X, ρ, µc) and f is an analytic function in an open domain O containing the
spectrum of the matrix A as an operator on �2(X), then f(A) ∈ Ap,w(X, ρ, µc).

Proof. We may use the same argument as the one used in the proof of Theorem
5.1 except replacing the circle in the proof of Theorem 5.1 by a contour C̃ in the
open domain O that contains the spectrum of the matrix A inside the contour, and
applying the following formula f(A) = 1

2πi

∫
C̃ f(z)(zI −A)−1dz instead of (5.4). It

is safe to omit the details of the proof here. �
Combining Theorems 5.1 and 5.3, we have the following result about non-integer

power of a matrix in the Schur class, which will be useful in the study of localized
tight frames ([37]).

Corollary 5.4. Let X, ρ, µc, p, w and Ap,w(X, ρ, µc) be as in Theorem 4.1. Assume
that A ∈ Ap,w(X, ρ, µc) satisfies ( 5.1), ( 5.2), and ( 5.3). Then for any γ > 0, Aγ

and its Moore-Penrose pseudo-inverse (Aγ)† belong to Ap,w(X, ρ, µc).

5.3. Wiener’s lemma on product spaces. Let N ≥ 1, (Xn, ρn), 1 ≤ n ≤ N ,
be quasi-metric spaces with non-negative Borel measures µn that have polynomial
growth property. On the product space X := X1 × X2 × · · · × XN , we define a
quasi-metric ρ,

(5.7) ρ((x1, . . . , xN ), (y1, . . . , yN )) = max
1≤n≤N

ρn(xn, yn),

and a non-negative Borel measure µ := µ1 × · · · × µN . For p = (p1, . . . , pN ) ∈
[1,∞]N , we let Lp(X) denote the space of all p-integrable functions,

Lp(X) :=
{
f(x1, . . . , xN ) : ‖f‖p < ∞

}
,

with standard norm

‖f‖p = ‖ · · · ‖‖f(x1, . . . , xN )‖LpN (XN )‖LpN−1 (XN−1) · · · ‖Lp1 (X1).

For p = (p1, . . . , pN ) ∈ [1,∞]N , a product space X = X1 × X2 × · · · × XN with a
quasi-metric ρ and a non-negative Borel measure µ, and a weight w on the quasi-
metric space (X, ρ), we define the Schur class on the product space X by

Ap,w(X, ρ, µ) :=
{
A := (a(x,y))x,y∈X :

‖A‖Ap,w
:= sup

x∈X
‖(aw)(x, ·)‖p + sup

y∈X
‖(aw)(·,y)‖p < ∞

}
.
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Using an argument similar to the one used in the proofs of Theorems 3.1 and
4.1, we have the following Wiener lemma for infinite matrices in the Schur class
on a product space, which is convenient in the study of Gabor frames in the time-
frequency domain.

Theorem 5.5. Let N ≥ 1, p = (p1, . . . , pN ) ∈ [1,∞]N , and Xn, 1 ≤ n ≤ N ,
be discrete sets embedded with quasi-metrics ρn and counting measures µn,c that
have polynomial growth property, let X := X1 × X2 × · · · × XN be the product
space of Xn, 1 ≤ n ≤ N , with a quasi-metric ρ in ( 5.7) and a usual counting
measure µc := µ1,c × · · · × µN,c, and let w be a weight on X × X. Set p′ =
(p1/(p1 − 1), . . . , pN/(pN − 1)) and 2∗ = (2, . . . , 2). Assume that there exist an-
other weight u on X × X and two positive constants D ∈ (0,∞) and θ ∈ (0, 1)
so that (i) w(x,y) ≤ Dw(x, z)u(z,y) + Du(x, z)w(z,y) for all x,y, z ∈ X; (ii)
‖uw−1‖Ap′,w0

< ∞; and (iii) infτ≥1 ‖ucτ‖A2∗,w0
+ ‖uw−1(1 − cτ )‖Ap′,w0

t ≤ Dtθ

for all t ≥ 1, where cτ (x, y) = χB(x,τ)(y). Then A−1 ∈ Ap,w(X, ρ, µc) if A ∈
Ap,w(X, ρ, µc) and A−1 ∈ B2.

Remark 5.6. The following weights w(x,y) satisfy the assumptions (i) – (iii) in
Theorem 5.5:

(i) w(x,y) = (1 + ρ(x,y))α for some α >
∑N

n=1 dn(Xn, ρn, µn,c)(1 − 1/pn),
where dn(Xn, ρn, µn,c), 1 ≤ n ≤ N , are defined in (A.16).

(ii) w(x,y) =
∏N

n=1(1+ρ(xn, yn))αn , where x = (x1, . . . , xN ),y = (y1, . . . , yN )
∈ X, αn >dn(Xn, ρn, µn,c)(1−1/pn) for all 1≤n≤N , and dn(Xn, ρn, µn,c),
1 ≤ n ≤ N , are defined in (A.16).

(iii) w(x,y) = exp(Dρ(x,y)θ), where D ∈ (0,∞), θ ∈ (0, 1) and ρ is a metric
on the product space X.

(iv) w(x,y) =
∏N

n=1 exp(Dnρn(xn, yn)θn), where x = (x1, . . . , xN ) ∈ X,y =
(y1, . . . , yN ) ∈ X, and Dn ∈ (0,∞), θn ∈ (0, 1), and ρn are metrics on
Xn, 1 ≤ n ≤ N .

5.4. Wiener’s lemma for twisted convolutions. Given a d × d matrix A, the
twisted convolution of two sequences a = (a(j))j∈Zd and c = (c(j))j∈Zd is given by

(5.8) (a �A c)(j) =
∑

j′∈Zd

a(j − j′)c(j′)e2πij′T A(j−j′),

and the twisted convolution operator La associated with a summable sequence a ∈ �1

is defined by

(5.9) Lac := a �A c, c ∈ �r,

where, as usual, BT denotes the transpose of a matrix or a vector B. Clearly the
twisted convolution �A becomes the usual discrete convolution ∗ when A = 0, and

the twisted convolution �θ in [23] when A = θ

(
0 Id/2

0 0

)
and d is an even integer,

where θ ∈ R and Il is the l × l unit matrix.
Applying Theorem 5.1, we have the following Wiener lemma for twisted convo-

lutions, suitable for the study of a Gabor frame on a uniform grid.

Theorem 5.7. Let 1 ≤ p ≤ ∞, A be a d × d matrix, and u = (u(j))j∈Zd be a
sequence of positive numbers such that the weight w, to be defined by

w(j, k) = u(j − k), j, k ∈ Zd,
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satisfies ( 2.3) – ( 2.5) and ( 2.8) – ( 2.10) with X = Zd, ρ = | · | and µ = µc. If
a ∈ �p

u(Zd), the space of all sequences a := (a(j))j∈Zd with finite norm ‖a‖
p
u

:=∥∥(
a(j)u(j)

)
j∈Zd

∥∥

p , and if the associated twisted convolution operator La is in-

vertible on �2(Zd), then there exists b ∈ �p
u(Zd) such that the associated twisted

convolution Lb is the inverse of La, that is, Lb = (La)−1.

Proof. Given a sequence a = (a(j))j∈Zd , we correspond it to a matrix τA(a),

(5.10) τA(a) = (a(j − j′)e2πij′T A(j−j′))j,j′∈Zd .

Clearly we have that

(5.11) τA(a �A b) = τA(a)τA(b) for all a, b ∈ �1,

and

(5.12) Lac = τA(a)c for all a ∈ �1 and c ∈ �r,

where 1 ≤ r ≤ ∞. One may easily verify that

(5.13) τA(a) ∈ Ap,w(Zd, | · |, µc) if and only if a ∈ �p
u(Zd).

Then we obtain from (5.12), (5.13), Theorem 4.1, and the assumptions on the
sequence a and its corresponding twisted convolution La that

(5.14) BτA(a) = τA(a)B = I

for some B ∈ Ap,w(Zd, | · |, µc). Write B = (b(j, j′))j,j′∈Zd and define

B′ = (b(j − j′, 0)e2πij′T A(j−j′))j,j′∈Zd .

By direct computation, we have that the matrix B′ also satisfies (5.14), which
implies that

(5.15) b(k, k′) = b(k − k′, 0)e2πik′T A(k−k′) for all k, k′ ∈ Zd.

Thus B = τA(b) for b = (b(k, 0))k∈Zd . Therefore (La)−1 = Lb for some sequence
b ∈ �p

u(Zd) by (5.13), (5.14), (5.15) and B ∈ Ap,w(Zd, | · |, µ). �

By taking A = 0 and letting u be the polynomial weight uα or the subexponential
weight eD,δ in Theorem 5.7, we have the following result similar to the classical
Wiener lemma ([39]), which is applicable in the study of dual generators in a shift-
invariant space.

Corollary 5.8. Let 1 ≤ p ≤ ∞, and let u = ((1+|j|)α)j∈Zd for some α > d(1−1/p)
or u = (exp(D|j|δ)j∈Zd for some D ∈ (0,∞) and δ ∈ (0, 1). If f(ξ) is a periodic
function that never vanishes and has its Fourier series in �p

u(Zd), then 1/f(ξ) has
its Fourier series in �p

u(Zd).

Remark 5.9. For p = 1, A = BT

(
0 Id

0 0

)
B for some non-singular d×d matrix B,

and the sequence u := (u(j))j∈Zd is of the form (exp(κ(j))j∈Zd for some continuous,
concave function κ on [0,∞) that satisfies κ(0) = 1, the conclusion in Theorem 5.7
follows from [23, Theorem 2.14 and Remark 4.2] and [24, Theorem 5.1], where the
approach from Banach algebra is used.
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6. Wiener’s lemma for infinite matrices in the Sjöstrand class

In this section, we introduce the Sjöstrand class of infinite matrices, establish
the Wiener’s lemma for infinite matrices in the Sjöstrand class (Theorem 6.1), and
discuss some variations and generalizations of the above Wiener’s lemma (Theorems
6.4–6.7).

In order to define the Sjöstrand class of infinite matrices (a(x, y))x,y∈X , we fur-
ther assume that the index set X is a discrete group with a left-invariant quasi-
metric ρ and a counting measure µc that has the polynomial growth property. Here
a function g on X × X is said to be left-invariant if

g(zx, zy) = g(x, y) for all x, y, z ∈ X.

Clearly a left-invariant function g on X × X is determined by a function g̃ on X
by g(x, y) = g̃(y−1x), x, y ∈ X.

Given 1 ≤ p ≤ ∞, a discrete group X with a left-invariant quasi-metric ρ and a
counting measure µc, and a left-invariant weight w on X × X, we define

(6.1) ‖A‖Cp,w
:=

∥∥(
sup
z∈X

|(aw)(zx, z)|
)
x∈X

∥∥
p

for A := (a(x, y))x,y∈X , and let

(6.2) Cp,w(X, ρ, µc) :=
{
A := (a(x, y))x,y∈X , ‖A‖Cp,w

< ∞
}
.

We use Cp,w for the brevity of Cp,w(X, ρ, µ). We call Cp,w the Sjöstrand class and a
matrix in Cp,w as being of Sjöstrand type, since for p = 1 and w = w0, Cp,w becomes
the matrix algebra studied in [33]; see also Remark 2.3. We remark that for p = ∞,
the Sjöstrand class Cp,w is the same as the Schur class Ap,w.

Now we state the Wiener’s lemma for infinite matrices in the Sjöstrand class,
whose proof is postponed to the end of this section.

Theorem 6.1. Let 1 ≤ p ≤ ∞, let X be a discrete group with a left-invariant quasi-
metric ρ and with the counting measure µc having polynomial growth property, and
let w be a left-invariant weight on X × X. Assume that there is another left-
invariant weight v such that ( 2.8) – ( 2.10) hold for r = max(2, p/(p − 1)). Then
A−1 ∈ Cp,w(X, ρ, µc) provided that A ∈ Cp,w(X, ρ, µc) and A−1 ∈ B2.

Remark 6.2. Let 1 ≤ p ≤ ∞, and let X be a discrete group with a left-invariant
quasi-metric ρ and with the counting measure µc having the polynomial growth
property. From Example A.2 and Example A.3, there exist left-invariant weights
v associated with the following weights w such that (2.8) – (2.10) hold for r =
max(2, p/(p − 1)):

(i) The polynomial weights (1 + ρ(x, y))α with α > d(X, ρ, µc)(1 − 1/p).
(ii) The subexponential weights exp(Dρ(x, y)δ) with D ∈ (0,∞) and δ ∈ (0, 1)

if we further assume that ρ is a left-invariant metric on X.

Remark 6.3. For the special case that (X, ρ, µc) = (Z, | · |, µc) and p = 1, Wiener’s
lemma for infinite matrices in the Sjöstrand class Cp,w(X, ρ, µc) was proved by
Sjöstrand [33] for unweighted case (w = w0), and by Baskakov [5, 6] for those left-
invariant weights w satisfying lim|k|→∞

ln w̃(k)
|k| = 0, w̃(k) ≥ 1 for all k ∈ Z, and

w̃(k + l) ≤ w̃(k)w̃(l) for all k, l ∈ Z, where w̃(k) = w(k, 0). By Theorem A.1, the
assumption on the weight w in [5, 6] is weaker than the assumption on the weight w
in Theorem 6.1, and hence the result in Theorem 6.1 follows from the result in [5, 6]
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for the special case that p = 1 and (X, ρ, µc) = (Z, | · |, µc). It is remarked in [3]
that Wiener’s lemma for infinite matrices in the Sjöstrand class in [5, 6, 33] can be
generalized to the setting that the index set X is a discrete abelian group of the form∏d

i=1 aiZ ×
∏e

j=1(Z/njZ) in a straightforward way, where 0 �= ai ∈ R, 1 ≤ i ≤ d,
and nj ∈ Z, 1 ≤ j ≤ e ([3]). So for p = 1, comparing our results in Theorem 6.1
with the above known results, we see that there is more restriction on the weight w
in Theorem 6.1 than the ones in [5, 6], while the index set X in Theorem 6.1 could
be a non-abelian group. For 1 < p < ∞, our results in Theorem 6.1 are totally
new. For p = ∞, we have that C∞,w(X, ρ, µc) = A∞,w(X, ρ, µc). The reader may
refer to Remark 4.4 for the comparison between the results in Theorem 6.1 and the
known results for p = ∞.

Before we start the proof of Theorem 6.1, let us state some variations and gen-
eralizations of Wiener’s lemma for infinite matrices in the Sjöstrand class, whose
proofs are left to the readers.

Theorem 6.4. Let X, ρ, µc, p, w, v and Cp,w(X, ρ, µc) be as in Theorem 6.1. As-
sume that A ∈ Cp,w(X, ρ, µc) satisfies ( 5.1), ( 5.2), and ( 5.3) for some Hilbert
subspace H of �2(X) and a projection operator P from �2(X) to H. Then Aγ and
its Moore-Penrose pseudo-inverse (Aγ)† belong to Cp,w(X, ρ, µc) for any γ > 0.

Theorem 6.5. Let X, ρ, µc, p, w, v and Cp,w(X, ρ, µc) be as in Theorem 6.1. If
A ∈ Cp,w(X, ρ, µc) and f is an analytic function in an open domain O containing
the spectrum of the matrix A as an operator on �2(X), then f(A) ∈ Cp,w(X, ρ, µc).

Let N ≥ 1, Xn, 1 ≤ n ≤ N , be discrete groups embedded with left-invariant
quasi-metric ρn and counting measures µn,c that have polynomial growth property.
Define the left-invariant quasi-metric ρ on the product space X = X1×X2×· · ·×XN

by ρ(x,y) = max1≤n≤N ρn(xn, yn), where x = (x1, . . . , xN ) and y = (y1, . . . , yN ) ∈
X. Given p = (p1, . . . , pN ) ∈ [1,∞]N and a left-invariant weight w on the product
space X, we define the Sjöstrand class on the product space X by

Cp,w(X, ρ, µc) :=
{

A := (a(x,y))x,y∈X ,

‖A‖Cp,w
:= ‖(sup

z∈X
|(aw)(zx, z)|)x∈X‖p < ∞

}
.(6.3)

Theorem 6.6. Let N ≥ 1, p = (p1, . . . , pN ) ∈ [1,∞]N , Xn, 1 ≤ n ≤ N , be discrete
groups embedded with quasi-metrics ρn and counting measures µn,c that have poly-
nomial growth property. Set p′ = (p1/(p1 − 1), . . . , pN/(pN − 1)) and min(2,p) =
(min(2, p1), . . . , min(2, pN )). Assume that the left-invariant weights w and u on the
product space X = X1×X2×· · ·×XN satisfy (i) w̃(xy) ≤ Dw̃(x)ũ(y)+Dũ(x)w̃(y)
for all x,y ∈ X, (ii) ‖ũ(w̃)−1‖p′ < ∞, and (iii) infτ≥1 ‖ũχB(I0,τ)‖min(2,p) +
‖ũ(w̃)−1χX\B(I0,τ)‖p′t ≤ Dtθ, t ≥ 1, where w̃(x) = w(x, I0), ũ(x) = u(x, I0),
I0 is the unit of the group X, and D ∈ (0,∞) and θ ∈ (0, 1) are positive constants.
Then A−1 ∈ Cp,w(X, ρ, µc) if A ∈ Cp,w(X, ρ, µc) and A−1 ∈ B2.

Let X be a discrete group with a left-invariant quasi-metric ρ, and let X̃ be a
set with a map M from X̃ to X satisfying 1 ≤ #{y ∈ X̃ : M(y) = x} ≤ C0 for
some positive constant C0. Given 1 ≤ p ≤ ∞ and a left-invariant weight w on the
group X, we define the Sjöstrand class on the set X̃ by

Cp,w(X̃, M, X, ρ, µc) :=
{

A := (a(x, y))x,y∈X̃ , ‖A‖Cp,w
< ∞

}
,
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where

‖A‖Cp,w
=

∥∥(
sup

x′,y′∈X̃ with M(x′)=M(y′)x

w(M(x′), M(y′))|a(x′, y′)|
)
x∈X

∥∥
p
.

Using an argument similar to the one used in the proof of Theorem 6.1, we have the
following result, convenient for the study of a (Gabor) frame on a non-uniform grid
and a (non-uniform) sampling for signals with a finite rate of innovation ([3, 37, 38]).

Theorem 6.7. Let X, ρ, µc, p, w, v be as in Theorem 6.1. Assume that X̃ is a
set with a map M : X̃ �−→ X satisfying 1 ≤ #{y ∈ X̃ : M(y) = x} ≤ C0

for some positive constant C0. Then A−1 ∈ Cp,w(X̃, M, X, ρ, µc) provided that
A ∈ Cp,w(X̃, M, X, ρ, µc) and A−1 ∈ B2.

6.1. Proof of Theorem 6.1. To prove Theorem 6.1, we need some properties of
the matrix algebra Cp,w(X, ρ, µ) (see Proposition 3.2 for a similar result for the
Schur class).

Lemma 6.8. Let X, ρ, µc, p, w, v be as in Theorem 6.1. Then Cp,w(X, ρ, µc) is a
Banach algebra, that is, there exists a positive constant C such that

(6.4) ‖AB‖Cp,w
≤ C‖A‖Cp,w

‖B‖Cp,w
for all A, B ∈ Cp,w(X, ρ, µc).

Proof. Take A = (a(x, y))x,y∈X , B = (b(x, y))x,y∈X ∈ Cp,w(X, ρ, µc), and write
AB = (c(x, y))x,y∈X . Then

c̃(x) := sup
y∈X

|c(yx, y)|

≤ sup
y∈X

∑
z∈X

|a(yx, yz)||b(yz, y)| ≤
∑
z∈X

ã(z−1x)b̃(z),

where ã(x) = supy∈X |a(yx, y)| and b̃(x) = supy∈X |b(yx, y)|. This together with
the assumptions (i)–(iii) on the weight w proves (6.4). �

To prove Theorem 6.1, we need an asymptotic estimate of An, n ≥ 1, for a matrix
A in the Sjöstrand class (see Theorem 3.1 for a similar result for the Schur class).

Lemma 6.9. Let X, ρ, µc, p, w, v be as in Theorem 6.1. Then there exists a positive
constant C such that

‖An‖Cp,w
≤ C

(
C‖A‖Cp,w

‖A‖B2

) 1+θ
θ nlog2(1+θ)

(‖A‖
B2 )n(6.5)

holds for all A ∈ Cp,w(X, ρ, µc) and n ≥ 1.

Proof. Using the argument used in the proof of Theorem 3.1, it suffices to prove
the following compensated compactness estimate:

(6.6) ‖A2‖Cp,w
≤ C‖A‖1+θ

Cp,w
‖A‖1−θ

B2 for all A ∈ Cp,w(X, ρ, µc),

where C is a positive constant.
Take A := (a(x, y))x,y∈X ∈ Cp,w(X, ρ, µc). Let w̃(x) = w(x, I0), ṽ(x) = v(x, I0),

and ã(x) = supz∈X |a(zx, z)|, x ∈ X, where I0 is the unit of the discrete group X.
By the assumptions on the weights w and v, we have

‖A‖B2 ≤ max
(

sup
x∈X

∑
y∈X

|a(x, y)|, sup
y∈X

∑
x∈X

|a(x, y)|
)

≤ C‖A‖Cp,w
‖w̃−1‖p/(p−1) ≤ C‖A‖Cp,w

‖ṽw̃−1‖p/(p−1).(6.7)
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Since

sup
y∈X

∑
z∈X

|a(yx, z)|v(yx, z)|a(z, y)|w(z, y)

≤ sup
y∈X

( ∑
z∈X

(
v(yx, z)χρ(yx,z)<τ |a(z, y)|w(z, y)

)2
)1/2

×
( ∑

z∈X

|a(yx, z)|2
)1/2

+ sup
y∈X

∑
z∈X

ã(z−1yx)ṽ(z−1yx)χρ(yx,z)≥τ |ã(y−1z)|w̃(y−1z)

≤
( ∑

z∈X

(
ṽ(z−1x)χρ(x,z)<τ |ã(z)|w̃(z)

)min(2,p)
)1/ min(2,p)

‖A‖B2

+
∑
z∈X

ã(z−1x)ṽ(z−1x)χρ(x,z)≥τ |ã(z)|w̃(z)

for all τ ≥ 1, we obtain∥∥∥(
sup
y∈X

∑
z∈X

|(av)(yx, z)||(aw)(z, y)|
)

x∈X

∥∥∥
p

≤ inf
τ≥1

(
‖ãw̃‖p‖ṽχB(I0,τ)‖min(2,p)‖A‖B2 + ‖ãw̃‖p‖(ãṽ)χX\B(I0,τ)‖1

)
≤ C‖A‖Cp,w

‖A‖B2 inf
τ≥1

(
‖ṽχB(I0,τ)‖min(2,p)

+
‖A‖Cp,w

‖A‖B2
‖ṽw̃−1χX\B(I0,τ)‖p/(p−1)

)
≤ C‖A‖1+θ

Cp,w
‖A‖1−θ

B2 ,(6.8)

where we have used (6.7) and the assumptions on the weights w and v to obtain
the last inequality. Similarly, we have∥∥∥(

sup
y∈X

∑
z∈X

|(aw)(yx, z)||(av)(z, y)|
)

x∈X

∥∥∥
p
≤ C‖A‖1+θ

Cp,w
‖A‖1−θ

B2 .(6.9)

By the assumption on left-invariant weights w and v,

sup
y∈X

|(cw)(yx, y)| ≤ C sup
y∈X

∑
z∈X

|(av)(yx, z)||(aw)(z, y)|

+C sup
y∈X

∑
z∈X

|(aw)(yx, z)||(av)(z, y)|,(6.10)

where A2 := (c(x, y))x,y∈X . Therefore the compensated compactness estimate (6.6)
follows from (6.8), (6.9), and (6.10). This establishes the asymptotic estimate (6.5)
and completes the proof. �

Proof of Theorem 6.1. We use the same argument as the one used in the proof
of Theorem 4.1 except using Lemmas 6.8 and 6.9 instead of Proposition 3.2 and
Theorem 3.1. We omit the details of the proof here. �

Appendix A. (p, r)-admissible weights

In the Appendix, we discuss the technical assumption, the (p, r)-admissibility, on
the weight w. Particularly, we consider the (p, r)-admissibility of the radial weights
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w of the form

(A.1) w(λ, λ′) = exp(κ(ρ(λ, λ′))), λ, λ′ ∈ Λ,

where κ is a continuous concave function κ on [0,∞) with κ(0) = 0, and Λ is a
relatively-separated subset of a quasi-metric space (X, ρ). Here we recall that a
relatively-separated subset Λ of a quasi-metric space (X, ρ) means that there exists
a positive constant D(Λ) such that

(A.2)
∑
λ∈Λ

χ
B(λ,1)(x) ≤ D(Λ) for all x ∈ X.

Theorem A.1. Let 1 ≤ p, r ≤ ∞, (X, ρ, µ) = (Λ, | · |, µc) for some relatively-
separated subset Λ of Rd, and let the weight w be of the form (A.1) for some
continuous concave function κ on [0,∞) with κ(0) = 0, and set κ̃(t) = κ(2t)−κ(t).
Then we have

(i) If the functions ãs(τ ) and b̃s(τ ), τ > 0, to be defined by

(A.3) ãs(τ ) =

{
exp(κ(τ )) if s = ∞,( ∫ τ

0
exp(sκ(t) + (d − 1) ln t)dt

)1/s if 1 ≤ s < ∞,

and

(A.4) b̃s(τ ) =

{
exp(κ(2τ )− 2κ(τ )) if s = ∞,( ∫ ∞

τ
exp(sκ(2t) − 2sκ(t) + (d − 1) ln t)dt

)1/s if 1 ≤ s < ∞,

satisfy

(A.5) inf
τ≥1

ãr′(τ ) + b̃p′(τ )t ≤ Dtθ, t ≥ 1,

for some positive constants D ∈ (0,∞) and θ ∈ (0, 1), then the weight w is
(p, r)-admissible, and furthermore the weight v,

(A.6) v(x, y) = exp(κ̃(|x − y|)), x, y ∈ X,

satisfies ( 2.8), ( 2.9), and ( 2.10).
(ii) If 1 ≤ p ≤ r ≤ ∞, d > 1, X = Zd, κ and κ̃ are strictly increasing

and limτ→+∞ κ(τ ) = +∞, and the weight w is (p, r)-admissible, then
limt→∞ κ(t)/t = 0 and κ(t) ≥ δ ln(1 + t)−D for some positive constants δ
and D.

(iii) If 1 ≤ p ≤ r ≤ ∞, d > 1, X = Zd, and κ(t) = t/ ln(2 + t), then the weight
w is not (p, r)-admissible.

Proof. (i) Clearly it suffices to prove that the weight v in (A.6) satisfies (2.8), (2.9),
and (2.10). By the concavity of the function κ,

κ(t + s) − κ(t) ≤ κ(2s) − κ(s) = κ̃(s) for all t ≥ s ≥ 0.

Thus for any x, y, z ∈ X with |x − y| ≥ |y − z|,
w(x, y)v(y, z) + w(y, z)v(x, y) ≥ w(x, y)v(y, z)

≥ exp(κ(|x − y| + |y − z|)) ≥ w(x, y),

which proves that the weight v satisfies (2.8). Noting that κ(2t)−2κ(t) is decreasing
on [0,∞) and κ(t) ≤ κ(t + s) ≤ κ(t) + κ(s) for all t, s ≥ 0 by the concavity of the
function κ and κ(0) = 0, we then obtain the following for any y ∈ X and τ ≥ 1:

sup
x∈X,|x−y|≥τ

(vw−1)(x, y) ≤ exp(κ(2τ ) − 2κ(τ )),
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and ∑
x∈X,|x−y|≥τ

((vw−1)(x, y))s ≤
∞∑

j=[τ ]

∑
j≤|x−y|≤j+1

((vw−1)(x, y))s

≤ C
∞∑

j=[τ ]

exp(sκ(2j) − 2sκ(j))(j + 1)d−1

≤ C

∫ ∞

τ

exp(sκ(2t) − 2sκ(t) + (d − 1) ln t)dt,

where 1 ≤ s < ∞ and [τ ] denotes the integral part of the real number τ . Similarly,
for any y ∈ X and τ ≥ 1,

sup
x∈X,|x−y|≤τ

v(x, y) ≤ exp(κ(τ )),

and ∑
x∈X,|x−y|≤τ

(v(x, y))s ≤
[τ ]∑

j=0

∑
j≤|x−y|≤j+1

(v(x, y))s

≤ C

∫ τ

0

exp(sκ(t) + (d − 1) ln t)dt,

where 1 ≤ s < ∞. Therefore we have the following upper bound estimates for
ar′(τ ) and bp′(τ ), τ ≥ 1:

(A.7) ar′(τ ) ≤ Cãr′(τ ),

and

(A.8) bp′(τ ) ≤ Cb̃p′(τ ).

This together with (A.5) implies that the weight v in (A.6) satisfies (2.9) and (2.10).
(ii) By the assumption on the weight w, there exists a weight v that satisfies

(2.8), (2.9), and (2.10). By (2.8) and the symmetry of the weight v, there exists a
positive constant D such that

(A.9) v(x, x + y) + v(x, x − y) ≥ D exp(κ̃(|y|)) for all x, y ∈ X := Zd.

Thus, ∑
j≤|x−y|≤j+1

((vw−1)(x, y))s

≥ C
∑

j≤|z|≤j+1,z∈Zd

(v(x, x + z) + v(x, x − z))s exp(−sκ(j + 1))

≥ Cjd−1 exp(sκ̃(j + 1) − sκ(j + 1))

and ∑
j≤|x−y|≤j+1

(v(x, y))s ≥ Cjd−1 exp(sκ̃(j + 1))

for all 1 ≤ j ∈ Z. Applying the above two estimates and using the same argument
as the one used in the proof of the inequalities (A.7) and (A.8), we obtain a lower
bound estimate for ar′(τ ) and bp′(τ ):

(A.10) ar′(τ ) ≥ C0ãr′(τ ),
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and

(A.11) bp′(τ ) ≥ C0b̃p′(τ ), τ ≥ 1,

where C0 is a positive constant. Therefore

(A.12) ar′(τ ) ≥ C1 exp(κ̃(τ ))τ (d−1)/r′

and

(A.13) bp′(τ ) ≥ C1 exp(κ̃(τ ) − κ(τ ))τ (d−1)/p′

for some positive constant C1. Combining (2.10), (A.12), and (A.13), we have

(A.14) inf
τ≥1

eκ̃(τ)τ (d−1)/p′
(τ (d−1)(1/r′−1/p′) + e−κ(τ)t) ≤ Ctθ, t ≥ 1.

Noting that

inf
τ≥1

eκ̃(τ)τ (d−1)/p′
(τ (d−1)(1/r′−1/p′) + e−κ(τ)t)

≥ inf
τ≥1

eκ̃(τ)(1 + e−κ(τ)t) = 2eκ̃(τt)

for the unique τt such that eκ(τt) = t (the existence from the assumptions that κ

and k̃ are strictly monotone, and κ satisfies κ(0) = 0 and limτ→∞ κ(τ ) = +∞), we
then obtain from (A.14) that

κ(2τ ) ≤ (1 + θ)κ(τ ) + D for all τ ≥ 1

where D is a positive constant. Thus

(A.15) κ(τ ) ≤ Cτ ln2(1+θ), τ ≥ 1,

which implies that limτ→∞ κ(τ )/τ = 0. Let τ̃t, t ≥ 1, be the unique solution of the
equation κ(τ ) + (d − 1)(1/r′ − 1/p′) ln τ = ln t. The existence of such a τ̃t follows
from the assumption r ≥ p and the monotonic property of the functions κ(τ ) and
ln τ . Then it follows from (A.14) and the estimate

inf
τ≥1

eκ̃(τ)τ (d−1)/p′
(τ (d−1)(1/r′−1/p′) + e−κ(τ)t)

≥ τ (d−1)(1/r′−1/p′) + e−κ(τ)t ≥ e−κ(τ̃t)t

that

κ(τ̃t) ≥ (1 − θ) ln t − C ≥ (1 − θ)κ(τ̃t) + (1 − θ)(d − 1)(1/r′ − 1/p′) ln τ̃t − C.

Therefore the conclusion κ(τ ) ≥ δ ln(1 + τ ) − D follows.
(iii) Suppose, on the contrary, that there exists a weight v that satisfies (2.8),

(2.9), and (2.10). Then (A.15) holds from the proof of the second conclusion, which
is a contradiction. �

In the following two examples, we show that given a polynomial weight or a
subexponential weight w, a weight v can be found to satisfy (2.8), (2.9), and (2.10).

Example A.2. For the index set X with a quasi-metric ρ and a Borel measure µ
having polynomial growth property, we define d(X, ρ, µ) as follows:

(A.16) d(X, ρ, µ) := inf
{
d : (2.1) holds for some positive C

}
.
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Clearly d(X, ρ, µ) becomes the dimension d of the Euclidean space when X = Rd

and µ is the Lebesgue measure m. Take β > d(X, ρ, µ). We then obtain (2.1) and
(A.16) such that ∫

ρ(x,y)≥τ

w−β(x, y)dµ(y)

=
∞∑

j=1

∫
2j−1τ≤ρ(x,y)<2jτ

w−β(x, y)dµ(y)

≤
∞∑

j=1

(1 + 2j−1τ )−βµ(B(x, 2jτ )) ≤ Cετ
−(β−d(X,ρ,µ))/2(A.17)

for all x ∈ X and τ ≥ 1, where C is a positive constant independent of x ∈ X
and τ ≥ 1. Therefore for the polynomial weight wα(x, y) := (1 + ρ(x, y))α with
α > d(X, ρ, µ)(1 − 1/p), the weight v := w0 satisfies (2.8), (2.9), and (2.10) by the
quasi-metric property of ρ and (A.17), where

θ =
(d(X, ρ, µ) + δ)(1 − 1/r)

α − (d(X, ρ, µ) + δ)(1 − 1/p) + (d(X, ρ, µ) + δ)(1 − 1/r)
,

and δ = (αp′ − d)/2 if p′ < ∞ and δ = 1 if p′ = ∞.

Example A.3. Let (X, ρ) be a metric space with a Borel measure µ having poly-
nomial growth property. For weights w of the form

(A.18) w(x, y) = exp(Dρ(x, y)δ), x, y ∈ X,

with D ∈ (0,∞) and δ ∈ (0, 1), we let

(A.19) v(x, y) = exp(D(2δ − 1)ρ(x, y)δ).

Recalling that ρ is a metric and applying the trivial inequality 1 ≤ sδ+(2δ−1)(1−s)δ

for all 1/2 ≤ s ≤ 1, we have that the weights w and v satisfy (2.8). By the
polynomial growth property of the Borel measure µ,

‖vw−1‖Ap/(p−1),w0
≤ C + C sup

x∈X

( ∞∑
j=1

eDp(2δ−2)2j/(p−1)µ(B(x, 2j+1)
)(p−1)/p

≤ C + C sup
x∈X

( ∞∑
j=1

eDp(2δ−2)2j/(p−1)2j(d(X,ρ,µ)+ε)
)(p−1)/p

<∞,

and

inf
τ≥1

ãr′(τ ) + b̃p′(τ )t

≤ C inf
τ≥1

eDτδ

τ (d(X,ρ,µ)+ε)/r′
+ e−D(2−2δ)τδ

τ (d(X,ρ,µ)+ε)/p′
t

≤ Ct1/(3−2δ)(1 + ln t)(d(X,ρ,µ)+ε)/(min(r′,p′)) ≤ Ctθ

for all t ≥ 1 and θ ∈ (0, 1/(3− 2δ)), where ε > 0 is sufficiently small. Therefore for
the subexponential weight w in (A.18) for some δ ∈ (0, 1), the weight v in (A.19)
satisfies (2.8), (2.9), and (2.10). We remark that the metric assumption on ρ in
the above cannot be replaced by the quasi-metric assumption on ρ in general. For
instance, one may easily show that for the setting (X, ρ, µ) = (Z, |·|2, µc), there does
not exist another weight v associated with the weight w(x, y) = exp(ρ(x, y)1/2) =
exp(|x − y|) such that (2.8) and (2.9) hold.
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Example A.4. Let (X, ρ) be a quasi-metric space with a Borel measure µ having
polynomial growth property. Assume that the quasi-metric ρ is Hölder continuous
in the sense that there exists C ∈ (0,∞) and β ∈ (0, 1] such that

|ρ(x, y) − ρ(x, z)| ≤ Cρ(y, z)β(ρ(x, y) + ρ(x, z))1−β for all x, y, z ∈ X

([13, 28, 29]). One may show that there exists a positive constant δ0 such that for a
subexponential weight w of the form exp(Dρ(x, y)δ) with δ ∈ (0, δ0) and D ∈ (0,∞)
there exists another subexponential weight v of the form exp(Dθ0ρ(x, y)δ) with
θ0 ∈ (0, 1) satisfying (2.8) – (2.10).
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[9] C. K. Chui, W. He, and J. Stöckler, Nonstationary tight wavelet frames, II: unbounded
intervals, Appl. Comp. Harmonic Anal., 18(2005), 25–66. MR2110512 (2005j:42026)

[10] A. Cohen, I. Daubechies, and P. Vial, Wavelets on the interval and fast wavelet transforms,
Appl. Comput. Harmon. Anal., 1(1993), 54–81. MR1256527 (94m:42074)

[11] A. Cohen and N. Dyn, Nonstationary subdivision schemes and multiresolution analysis, SIAM

J. Math. Anal., 27(1996), 1745–1769. MR1416517 (97m:41019)
[12] R. Coifman and M. Maggioni, Diffusion wavelets, Appl. Comput. Harmon. Anal., 21(2006),

53–94. MR2238667
[13] R. Coifman and G. Weiss, Analyses Harmoniques Noncommutative sur Certains Espaces

Homogenes, Springer, 1971. MR0499948 (58:17690)
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