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WIENER’S LEMMA FOR TWISTED CONVOLUTION
AND GABOR FRAMES

KARLHEINZ GRÖCHENIG AND MICHAEL LEINERT

1. Introduction

Wiener’s Lemma states that if a periodic function f has an absolutely conver-
gent Fourier series that never vanishes, then 1/f also has an absolutely convergent
Fourier series. An equivalent formulation that is more suitable for generalization
considers the convolution operator Cac = a ∗ c acting on `p(Zd). In this case,
Wiener’s Lemma states the following:

If a ∈ `1(Zd) and if Ca is invertible as an operator on `2(Zd), then
a is invertible in `1(Zd) and hence the inverse operator is of the
form C−1

a = Cb for some b ∈ `1(Zd).

As a consequence, Ca is invertible and bounded on all `p(Zd) for 1 ≤ p ≤ ∞
simultaneously.

In this article we study several non-commutative generalizations of Wiener’s
Lemma and their application to Gabor theory. The paper is divided into two parts:
the first part (Sections 2 and 3) is devoted to abstract harmonic analysis and extends
Wiener’s Lemma to twisted convolution. The second part (Section 4) is devoted
to the theory of Gabor frames, specifically to the design of dual windows with
good time-frequency localization. In particular, we solve a conjecture of Janssen,
Feichtinger and one of us [17], [18], [9].

These two topics appear to be completely disjoint, but they are not. The solution
of the conjectures about Gabor frames is an unexpected application of methods from
non-commutative harmonic analysis to application-oriented mathematics. It turns
out that the connection between twisted convolution and the Heisenberg group and
the theory of symmetric group algebras are precisely the tools needed to treat the
problem motivated by signal analysis.

To be more concrete, we formulate some of our main results first and will deal
with the details and the technical background later.
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2 KARLHEINZ GRÖCHENIG AND MICHAEL LEINERT

Twisted Convolution. Given θ > 0, we study the twisted convolution of two
sequences a = (akl)k,l∈Zd and b = (bkl)k,l∈Zd on Z2d, which is defined to be

(1.1) (a \θ b)(m,n) =
∑
k,l∈Zd

aklbm−k,n−le
2πiθ(m−k)·l .

Since

(1.2) |a \θ b(m,n)| ≤ (|a| ∗ |b|)(m,n) ,

the convolution relations of Young’s Theorem carry over to twisted convolution. In
particular, we have `1 \θ `p ⊆ `p for 1 ≤ p ≤ ∞.

We will prove several versions of the following statement, which is Wiener’s
Lemma for twisted convolution.

Theorem 1.1. Assume that a ∈ `1(Z2d) and that the (twisted) convolution operator
La, defined by Lac = a \θ c, is invertible on `2(Z2d). Then a is invertible in
`1(Z2d) and so L−1

a = Lb for some b ∈ `1(Z2d). Consequently La is invertible
simultaneously on all `p(Z2d) for 1 ≤ p ≤ ∞.

If θ ∈ Z, then \θ coincides with ordinary convolution, and Theorem 1.1 is just
the classical Wiener Lemma.

If θ ∈ Q, then commutative methods by means of a suitable decomposition of
the convolution operator La (Lemma 2.4) can be applied to derive Theorem 1.1.
An equivalent form of Theorem 1.1 for the “rational case” θ ∈ Q is proved in [14,
Ch. 13].

In the “irrational case” θ 6∈ Q commutative methods break down completely and
Theorem 1.1 was unproven so far. We prove Theorem 1.1 for all values of θ and
also for weighted `1-algebras with methods from abstract harmonic analysis. The
key is to relate twisted convolution to the ordinary convolution on an associated
Heisenberg group and to make use of the fact that the group algebra L1(G) of a
nilpotent group is a symmetric Banach ∗-algebra.

Time-Frequency Analysis, Short-Time Fourier Transform, and Gabor
Frames. The goal of time-frequency analysis is to understand the properties of
functions or distributions simultaneously in time and frequency (physicists use the
term phase space analysis for this goal). We refer to [11] and [14] for a mathematical
introduction to time-frequency analysis and to [10] for more advanced aspects.

The main tool is the short-time Fourier transform (STFT), also known under
the names radar ambiguity function, coherent state transform, or cross Wigner
distribution. Let Txf(t) = f(t − x) denote the translation operator on Rd and
Mωf(t) = e2πiω·tf(t) be the modulation operator for x, ω, t ∈ Rd. Then the STFT
of a function f on Rd with respect to a fixed window g is defined as

(1.3) Vgf(x, ω) =
∫
Rd
f(t)ḡ(t− x)e−2πiω·t dt = 〈f,MωTxg〉 .

Note that

(1.4) Vgf(x, ω) = 〈f̂ , TωMxĝ〉 = e−2πix·ωVĝ f̂(ω,−x) .

If both g and ĝ are well localized, e.g., if g ∈ S(Rd), then Vgf(x, ω) measures the
magnitude of f in a neighborhood of x and of f̂ in a neighborhod of ω. For practical
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WIENER’S LEMMA FOR TWISTED CONVOLUTION 3

and numerical purposes one prefers a discrete version of the STFT and aims for
series expansions of the form

(1.5) f =
∑
k,l∈Zd

〈f, TαkMβlg〉TαkMβlγ .

Once again, the coefficient ckl = 〈f, TαkMβlg〉 describes the combined time-
frequency behavior of f at a point (αk, βl) in the “time-frequency plane” R2d. A
pair (g, γ) as in (1.5) is called a pair of dual windows.

To construct the so-called Gabor expansions as in (1.5), one starts with a single
window g ∈ L2(Rd) and fixed lattice parameters α, β > 0 and studies the spectrum
of the associated Gabor frame operator S = Sg,α,β . This operator imitates an
orthogonal expansion and is defined as

(1.6) Sf =
∑
k,l∈Zd

〈f, TαkMβlg〉TαkMβlg .

Since 〈Sf, f〉 =
∑
k,l∈Zd |〈f, TαkMβlg〉|2 ≥ 0, S is a positive operator. If S has a

bounded inverse on L2(Rd), then the function γ = S−1g is well defined in L2(Rd)
and is a dual window in the sense of (1.5). To see this, we observe that S and S−1

commute with all time-frequency shifts TαkMβl; therefore, we obtain the factoriza-
tion

f = S−1Sf =
∑
k,l∈Zd

〈f, TαkMβlg〉TαkMβlS
−1g(1.7)

= SS−1f =
∑
k,l∈Zd

〈f, TαkMβlS
−1g〉TαkMβlg .(1.8)

Thus we can take γ = S−1g to establish the Gabor expansion (1.5). Furthermore

(1.9) ‖f‖2 �
( ∑
k,l∈Zd

|〈f, TαkMβlg〉|2
)1/2

�
( ∑
k,l∈Zd

|〈f, TαkMβlγ〉|2
)1/2

for all f ∈ L2(Rd), where � denotes the equivalence of norms. Condition (1.9)
is usually expressed by saying that each of the sets {TαkMβlg : k, l ∈ Zd} and
{TαkMβlγ : k, l ∈ Zd} is a frame for L2(Rd).

The inversion of the Gabor frame operator Sg,α,β on L2(Rd) is well understood;
see [3], [31]. Vaguely formulated, these results state that Sg,α,β is invertible for any
window g satisfying a mild decay condition and for α, β > 0 small enough. On the
other hand, for such windows the density condition αβ < 1 is necessary for the
invertibility of S on L2(Rd) (see [3] or [14, Cor. 8.4.3]).

For a genuine time-frequency analysis, however, the pure L2-theory is insufficient.
For instance, {TkMlχ[0,1]d : k, l ∈ Zd} is even an orthonormal basis of L2(Rd), but
since χ̂[0,1]d decays slowly, the coefficients 〈f, TkMlχ〉 do not furnish any frequency
localization, and thus it is not possible to distinguish a smooth function from a
“rough” function by looking only at the coefficients in (1.5).

For a better description of the properties of a function in both time and fre-
quency, we need a pair of dual windows (g, γ) that satisfy (1.5) and possess good
decay properties and smoothness. In terms of the construction γ = S−1g, these
properties of (g, γ) are equivalent to the invertibility of S on other function spaces.

A major result in this direction was proved by Janssen [17, Prop. 5.5]: If Sg,α,β
is invertible on L2(Rd) and if g ∈ S(Rd), then γ = S−1g is in S(Rd) as well.
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4 KARLHEINZ GRÖCHENIG AND MICHAEL LEINERT

In order to obtain more detailed information about window construction we use
the decay of the short-time Fourier transform as a measure for time-frequency
concentration.

Fix a symmetric weight function v ≥ 1 on R2d, and let φ(x) = e−πx
2

be the
Gaussian on Rd. We say that f is in the modulation space M1

v , if

(1.10) ‖f‖M1
v

=
∫
R2d
|Vφf(z)| v(z) dz <∞ .

This condition implies decay of the short-time Fourier transform and can be
translated into more explicit smoothness and decay properties of f [13]. If v ≡ 1,
then M1

v coincides with Feichtinger’s algebra S0, which plays already an important
role in commutative harmonic analysis and in Gabor analysis [7], [10].

Our main result on window design is the following.

Theorem 1.2. Assume that v is a positive, continuous and radial function on
R2d that satisfies v(0) = 1, v(r1 + r2) ≤ v(r1)v(r2), r1, r2 ∈ R2d, and such that
limn→∞ v(nr)1/n = 1 for all r ∈ R2d. If g ∈ M1

v and if Sg,α,β is invertible on
L2(Rd), then Sg,α,β is invertible on M1

v and thus γ = S−1g ∈M1
v .

[The conditions on the weight v can be relaxed to so-called sub-exponential
weights; see Definition 2.12.]

This statement has a structure similar to Theorem 1.1. The invertibility on a
Hilbert space and the “smoothness” of the “symbol” already imply the invertibility
on other function spaces.

For weights of polynomial growth and αβ ∈ Q, Theorem 1.2 was proved in [9,
Thm. 3.4]; see also [14, Ch. 13] for variations. The rationality condition αβ ∈ Q
occurs frequently in time-frequency analysis, because in this case the Gabor frame
operator possesses an additional structure and can be investigated with commuta-
tive methods [2], [9], [18], [29], [32].

A priori there is no reason why Theorem 1.2 should hold only for rational values
of αβ. It was conjectured in [9, Rem. 3.2] and in [17], [18] that Theorem 1.2 holds
also in the so-called “irrational case”, but so far this problem had remained open.
This paper proves the conjecture.

1.1. The Rotation Algebra. To give a glimpse of what is involved, let C∗(α, β)
be the C∗-algebra generated by the unitary operators {TαkMβl : k, l ∈ Zd} for fixed
α, β > 0. This is a representation of the so-called rotation algebra [5]. If αβ ∈ Q,
then its structure is so easy to understand that it is given as an exercise in [5]. If
αβ 6∈ Q, then C∗(α, β) is a simple algebra, but its detailed structure is very complex
as is manifested by the deep investigations in [6], [26], [27]. One may expect that
a proof of Theorem 1.2 in the irrational case must rely on deeper resources than
Fourier transform methods.

Since the Gabor frame operator S commutes with all time-frequency shifts
TαkMβl, it is in the commutant of C∗(α, β). It is well known that the commu-
tant is generated by the time-frequency shifts Tk/βMl/α; therefore, we may expect
S to be a limit of finite linear combinations of the Tk/βMl/α. Precisely, Janssen
[17] and Daubechies, Landau, and Landau [4] showed that

(1.11) Sg,α,βf = (αβ)−d
∑
k,l∈Zd

〈g, T k
β
M l

α
g〉T k

β
M l

α
f .
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WIENER’S LEMMA FOR TWISTED CONVOLUTION 5

For the better understanding of the deeper properties of S, it is natural to study
the (Banach) subalgebra of C∗(α, β) consisting of absolutely convergent series of
time-frequency shifts.

Definition 1.3. Given α, β > 0 and a submultiplicative weight v (see (2.15)), the
operator algebra Av(α, β) is defined to be

(1.12) Av(α, β) = {A ∈ B(L2(Rd)) : A =
∑
k,l∈Zd

aklTαkMβl, a ∈ `1v(Z2d)}

with (semi-) norm ‖A‖Av = ‖a‖1,v .

Let π be the mapping from `1v(Z2d) into Av(α, β) defined by

(1.13) π(a) =
∑
k,l∈Zd

aklTαkMβl .

ThenAv(α, β) = π(`1v(Z2d)). We will show in Lemma 3.3 that π is one-to-one. Con-
sequently ‖A‖Av is a norm on Av(α, β), and Av(α, β) is a dense Banach subalgebra
of the C∗-algebra C∗(α, β).

Following Janssen[17], we make a key observation: set θ = αβ; then

(1.14) π(a)π(b) = π(a \θ b) ,

and thus π is an algebra homomorphism from `1v(Z2d) onto Av(α, β).
Once the relation between the Gabor frame operator and twisted convolution is

understood, it is plausible that we may apply the abstract result, namely Wiener’s
Lemma for twisted convolution, to the concrete problem of inverting the Gabor
frame operator. Using this strategy, we will solve the “irrational case” of Gabor
frames and solve the conjectures in [17], [9].

In the context of operator algebras the following variation of Wiener’s Lemma,
which is equivalent to Theorem 1.1, might be of interest.

Theorem 1.4. If A ∈ Av(α, β) is invertible in C∗(α, β), then A−1 ∈ Av(α, β).

Turning Wiener’s Lemma into a definition, Naimark [22, p. 203] calls a nested
pair A ⊆ B of Banach algebras with a common identity a Wiener pair, if every
element of A that is invertible in the larger algebra B is also invertible in A. So
Theorem 1.4 states that the (non-commutative) algebras Av(α, β) and C∗(α, β)
form a Wiener pair.

The paper is organized as follows: In Section 2 we first provide the necessary
background on twisted convolution and its connection to the Heisenberg group; then
we discuss the concept of symmetric group algebras. The main result (Theorem 1.1)
follows by a combination of these ideas.

In Section 3 we investigate the Banach algebra of operators Av(α, β) and prove
Wiener’s Lemma for Av(α, β) (Theorem 1.4).

In Section 4 we apply these abstract results to Gabor frames and prove the
existence of good windows in terms of time-frequency concentration. For the appli-
cations of Gabor theory in signal analysis these are probably the most interesting
results of this paper.
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6 KARLHEINZ GRÖCHENIG AND MICHAEL LEINERT

2. Analysis of twisted convolution

To make `1(Z2d) into an involutive Banach algebra, we introduce an involution
operation that is compatible with \θ in the following way:

(2.1) a∗kl = a−k,−l e
2πiθk·l .

Lemma 2.1. `1(Z2d) is an involutive Banach algebra under the twisted convolution
\θ and the involution ∗.

Obviously, if θ′ − θ ∈ Z, then the twisted convolutions \θ and \θ′ are identical.
Clearly, \θ is commutative if and only if θ ∈ Z. In dimension d = 1 it is known
that (a) for θ ∈ (0, 1/2] none of the algebras (`1(Z2d), \θ ) are isomorphic, and that
(b) for irrational θ 6∈ Q the algebra (`1(Z2d), \θ ) is simple [5].

2.1. Heisenberg-Type Groups. Twisted convolution is closely related to ordi-
nary convolution in the group algebra of an associated Heisenberg group.

Definition 2.2. Given θ > 0, we define a multiplication ·θ on Zd × Zd × T. Let
k, l,m, n ∈ Zd and σ, τ ∈ T = {z ∈ C : |z| = 1}; then

(2.2) (k, l, σ) ·θ (m,n, τ) = (k +m, l + n, στe2πiθl·m) .

The multiplication ·θ defines a group structure on Zd × Zd × T. We shall denote
the resulting group by Hθ. Since {0} × T is contained in the center of Hθ and
Hθ/({0} × T) ∼= Z2d is abelian, Hθ is nilpotent and resembles a quotient of the
standard Heisenberg group.

The Haar measure dλ on Hθ = Zd × Zd × T is given explicitly by
∫
Fdλ =∑

k∈Zd
∑

l∈Zd
∫
T F (k, l, τ) dτ . The group convolution ∗θ and Lp(Hθ) are defined

with respect to this measure; the involution is defined as

(2.3) F ∗(k, l, τ) = F ((k, l, τ)−1) = F (−k,−l, τ̄e2πiθk·l) .

Thus both ∗θ and ∗ obviously depend on θ.
The two convolutions \θ and ∗θ are closely related. Following [11], [15] we define

an embedding j of `p(Z2d) into Lp(Hθ) as follows: if a ∈ `p, then

(2.4) j(a)(k, l, τ) = τ̄ a(k, l) .

To describe the range of j, we expand a function F on Hθ into a Fourier series with
respect to the third coordinate τ . Note that if F ∈ Lp(Hθ), then for fixed k, l ∈ Zd
the function τ → F (k, l, τ) is in Lp(T) ⊆ L1(T); therefore the Fourier coefficients
Fn(k, l) =

∫
T F (k, l, τ)τ̄n dτ are well defined and the Fourier series

(2.5) F (k, l, τ) =
∞∑
−∞

Fn(k, l)τn

converges in Lp(T) for 1 < p <∞.
The following lemma collects the properties of this embedding and clarifies the

relation between `p(Z2d) and Lp(Hθ).

Lemma 2.3. (a) j is a norm preserving ∗-homomorphism from (`1(Z2d), \θ ) into
(L1(Hθ), ∗θ) and an isometry from `p(Z2d) into Lp(Hθ) for 1 < p ≤ ∞.

(b) The range of j in Lp(H) is j(`p) = {F ∈ Lp : Fn ≡ 0 for n 6= −1}.

Next we describe the convolution on Lp(Hθ) in terms of the expansion (2.5).
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WIENER’S LEMMA FOR TWISTED CONVOLUTION 7

Lemma 2.4. If F ∈ L1(Hθ) and G ∈ Lp(Hθ), then

(2.6) (F ∗θ G)(m,n, σ) =
∞∑

l=−∞
(Fl \−θlGl)(m,n)σl .

Proof. Since trigonometric polynomials are dense in Lp(T), 1 ≤ p < ∞, it is suffi-
cient to prove (2.6) for functions F and G for which the expansion (2.5) is a finite
series. The extension to all F ∈ L1(Hθ) and G ∈ Lp(Hθ) follows from a routine
density argument. We substitute the expansions for F and G into the definition of
the group convolution and then use the orthogonality of τn on L2(T) to simplify:

(F ∗θ G)(m,n, σ)

=
∑
k,l∈Zd

∫
T

∑
r,s∈Z

Fr(k, l)τr Gs(m− k, n− l)(στ̄e2πiθl·(k−m))s dτ

=
∑
r∈Z

∑
k,l∈Zd

σrFr(k, l)Gr(m− k, n− l)e−2πiθr(m−k)·l

=
∑
r∈Z

(Fr \−θrGr)(m,n)σr ,

as announced. �

Lemma 2.4 gives an idea why the irrational case θ 6∈ Q is much more complicated
than the rational case. For θ ∈ Q only finitely many different twisted convolutions
\−θl occur in the decomposition of ∗θ, whereas the case θ 6∈ Q involves countably
many (non-equivalent) twisted convolutions.

Corollary 2.5. The subspace j(`p(Z2d)) ⊆ Lp(Hθ) is invariant under the action
of L1(Hθ).

2.2. Symmetric Group Algebras.

Definition 2.6. An involutive Banach algebra A is called symmetric, if the spec-
trum of positive elements is positive, i.e., if f = h∗ h ∈ A+ , then σ(f) ⊆ [0,∞).

Moreover, A without identity element is symmetric, if and only if the algebra
A1 obtained by adjoining an identity is symmetric [25, (4.7.9)].

An important tool to investigate the symmetry of an involutive Banach algebra
is the following result of Hulanicki [16], which establishes a connection between the
symmetry and the representation theory of A.

Proposition 2.7 ([16]). Let S be a (not necessarily closed) ∗-subalgebra of an
involutive Banach algebra A. Suppose that there exists a faithful ∗-representation
(π,H) of A by bounded operators on a Hilbert space H such that for all f = f∗ ∈ S

(2.7) ‖π(f)‖op = lim
n→∞

‖fn‖1/nA = νA(f) .

If A has an identity e, we assume that π(e) = idH. Then for each f = f∗ ∈ S we
have

(2.8) σA(f) = σ(π(f)) .

In harmonic analysis it is of special interest to understand for which locally
compact groups G the group algebra L1(G) is symmetric. To get an impression
of the depth and difficulty of this question the reader should consult [19], [21],
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8 KARLHEINZ GRÖCHENIG AND MICHAEL LEINERT

[23], [20]. The symmetry of the group algebra has important consequences for the
spectrum of convolution operators. If f ∈ L1(G), then the convolution operator
Cf , defined as Cfg = f ∗ g, is bounded on Lp(G) for 1 ≤ p ≤ ∞. Denote by
σLp(f) the spectrum of Cf acting on Lp(G) and by νLp(f) its spectral radius.
If f = f∗, then νL2(f) = ‖Cf‖op, the operator norm on L2(G), and νL1(f) =
limn→∞ ‖f ∗ · · · ∗ f‖1/n1 . In general the spectrum of Cf will depend on the domain
Lp. However, we have the following statement which is part of the folklore [1], [16],
[19], [21], [23].

Theorem 2.8. Assume that G is amenable. Then the following are equivalent.
(i) L1(G) is symmetric.
(ii) σL1(f) = σL2(f) for all f = f∗ ∈ L1(G).

Proof. The statement is well known; for completeness we give a short proof.
(ii) =⇒ (i): Assume that σL1(f) = σL2(f) for f = f∗ ∈ L1(G). Then Cf∗∗f =

C∗fCf is a positive operator on L2(G) and consequently σL2(f∗ ∗ f) ⊆ [0,∞). Thus
σL1(f∗ ∗ f) ⊆ [0,∞) and so L1(G) is symmetric.

(i) =⇒ (ii) Suppose that G is amenable, L1(G) is symmetric and f = f∗ ∈ L1(G).
Let λ ∈ σL1(f) be such that |λ| = νL1(f). Then by [22, p. 311, V] there exists
an irreducible ∗-representation (π,H) of L1(G) on a Hilbert space H and a vector
ξ ∈ H, ‖ξ‖ = 1, such that λ = 〈π(f)ξ, ξ〉. Consequently

νL1(f) = |λ| ≤ ‖π(f)ξ‖ ‖ξ‖ ≤ ‖π(f)‖op .

On the other hand, the amenability of G [23] implies that

‖π(f)‖op ≤ ‖Cf‖op = νL2(f)

and thus νL1(f) ≤ νL2(f). Since the converse inequality νL2(f) ≤ νL1(f) is always
true, we have obtained the equality νL2(f) = νL1(f). Now we apply Hulanicki’s
Lemma 2.7 to the regular representation π(f) = Cf of L1(G) acting on L2(G) and
obtain σL2(f) = σL1(f) for all f = f∗ ∈ L1(G). �

Since all locally compact abelian groups are symmetric, one may expect that
groups that are “similar” to abelian groups also have symmetric group algebras.
This is indeed true for a large class of groups. For our purposes we need the
following result of Ludwig [21].

Theorem 2.9. If G is nilpotent, then L1(G) is symmetric. Consequently, σL1(f) =
σL2(f) for f = f∗ ∈ L1(G).

2.3. Wiener’s Lemma for Twisted Convolution. By combining Theorem 2.9
with Proposition 2.7, it is now easy to prove our first version of Wiener’s Lemma for
twisted convolution. To distinguish twisted convolution from ordinary convolution,
we write La for the twisted convolution operator Lac = a \θ c, where a ∈ `1(Z2d)
and c ∈ `p(Z2d). The spectrum of La acting on `p(Z2d) is denoted by σ`p(a); the
spectral radius by ν`p(a). The identity element in `1(Z2d) is denoted by δ, where
δ(0) = 1 and δ(k) = 0 for k 6= 0. We write fn and an for the n-th convolution
power in L1(G) or `1(Z2d).

Theorem 2.10. Assume that a ∈ `1(Z2d). Then

(2.9) σ`1(a) = σ`2(a) .
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In particular, if La is invertible on `2(Z2d), then a is invertible in `1(Z2d) and
there exists a unique b ∈ `1(Z2d) such that L−1

a = Lb, or a \θ b = b \θ a = δ.
Consequently La is invertible simultaneously on all `p(Z2d).

Proof. (a) We apply Hulanicki’s Lemma to the algebra A = S = (`1(Z2d), \θ , ∗)
and the representation π(a) = La acting on `2(Z2d). If La = 0, then a = a \θ δ =
Laδ = 0; consequently π is faithful.

In order to show that ν`1(a) = ν`2(a), we use the identification of `2(Z2d) with
the closed subspace j(`2) := H of L2(Hθ) and lift the arguments to L1(Hθ).

By Lemma 2.3 we have

(2.10) ν`1(a) = lim
n→∞

‖an‖1/n1 = lim
n→∞

‖j(a)n‖1/n1 = νL1(j(a)) .

On the invariant subspace j(`2) ⊆ L2(Hθ) we have

(2.11) Cj(a)j(c) = j(a) ∗θ j(c) = j(a \θ c) = j(Lac) ,

whereas on the orthogonal complement j(`2)⊥ we obtain that Cj(a)|j(`2)⊥ = 0 by
Lemma 2.4. It follows that

(2.12) ‖Cj(a)‖op = ‖La‖op = ν`2(a)

for any self-adjoint element a = a∗ ∈ `1(Z2d).
But since L1(Hθ) is symmetric by Theorem 2.9, we have that

νL1(j(a)) = νL2(j(a)) = ‖Cj(a)‖op ,

and by means of (2.12) and (2.10) we conclude that ν`1(a) = ν`2(a).
Thus the hypotheses of Proposition 2.7 are satisfied and we conclude that

σ`1(a) = σ`2(a) for a = a∗ ∈ `1(Z2d) .

(b) If a,b ∈ `1(Z2d) and a \θ b = b \θ a = δ, then L−1
a = Lb is bounded on

all `p(Z2d), 1 ≤ p ≤ ∞. Applying this observation to elements of the form a − λδ
shows that

(2.13) σ`p(a) ⊆ σ`1(a)

for all 1 ≤ p ≤ ∞.
(c) Next we show that

(2.14) σ`1(a) = σ`2(a) for all a ∈ `1(Z2d) .

If a ∈ `1(Z2d) and La is invertible on `2(Z2d), then La∗ \θ a is also invertible on
`2(Z2d). Since σ`2(a∗ \θ a) = σ`1(a∗ \θ a) does not contain 0, a∗ \θ a is invertible in
`1(Z2d). Likewise a \θ a∗ has an inverse in `1(Z2d). This implies that a is invertible
in `1(Z2d), because it has the left inverse (a∗ \θ a)−1 \θ a∗ ∈ `1(Z2d) and the right
inverse a∗ \θ (a \θ a∗)−1 ∈ `1(Z2d). The argument applied to a − λδ shows that
σ`1(a) ⊆ σ`2(a). Combined with (b) we obtain the identity of spectra (2.14).

(d) If a ∈ `1(Z2d) and La is invertible on `2(Z2d), then 0 6∈ σ`2(a) and (2.13) and
(2.14) show that 0 6∈ σ`p(a) for 1 ≤ p ≤ ∞. Thus La is invertible on all `p(Z2d). �

Corollary 2.11. (`1(Z2d), \θ ,∗ ) is a symmetric Banach algebra.
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2.4. Weighted Convolution Algebras. In this section we extend Theorem 2.10
to weighted algebras.

By a weight v on R2d we understand a positive, continuous, symmetric function
that satisfies v(0) = 1 and the submultiplicativity

(2.15) v(r1 + r2) ≤ v(r1)v(r2) for r1, r2 ∈ R2d .

The submultiplicativity (2.15) implies that v grows at most exponentially, because
v(nr) ≤ v(r)n for all r ∈ R2d and n ∈ N and thus for some α > 0

v(r) ≤
(

max
|e|≤1

v(e)
)|r|

= eα|r| .

Let `1v(Z2d) be the space of all sequences on Z2d for which the norm

(2.16) ‖a‖1,v =
∑
r∈Z2d

|ar|v(r)

is finite. Since v is submultiplicative, we obtain

(2.17) ‖a \θ b‖1,v ≤ ‖a‖1,v ‖b‖1,v,

and since v is symmetric, we have ‖a∗‖1,v = ‖a‖1,v. Thus (`1v(Z2d), \θ ,∗ ) is an
involutive Banach algebra.

In the following we consider a special class of weight functions. Let ρ be a
norm on R2d (or on a lower-dimensional subspace 6= {0} of R2d), and let σ be a
non-negative, concave function on R+ such that σ(0) = 0 and

(2.18) lim
t→∞

σ(t)
t

= 0 .

Definition 2.12. A weight v is called subexponential if v is of the form v(r) =
eσ(ρ(r)).

Note that (2.18) is equivalent to the condition limn→∞ v(nr)1/n = 1 for all
r ∈ R2d. This is the condition of Gelfand-Raikov-Shilov [12].

Example. Choose cj > 0 and a finite subset F ⊆ {1, 2, . . . , 2d}. Then ρ(r) =(∑
j∈F ( rjcj )p)1/p is a norm on a subspace of R2d. Choose σ(t) = a ln(1 + t) or

σ(t) = atb, a > 0, 0 ≤ b < 1. Thus the standard weight functions v(r) = (1 + |r|)a
and v(r) = ea|r|

b

as well as “half-dimensional weights” v(x, ω) = (1 + |x|)a or
v(x, ω) = (1 + |ω|)a are covered by this definition.

Concerning the weighted convolution algebras `1v(Z2d) we have the following
observation, which is inspired by a result of Pytlik [24].

Proposition 2.13. If v is subexponential, then

(2.19) ν`1v(a) = ν`1(a)

for all a ∈ `1v(Z2d).

Proof. We first define a sequence of auxiliary weights. Let

(2.20) σn(t) =

{
σ(t) if t ≥ n,
t
nσ(n) if t ≤ n .
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Then σn still satisfies (2.18) and is again positive and concave. It follows that
vn(r) = eσn(ρ(r)) is a subexponential weight. Furthermore, there exist constants
an > 0 such that σn ≤ σ ≤ σn + an and thus

(2.21) vn(r) ≤ v(r) ≤ eanvn(r) .

Since these weights are equivalent, we have `1v(Z2d) = `1vn(Z2d) and

(2.22) ν`1vn (a) = ν`1v (a) for a ∈ `1v(Z2d) .

Now we have

ν`1v(a)k =
(

lim
n→∞

‖akn‖
1
kn
1,v

)k
= ν`1v(ak)(2.23)

= ν`1vn (ak) by (2.22)

≤ ‖ak‖1,vn for all k ∈ N .
Since vn → 1 uniformly on compact sets and vn ≤ v, we obtain that

(2.24) lim
n→∞

‖ak‖1,vn = lim
n→∞

‖akvn‖1 = ‖ak‖1

for all k ∈ N. Combined with (2.23) we conclude that ν`1v (a) ≤ ‖ak‖1/k1 for all k,
hence ν`1v(a) ≤ ν`1(a). Since the reverse inequality is always true, we have proved
(2.19). �

Theorem 2.14. If a ∈ `1v(Z2d) and if La is invertible on `2(Z2d), then there exists
b ∈ `1v(Z2d) such that a \θ b = b \θ a = δ whence L−1

a = Lb. Consequently La is
invertible simultaneously on all weighted spaces `pv(Z2d), 1 ≤ p ≤ ∞.

Proof. We apply Proposition 2.7 to the Banach algebra `1v(Z2d) ⊆ `1(Z2d). Since
by Theorem 2.10 and Proposition 2.13 we have

(2.25) ν`1v(a) = ν`1(a) = ν`2(a) ,

Proposition 2.7 implies that σ`1v (a) = σ`2(a) for a = a∗ ∈ `1v(Z2d). If La is invertible
on `2, then 0 6∈ σ`2(a); thus a = a∗ is invertible in `1v(Z2d). Thus there exists
b ∈ `1v(Z2d) such that a \θ b = b \θ a = δ. The extension to non-Hermitian
elements follows as in step (c) of the proof of Theorem 2.10. �

Corollary 2.15. If v is a subexponential weight, then (`1v(Z2d), \θ ,∗ ) is a sym-
metric Banach algebra.

Remark. This corollary is no longer true for exponential weights v(r) = eδ|r|. It
follows from [12, pp. 152, 153] that the commutative algebra (`1v(Z2d), ∗) under
ordinary convolution is not symmetric.

3. Wiener’s Lemma in the rotation algebra

For the applications to Gabor theory we study the representation π of the algebra
(`1(Z2d), \θ ,∗ ) acting on L2(Rd) by time-frequency shifts. Recall that π(a) is
defined by

(3.1) π(a) =
∑
k,l∈Zd

aklTαkMβl .
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Since TαkMβl is unitary, we have ‖π(a)‖op ≤ ‖a‖1. By (1.14) and (2.1) π is a non-
degenerate representation of the involutive Banach algebra (`1v(Z2d), \θ ,∗ ), where
we have set αβ = θ. Then π(`1v(Z2d)) := Av(α, β) is a dense Banach subalgebra
of the C∗-algebra C∗(α, β) that is generated by the time-frequency shifts TαkMβl.
Our main theorem is Wiener’s Lemma for Av(α, β).

Theorem 3.1. Assume that a ∈ `1v(Z2d) and that π(a) ∈ Av(α, β) is invertible on
L2(Rd). Then a is invertible in `1v(Z2d), hence π(a)−1 = π(b) for some b ∈ `1v(Z2d)
or π(a)−1 ∈ Av(α, β).

We prepare the proof of this theorem by several lemmas.
First we show that π(a) is a meaningful operator for a ∈ `2(Z2d). For this

purpose we introduce the amalgam space W = W (L∞, `1) on Rd with norm

‖f‖W =
∑
k∈Zd

sup
x∈[0,α]d

|f(x+ αk)| =
∑
k∈Zd

‖f · Tαkχ[0,α]d‖∞ .

Lemma 3.2. If a ∈ `2(Z2d), then π(a) is bounded from W (L∞, `1) into L2(Rd)
and

(3.2) ‖π(a)f‖2 ≤ C‖a‖2‖f‖W .

Proof. It suffices to establish (3.2) for elements a with compact support. Inequality
(3.2) for arbitrary a ∈ `2(Z2d) then follows by density and continuity.

Write χ = χ[0,α]d and fl = f ·Tαlχ. Then f =
∑

l∈Zd fl and ‖f‖W =
∑

l∈Zd ‖fl‖∞.
Furthermore, by interchanging the order of Tαk and Mβl we may rewrite π(a) as

(3.3) π(a) =
∑
k,l∈Zd

akle
−2πiθk·lMβlTαk =

∑
k∈Zd

µkTαk,

where µk(x) =
∑

l∈Zd akle
−2πiθk·le2πiβl·x is 1

β -periodic. If a ∈ `2(Z2d), then µk is
locally square-integrable and for any compact set K ⊆ Rd and any u ∈ Rd we have

(3.4)
∫
u+K

|µk(x)|2 dx ≤ C
∑
l∈Zd
|akl|2

with a constant independent of a and u ∈ Rd. Using the decomposition of f and
|fl| ≤ Tαlχ[0,α]d‖fl‖∞, we can estimate ‖π(a)f‖2 as follows:

‖π(a)f‖2 = ‖π(a)
( ∑
l∈Zd

fl
)
‖2 ≤

∑
l∈Zd
‖π(a)fl‖2

=
∑
l∈Zd
‖
∑
k∈Zd

µkTαkfl‖2

≤
∑
l∈Zd
‖
∑
k∈Zd

|µk|Tα(k+l)χ‖2 ‖fl‖∞ .

(3.5)

Since the translates Tα(k+l)χ are disjoint, (3.4) implies that

‖
∑
k∈Zd

|µk|Tα(k+l)χ‖22 =
∑
k∈Zd

∫
α(k+l)+[0,α]d

|µk(x)|2 dx ≤ C
∑

k,n∈Zd
|akn|2 .

Since this estimate is independent of l, (3.5) yields that

‖π(a)f‖2 ≤ C‖a‖2
∑
l∈Zd
‖fl‖∞ = C‖a‖2‖f‖W ,
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which is the desired estimate. �

Lemma 3.3. If a ∈ `2(Z2d) and π(a) = 0 on W (L∞, `1), then a = 0.

Proof. We know from Lemma 3.2 that π(a) is bounded on W (L∞, `1). Let f, h be
bounded functions with support in [0, α]d (hence f, h ∈ W ) and let l,m ∈ Zd be
arbitrary. The disjointness of the supports of Tαkf and (3.3) imply that

0 = 〈π(a)Tαlf, Tαmh〉
=

∑
k∈Zd
〈µkTα(k+l)f, Tαmh〉

= 〈µm−l · Tαmf, Tαmh〉 .
So we conclude that µm−l(x) = 0 for almost all x ∈ αm + [0, α]d and l,m ∈ Zd.
Varying l,m, it follows that µk(x) = 0 for almost all x ∈ Rd and every k ∈ Zd.
Consequently the Fourier coefficients of µk vanish and thus a = 0. �

Lemma 3.4. For all a ∈ `1(Z2d) we have the inequalities

(3.6) ‖a‖2 ≤ ‖La‖op ≤ ‖a‖1
and

(3.7) ‖π(a)‖op ≤ ‖La‖op .

Proof. Estimate (3.6) follows from

‖a‖2 = ‖a \θ δ‖2 ≤ ‖La‖op = sup
‖c‖2=1

‖a \θ c‖2 ≤ ‖a‖1 .

Estimate (3.7) is an easy consequence of Theorem 2.10. If a = a∗ ∈ `1(Z2d), then
by (2.9) we have

‖π(a)‖op = ν(π(a)) ≤ ν`1(a)
= ν`2(a) = ‖La‖op .(3.8)

Since for arbitrary a we have ‖π(a∗ \θ a)‖op = ‖π(a)∗π(a)‖op = ‖π(a)‖2op and
‖La∗ \θ a‖op = ‖La‖2op, (3.7) is proved for all a ∈ `1(Z2d). �

Proof of Theorem 3.1. We wish to apply Proposition 2.7 to the subalgebra `1v(Z2d)
of `1(Z2d) and the representation π on L2(Rd). By Lemma 3.3 π is a faithful
representation. Since we have already shown that ν`1v (a) = ν`2(a) = ‖La‖op for
a = a∗ ∈ `1v(Z2d) (Theorem 2.10 and Proposition 2.13), it suffices to verify that
‖La‖op = ‖π(a)‖op.

Let C∗(`1) be the C∗-algebra generated by the regular (twisted) representation
La of `1(Z2d), and as above let C∗(α, β) be the C∗-algebra generated by the time-
frequency shifts TαkMβl.

If A ∈ C∗(`1), then there exists a sequence an ∈ `1 such that ‖A− Lan‖op → 0.
By (3.6) ‖an−am‖2 ≤ ‖Lan−Lam‖op and thus there exists a ∈ `2 such that lim an =
a. Because of (3.7) {π(an)} is a Cauchy sequence and thus there is T ∈ C∗(α, β)
with ‖π(an) − T ‖op → 0. For f ∈ W (L∞, `1) we have both ‖π(an)f − Tf‖2 → 0
and ‖π(an)f − π(a)f‖2 → 0 by Lemma 3.2, so T = π(a) on W (L∞, `1). By a
similar argument we find that A = La on the dense subspace `1(Z2d) ⊆ `2(Z2d).

Now we define a C∗-homomorphism h from C∗(`1) to C∗(α, β) by

(3.9) h(A) = T ,
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14 KARLHEINZ GRÖCHENIG AND MICHAEL LEINERT

where A and T are as above. Then h is a ∗-homomorphism, and by (3.7) and the
construction h is continuous. If T = 0, then π(a) = 0 on W (L∞, `1); consequently
a = 0 by Lemma 3.3. Since Lac = Ac for all c ∈ `1(Z2d), we have A = 0 and
thus h is one-to-one. Therefore we may conclude that ‖La‖op = ‖π(a)‖op, because
an injective ∗-homomorphism between C∗-algebras is always an isometry (see [5,
Thm. I.5.5]).

In combination with Theorem 2.10 and Proposition 2.13 we have proved that

(3.10) ν`1v(a) = ν`2(a) = ‖π(a)‖op for a ∈ `1v(Z2d) .

Thus Proposition 2.7 implies that

(3.11) σ`1v (a) = σ(π(a)) for a = a∗ .

Consequently, if π(a) is invertible on L2(Rd), then a is invertible in the algebra
`1v(Z2d), and thus there exists b ∈ `1v(Z2d) such that a \θ b = b \θ a = δ. Thus
π(b) = π(a)−1 as was to be proved. The extension to non-Hermitian elements
follows as before. �

Remark. Identity (3.10) was conjectured by Janssen in [17, (1.41)].

4. Applications to Gabor frames and window design

To establish the link between the abstract theory derived so far and time-
frequency analysis on modulation spaces we need the following lemma. Recall that
the modulation space M1

v is defined by the norm ‖f‖M1
v

=
∫
R2d |Vφf(z)|v(z)dz,

where Vφf is the short-time Fourier transform of f with respect to the Gaussian
window φ as defined in (1.3).

Lemma 4.1 ([14]). If a ∈ `1ṽ(Z2d), then π(a) is bounded on M1
v and ‖π(a)f‖M1

v
≤

‖a‖1,ṽ‖f‖M1
v
, where ṽ is the restriction of v to the lattice αZd × βZd.

Proof. A simple calculation shows that |Vφ(TuMηf)(x, ω)| = |Vφf(x − u, ω − η)|.
Because v is submultiplicative, we obtain

‖TuMηf‖M1
v

=
∫
R2d
|Vφf(x− u, ω − η)| v(x, ω) dxdω ≤ v(u, η) ‖f‖M1

v
.

Consequently

‖π(a)f‖M1
v

= ‖
∑
k,l∈Zd

aklTαkMβlf‖M1
v

≤
∑
k,l∈Zd

|akl| ‖TαkMβlf‖M1
v

≤
∑
k,l∈Zd

|akl| v(αk, βl) ‖f‖M1
v

= ‖a‖1,ṽ ‖f‖M1
v
.

�

Theorem 4.2. Assume that {TαkMβlg : k, l ∈ Zd} is a frame for L2(Rd) and
that g ∈ M1

v . Then the Gabor frame operator Sg,α,β is invertible on M1
v and

γ = S−1g ∈M1
v .
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Proof. The so-called Janssen representation of the Gabor frame operator ([17,
Prop. 2.8] and [4]) allows us to write S as

(4.1) S = Sg,α,β = (αβ)−d
∑
k,l∈Zd

〈g, T k
β
M l

α
g〉T k

β
M l

α
.

If g ∈ M1
v , then it can be shown that

∑
k,l∈Zd |〈g, Tk/βMl/αg〉|v(k/β, l/α) < ∞;

see [8, Lemma 7.2] and [14, Cor. 12.1.12]. Thus (4.1) can be recast by saying that
S = π(a) for some a ∈ `1ṽ(Z2d) with ṽ being the restriction of v to 1

βZ
d × 1

αZ
d.

Equivalently S = Sg,α,β ∈ Aṽ( 1
β ,

1
α ). Since {TαkMβlg : k, l ∈ Zd} is a frame,

S = π(a) is invertible. By Theorem 3.1, S−1 = π(b) ∈ Aṽ( 1
β ,

1
α ) and so S−1 is of

the form

(4.2) S−1 =
∑
k,l∈Zd

bkl Tk/βMl/α for b ∈ `1ṽ(Z2d) .

By Lemma 4.1, S−1 is bounded on M1
v and thus γ = S−1g ∈M1

v . �

We refer to [9, Section 5] and [14, Ch. 12] for the consequences of Theorem 4.2
for the time-frequency analysis of tempered distributions.

The next corollary confirms a conjecture of Janssen [18] in the irrational case.
We say that a window g satisfies condition (A) if∑

k,l∈Zd
|〈g, T k

β
M l

α
g〉| <∞ .

This condition was introduced in [30] to avoid the obvious convergence problems of
S in (4.1). Since S−1

g,α,β = Sγ,α,β as a consequence of the computation

S−1
g,α,βf = S−1SS−1f =

∑
k,l∈Zd

〈f, S−1TαkMβlg〉S−1TαkMβlg

=
∑
k,l∈Zd

〈f, TαkMβlγ〉TαkMβlγ = Sγ,α,βf ,

the question arose whether Janssen’s representation of S−1 also converges abso-
lutely, or equivalently, whether γ = S−1g again satisfies condition (A). This was
answered affirmatively by Janssen [18, Thm. 1.4] in the rational case αβ ∈ Q and
conjectured to be true for all values of αβ. With the machinery built up so far we
can now easily prove this conjecture.

Corollary 4.3. If g satisfies condition (A) and if the Gabor frame operator Sg,α,β
is invertible, then γ also satisfies condition (A).

Proof. By definition condition (A) implies that Sg,α,β = π(a) for some a ∈ `1. Then
Theorem 3.1 implies that S−1 = π(b) for some b ∈ `1. Since S−1 = Sγ,α,β, (4.1)
and Lemma 3.3 imply that bkl = 〈γ, Tk/βMl/αγ〉. Therefore γ satisfies condition
(A). �

Here is another easy consequence of Theorem 3.1. Let vs(z) = (1 + |z|)s be the
polynomial weight. Janssen [17, Prop. 5.4] showed that if π(a) ∈ Av2s+1 is invertible
on L2, then π(a)−1 ∈ Avs . We may now improve this statement as follows.

Corollary 4.4. If π(a)∈Avs (α, β) is invertible on L2(Rd), then π(a)−1∈Avs(α, β).
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4.1. Tight Gabor Frames. For the construction of tight Gabor frames it is im-
portant to understand the mapping properties of the square root of Sg,α,β . The
interest stems from the following fact [3], [14]. Assume that {TαkMβlg : k, l ∈ Zd}
is a frame for L2(Rd), and define a new window γ̃ by γ̃ = S

−1/2
g,α,βg. Then every

f ∈ L2(Rd) has the non-orthogonal and unconditionally convergent expansion

(4.3) f =
∑
k,l∈Zd

〈f, TαkMβlγ̃〉TαkMβlγ̃ .

This so-called tight Gabor frame expansion works like an orthonormal expansion,
but the coefficients are unique if and only if αβ = 1 ([14, Cor. 7.5.2] and [28]). For
genuine time-frequency analysis it is necessary that the series (4.3) converges in
more restrictive norms, or equivalently that the window γ̃ is in M1

v . The existence of
tight frame expansions (4.3) with “good” windows follows easily from the existence
of square roots of positive elements in involutive Banach algebras.

Corollary 4.5. (a) If π(a) ∈ Av(α, β) is positive and invertible on L2(Rd), then
π(a)±1/2 ∈ Av(α, β).

(b) If {TαkMβlg : k, l ∈ Zd} is a frame for L2(Rd) and g ∈ M1
v , then γ̃ =

S
−1/2
g,α,βg ∈M1

v .

Proof. (a) Since σ`1v (a) = σ`2(a) ⊆ (0,∞), a is positive and invertible in the sym-
metric algebra `1v(Z2d). By [22, p. 305, VII] there exists a positive element b = b∗ ∈
`1v(Z2d) such that a = b \θ b. Consequently π(b)2 = π(a) and π(b) ∈ Av(α, β).
By construction 0 6∈ σ(π(b)) and thus π(b)−1 ∈ Av(α, β) as well.

(b) follows by applying (a) to the positive invertible operator S−1
g,α,β ∈ Aṽ( 1

β ,
1
α ).
�

4.2. Generalizations. Instead of the “separable” lattice αZd×βZd one may con-
sider arbitrary “non-separable” lattices Λ = AZ2d for some A ∈ GL(2d,R). Write
z = (z1, z2) ∈ Rd × Rd = R2d and Uz = Tz1Mz2 for the time-frequency shifts, and
define the cocycle χ(z, w) = e2πiw1·z2 . Then the twisted convolution on `1(Λ) is
defined to be

(4.4) (a \Λ b)(µ) =
∑
λ∈Λ

aλbµ−λ χ(λ, µ− λ)

for a,b ∈ `1(Λ). It can be shown that the operators

(4.5) πΛ(a) =
∑
λ∈Λ

aλUλ

define a faithful non-degenerate representation of `1(Λ) on L2(Rd). Then the non-
commutative versions of Wiener’s Lemma, Theorems 2.10, 2.14, and 3.1 extend to
the algebra (`1(Λ), \Λ) with a suitable involution. In particular, if πΛ(a) is invertible
on L2(Rd) and if a ∈ `1v(Λ), then πΛ(a)−1 = πΛ(b) for some b ∈ `1v(Λ). Likewise,
the other results can be generalized to general lattices in the time-frequency plane.
The proofs are almost identical and the minor modifications are left to the reader.

In a further generalization we may replace Rd by an arbitrary second count-
able locally compact abelian group G and Λ ⊆ R2d by a discrete cocompact sub-
group D ⊆ G × Ĝ. Time-frequency shifts on L2(G) are defined by TxMχf(t) =
χ(t− x)f(t− x) for x, t ∈ G and χ ∈ Ĝ. The abstract structures are the same, and
all results of this paper can be formulated and proved for twisted convolution on
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D and for the corresponding projective representation πD of D by time-frequency
shifts on L2(G). As no new ideas or techniques are required, we omit the discussion
of details.
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