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Wiener system identification using the
maximum likelihood method

Adrian Wills and Lennart Ljung

Abstract The Wiener model is a block oriented model where a linear dy-
namic system block is followed by a static nonlinearity block. The dominant
method to estimate these components has been to minimize the error be-
tween the simulated and the measured outputs. This is known to lead to
biased estimates if disturbances other than measurement noise are present.
For the case of more general disturbances we present Maximum Likelihood
expressions and provide algorithms for maximising them. This includes the
case where disturbances may be coloured and as a consequence we can han-
dle blind estimation of Wiener models. This case is accommodated by using
the Expectation-Maximisation algorithm in combination with particles meth-
ods. Comparisons between the new algorithms and the dominant approach
confirm that the new method is unbiased and also has superior accuracy.
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2 Adrian Wills and Lennart Ljung

1 Introduction

Within the class of nonlinear system models, the so-called block-oriented mod-

els have gained wide recognition and attention by the system identification
and automatic control community. Typically, these models are constructed
by joining linear dynamic system blocks with static nonlinear mappings in
various forms of interconnection.

u(t) x0(t)

w(t) e(t)

f(·, η)
x(t) y(t)

G(q, ϑ)

Fig. 1 The Wiener model. The input u(t) and the output y(t) are measurable, but not
the intermediate signal x(t). w(t) and e(t) are noise sources. x0(t) denotes the output of
the linear dynamic system G. f is nonlinear and static (memoryless).

The Wiener model depicted in Figure 1 is one such block-oriented model,
see, e.g. [2], [18] or [9]. It is typically comprised of two blocks, where the first
one is linear and dynamic and the second is nonlinear and static.

From one perspective, these models are reasonable since they often reflect
the physical realities of a system. Some examples of this include distillation
columns [24], pH control processes [11], and biological examples [10]. More
generally, they accurately model situations where the output of a linear sys-
tem is obtained using a nonlinear measurement device.

From another perspective, if the blocks of a Wiener model are multi-
variable, then it can be shown [3] that almost any nonlinear system can
be approximated arbitrarily well using them. However, this is not the fo-
cus of the current chapter, where single input - single output systems are
considered.

With this as motivation, in this chapter we are concerned with estimating
Wiener models based on input and/or output measurements. To make these
ideas more precise, we will adopt the notation used in Figure 1 here and
throughout the remainder of this chapter. In particular, the input signal is
denoted by u(t), the output signal by y(t) and x(t) denotes the intermediate
unmeasured signal. The disturbance term w(t) is henceforth called the process
noise and e(t) is called the measurement noise as usual. These noise terms
are assumed to be mutually independent.

Using this notation, the Wiener system can be described by the following
equations.
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x0(t) = G(q,ϑ)u(t)

x(t) = x0(t)+w(t)

y(t) = f
(
x(t),η

)
+ e(t)

(1)

Throughout this chapter it is assumed that f and G each belong to a
parametrized model class. Typical classes for the nonlinear term f include ba-
sis function expansions such as polynomials, splines, or neural networks. The
nonlinearity f may also be a piecewise linear function, such as a dead-zone
or saturation function. Typical classes for the linear term G include rational
transfer functions and linear state space models.

It is important to note that if the process noise w and the intermediate
signal x are unknown, then the parametrization of the Wiener model is not
unique. For example, scaling the linear block G via κG and scaling the non-
linear block f via f ( 1

κ ·) will result in identical input–output behaviour. (It
may necessary to scale the process noise variance with a factor κ.)

Based on the above description, the problem addressed in this chapter is
to estimate the parameters ϑ within the model class for G and η within the
model class for f that best match the measured output data from the system.

For convenience, we define a joint parameter vector θ as

θ = [ϑ T ,ηT ]T (2)

which will be used throughout this chapter.

2 An Output-Error Approach

While there are several methods for identifying Wiener models proposed in
the literature, the most dominant of these is to parametrize the linear and the
nonlinear blocks, and then estimate the parameters from data by minimizing
an output-error criterion (this has been used in [1], [21] and [22] for example).

In particular, if the process noise w(t) in Figure 1 is ignored, then a natural
criterion is to minimize

VN(θ) =
1

N

N

∑
t=1

(
y(t)− f

(
G(q,ϑ)u(t),η

))2

(3)

This approach is standardly used in software packages such as [23] and [12].
If it is true that the process noise w(t) is zero, then (3) becomes the

prediction-error criterion. Furthermore, if measurement noise is white and
Gaussian, (3) is also the Maximum Likelihood criterion and the estimate is
therefore consistent [13].

Even for the case where there is process noise, it may still seem reasonable
to use an output-error criterion like (3) to obtain an estimate. However,
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f
(
G(q,ϑ)u(t),η

)
is not the true predictor in this case and it has been shown

in [8] that this can result in biased estimates.
A further difficulty with this approach is that is cannot directly handle the

case of blind Wiener model estimation where the process noise is assumed
to be zero, but the input u(t) is not measured. Related criteria to (3) have
been derived for this case, but they assume that the nonlinearity is invertible
and/or that the measurement noise is not present [20, 19].

By way of motivating the main tool in this chapter, namely Maximum
Likelihood estimation, the next section provides conditions for the estimates
of (3) to be consistent. It is shown by example that using the output-error
criterion can produce biased estimates. These results appeared in [8].

2.1 Consistent Estimates

Consider a Wiener system in the form of Figure 1 and Equation (1) and
assume we have measurements of the input and output according to some
“true” parameters (ϑ0,η0), i.e.

y(t) = f
(
G(q,ϑ0)u(t)+w(t),η0

)
+ e(t) (4)

Based on the measured inputs and outputs, we would like to find an estimate
of these parameter values, (ϑ̂ , η̂) say, that are close to the true parameters. A
more precise way of describing this is to say that an estimate is consistent if
the parameters converge to their true values as the number of data, N tends
to infinity.

In order to make this idea concrete for the output-error criterion in (3) we
write the true system (4) as

y(t) = f
(
G(q,ϑ0)u(t),η0

)
+ w̃(t)+ e(t) (5)

where
w̃(t) = f

(
G(q,ϑ0)u(t)+w(t),η0

)
− f
(
G(q,ϑ0)u(t),η0

)
(6)

The new disturbance term w̃(t) may be regarded as a (input-dependent)
transformation of the process noise w(t) to the output. This transformation
will most likely distort the stochastic properties of w(t), such as mean and
variance, compared with w̃(t).

By inserting the equation for y in (5) into the criterion (3), we receive the
following expression.
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VN(θ) =
1

N

N

∑
t=1

(
f0 − f + w̃(t)+ e(t)

)2

(7)

=
1

N

N

∑
t=1

(
f0 − f

)2

+
1

N

N

∑
t=1

(
w̃(t)+ e(t)

)2
+

2

N

N

∑
t=1

(
f0 − f

)(
w̃(t)+ e(t)

)

where
f0 , f

(
G(q,ϑ0)u(t),η0

)
, f , f

(
G(q,ϑ)u(t),η

)
. (8)

Further, assume that all noise terms are ergodic, so that time averages tend
to their mathematical expectations as N tends to infinity. Assume also that
u is a (quasi)-stationary sequence [13], so that is also has well defined sample
averages. Let, E denote both mathematical expectation and averaging over
time signals (cf. Ē in [13]). Using the fact that the measurement noise e is
zero mean, and independent of the input u and the process noise w means
that several cross terms will disappear. The criterion then tends to

V̄ (θ) = E
(

f0 − f
)2

+Ew̃2(t)+Ee2(t)+2E
(

f0 − f
)

w̃(t) (9)

The last term in this expression cannot necessarily be removed since the
transformed process noise w̃ need not be independent of u. The criterion (9)
has a quadratic form, and the true values (ϑ0,η0) will minimize the criterion
if and essentially only if

E
(

f
(
G(q,ϑ0)u(t),η0

)
− f
(
G(q,ϑ)u(t),η

))
w̃(t) = 0 (10)

Typically, this will not hold due to the possible dependence between u and
w̃. The parameter estimates will therefore be biased in general. To illustrate
this, we provide an example below.

Example 1. Consider the following wiener system, with linear dynamic part
described by

x0(t)+0.5x0(t −1) = u(t −1)

x(t) = x0(t)+w(t)
(11)

followed by a static nonlinearity described as a second order polynomial,

f
(
x(t)
)

= c0 + c1x2(t)

y(t) = f
(
x(t)
)
+ e(t)

(12)

The goal is to estimate the nonlinearity parameters denoted here by ĉ0 and
ĉ1.

In this case it is possible to provide expressions for the analytical minimum
of criterion (3). Recall that in this case the process noise w(t) is assumed to
be zero. Therefore, the predicted output can be expressed as
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ŷ(t) = f (G(q,ϑ)u(t),η) = f (x0(t),η) = ĉ0 + ĉ1x2
0(t) (13)

Assume that all signals, noises as well as inputs, are Gaussian, zero mean and
ergodic. Let λx denote the variance of x0, λw denote the variance of w, and
λe denote the variance of e. As N tends to infinity, the criterion (3) tends to
the limit (9)

V̄ = E(y− ŷ)2 = E
(
c0 + c1(x0 +w)2 + e− ĉ0 − ĉ1x2

0

)2

= E
(
(c1 − ĉ1)x

2
0 + c0 − ĉ0 +2c1x0w+ c1w2 + e

)2

All the cross terms will be zero since the signals are Gaussian, independent
and zero mean. The fourth order moments are Ex4 = 3λ 2

x and Ew4 = 3λ 2
w.

This leaves

V̄ =3(c1 − ĉ1)
2λ 2

x +(c0 − ĉ0)
2 +4c1λxλw +3c2

1λ 2
w +λe

+2(c0 − ĉ0)× (c1 − ĉ1)λx +2c1(c1 − ĉ1)λxλw +2c1(c0 − ĉ0)λw

From this expression it is possible to compute the gradient with respect to
each ĉi and therefore find the minimum by solving

(c0 − ĉ0)+(c1 − ĉ1)+ c1λw = 0

3(c1 − ĉ1)λ
2
x +(c0 − ĉ0)λx +3c1λxλw = 0

with the solution

ĉ0 = c0 + c2λw, ĉ1 = c1.

Therefore, the estimate of c0 is clearly biased.

Motivated by the above example, the next section investigates the use of
the Maximum-Likelihood criterion to estimate the system parameters, which
is known to produce consistent estimates under the assumptions of this chap-
ter [13].

3 The Maximum Likelihood Method

The maximum likelihood method provides estimates of the parameter values
θ based on an observed data set YN = {y(1),y(2), . . . ,y(N)} by maximizing a
likelihood function. In order to use this method it is therefore necessary to
first derive an expression for the likelihood function itself.

The likelihood function is the probability density function (PDF) of the
outputs that is parametrized by θ . We shall assume for the moment that
the input sequence UN = {u(1),u(2), . . . ,u(N)} is a given, deterministic se-
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quence (the case of blind Wiener estimation where the input is assumed to
be stochastic is subsumed by the coloured process noise case in Section 3.2).

This likelihood will be denoted here by pθ (YN) and the Maximum-Likelihood
(ML) estimate is obtained via

θ̂ = argmax
θ

pθ (YN) (14)

This approach enjoys a long and fruitful history within the system identifi-
cation community because of its statistical efficiency in producing consistent
estimates (see e.g. [13]).

In the following sections we will provide expressions of the likelihood func-
tion for various Wiener models. In particular, we firstly consider the system
depicted in Figure 1 and then consider a related one whereby the process
noise is allowed to be coloured. Finally, we consider the case where the input
signal is unknown (the is the so-called blind estimation problem).

Based on these expressions, Section 4 provides algorithms for comput-
ing the ML estimate. This includes the direct gradient-based approach for
models in the form of Figure 1, which was presented in [8]. In addition,
the Expectation-Maximisation approach is presented for the case of coloured
process noise.

3.1 Likelihood Function for White Disturbances

For the Wiener model in Figure 1 we assume that the disturbance sequences
e(t) and w(t) are each white noise. This means that for given input sequence
UN , y(t) will also be a sequence of independent variables. This in turn implies
that the PDF of YN will be the product of the PDF’s of y(t), t = 1, . . . ,N.
Therefore, it is sufficient to derive the PDF of y(t). To simplify notation we
shall use y(t) = y, x(t) = x.

As a means to expressing this PDF, we firstly introduce an intermediate
signal x (see Figure 1) as a nuisance parameter. The benefit of introducing
this term is that the PDF of y given x is basically a reflection of the PDF of
e since y(t) = f

(
x(t)
)
+ e(t) hence

py(y|x) = pe

(
y− f (x,η)

)
(15)

where pe is the PDF of e. In a similar manner, the PDF of x given UN can
be obtained by noting that

x(t) = G(q,ϑ)u(t)+w(t) = x0(t,ϑ)+w(t) (16)

So that for a given UN and ϑ , x0 is a known, deterministic variable, and hence

px(x) = pw

(
x− x0(ϑ)

)
= pw

(
x−G(q,ϑ)u(t)

)
(17)
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where pw is the PDF of w.
Since x(t) is not measured, then we must integrate over all x ∈ R in order

to eliminate it from the expressions to receive

py(y) =
∫

x∈R

px,y(x,y)dx

=
∫

x∈R

py(y|x) px(x)dx

=
∫

x∈R

pe

(
y− f (x,η)

)
pw

(
x−G(q,ϑ)u(t)

)
dx

(18)

In order to proceed further, it is necessary to assume a PDF for e and w.
Therefore, we assume that the process noise w(t) and the measurement noise
e(t) are Gaussian, with zero means and variances λw and λe respectively, i.e.

pe

(
ε
)

=
1√

2πλe

e
− 1

2λe
ε2

and pw

(
v
)

=
1√

2πλw

e
− 1

2λw
v2

(19)

The joint likelihood can be expressed as the product over all time instants
since the noise is white, so that

pθ (YN) =

(
1

2π
√

λeλw

)N N

∏
t=1

∫ ∞

−∞
e−

1
2 ε(t,θ)dx(t) (20)

where

ε(t,θ) =
1

λe

(
y(t)− f

(
x(t),η

))2

+
1

λw

(
x(t)−G(q,ϑ)u(t)

)2
(21)

Therefore, when provided with the observed data UN and YN , we can calculate
pθ (YN) and its gradients for each θ . This means that the ML criterion (14)
can be maximized numerically. This approach is detailed in Section 4.1.

The derivation of the Likelihood function appeared in [7] and [8].

3.2 Likelihood Function for Coloured Process Noise

If the process noise is coloured, we may represent the Wiener system as in
Figure 2. In this case, equations for the output are given by

x(t) = G(q,ϑ)u(t)+H(q,ϑ)w(t)

y(t) = f
(
x(t),η

)
+ e(t)

(22)

By using the predictor form, see [13], we may write this as
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u(t) x0(t)

w(t) e(t)

f(·, η)
x(t) y(t)

H(q, ϑ)

G(q, ϑ)

Fig. 2 Wiener model with colored process noise. Both w(t) and e(t) are white noise
sources, but w(t) is filtered through H(q,ϑ).

x(t) = x̂(t|Xt−1,Ut ,ϑ)+w(t) (23)

x̂(t|Xt−1,Ut ,ϑ) , H−1(q,ϑ)G(q,ϑ)u(t)+
(
1−H−1(q,ϑ)

)
x(t) (24)

y(t) = f
(
x(t),η

)
+ e(t) (25)

In the above, Xt−1 denotes the sequence Xt−1 = {x(1), . . . ,x(t −1)} and simi-
larly for Ut . The only stochastic parts are e and w, hence for a given sequence
XN , the joint PDF of YN is obtained in the standard way

pYN
(YN |XN) =

N

∏
t=1

pe(y(t)− f (x(t),η)) (26)

On the other hand, the joint PDF for XN is given by (c.f. eq (5.74), Lemma 5.1,
in [13])

pXN
(XN) =

N

∏
t=1

pw(x(t)− x̂(t|Xt−1,Ut ,ϑ)) (27)

The likelihood function for YN is thus obtained from (26) by integrating out
the nuisance parameter XN using its PDF (27)

pθ (YN) =
∫ N

∏
t=1

pw

(
H−1(q,ϑ)[x(t)−G(q,ϑ)u(t)]

)
pe

(
y(t)− f

(
x(t),η

))
dXN

(28)

Unfortunately, in this case filtered versions of x(t) enter the integral, which
means that the integration is a true multidimensional integral over the entire
sequence XN . This is likely to be intractable using direct integration methods
in practise, unless the inverse noise filters are short FIR filters.

Motivated by this, here we adopt another approach whereby the noise filter
H is described in state-space form as
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H(q,ϑ) = C(ϑ)(qI −A(ϑ))−1B(ϑ). (29)

where A, B, C are state-space matrices, and the state update is described via

ξ (t +1) = A(ϑ)ξ (t)+B(ϑ)w(t) (30)

Therefore, according to Figure 2, the output can be expressed as

y(t) = f (C(ϑ)ξ (t)+G(q,ϑ)u(t),η)+ e(t) (31)

Equations (30) and (31) are in the form of a nonlinear state-space model,
which has recently been considered in [17]. In that paper the authors use the
Expectation-Maximisation algorithm in conjunction with particle methods
to compute the ML estimate. We also adopt this technique here, which is
detailed in Section 4.2.

Blind estimation
Note that if the linear term G was zero, then the above system will become

a blind Wiener model, so that (31) becomes

y(t) = f (C(ϑ)ξ (t),η)+ e(t) (32)

and the parameters in H and f must be estimated via the output measure-
ments only. This case is profiled via a simulation example in Section 5.3.

4 Maximum Likelihood Algorithms

For the case of white Gaussian process and measurement noise described in
Section 3.1, it was mentioned that numerical methods could be used to evalu-
ate the likelihood integral in Equation (20). At the same time, these methods
can be used to compute the gradient for use in a gradient based search proce-
dure to find the maximum likelihood estimate. This is the approach outlined
in Section 4.1 below and profiled in Section 5 by way of simulation examples.

While this method is very useful and practical, it does not handle the
case of estimating parameters of a colouring filter for the case discussed in
Section 3.2. Further, it does not handle the blind estimation case discussed
in Section 3.2.

Therefore, we present an alternative method based on using the Expec-
tation Maximisation (EM) approach in Section 4.2 below. A key point to
note is that this method requires a nonlinear smoothing operation and this
is achieved via particle methods. Again, the resulting algorithm is profiled in
Section 5 by way of simulation studies.
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4.1 Direct Gradient Based Search Approach

In this section we are concerned with maximising the likelihood function
described in (20) and (21) via gradient based search. In order to avoid nu-
merical conditioning issues, we consider the equivalent problem of maximising
the log-likelihood function provided below.

θ̂ = argmax
θ

L(θ) (33)

where

L(θ) , log
(

pθ (YN)
)

(34)

= −N log(2π)− N

2
log(λwλe)+

N

∑
t=1

log

(∫ ∞

−∞
e−

1
2 ε(t,θ)dx

)
(35)

and ε(t,θ) is given by Equation (21).
To solve (33) here we employ an iterative gradient based approach. Typ-

ically, this approach proceeds by computing a “search direction”, and then
the function L is increased along the search direction to obtain a new param-
eter estimate. This search direction is usually determined so that it forms an
accute angle with the gradient, since under these conditions it can be shown
to increase the cost when added to the current estimate.

To be more precise, at iteration k, L(θk) is modeled locally as

L(θk + p) ≈ L(θk)+gT
k p+

1

2
pT H−1

k p, (36)

where gk is the derivative of L with respect to θ evaluated at θk and H−1
k is

a symmetric matrix. If a Newton direction is desired, then H−1
k would be the

inverse of Hessian matrix, but the Hessian matrix itself may be quite expen-
sive to compute. However, the structure in (34) is directly amenable to using
Gauss-Newton gradient based search [4], which provides a good approxima-
tion to the Hessian. Here, however, we employ a quasi-Newton method where
Hk is updated at each iteration based on local gradient information so that
it resembles the Hessian matrix in the limit. In particular, we use the well-
known BFGS update strategy [15, Section 6.1], which can guarantee that Hk

is negative definite and symmetric so that

pk = −Hkgk (37)

maximizes (36). The new parameter estimate θk+1 is then obtained by up-
dating the previous one via

θk+1 = θk +αk pk, (38)
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where αk is selected such that

L(θk +αk pk) > L(θk). (39)

Evaluating the cost L(θk) and its derivative gk are essential to the success of
the above approach. For the case of computing the cost, we see from (34)
that this requires the evaluation of an integral. Similarly, note that the i’th
element of the gradient vector gk, denoted gk(i), is given by

gk(i) =



N

2

∂ log(λw)

∂θ(i)
+

N

2

∂ log(λw)

∂θ(i)
+

1

2

N

∑
t=1

∫ ∞
−∞

∂ε(t,θ)
∂θ(i) e−

1
2 ε(t,θ)dx

∫ ∞
−∞ e−

1
2 ε(t,θ)dx





∣∣∣∣∣∣
θ=θk

(40)

so that computing the gradient vector also requires evaluation of an integral.
Evaluating the integrals in (34) and (40) will be achieved numerically in

this chapter. In particular, we employ a fixed-interval grid over x and use
the composite Simpson’s rule to obtain the approximation [16, Chapter 4].
The reason for employing a fixed grid (it need not be of fixed-interval as used
here) is that it allows straightforward computation of L(ϑk) and its derivative
gk at the same grid points. This is detailed in Algorithm 1 below and used
in the simulations in Section 5.

4.2 Expectation Maximisation Approach

In this section we address the coloured process noise case introduced in Sec-
tion 3.2. As mentioned in that section, the likelihood function as expressed
in (28) involved the evaluation of a high dimensional integral, which is not
tractable on desktop computers. To tackle this problem, the output y(t) was
expressed as a nonlinear state-space model via (31), (29) and (30).

In this form, the problem is directly amenable to the recently developed
Expectation Maximisation (EM) algorithm described in [17]. This section will
detail the EM approach as applied to the coloured process noise case. It is
also directly applicable to the blind estimation case discussed in Section 3.2.

In keeping with the notation already defined in Section 4.1 above, the
EM algorithm is a method for computing θ̂ in (33) that is very general
and addresses a wide range of applications. Key to both its implementation
and theoretical underpinnings is the consideration of a joint log-likelihood
function of both the measurements YN and the so-called “missing data” Z

LZ,YN
(θ) = log pθ (Z,YN). (41)

In some cases, the missing data is quite literally measurements that are ab-
sent for some reason. More generally though, the missing data Z consists of
“measurements” that while not available, would be useful to the estimation
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Algorithm 1 : Numerical computation of likelihood and derivatives
Given an odd number of grid points M, the parameter vector θ and the data UN and
YN , perform the following steps. (Note that after the algorithm has terminated, the cost
L ≈ L̄ and gradient g ≈ ḡ).

1. Simulate the system x0(t) = G(ϑ ,q)u(t).
2. Specify grid vector ∆ ∈ R

M as M equidistant points between the limits [a b], so that
∆(1) = a and ∆(i+1) = ∆(i)+(b−a)/M for all i = 1, . . . ,M−1.

3. Set L̄ = N log(2π)+ N
2

log(λwλe), and ḡ(i) = 0 for i = 1, . . . ,nθ .
4. for t=1:N,

a. for j=1:M, compute

x = x0(t)+∆( j), α = x− x0(t), β = y(t)− f (x,η)

γ j = e−
1
2 (α2/λw+β 2/λe), δ j(i) = γ j

∂ε(t,θ)

∂θ(i)
, i = 1, . . . ,nθ ,

end
b. Compute

κ =
(b−a)

3M



γ1 +4

M−1
2

∑
j=1

γ2 j +2

M−3
2

∑
j=1

γ2 j+1 + γM



 ,

π(i) =
(b−a)

3M



δ1(i)+4

M−1
2

∑
j=1

δ2 j(i)+2

M−3
2

∑
j=1

δ2 j+1(i)+δM(i)



 , i = 1, . . . ,nθ ,

L̄ = L̄− log(κ),

ḡ(i) = ḡ(i)+
1

2

(
∂ log(λwλe)

∂θ(i)
+

π(i)

κ

)
, i = 1, . . . ,nθ ,

end

problem. As such, the choice of Z is a design variable in the deployment of
the EM algorithm. For the case in Section 3.2, this choice is naturally the
missing state sequence

Z = {ξ1, . . . ,ξN}, (42)

since if it were known or measured, then the problem would reduce to one in
the form of (3), which is more readily soluble.

It is of vital importance to understand the connection between the joint
likelihood in (41) and the likelihood (34) that we are trying to optimise. Ac-
cordingly, note that by the definition of conditional probability, the likelihood
(34) and the joint likelihood (41) are related by

log pθ (YN) = log pθ (Z,YN)− log pθ (Z | YN). (43)
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Let θk denote an estimate of the likelihood maximiser θ̂ in (33). Further,
denote by pθk

(Z | YN) the conditional density of the missing data Z, given
observations of the available data YN and depending on the choice θk. These
definitions allow the following expression, which is obtained by taking condi-
tional expectations of both sides of (43) relative to pθk

(Z | YN).

log pθ (YN) =
∫

log pθ (Z,YN)pθk
(Z | YN)dZ −

∫
log pθ (Z | YN)pθk

(Z | YN)dZ

= Eθk
{log pθ (Z,YN) | YN}︸ ︷︷ ︸

,Q(θ ,θk)

−Eθk
{log pθ (Z | YN) | YN}︸ ︷︷ ︸

,V (θ ,θk)

. (44)

Employing these newly defined Q and V functions, we can express the dif-
ference between the likelihood Lθk

(YN) at the estimate θk and the likelihood
Lθ (YN) at an arbitrary value of θ as

L(θ)−L(θk) = (Q(θ ,θk)−Q(θk,θk))+(V (θk,θk)−V (θ ,θk)))︸ ︷︷ ︸
≥0

. (45)

The positivity of the last term in the above equation can be established
by noting that it is the Kullback–Leibler divergence metric between two
densities [5]. As a consequence if we obtain a new estimate θk+1 such that
Q(θk+1,θk) > Q(θk,θk), then it follows that L(θk+1) > L(θk). So that, by in-
creasing the Q function we are also increasing the likelihood (34).

This leads to the EM algorithm, which iterates between forming Q(θ ,θk)
and then maximising it with respect to θ to obtain a better estimate θk+1 (for
further information regarding the EM algorithm, the text [14] is an excellent
reference).

Algorithm 2 : Expectation Maximisation Algorithm

1. Set k = 0 and initialize θ0 such that L(θ0) is finite.
2. Expectation (E) step: Compute

Q(θ ,θk) = Eθk
{log pθ (Z,YN) | YN} . (46)

3. Maximisation (M) step: Compute

θk+1 = argmax
θ

Q(θ ,θk). (47)

4. If not converged, update k := k +1 and return to step 2.

The Expectation and Maximisation steps are treated separately in Sec-
tions 4.2.1 and 4.2.2 below.
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4.2.1 Expectation Step

The first challenge in implementing the EM algorithm is the computation of
Q(θ ,θk) according to (44). To address this, note that via Bayes’ rule and the
Markov property associated with the model in (30) and (31) and with the
choice (42) for Z

Lθ (Z,YN) = log pθ (YN |Z)+ log pθ (Z)

=
N−1

∑
t=1

log pθ (ξt+1|ξt)+
N

∑
t=1

log pθ (yt |ξt). (48)

Applying the conditional expectation operator Eθk
{· | YN} to both sides of

(48) yields

Q(θ ,θk) = I1(θ ,θk)+ I2(θ ,θk), (49)

where

I1(θ ,θk) =
N−1

∑
t=1

∫ ∫
log pθ (ξt+1|ξt)pθk

(ξt+1,ξt |YN)dξt dξt+1, (50a)

I2(θ ,θk) =
N

∑
t=1

∫
log pθ (yt |ξt)pθk

(ξt |YN)dξt . (50b)

Hence, computing Q(θ ,θk) requires knowledge of densities such as pθk
(ξt |YN)

and pθk
(ξt+1,ξt |YN) associated with a nonlinear smoothing problem. Unfortu-

nately, due to the nonlinear nature of the Wiener model, these densities are
unlikely to have analytical expressions. This chapter therefore takes a numer-
ical approach of evaluating (50a)-(50b) via the use of particle methods, more
formally known as sequential importance resampling (SIR) methods [6]. This

will result in an approximation Q̂ of Q via

Q̂(θ ,θk) = Î1(θ ,θk)+ Î2(θ ,θk) (51)

where Î1 and Î2 are approximations to (50a) and (50b). These approxima-
tions are provided by the particle smoothing Algorithm 3 below (see [17] for
background and a more detailed explanation).

To use this algorithm, we require the ability to draw new samples from
the distribution pθk

(ξ̃t |ξ i
t−1), but this is straightforward since ξt is given by

a linear state-space equation in (30) with white Gaussian disturbance w(t).
Therefore, according to (30), for each ξ i

t−1 we can draw ξ̃ i
t via

ξ̃ i
t = Aξ i

t−1 +Bω i (60)

where ω i is a realization from the appropriate Gaussian distribution for w(t).
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Algorithm 3 : Particle Smoother
Given the current estimate θk, choose the number of particles M and complete the
following steps.

1. Initialize particles, {ξ i
0}M

i=1 ∼ pθk
(ξ0) and set t = 1;

2. Predict the particles by drawing M i.i.d. samples according to

ξ̃ i
t ∼ pθk

(ξ̃t |ξ i
t−1), i = 1, . . . ,M. (52)

3. Compute the importance weights {wi
t}M

i=1,

wi
t , w(ξ̃ i

t ) =
pθk

(yt |ξ̃ i
t )

∑
M
j=1 pθk

(yt |ξ̃ j
t )

, i = 1, . . . ,M. (53)

4. For each j = 1, . . . ,M draw a new particle ξ
j

t with replacement (resample) according
to,

P(ξ j
t = ξ̃ i

t ) = wi
t , i = 1, . . . ,M. (54)

5. If t < N increment t 7→ t +1 and return to step 2, otherwise proceed to step 6.
6. Initialise the smoothed weights to be the terminal filtered weights {wi

t} at time t = N,

wi
N|N = wi

N , i = 1, . . . ,M. (55)

and set t = N −1.
7. Compute the following smoothed weights

wi
t|N = wi

t

M

∑
k=1

wk
t+1|N

pθk
(ξ̃ k

t+1|ξ̃ i
t )

vk
t

, (56)

vk
t ,

M

∑
i=1

wi
t pθk

(ξ̃ k
t+1|ξ̃ i

t ). (57)

w
i j

t|N ,
wi

t w
j

t+1|N pθk
(ξ̃ j

t+1 | ξ̃ i
t )

∑
M
l=1 wl

t pθk
(ξ̃ l

t+1 | ξ̃ l
t )

(58)

8. Update t 7→ t −1. If t > 0 return to step 7, otherwise proceed to step 9.
9. Compute the approximations

Î1(θ ,θk) ,
N

∑
t=1

M

∑
i=1

M

∑
j=1

w
i j

t|N log pθ (ξ̃ j
t+1 | ξ̃ i

t ), (59a)

Î2(θ ,θk) ,
N

∑
t=1

M

∑
i=1

wi
t|N log pθ (yt |ξ̃ i

t ). (59b)
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In addition, we require the ability to evaluate the probabilities pθk
(yt |ξ̃ j

t )

and pθk
(ξ̃ k

t+1|ξ̃ i
t ). Again, this is straightforward in the Wiener model case

described by (29)–(31) since

pθk
(yt |ξ̃ j

t ) = pe(yt − f (Cξ̃ i
t +G(q)ut)), (61)

pθk
(ξ̃ k

t+1|ξ̃ i
t ) = pw(B†[ξ̃ k

t+1 −Aξ̃ i
t ]) (62)

where B† is the Moore-Penrose psuedo inverse of B.

4.2.2 Maximisation Step

With an approximation Q̂(θ ,θk) of the function Q(θ ,θk) made available, at-
tention now turns to the maximisation step (47). This requires that the ap-

proximation Q̂(θ ,θk) is maximised with respect to θ in order to compute a
new iterate θk+1 of the maximum likelihood estimate.

In general, a closed form maximiser of Q̂ will not be available. As such, this
section again employs a gradient based search technique as already utilised
in Section 4.1. For this purpose, note that via (51) and (59) the gradient of

Q̂(θ ,θk) with respect to θ is simply computable via

∂

∂θ
Q̂(θ ,θk) =

∂ Î1(θ ,θk)

∂θ
+

∂ Î2(θ ,θk)

∂θ
, (63a)

∂ Î1(θ ,θk)

∂θ
=

N

∑
t=1

M

∑
i=1

M

∑
j=1

w
i j

t|N
∂ log pθ (ξ̃ j

t+1|ξ̃ i
t )

∂θ
, (63b)

∂ Î2(θ ,θk)

∂θ
=

N

∑
t=1

M

∑
i=1

wi
t|N

∂ log pθ (yt |ξ̃ i
t )

∂θ
. (63c)

In the above, we require partial derivatives of pθk
(yt |ξ̃ j

t ) and pθk
(ξ̃ j

t+1|ξ̃ i
t ) with

respect to θ . To that end, we may obtain these derivatives via simple calculus
on the expressions provided in (61) and (62).

Note that for a given θk, the particle smoother algorithm will provide the
particles ξ̃ i

t and all the weights required to calculate the above gradients (and

indeed Q̂ itself). Importantly, these particles and weights are valid while ever
θk remains the same (which is does throughout the Maximisation step).

With this gradient available, we can employ the same strategy that was
presented in Section 4.1 for maximising L, to the case of maximising Q̂. In-
deed, this was used in the simulations in Section 5.
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5 Simulation Examples

In this section we profile three different algorithms on various simulation ex-
amples. To streamline the presentation it is helpful to provide each algorithm
with an abbreviation. Therefore, output error approach outlined in Section 2
is denoted by OE. Secondly, the direct gradient based search method of Sec-
tion 4.1 is denoted by ML-DGBS. Thirdly, the expectation maximisation
method of Section 4.2 is labelled ML-EM.

For the implementation of ML-DGBS we chose the limits for the inte-
gration [a,b] (see Algorithm 1) as ±6

√
λw, where λw is the variance of the

process noise w(t). This corresponds to a confidence interval of 99.9999 % for
the signal x(t) if the process noise is indeed Gaussian and white. The number
of grid points was chosen to be 1001.

5.1 Example 1: White Process and Measurement Noise

The first example is a second order system with complex poles for the linear
part G(ϑ ,q), followed by a deadzone function for the nonlinear part f (·,η).
The input u and process noise w are Gaussian, each with zero mean and
variance 1, while the measurement noise e is Gaussian with zero mean and
variance 0.1. The system is given by

x0(t)+a1x0(t −1)+a2x0(t −2) = u(t)+b1u(t −1)+b2u(t −2)

x(t) = x0(t)+w(t)

f
(
x(t)
)

=






x(t)− c1 for x(t) < c1

0 for c1 ≤ x(t) ≤ c2

x(t)− c2 for c2 > x(t)

y(t) = f
(
x(t)
)
+ e(t)

(64)

Here, we estimate the parameters a1,a2,b1,b2,c1,c2.
A Monte-Carlo simulation with 1000 data sets was generated, each using

N = 1000 samples. The true values of the parameters, and the results of the
OE approach (see Section 2) and ML-DGBS method (see Section 3.1) are
summarized in Table 1. The estimates of the deadzone function f

(
x(t)
)

from
Equation (69) are plotted in Figure 3.

This simulation confirms that the output error approach provides biased
estimates. On the other hand, the Maximum Likelihood method provides
consistent estimates, including noise variances.
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Par True OE ML-DGBS
a1 0.6000 0.5486 ± 0.0463 0.6017 ± 0.0444
a2 -0.6000 -0.5482 ± 0.0492 -0.6015 ± 0.0480
b1 -0.6000 -0.6002 ± 0.0146 -0.6002 ± 0.0141
b2 0.6000 0.6006 ± 0.0130 0.6007 ± 0.0126
c1 -0.3000 -0.1600 ± 0.0632 -0.3064 ± 0.0610
c2 0.5000 0.3500 ± 0.0652 0.5061 ± 0.0641
λw 1.0000 n.e. 0.9909 ± 0.0634
λe 0.1000 n.e. 0.1033 ± 0.0273

Table 1 Parameter estimates with standard deviations for Example 1, using OE and
ML-DGBS methods. The mean and standard deviations are computed over 1000 runs.
The notation n.e. stands for “not estimated” as the noise variances are not estimated
with output error method.

5.2 Example 2: Coloured Process Noise

The second example considers the Wiener model in Figure 2. It is similar
to the first example in that the linear part G is a second order system with
complex, but different in that we have replaced the deadzone function with
a saturation function for the nonlinear part f (·,η), and different in that the
process noise is coloured by

H(q) =
q−1

1−h1q−1
(65)

which corresponds to the state-space system

ξ (t +1) = h1ξ (t)+w(t). (66)

Therefore, overall Wiener system is then given by

x0(t)+a1x0(t −1)+a2x0(t −2) = u(t)+b1u(t −1)+b2u(t −2)

f
(
x
)

=






c1 for x ≤ c1

x for c1 < x ≤ c2

c2 for c2 < x

y(t) = f
(
ξ (t)+ x0(t)

)
+ e(t)

(67)

The goal is to estimate the parameters a1,a2,b1,b2,c1,c2,h1 based on input
and output measurements. In this case, three different algorithms were em-
ployed, namely the OE method from Section 2, the ML-DGBS approach from
Section 4.1, and the ML-EM particle based method from Section 4.2. It should
be mentioned that the former two algorithms do not cater for estimating the
filter parameter h1. It is interesting nonetheless to observe their performance
based on the wrong assumptions that each make about the process noise, i.e.
it doesn’t exist in the first case, and it is assumed white in the second.
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Fig. 3 Example 1: The true deadzone function as a thick black line and the 1000
estimated deadzones, appearing in grey. Above: OE. Below: ML-DGBS.

As before, we ran a Monte-Carlo simulation with 1000 runs and in each
we generated a new data set with N = 1000 points. The signals u(t), w(t) and
e(t) were generated in the same way as for Example 1. For the EM approach,
we used M = 200 particles in approximating Q (see (51)).

The results are summarized in Table 2. It can be observed that the output
error approach again provides biased estimates of the nonlinearity parame-
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ters. The direct gradient based search procedure seems to produce reasonable
results, but the expectation maximisation approach produces slightly more
accurate results (this is perhaps surprising given that only M = 200 particles
were used).

Par True OE ML-DGBS ML-EM
a1 0.6000 0.5683 ± 0.2424 0.6163 ± 0.1798 0.5874 ± 0.1376
a2 -0.6000 -0.5677 ± 0.2718 -0.6258 ± 0.2570 -0.5820 ± 0.1649
b1 -0.6000 -0.5995 ± 0.0642 -0.5989 ± 0.0510 -0.5980 ± 0.0392
b2 0.6000 0.6027 ± 0.0545 0.6022 ± 0.0403 0.6017 ± 0.0333
c1 -0.5000 -0.3032 ± 0.0385 -0.4974 ± 0.0278 -0.5000 ± 0.0184
c2 0.3000 0.1108 ± 0.0397 0.2991 ± 0.0250 0.3003 ± 0.0173
h1 0.9000 n.e. n.e. 0.8986 ± 0.0227
λw 1.0000 n.e. 5.4671 ± 1.8681 0.9765 ± 0.2410
λe 0.1000 n.e. 0.1000 ± 0.0069 0.1000 ± 0.0054

Table 2 Parameter estimates with standard deviations for Example 2 with colored
noise, using the OE, ML-DGBS and ML-EM methods.

It is worth asking if the consistency of the ML-DGBS approach for colored
process noise is surprising or not. It is well known from linear identification
that the Output Error approach gives consistent estimates, even when the
output error disturbance is colored, and thus an erroneous likelihood criterion
is used, [13].

The Wiener model resembles the output error model in that, in essence,
it is a static model, i.e. for given input u noise is added to the deterministic
variable β (t) = G(q)u(t) as β (t) + e(t) (linear output error) or as f (β (t) +
w(t))+ e(t) (Wiener model). The spectrum or time correlation of the noises
do not seem essential. However, a formal proof of this does not appear to be
straightforward in the Wiener case.

Therefore, given the relative simplicity of implementing the ML-DGBS
method compared with the EM approach, and given that the estimates for
both approaches are comparable, it is worth asking whether or not the noise
model really needs to be estimated.

On the other hand, if it is essential that the noise model be identified, then
the output error and ML-DGBS methods are not really suitable since they
do not handle this case. In line with this, the next section discusses the blind
estimation problem where identifying the noise filter is essential.

5.3 Example 3: Blind Estimation

In the third simulation, we again consider the Wiener model depicted in Fig-
ure 2 but with G = 0. This can be interpreted as a blind Wiener model estima-
tion problem, where the unknown input signal w(t) is first passed through a
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filter H(q) and then secondly mapped through a static nonlinearity f . Finally,
the measurements are corrupted by the disturbance e(t) to provide y(t).

In particular, we assume as in Example 2 that the process noise is coloured
by

H(ϑ ,q) =
q−1

1−h1q−1
(68)

and the resulting signal is then mapped through a saturation nonlinearity, so
that the overall Wiener system is given by

y(t) = f
(
ξ (t)

)
+ e(t)

ξ (t +1) = h1ξ (t)+w(t)

f
(
ξ (t)

)
=






c1 for ξ (t) ≤ c1

ξ (t) for c1 < ξ (t) ≤ c2

c2 for c2 < ξ (t)

(69)

Here we are trying to estimate the parameters h1,c1,c2 and the variance
parameters λw,λe of the process noise w(t) and e(t), respectively. This is to
be done based on the output measurements alone. The EM method described
in Section 4.2 is directly applicable to this case, and was employed here.

As usual, we ran a Monte-Carlo simulation with 1000 runs and in each we
generated a new data set with N = 1000 points. The signals w(t) and e(t) were
generated as Gaussian random numbers with variance 1 and 0.1, respectively.
In this case, we used only M = 50 particles in approximating Q.

The results are summarized in Table 3. Even with a modest number of
particles used, M = 50, the estimates are consistent and appear to be accurate.

Par True ML-EM
b2 0.9000 0.8995 ± 0.0237
c1 -0.5000 -0.4967 ± 0.0204
c2 0.3000 0.2968 ± 0.0193
λw 1.0000 1.0293 ± 0.1744
λe 0.1000 0.1019 ± 0.0063

Table 3 Parameter estimates with standard deviations for Example 3, using the EM
method.

6 Conclusion

The dominant approach for estimating Wiener models is to parametrize the
linear and nonlinear parts and then minimise, with respect to these param-
eters, the squared error between the measured output and a simulated one
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from the Wiener model. This approach implicitly assumes that no process
noise is present. It was confirmed that this leads to biased estimates if the
assumption is wrong.

To overcome this problem, the chapter presents two algorithms for pro-
viding maximum likelihood estimates of Wiener models that include both
process and measurement noise. The first is based on the assumption that
the process noise is white, and the second assumes that the process noise
has been coloured by a linear filter. In the latter case, the likelihood function
involves the evaluation of a high dimension integral, which is not tractable
using traditional numerical integration techniques.

Motivated by this, the chapter casts the Wiener model in the form of a
nonlinear state-space model, which is directly amenable to a recently devel-
oped Expectation Maximisation algorithm. Of vital importance is that the
expectation step can be approximated using sequential importance resam-
pling (or particle) methods, which are easily implemented using standard
desktop computing. This approach was profiled for the case of coloured pro-
cess noise with very promising results.

Finally, the case of blind Wiener model estimation can be directly handled
using the expectation maximisation method presented here. The efficacy of
this method was demonstrated via a simulation example.
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