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ABSTRACT
In this paper, we are interested in high-quality imaging of still

objects with only received power measurements of off-the-shelf

WiFi transceivers. We show that the scattered WiFi signals off of

objects carry much richer information about the edges of the ob-

jects than the surface points. Based on this observation, we then

propose a completely different way of thinking about this imaging

problem. More specifically, we proposeWiffract, a new foundation

for imaging objects via edge tracing. Our approach uses the Geo-

metrical Theory of Diffraction (GTD) and the corresponding Keller

cones to image edges of the object. We extensively validate our

approach with 37 experiments in three different areas, including

through-wall scenarios. We take developing aWiFi Reader as one
example application to showcase the capabilities of our proposed

pipeline. More specifically, we show how our approach can suc-

cessfully image several alphabet-shaped objects. We further show

that our approach enables WiFi to read, i.e., correctly classify the

letters, with an accuracy of 86.7%. Finally, we show how our ap-

proach enables WiFi to image and read through walls, by imaging

the details and further reading the letters of the word “BELIEVE”

through walls. Overall, our proposed approach can open up new

directions for RF imaging.
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1 INTRODUCTION
The number of wirelessly-connected devices has been growing

rapidly in recent years, making wireless signals, such as WiFi, ubiq-

uitous. This has resulted in a considerable interest in using radio

signals beyond communication, and for sensing and learning about

the environment. For example, WiFi signals (one of the most wide-

spread forms of wireless connectivity) have been utilized for person

identification [19, 35], occupancy estimation [14, 20], and health

monitoring [25, 39], among other applications. Overall, WiFi signals

have shown promises in the applications where there is motion (e.g.,

body motion), since extracting information from movements is an

easier task. However, imaging details of still objects with every-

day RF signals, such as WiFi power measurements, has remained a

considerably challenging problem due to the lack of motion.

In general, imaging objects is important for many applications,

from smart home, to structural health monitoring, to search and res-

cue, surveillance, and excavation, just to name a few.While cameras

can be used for imaging, they fail to do so through occlusions/walls

and/or in low-light conditions. As such, if we can image details of

objects with cheap ubiquitous WiFi devices, it can open up new

possibilities for many applications, and can be complementary to

the existing sensors for imaging.

Prior attempts at imaging using WiFi signals (e.g. [13, 33, 38, 42])

mainly rely on the traditional method of back-propagation of the

received WiFi measurements of a receiver array to different loca-

tions in space (e.g., beamforming), in order to establish the pres-

ence/absence of an object at these locations [32]. While this method

can provide somewhat useful information at mmWave frequencies

(imaging with mmWave is still challenging), it falls short of giving

proper images at WiFi frequencies. Other work [24, 27] has col-

lected WiFi training data for the purpose of training a Deep Neural

Network for imaging objects. However, their applicability and/or

generalizability is bounded due to the limited size of the RF training

dataset. Section 2 provides a detailed survey of the state-of-the-art

in imaging with RF signals.

In this paper, we are interested in high-quality imaging of still

objects with only received power measurements of off-the-shelf

WiFi transceivers. One major implicit assumption in traditional

imaging is that the object points reflect the wireless signals to the

entire receiver array. This may not be valid at lower frequencies (e.g.

WiFi) since most surface points can appear quasi-specular and not

diffuse, contributing to poor imaging quality. We then propose
a completely different way of thinking about this imaging
problem, which shall enable new possibilities in this area. More

specifically, we proposeWiffract: a newmethod to image the edges

of the object by utilizing the so-called Keller cones. When a wave is

incident on an edge point, a cone of outgoing rays emerge according
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to the Keller’s Geometrical Theory of Diffraction (GTD) [18]. We

show how we can utilize these cones and their intersection with

the receiver array (i.e., the corresponding conic sections) to trace

the edges.

Remark 1: A point on the surface appears as an edge to the
incoming wave if the radius of its curvature is small, com-
pared to the wavelength [30]. As such, edges (from a wave’s

perspective) include not only the visibly sharp points but also other

points on the surface of the object that have a small curvature. In

this paper, the word “edge” refers to what the wave sees as an edge.

We next discuss our main contributions in more detail:

Statement of Contributions:
• We show that the scattered WiFi signals off of objects carry

much richer information about the edges of the objects than

the surface points, since edges diffract the incident waves into

many directions (dictated by the diffraction cone), while surface

points can mainly appear quasi-specular (near mirror-like) at

WiFi frequencies.

• We then proposeWiffract, a completely new foundation for imag-

ing still objects via edge tracing. Our approach uses the Keller

cones and the corresponding conic sections to infer edge angles,

via building proper projection kernels. Once it identifies high-

confidence edge points, it then propagates their inferred angles

to the rest of the object using Bayesian information propagation.

• We extensively validate our approach with 37 experiments in

three different areas, including through-wall scenarios. We take
developing a WiFi Reader as one example application to
showcase the capabilities of our proposed pipeline since
it is a considerably challenging task that was not possible
before, to the best of our knowledge. More specifically, we

show how our approach can successfully image several alphabet-

shaped objects (30 total experiments drawing from a pool of 18

letters). We further show that our approach enables WiFi to read,

i.e., correctly classify the letters, with an accuracy of 86.7%. For

classifying our imaged letters, we propose a novel shallow neural

network architecture, using the Hough transform, and train it on

existing image-based alphabet datasets. Moreover, we show how

our approach enables WiFi to image and read through walls, by

imaging the details and further reading the letters of the word

“BELIEVE” through walls. To the best of our knowledge, this is

the first time that commodity WiFi devices can image objects

with this level of detail and further read through walls.

2 RELATEDWORK
In recent years, a number of papers have tackled the problem of

imaging using wireless signals to enable "seeing" objects in space.

Some have utilized ultra-widebandmmWave radars for this purpose,

e.g., [2, 8, 9, 28, 36]. Such a setup, however, requires the usage

of specialized and expensive equipment. Even then, high-quality

imaging of objects still remains challenging, even with mmWave

signals.

In this paper, we are interested in imaging using low-cost com-

modity WiFi devices. When imaging with WiFi, most papers rely

on the standard back-propagation imaging method, which utilizes

the measurements on a receiver grid to form an image of an object

by tracing back (beamforming) the received signals to different

locations in space [13, 24, 33, 38, 42]. This technique results in low-

resolution images that can be informative in terms of detecting

and localizing the object, but do not sufficiently capture any fur-

ther detail, such as the object’s shape or outline. Other techniques

[4, 11, 17, 40] use holography/tomography concepts to generate im-

ages for cross sections of the objects, by leveraging the penetration

capability of the WiFi signals. For these to work, the transmitter

and the receiver need to be placed on the opposite sides of the area

of interest, which may not always be feasible. Finally, some recent

work has collected WiFi training data, pertaining to a number of

objects, to train a deep neural network for imaging the same ob-

jects [24, 27]. However, these techniques are very specific to the

exact configurations/objects they were trained with, and do not

generalize well due to the limited size of the training datasets. It

is worth noting that while all the aforementioned papers rely on

wireless signals in theWiFi band, several use specialized equipment

(e.g. USRPs [11, 13, 27] and oscilloscopes [40]) to transmit/receive

the wireless signals, thereby logging clean complex baseband WiFi

data, which may not be available on commodity WiFi transceivers.

Despite these recent great efforts, high-resolution imaging at

WiFi frequencies remains a considerably challenging and unsolved

problem. This is the main motivation for the work of this paper,

which proposes a completely different way of considering this

imaging problem via tracing the edges of the objects.

3 TRADITIONAL IMAGING
Consider the scenario shown in Fig. 1, where a fixed wireless trans-

mitter (located at p𝑡 ∈ R3
) emits radio signals which interact

with a set of objects (located at p𝑜 ∈ Θ ⊂ R3
), where Θ is the

set of all object locations. The signals scattered from these ob-

jects are then captured by a uniform two-dimensional RX grid.

Let (𝑥0, 𝑦0, 𝑧0) denote the location of the first antenna element

in the 2-D RX grid, and let Δ𝑥 and Δ𝑧 denote the inter-antenna

spacing in the 𝑥 and 𝑧 directions, respectively. Each receiver ele-

ment is then located at p𝑟 ∈ 𝑅𝑋 = {(𝑥0 + 𝑟𝑥Δ𝑥,𝑦0, 𝑧0 + 𝑟𝑧Δ𝑧) |𝑟𝑥 ∈
{0, 1, 2, . . . , 𝑁𝑥 − 1} and 𝑟𝑧 ∈ {0, 1, 2, . . . , 𝑁𝑧 − 1}}, where 𝑁𝑥 and

𝑁𝑧 are the number of antenna elements in the 𝑥 and 𝑧 dimensions,

respectively. By using the Born approximation [3], the complex

baseband received signal at receiver point p𝑟 will be:

𝑅(p𝑟 ) = 𝛼 (p𝑡 , p𝑟 )𝑔(p𝑡 , p𝑟 )+∑︁
p𝑜 ∈Θ

𝛼 (p𝑡 , p𝑜 )𝑔(p𝑡 , p𝑜 )𝛼 (p𝑜 , p𝑟 )𝑔(p𝑜 , p𝑟 ), (1)

where 𝛼 (p𝑖 , p𝑗 ) is the amplitude attenuation of the wireless path

from point p𝑖 to point p𝑗 , and𝑔(p𝑖 , p𝑗 ) is the corresponding Green’s
function given by 𝑔(p𝑖 , p𝑗 ) = 𝑒− 𝑗 2𝜋

𝜆
∥p𝑖−p𝑗 ∥ , 𝜆 is the wavelength,

and ∥.∥ is the norm of the argument. The first term in Eq. 1 repre-

sents the direct path from the TX to the RX, and does not carry any

object information. As such, it is typically estimated and subtracted

from the received signal as part of the background subtraction

process, resulting in

𝑅(p𝑟 ) =
∑︁
p𝑜 ∈Θ

𝛼 (p𝑜 , p𝑟 )𝑔(p𝑜 , p𝑟 ), (2)

where 𝛼 (p𝑜 , p𝑟 ) = 𝛼 (p𝑡 , p𝑜 )𝑔(p𝑡 , p𝑜 )𝛼 (p𝑜 , p𝑟 ).
In traditional near-field beamforming, an image of the object
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Figure 1: Our imaging scenario: a transmitter emits wireless sig-
nals, while a uniform two-dimensional receiver grid makes received
power measurements in order to image objects in Ψ.

is formed by backward ray tracing of Eq. 2. More specifically, to

establish the presence of an object at a test location p𝑚 ∈ Ψ, where
Ψ is the space to be imaged, the complex received signal is projected

on the imaging kernel 𝜅 (p𝑚, p𝑟 ) = 𝑔∗ (p𝑚, p𝑟 ), where (.)∗ is the

conjugation operator [32]. That is,

I(p𝑚) =
��� ∑︁
p𝑟 ∈𝑅𝑋

𝑅(p𝑟 )𝜅 (p𝑚, p𝑟 )
��� = ��� ∑︁

p𝑟 ∈𝑅𝑋
𝑅(p𝑟 )𝑔∗ (p𝑚, p𝑟 )

���
=

��� ∑︁
p𝑟 ∈𝑅𝑋

∑︁
p𝑜 ∈Θ

𝛼 (p𝑜 , p𝑟 )𝑔(p𝑜 , p𝑟 )𝑔∗ (p𝑚, p𝑟 )
���. (3)

It can be seen from Eq. 3 that, if the test location p𝑚 coincides with

one of the object locations p𝑜 , i.e. p𝑚 ∈ Θ ⊂ Ψ, the imaging value

I(p𝑚) is maximized due to the alignment of the Green’s function

𝑔(p𝑜 , p𝑟 ) with the imaging kernel 𝜅 (p𝑚, p𝑟 ). In other words, the

image I(p𝑚) can be written as follows for this case: I(p𝑚) =

|I1 (p𝑚) + I2 (p𝑚) |, where I1 (p𝑚) = 𝛼 (p𝑡 , p𝑚)∑p𝑟 ∈𝑅𝑋 𝛼 (p𝑚, p𝑟 )
is the imaging term whose summation terms add constructively,

indicating the presence of an object at location p𝑚 , and

I2 (p𝑚) = 𝑔∗ (p𝑡 , p𝑚)
∑︁

p𝑟 ∈𝑅𝑋

∑︁
p𝑜 ∈Θ
p𝑜≠p𝑚

𝛼 (p𝑜 , p𝑟 )𝑔(p𝑜 , p𝑟 )𝑔∗ (p𝑚, p𝑟 )

is an interference term arising from the presence of objects at other

locations, whose terms are added incoherently. On the other hand,

if there is no object at the test location p𝑚 , the I1 term will be zero,

leaving only the I2 term. Thus, the fundamental principle of this

imaging method is that by utilizing a large antenna array, the I1

term will be large when there is an object at the test location p𝑚
while the I2 term will be small due to the addition of a large number

of out-of-phase terms.

Remark 2: Given that we are interested in imaging within a few

meters from the RX array and with commodity WiFi (e.g. at 5 GHz),

our problem of interest is considered near-field.
1

Shortcomings of traditional imaging: As we discussed in Sec. 2,

imaging still objects with off-the-shelf transceivers has proven to be

considerably challenging. We next reveal one main reason for this,

which thenmotivates us to come upwith a completely different way

of thinking about this problem, resulting in the proposed approach

of the next section.

It can be easily shown that the imaging approach of Eq. 3 can

1
The near-field region is defined as a sphere of radius 𝐷2/𝜆 around the RX, where 𝐷

is RX grid’s aperture size, and 𝜆 is the wavelength [7].

Incident
ray

Incident
ray

Reflected
ray

Scattered
rays

(a) (b)

Figure 2: A surface interacts with (a) a high-frequency incident ray
as a rough diffuse surface, and (b) a lower-frequency incident wave
as a smooth specular surface.

work well if the RX has a large size. In such a case, the I1 term

becomes high, when there is an object at p𝑚 , while the I2 term

will become negligible. However, an underlying assumption made

during the analysis of Eq. 3 is that an object scatters the incoming

signal in all the directions, thus reaching all the receiver antennas of

the array. In other words, it is assumed that 𝛼 (p𝑜 , p𝑟 ) is non-zero for
all the antenna elements, when there is an object at p𝑜 . If, however,
this assumption is not true, then the term I1 may not be as large

as needed to result in a good imaging quality. We next examine

the validity of this implicit assumption. In order for a point p𝑜 on

the object’s surface to reflect the incident signal to several of the

antenna array elements, the surface at p𝑜 needs to appear diffuse

(i.e., rough) to the incoming wave. While this is true at very high

frequencies (such as mmWave), at lower frequencies (such as WiFi)

the perturbations on the surface of an object are typically small

when compared to the wavelength. As such, the same surface can

appear much smoother and specular to the incoming wave, only

reflecting the signal to one or a very small number of directions.

Fig. 2 shows an illustration of this where the same surface acts as

a mirror at lower frequencies while it scatters the signal to many

directions at higher frequencies. The fact that several everyday

surfaces can appear near-specular (i.e. almost mirror-like) to WiFi

signals has been established in the literature [37]. As such, one

cannot rely on the traditional imaging technique of Eq. 3 when

imaging with commodity WiFi transceivers. This then motivates

the need for a new approach, as we shall propose in the next section.

Remark 3: Commodity WiFi devices cannot provide reliable phase

measurements, especially across a large antenna array, due to mul-

tiple sources of synchronization errors [41]. Hence, in this paper,

we only rely on the received power measurements at the receiver

array for imaging. As such, we not only have to address the afore-

mentioned shortcoming but also have to devise an imaging system

that can work with only received power measurements, as we shall

see in the next section.

4 PROPOSED IDEA: IMAGING VIA EDGE
TRACING

In Sec. 3, we discussed why the traditional imaging results in a poor

imaging quality, when deployed with commodity WiFi transceivers,

as the surfaces can appear near-specular at lower frequencies. How-

ever, edges of an object will interact with the incoming wave in a

different manner, as we discuss next.

Keller Cones: When a wave is incident on an edge point, i.e.
a point at which there is a discontinuity of the object’s surface

normal direction, a cone of outgoing rays emerge according to

Keller’s Geometrical Theory of Diffraction (GTD) [18]. The angle

257



ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia Anurag Pallaprolu, Belal Korany, and Yasamin Mostofi

Circle

Incident
ray

Edge

Keller cone

EllipseParabola

Hyperbola

Figure 3: A sample edge interaction and the resulting Keller cone.
The intersection between the cone and a plane takes the shape of a
circle, an ellipse, a parabola, or a hyperbola.

of the cone is equal to the angle between the incident ray and the

edge (which is also the axis of the cone). These diffraction cones

are also known in the electromagnetic theory as Keller cones and

they have been witnessed in the visible light spectrum [29]. Fig. 3

shows a sample edge interaction and the resulting Keller cone.

Formal Definition of an Edge: As discussed in Remark 1, a

surface can appear as an edge to the incoming wave if the radius

of its curvature is small relative to the wavelength. More formally,

according to [30], an area that does not visually look like a sharp

edge can still approximately appear as one to the incoming wave if

the radius of its curvature is less than half of the wavelength.

We next show how an outgoing Keller cone leaving an edge point

impacts the RX array. More specifically, the RX array elements at

the intersection of the RX plane and the corresponding cone are

the ones that receive the signal power and thus “see” the impact

of that edge point. Depending on the edge orientation, the angle

of the incident wave, and the orientation of the RX array plane,

this intersection will result in different 2-D shapes, e.g., hyperbola,

parabola, ellipse, or circle, formally referred to as conic sections, as
shown in Fig. 3. Figs. 4 (b)-(e) then show a few example cases of an

incident wave interacting with different edges, the resulting Keller

cones, as well as the resulting conic sections. As such, while the

non-edge points (henceforth referred to as mirror-like points) can

appear near-specular at WiFi frequencies, only reflecting the signal

to one or a very small number of RX points, the edge points, on the

other hand, can provide vital information for imaging since they are

visible to a much larger number of RX points at the corresponding

conic section.

Let M and E denote the set of all the mirror-like points and

all the edge points in space respectively. The object space Θ will

then be the union of these two sets. An object at location p𝑜 then

reflects/diffracts the incident waves to a subset of the receiver array
elements, examples of which are shown in Fig. 4. We refer to this

subset as the "RX group" of p𝑜 and denote it by 𝑅𝑋p𝑜 , where

𝑅𝑋p𝑜 = {p𝑟 ∈ 𝑅𝑋 |𝛼 (p𝑜 , p𝑟 )≠0} ⊂ 𝑅𝑋

Conversely, we refer to all the objects that reflect/diffract to a

specific receiver point p𝑟 as the "Object group" of the receiver at
p𝑟 , and denote it by 𝑂𝐵p𝑟 . That is,

𝑂𝐵p𝑟 = {p𝑜 ∈ Θ|𝛼 (p𝑜 , p𝑟 ) ≠ 0} ⊂ Θ.

For a mirror-like point 𝜇 ∈ M, the size of the set 𝑅𝑋𝜇 is very

small, resulting in the received signals carrying a small amount of

information about such points (see Fig. 4 (a)). However, the size of

the RX group 𝑅𝑋𝜖 of an edge point 𝜖 ∈ E is typically much larger

due to the resulting conic section, as shown in Fig. 4 (b)-(e). Next,

we shall utilize our observations to developWiffract, a new imaging

technique that extracts the rich information about the edges in the

RX signals, and traces those edges to generate a high-quality image.

4.1 A Foundation for Edge Imaging
In this part, we lay out the foundation of our proposed approach.

As motivated by the previous discussion, the edges can provide rich

information about the object while the surfaces (i.e. the mirror-like

points) are not that informative, especially at WiFi frequencies.We
thus propose a completely different way of thinking about
this imaging problem: to image the edges of the object by
utilizing the corresponding Keller cones and conic sections.

Since commodity WiFi devices do not provide reliable phase

measurements, we are interested in imaging with only received

power measurements. We then start this part by developing an

expression for the received signal power.

Lemma 4.1. The power (squared magnitude) measurements, after
background subtraction2, can be approximated by,

𝑃 (p𝑟 ) ≈ 2R


∑︁
p𝑜 ∈𝑂𝐵p𝑟

Λ(p𝑜 , p𝑡 , p𝑟 )𝑔∗ (p𝑡 , p𝑟 )𝑔(p𝑜 , p𝑟 )
 , (4)

where Λ(p𝑜 , p𝑡 , p𝑟 ) = 𝛼 (p𝑜 , p𝑟 )𝛼∗ (p𝑡 , p𝑟 ) and R is the real part of
the argument. See Appendix A for the derivation.

Let us consider the task of imaging an edge location p𝑚 . In

order to lay the foundation for our proposed methodology, let us

first assume that the RX group, 𝑅𝑋p𝑚 , is known for this point, i.e.,

the corresponding Keller cone and conic section are known. This

assumption is merely to facilitate the discussion and will be relaxed

shortly. We then propose to use the following imaging kernel:

𝜅̂ (p𝑡 , p𝑚, p𝑟 ) = 𝑔(p𝑡 , p𝑟 )𝑔∗ (p𝑚, p𝑟 )1p𝑟 ∈𝑅𝑋p𝑚
, (5)

where 1p𝑟 ∈𝑅𝑋p𝑚
is an indicator function that is one only if p𝑟 ∈

𝑅𝑋p𝑚 and is zero otherwise.

Consequently, an image at p𝑚 can be reconstructed by projecting

the RX power measurements on to this imaging kernel as follows,

I(p𝑚) =
����� ∑︁
p𝑟 ∈𝑅𝑋p𝑚

𝑃 (p𝑟 )𝜅̂ (p𝑡 , p𝑚, p𝑟 )
�����. (6)

After some derivations, we can show that I(p𝑚) = |I1 (p𝑚) +
I2 (p𝑚) |, where I1 (p𝑚) =

∑
p𝑟 ∈𝑅𝑋p𝑚

Λ(p𝑚, p𝑡 , p𝑟 ), is the signal

term, and

I2 (p𝑚) =
∑︁

p𝑟 ∈𝑅𝑋p𝑚

∑︁
p𝑜′ ∈𝑂𝐵p𝑟
p𝑜′≠p𝑚

Λ(p𝑜 ′ , p𝑡 , p𝑟 )𝑔(p𝑜 ′ , p𝑟 )𝑔∗ (p𝑚, p𝑟 )

is the interference term. In deriving this, we assume that the dis-

tance from the TX to the object space is larger than the system’s

resolution. The first important thing to note is that instead of using

all the RX grid points, we have only utilized the RX grid points that

carry information about the edge to be imaged, i.e., the RX grid

points that belong to the Keller cone of the edge. This is achieved

2
Background signals are typically estimated and subtracted. This can be done through

theoretical calculations based on the locations of the TX and RX [13], or more com-

monly through prior data collection in the absence of objects to be imaged [6, 40].

We note that since we only have received power measurements, background subtrac-

tion is based on prior power-only measurements. See Sec. 6 for more discussions on

background subtraction.
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Figure 4: (a) Specularly-reflected waves off of a mirror point, and (b)-(e) diffracted waves off of edges with different orientations. The diffracted
waves intersect the RX grid in a conic section.

through the indicator function 1p𝑟 ∈𝑅𝑋p𝑚
. It can also be seen that

we have utilized 𝑔(p𝑡 , p𝑟 )𝑔∗ (p𝑚, p𝑟 ) as part of our kernel 𝜅̂ in Eq. 5.

The motivation for this design can be seen by examining Eq. 4, as

it results in a co-phased term I1 when there is an object at p𝑚 . It is

worth noting that, compared to using all the RX points, using the

indicator function in the kernel will increase the signal to interfer-

ence ratio. More importantly, if one uses the correct conic section

corresponding to the actual edge orientation at p𝑚 , it will result in

a much stronger signal value |I1 |, which will give us a method to

infer the edge orientation, as we shall see next.

So far, we have assumed that the RX group for the edge located at

p𝑚 is known in order to develop our imaging kernel. We next show

how to relax this assumption. As discussed, the shape and location

of the RX group depend on the location of the TX (which is known),

and the orientation of the edge in space, which is unknown. Hence,

for each point that we want to image, we propose to test a small

set of edge orientations for imaging. Based on the value of I at the

corresponding elements of the test set, we then decide if there is an

edge at the corresponding point and if so, determine its orientation.

Formally, let Φ denote a discrete set of uniformly-spaced angles

in [0, 𝜋), chosen based on a target angular resolution. We then

construct a series of hypotheses

H𝜙𝑖
= Edge at p𝑚 makes angle 𝜙𝑖 with the +ve x-axis, (7)

where 𝜙𝑖 ∈ Φ.
For each edge hypothesis at the imaging location p𝑚 , we need

to locate the RX group of an edge with the orientation 𝜙𝑖 at p𝑚 ,

denoted by 𝑅𝑋p𝑚 (𝜙𝑖 ). Geometrically, it is easy to show that a RX

point p𝑟 belongs to 𝑅𝑋p𝑚 (𝜙𝑖 ) if it satisfies

⟨ p𝑟 − p𝑚
∥p𝑟 − p𝑚 ∥ + p𝑡 − p𝑚

∥p𝑡 − p𝑚 ∥ , ê⟩ = 0, (8)

where ê is a unit vector along the edge axis, and ⟨., .⟩ is the dot
product of the arguments. Once we have characterized the set

𝑅𝑋p𝑚 (𝜙𝑖 ), we have the following edge image under hypothesis

H𝜙𝑖
:

I(p𝑚,H𝜙𝑖
) =

������ ∑︁
p𝑟 ∈𝑅𝑋p𝑚 (𝜙𝑖 )

𝑃 (𝑝𝑟 )𝑔(p𝑡 , p𝑟 )𝑔∗ (p𝑚, p𝑟 )

������ . (9)

Once all the hypotheses H𝜙𝑖 ∈Φ are tested for the location p𝑚 ,

the most likely orientation for the edge at p𝑚 (if it exists) is declared

as 𝜙★, where

𝜙★(p𝑚) = arg max

𝜙𝑖 ∈Φ
I(p𝑚,H𝜙𝑖

) . (10)

We next determine if there is indeed an edge at p𝑚 (whose angle

is then dictated by 𝜙★(p𝑚)), by considering a scaled version of I
(scaled to have a maximum of 1) as follows:

¯I(p𝑚) =
I(p𝑚,H𝜙★ (p𝑚 ) )

maxp∈Ψ I(p,H𝜙★ (p) )
. (11)

If no edge existed at location p𝑚 , the value of the normalized

image
¯I(p𝑚) would be low. Hence, we declare that there is an edge

at p𝑚 if
¯I(p𝑚) exceeds a threshold 𝐼

th
. The following set is then

the set of the points in the image space for which we declare an

edge, with high confidence:

S =
{
p;

¯I(p) > 𝐼
th
, p ∈ Ψ

}
. (12)

Remark 4: In this paper, we focus on imaging a 2-D plane that is

parallel to the receiver array at𝑦 = 𝑦I (see Fig. 6 for an illustration).

Remark 5: Note that the set Φ can be chosen small, for compu-

tational efficiency. For instance, in our experiments of the next

sections, we choose only 4 angles to find the set of high-confidence

locations S.
Until now, we have shown Wiffract as a system with a single

TX (fixed at p𝑡 ) that illuminates the space of objects Θ. We can

easily extend our proposed edge imaging approach to the case of

multiple transmitters. In general, having more than one TX can

help by illuminating the area from different locations/perspectives.

For instance, part of the object area may receive a very weak signal

from one TX. Similarly, an object, illuminated by a TX, may be in a

blind region of the RX array, by which we mean that the scattering

from this object may not reach the RX array, for the given TX

location. Having multiple transmitters, thus, reduces the chance

of such occurrences. It is worth noting that the aforementioned

scenarios are not specific to our edge imaging problem and can

happen in any general imaging setup.

Next, we show how our proposed edge imaging approach can be

easily extended to the case of multiple transmitters. Consider the

case where𝑇 TXs are located at p𝑡𝑘 , 𝑘 = 1, 2, ...,𝑇 . We can construct

an image for each TX using our proposed approach, i.e. we compute

¯I𝑘 (p𝑚) of Eq. 11 for 𝑘 = 1, 2, ...,𝑇 , and subsequently generate a

corresponding set S𝑘 for the 𝑘-th transmitter. We then aggregate

the high-confidence sets (Eq. 12) of all the TXs into a superset,

which we denote by S𝑈 =
⋃

𝑘 S𝑘 . For the overlapping S𝑘 points,
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Figure 5: Sample experimental setup: 6 antennas of two laptops serve as receivers while
a WiFi card of one laptop is used for transmission. A vertical structure carrying the RX
antennas is mounted on a ground robot to synthesize an RX grid in the x-z plane, on
which we measure WiFi CSI power measurements from three TX antennas (of one WiFi
card) simultaneously.
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Figure 6: Relative locations of the 3 transmitters,
the RX grid, and the imaging plane.

the highest
¯I𝑘 and its corresponding imaged angle will be the final

value.

Algorithm 1: Our Proposed Edge Imaging Pipeline

Input: CSI power measurements 𝑃 (p𝑟 ) from 𝑇 different

TXs.

Output: Edge image.

1: Initialize an empty edge image.

2: for 𝑘 ∈ {1, 2, . . . ,𝑇 } do
3: for 𝜙𝑖 ∈ Φ do
4: Generate an image I𝑘 (p𝑚,H𝜙𝑖

), ∀p𝑚 ∈ Ψ corresponding

to the 𝑘-th TX under hypothesis H𝜙𝑖
, using Eq. 9.

5: end for
6: Generate a final normalized image corresponding

to the 𝑘-th TX,
¯I𝑘 (p𝑚), using Eq. 11.

7: Generate the set of high-confidence points S𝑘
corresponding to the 𝑘-th TX using Eq. 12.

8: end for
9: Generate an aggregate set of high-confidence points

S𝑈 =
⋃

𝑘 S𝑘 .
10: Run the Bayesian information propagation algorithm on S𝑈

and its corresponding imaged angles.

11: for p𝑚 ∈ Ψ do
12: if probability of edge at pixel p𝑚 > 𝑝min then
13: Add a segment to the edge image at p𝑚 whose angle

corresponds to the most probable state.

14: end if
15: end for

4.2 Bayesian Information Propagation
So far, we have shown how we can find a set of pixels/locations

in space with a relatively high confidence of having an edge and

further find their edge angles. Other pixels/locations in the image

space Ψ may still have edges that were undetected, for instance due

to either being in a blind region, or being overpowered by other

edges that are closer to the TXs. In order to deduce information

about the presence of edges at the rest of the pixels in Ψ, we observe

that there are local dependencies in edges of real-life objects. For

instance, we examined a library of 100 random everyday objects

(e.g., chairs, tables, cabinets, etc) and found that the probability

that an edge to the east of a horizontal edge is horizontal, is 0.905,

while the probability that an edge to the north of a horizontal edge

is horizontal, is 0.04. We can then exploit these dependencies by

modeling the imaging plane as a Bayesian graph that propagates
the edge information of the high-confidence set S𝑈 to the rest of

the pixels.

Consider a 3 × 3 pixel neighborhood where a center pixel 𝑐 is

surrounded by 8 neighboring pixels 𝑛𝑐1
, 𝑛𝑐2

, ..., 𝑛𝑐8
, with 𝑛𝑐1

repre-

senting the top left neighbor and the rest representing the other

immediate neighbors in a clock-wise direction. The center pixel can

either have no edge (i.e., it can be a mirror point or empty), or have

an edge making an angle 𝜙𝑖 ∈ Φ with the x-axis, amounting to a

state space Γ of |Φ| + 1 possible states. We then have the following

conditional priors:

Ω

(
𝛾
[𝑛𝑐 𝑗 ]
𝑏

|𝛾 [𝑐 ]𝑎

)
=
Prob. that neighbor 𝑛𝑐 𝑗 has state 𝛾𝑏
given center 𝑐 has state 𝛾𝑎 ,

(13)

where “state” refers to either having no edge, or having an edge with

a specific angle. Then, given the states of the high-confidence points

(which are provided by our proposed edge imaging approach of

Sec. 4.1), and a graph describing the direction of information flow in

the image, the conditional prior Ω serves as the driver to propagate

the information from the high-confidence imaged locations to the

rest of the pixels. To construct the state probability vector of a

high-confidence location p𝑠 ∈ S𝑈 , we define a Probability Mass

Function (PMF), P(p𝑠 → 𝛾) of length |Φ| + 1, given by

P(p𝑠 ) =
(
1 − ¯I(p𝑠 ), 0, 0, . . . , ¯I(p𝑠 ), . . . , 0︸                    ︷︷                    ︸

Non-zero only at 𝜙★ (p𝑠 )

)
, (14)

where the first element denotes the probability that p𝑠 has no edge,

and the rest of the elements denote the probabilities that p𝑠 has
an edge at different angles with the x-axis. Since p𝑠 is already as-

sociated with precisely one imaged angle 𝜙★(p𝑠 ) (Eq. 10), we set
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Figure 8: Sample alphabet-shaped objects used for imaging. The
objects are made of painted wood, with a surface paint that has a 25
dB less shielding attenuation than aluminum.

the probabilities for all the other angles to 0. Finally, to describe

the direction of information flow in the image, we construct a tree-

structured Bayesian graph [21, 26] with the high-confidence imaged

edges as root nodes with the PMFs as described in Eq. 14. More

specifically, each such node acts as a parent node and claims its

8 neighbors as children. If a neighboring pixel has already been

claimed as a child of another pixel, the parent node skips it and

claims the other neighbors, thus ensuring that each pixel has exactly

one parent. The process then continues recursively, by having the

new generation of pixels claim their own unclaimed neighbors as

their children. Using the state probabilities of the roots P(p𝑠 → 𝛾),
as well as the conditional prior Ω, the information is then prop-

agated via message passing from the roots to the leaf nodes. In

order to characterize the prior Ω, we use a library of 100 random

everyday objects (e.g., chairs, tables, cabinets, and others). The final

output of the Bayesian Network is a PMF for each pixel in space,

describing the probabilities of this pixel over the |Φ| +1 states. If the

probability of having an edge at this pixel is greater than a certain

threshold 𝑝min, an edge is detected and its angle is declared based

on the most probable angle state. In general, Bayesian information

propagation has been utilized in many applications (e.g., [15, 22]).

Due to space limitations, we refer the readers to [21, 26] for more

details on the implementation of Bayesian graphs.

Algorithm 1 summarizes the steps of our proposed imaging

pipeline.

5 EXPERIMENTAL VALIDATION
In this section, we present experimental results for Wiffract by

imaging several objects in three different areas, including through-

wall scenarios. We take developing aWiFi Reader as one example

application to showcase the capabilities of our proposed pipeline

since it is a considerably challenging task that was not possible

before, to the best of our knowledge. More specifically, we show

how our approach can successfully image several alphabet-shaped

objects and further enable WiFi to read, i.e., correctly classify the

letters. Finally, we use Wiffract to image the details and further

read the letters of the word “BELIEVE” through walls. We next start

by explaining our experimental setup.

5.1 Experimental Setup
One laptop serves as a transmitter while two laptops serve as the

receivers. The laptops have Intel 5300WiFi cards andwe use the CSI-

Tool [10] to measure the received power on our receiver antennas at

the 5 GHz WiFi band. Each laptop has three transmission/reception

ports. We then connect the ports of the TX laptop to three antennas

to serve as our transmitters. The six total antennas of the two RX

laptops then serve as our receiver antennas and are mounted on a

ground vehicle to synthesize a RX grid. Note that since we rely only

on power measurements, no synchronization is required among

the RX laptops/cards. We next discuss our setup in more detail.

5.1.1 Receiver and Transmitter Details. We mount the 6 omnidi-

rectional antennas of the two RX laptops on an unmanned ground

vehicle (see Fig. 5). We place a vertical 1.5 m tall Styrofoam struc-

ture on the unmanned vehicle to hold the antennas. As the robot

moves in the 𝑥 direction, it synthesizes a RX grid in the 𝑥 direction

(see Fig. 5). In order to achieve sufficient number of rows along the

𝑧-axis, with only 6 receiver antennas, we mount a motor on top

of the structure that can move the antennas up and down. More

specifically, the motion in the 𝑧 direction is achieved by a NEMA23

stepper motor that we remotely interface with using a Raspberry

Pi. As the robot moves back or forth in the 𝑥 direction, the motor

takes a step in the 𝑧 direction. In total, the robot moves back and

forth 3.5 times in 𝑥 direction and scans a two dimensional grid of

points in the 𝑥 − 𝑧 plane, as shown in Fig. 5. It synthesizes a grid

of size 2 m in the 𝑥 direction (spanned by 140 columns), and 1.2 m

in the 𝑧 direction (spanned by 42 rows, i.e. 7 rows per RX antenna)

on the plane 𝑦 = 0. On the transmitter side, the three transmission

ports of the TX laptop are connected to 3 off-the-shelf half-space

panel antennas acting as our transmitters. Fig. 6 shows the details

of the TX and RX locations and the imaging plane.

5.1.2 Testing Areas. We carry out extensive experiments in three

different areas, shown in Fig. 7. Area 1 is an open area from all four

sides, while Area 2 is open from two sides, with the other sides

having pillars, walls and other objects. Area 3 is a cluttered and

roofed entrance of a building, which we shall use extensively for

through-wall experiments.

5.1.3 Objects. We test our proposed pipeline extensively with a

total of 37 experiments across all the three areas. Our objects include
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Figure 9: Edge imaging results (output of Algorithm 1) for 14 sample alphabet-shaped objects. Each imaging plane is 1.4 m × 1.4 m, as marked
for the first letter. Dashed-red lines represent the ground-truth location of the objects, while solid black lines represent the edge images. It can
be seen that the details of the objects are imaged well.

18 English alphabet-shaped objects, 3 samples of which are shown

in Fig. 8. The objects are made of painted wood, with a surface paint

that has a 25 dB less shielding attenuation than aluminum.

5.1.4 Wiffract Algorithm Parameters. The imaging plane Ψ is set

at 𝑦I = 1.5 m and expands from -0.7 m to 0.7 m in both 𝑥 and 𝑧 di-

rections (see Fig. 6). The pixel resolution is further set to 4 cm along

both 𝑥 and 𝑧 dimensions. In order to estimate the high-confidence

locations (i.e., setS𝑈 ), we first evaluate Eq. 9 with only 4 hypotheses

H𝜙𝑖
, 𝜙𝑖 = 0

◦, 45
◦, 90

◦, 135
◦
for computational efficiency. Once we

find the high-confidence points, we then generate a finer-grained

PMF, P(p𝑠 ) ∈ R9
, only for p𝑠 ∈ S𝑈 , by using 8 equispaced angle

hypotheses, and then propagate the corresponding information to

the rest of the pixels via our Bayesian information propagation part

(Sec. 4.2). When aggregating the edge images of the three trans-

mitters, we give more weight to the TXs with stronger imaging

values (I), by lowering their thresholds. In other words, we set the

threshold for the 𝑘-th TX as

𝐼
th
(𝑘) = max

(
𝑝min, 1 −

maxp∈Ψ I𝑘 (p,H𝜙★ (p) )∑
𝑘 maxp∈Ψ I𝑘 (p,H𝜙★ (p) )

)
,

where 𝑝min = 0.6 is the minimum threshold for declaring the pres-

ence of an edge.

5.2 Sample Imaging Results
As mentioned earlier, we take the challenging task of developing a

WiFi Reader as one example application to showcase the capabilities

of our proposed pipeline. More specifically, we run 30 experiments

to image uppercase English letters in Areas 1 and 2. Fig. 9 shows

the final edge images for 14 sample experiments. The ground truth

letters are also plotted for comparison. It can be seen that several

of the edges are correctly imaged, giving very good representations

of their respective letters. For instance, as we shall see in the next

part, passing these imaged letters to a neural network that classifies

letters results in 86.7% correct classification, which indicates that

the imaging process has correctly captured the details of the letters.

5.3 WiFi Can Read!
The results of Sec. 5.2 show that Wiffract can use WiFi signals

to image details of alphabet-shaped objects via edge tracing. This

motivates us to go a step further and identify the letters themselves

based on their detected edges, enabling WiFi signals to read, for
the first time.

To this end, we design a novel shallow neural network that can

classify the imaged letters represented by the edge images. The goal

of this step is two-fold. First, instead of solely relying on human vi-

sual confirmation to establish the accuracy of our imaging pipeline,

we can see how a simple shallow neural network can recognize and

classify Wiffract’s output. In other words, the neural network can

provide a quantitative metric for validating the performance of our

imaging pipeline. If a simple shallow network can correctly classify

the output of Wiffract, it implies that Wiffract’s output image con-

tains sufficient information for classification. Furthermore, by using

the last layer’s activation data of our predicted class, we show how

we can enhance our imaging quality by methodically suggesting

edges to improve the original edge image. We emphasize that
the neural network will not have any specific knowledge of
the shape, size, or style of the alphabets used in our imaging
when being trained. Rather, it can be trained using any of
the several existing image-based alphabet datasets (i.e., no
need to collect any training data), as we shall see.

While there exist Optical Character Recognition (OCR) systems

that use a CNN-based architecture, such as LeNet [23], they are

trained on images that are exclusively made of closed contours,

which is not the case for Wiffract’s output (e.g., see Fig. 9). As

such, we show how to design a novel shallow neural network for

alphabet classification. More specifically, we show that a decades-

old image processing technique, called the Hough Transform [12],

can establish a common ground to compare our edge images and the

edges extracted from any existing contour-based alphabet dataset.

We then show how to utilize the Hough Transform and train a

simple Fully Connected Neural Network (FCNN) for the purpose

of reading the letters.

5.3.1 Hough Domain Classifier. We use the Hough Transform [5,

12] to convert our edges in the 𝑥 − 𝑧 plane to points in the 𝜌 − 𝜂

domain (or Hough domain), where 𝜌 is the perpendicular distance

of the edge line from the origin (taken to be the bottom-left corner of

the image), and 𝜂 is the angle of the edge. A key observation here is

that segments belonging to the same extended line are represented

by the same point in the 𝜌 − 𝜂 domain, implying that even a sub-

segment of the actual edge is as good as the whole edge. The Hough

domain representation is then at the core of our proposed classifier,

which we shall describe next.

We train a 3-layer FCNN, with approximately 40,000 parameters.

For our training set, we use the STEFANN font dataset [31], which
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Figure 10: Our final results for imaging 14 sample letter-shaped objects with WiFi signals. The dashed lines represent the ground-truth while
the solid lines represent our image.
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Figure 11: Through-wall reading: Wiffract enabling WiFi to image and read the letters of the word "BELIEVE" behind the wall of Area 3. The
dashed lines represent the ground-truth while the solid lines represent our image.

has ∼900 uppercase font families for each of the 26 letters of the

alphabet (all contour-based). We then represent this dataset in the

Hough domain, by using the Line Segment Detector (LSD) algo-

rithm [34] to efficiently extract line segments from the fonts in the

dataset, and further generate a 2-D histogram of the correspond-

ing 𝜌 − 𝜂 domain representation for each training data point. We

scale the range of 𝜌 linearly ([𝜌𝑚𝑖𝑛, 𝜌𝑚𝑎𝑥 ] → [0, 1]) to make the

network invariant to shifting of the origin and we use 64 buckets

for the corresponding axis of the histogram. We further set the 8

equispaced angle hypotheses as the buckets for the 𝜂 axis. As such,

the training dataset consists of a total of 23, 478 2-D histograms,

each of dimensions 64 × 8. We then translate each histogram to a

vector in R512
and feed the vector, with its categorical label, to a

shallow 3-layer FCNN classifier for training. We repeat the training

process across different random seeds to improve the generalizabil-

ity of our network. Once trained, we generate and vectorize the

Hough domain histogram for Wiffract’s output edge image and

pass it through the network for classification.

We next show howwe can use the predicted label of the classifier

to further improve our imaging quality. More specifically, we first

search the training dataset of the predicted class for a font that is

perceived the closest to our input edge image (since the training set

has many different versions of the same letter). In order to properly

characterize “closeness”, we utilize the recent results of [1], which

showed that the activation vector of the last layer of a classifier can

reliably establish similarity between two objects, i.e., the higher the

correlation coefficient between two activation vectors, the higher

the chance they are similar. More specifically, let 𝐿𝑡𝑒𝑠𝑡 denote the

activation vector of the last layer during classification. For each font

𝑓𝑖 in the training set that belongs to the predicted class, we then

compute its corresponding last layer’s activation vector, 𝐿𝑡𝑟𝑎𝑖𝑛 (𝑓𝑖 ),
by passing its Hough domain histogram to the trained FCNN. We

then compute the cosine similarity score ⟨𝐿𝑡𝑒𝑠𝑡 , 𝐿𝑡𝑟𝑎𝑖𝑛 (𝑓𝑖 )⟩, for each

𝑓𝑖 , and select the one with the highest score as our target font 𝑓
★
for

edge completion. In the 𝜌 −𝜂 domain, whenever there exists a point

in the same location for both 𝑓 ★ and our initial edge image, we

then overlay the corresponding edge of 𝑓 ★ on the original image.

Remark 6: Note that once the classifier has identified the letter, for
instance an “H”, we cannot simply use any H for our output image

since there are many H characters with different fonts, shapes and

sizes. Rather, we have proposed a way to improve our own edge

image, by using the output of the classifier.

5.3.2 Classification Results. We next discuss our classification re-

sults in Area 1 and 2. As mentioned earlier, we have run 30 imaging

experiments over these two areas for imaging alphabet-shaped

objects (pooled from a total of 18 letters). Our proposed Hough

Transform-based classifier was able to correctly predict the letters

in 26 out of 30 experiments, resulting in an accuracy of 86.7%. It is

worth noting that for a classification problem with 26 categories

(the English alphabet), a random guess would have yielded a classi-

fication accuracy of only 3.8%. This confirms that Wiffract’s edge

images carry meaningful information for our classifier to read the

alphabet-shaped objects.

We next show the final imaging results of our pipeline after

improving the edges based on the classifier’s predicted label and

the aforementioned proposed method. More specifically, Fig. 10

shows the ground-truth letters as well as our final imaging results,

for the sample letters whose edge images were shown earlier in

Fig. 9. It can be seen that our proposed pipeline imaged the letter-

shaped objects very well, and with an accuracy that was not seen

in the literature, when imaging with WiFi, to the best of our knowl-

edge. It is worth noting that the reason Fig. 10 demonstrates such

high-quality images is that the proposed edge imaging approach

(i.e., Fig. 9) generated a good representation of objects, resulting

in a correct classification with a high probability. Once correctly
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Figure 12: Impact of Bayesian information propagation – edge
images (left) before and (right) after this step, for two sample letters.
The right images have more connected edges.

classified, we then methodically improved the original edge image

by expanding some of the edges based on the edges of the closest

object in the detected class, as proposed earlier. In other words,

Fig. 9 has already captured crucial information on the object of

interest.

Through-wall reading:Wenext show how our proposed approach

can enable WiFi to image and further read through walls. More

specifically, consider Area 3 of Fig. 7. We placed the letters of the

word ’BELIEVE’ behind thewall (one by one) forWiFi to read. Fig. 11

shows our final imaging results for this word. As can be seen, the

word is imaged very well. Not only it is easy to identify the letters,

but also the details of the letters are imaged well. Furthermore, the

classifier correctly identified all the letters. Overall, Wiffract has

enabled WiFi, for the first time, to read through walls.

6 DISCUSSIONS & FUTURE DIRECTIONS
In this section, we discuss several aspects related to our proposed

imaging approach.

Execution time: On an Intel Core i7-3770 processor, our pipeline

takes a total of 25 sec to process the CSI power measurements and

generate the high-confidence locations and their corresponding

imaged angles, and 0.5 sec to apply the Bayesian network algorithm

for information propagation.

Impact of the Bayesian Information Propagation step: In
order to isolate and better show only the impact of the Geometrical

Theory of Diffraction and the proposed core imaging idea based

on exploiting the resulting Keller cones, we next show the imaging

results without applying the Bayesian information propagation step

(step 10 of Algorithm 1). Fig. 12 shows a comparison of two edge

images for two sample letters: “H” and “P”. In the left image for each

letter, step 10 of Algorithm 1 is not applied, i.e., high-confidence

points and their corresponding angles are imaged based on the

proposed method of Sec. 4.1. The right image for each letter, on

the other hand, applies the additional step of Bayesian information

propagation. It can be seen that if two imaged points belong to

the same edge, the Bayesian network helps in connecting them,

thus improving the imaging quality. However, it can be seen that

the imaging results are also decent without applying this step. Our

overall classification accuracy drops from 86.7% to 76.7%, without

this step. The results of this part confirm that the initial step of

Keller cone-based imaging i.e., exploiting the Geometrical Theory

of Diffraction, is a key component of Wiffract. But given that the

Bayesian network step can further improve the performance and

that implementing it only adds 0.5 seconds to the computation time

(which was 25 seconds prior to this step as discussed earlier), it

justifies using it as part of the proposed pipeline.

Comparison to the state-of-the-art: Traditional near-field imag-

ing utilizes backward propagation for image formation (Eq. 3) [13,

33, 38, 42]. However, as discussed in Sections 3 and 4, this technique
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Figure 13: Sample results of the traditional imaging approach for
the objects shaped as letters “H”, “M”, and “L”. Comparing these
images to Wiffract’s corresponding images (Fig. 10) shows that our
approach can image the objects with a much higher quality. See the
color PDF for best viewing.

L - Area 2 N - Area 1L - Area 3 N - Area 2

Figure 14: Final edge imaging results for the “L” and “N”-shaped
objects in different environments, showing robustness to environ-
mental changes. Red-dashed lines show ground-truth, while black
solid lines show our imaging results.

results in a poor imaging quality at WiFi frequencies. Fig. 13 shows

the results of applying traditional near-field beamforming (using

power measurements) to image the letters “H”, “M”, and “L”. It can

be seen that the images are very noisy and non-informative. On

the other hand, Wiffract has imaged these letters very well, as can

be seen in Fig. 9 (or Fig. 10). Finally, by comparing the imaged “H”

of Fig. 13 to that of Fig. 12, we can see that the quality of Wiffract

images, even before applying the Bayesian information propaga-

tion step, is considerably better than that of the traditional imaging

approach. This confirms that the core proposed idea of edge-based

imaging using the Geometrical Theory of Diffraction can provide a

new avenue for imaging still objects.

Impact of different environments: As mentioned earlier, we

have tested our approach by imaging 18 uppercase letters across

three different areas, where several letters have been imaged in at

least two areas. While we have already extensively shown sample

results in all three areas, we next compare imaging results across dif-

ferent areas side by side. Fig. 14 shows the results of using Wiffract

to image an “L”-shaped and an “N”-shaped object in different en-

vironments. As can be seen, our approach performs robustly and

consistently across different areas.

Impact of the RX grid size: In this part, we discuss the impact of

the RX grid size on the imaging quality of Wiffract. Fig. 15 shows

sample outputs of Wiffract when decreasing the RX grid size from

2 m x 1.4 m (original) to 1.5 m x 1 m. While we expect the imaging

quality to degrade as we reduce the RX grid size, we can see that

Wiffract can still generate images of decent quality. The figure also

shows a more extreme case where the RX grid size is significantly

reduced to 0.5 m x 0.5 m. It can be seen that the imaging result

visibly degrades in this case, as expected.

In general, the size of the RX grid should impact the overall

resolution of imaging. A well-known concept in the traditional

near-field beamforming is that larger apertures result in better
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H: 2m x 1.4m array H: 1.5m x 1m array

T: 2m x 1.4m array T: 1.5m x 1m array

H: 0.5m x 0.5m array

T: 0.5m x 0.5m array

Figure 15: Impact of reducing RX grid size: 1.5m x 1m still results
in decent imaging, while 0.5m x 0.5m degrades imaging as expected.

imaging resolution and this principle should also be extendable to

Wiffract. However, while a closed-form expression for the resolu-

tion of traditional imaging is possible (since all the RX points are

used to generate the image at all pixels), analysis along similar lines

is more challenging for our proposed imaging pipeline since the

RX points used for beamforming for different pixels in the imaging

space are different. We leave the mathematical characterization of

the resolution of Wiffract to future work. Finally, a larger aperture

increases the chance of capturing the Keller cones from different

edges of the object, which can help reduce the blind regions in

the imaging plane, which are the regions whose Keller cones do

not reach the RX grid. It is noteworthy that the depth (distance

from the RX grid to the object) also affects the blind regions in

a similar manner, as it is more likely to capture the Keller cones

off of an object’s edge if it is closer to the RX grid. Overall, a key

parameter in characterizing the impact of an edge on the RX grid

is its corresponding conic section as it implicitly takes into account

the system parameters such as the size of the RX grid, the distance

to the object, and the orientation of the edge.

Extension to imaging other objects: So far, we have showcased

Wiffract’s performance by imaging several alphabet-shaped objects

that were detailed and complex. We had specifically chosen this

application since passing the imaged results through an alphabet

classifier gave us a clear quantitative metric of our imaging perfor-

mance. Nevertheless, Wiffract can also be used in other scenarios,

to image any other object. To motivate future work, Fig. 16 shows

Wiffract’s performance when imaging sample daily-life objects,

such as a garden fence and a microwave oven (in Area 2 of Fig. 7). It

can be seen that Wiffract generated good representations of the ob-

jects by tracing their dominant edges. For instance, it could capture

the fence’s parallel lines even though they are close to each other.

Interestingly, for the microwave oven, it could image the inner

rectangle, something that would not have been possible with other

techniques. As part of future work, one can use Wiffract to image

other objects and further pass the imaged results to a classifier for

object classification, similar to what we have shown for the letters.

Wiffract can, in particular, be useful for detecting cracks and other

structural damages, among other applications.

Validation of the underlying Geometrical Theory of Diffrac-
tion: In order to directly see the interaction of an incoming wave

with an edge and confirm the resulting Keller cones, we carry out

a standalone experiment on a single aluminum vertical edge of

length 30 cm in Area 2. Fig. 17 (left) shows the schematic of the

Microwave ovenGarden fence

Figure 16: As part of future work, Wiffract can be used for other
applications – Two sample results are shown here (output of Algo-
rithm 1). Objects are not drawn to scale for better display.

experiment, where a single TX (labeled as TX1) illuminates the

area. The figure also geometrically demonstrates the parts of the

receiver grid that are expected to have a non-negligible received

power predicted by the Geometrical Theory of Diffraction (i.e.,

based on the intersection of the corresponding Keller cones and

the receiver plane). Fig. 17 (right) then shows the true power of the

measured CSI on the RX grid. It can be easily seen that the parts

of the RX grid that are affected by the edge are concentrated in

the area predicted by the left figure and that we witness a sharp

drop in the received power beyond the extents of this part. See the

color PDF for a better visualization of this figure. We note that the

incident rays are arriving at the edge at an almost perpendicular

angle in this case.

Impact of environmental interference: As discussed in Sec. 3,

other static objects in the environment do not affect the imaging

quality ofWiffract, as their impact is canceled out in the background

subtraction step. However, if a person (or object) moves near the

transceiver while data collection is underway, there will be a non-

trivial impact on our imaging system or, for that matter, on any

other static imaging system. To highlight this effect, we carry out

an imaging experiment of a vertical aluminum edge, while a person

walks near the setup during the RX scanning process. Fig. 18 shows

sample outputs for different levels of interference, quantified by

the percentage of the time the person moves in the area during

the experiment. For instance, 100% means that the person was

constantly walking near the transceiver setup throughout the whole

experiment. Despite the interference, it can be seen that Wiffract is

still able to reasonably image the object. As the level of interference

increases, the imaging quality degrades, as expected.

Background subtraction: A generic imaging system should be

capable of imaging everything in the environment, including the

background. However, imaging static objects with WiFi is consid-

erably challenging. Thus, the radiation from the background is

typically subtracted to focus on imaging a simpler scene (or a spe-

cific object). In other words, without subtracting the background,

one would typically need to image a more complex scene. More-

over, there are additional factors one may need to consider when

imaging in a near-field setting (which is the case in this paper),

as the TX can be closer to the RX aperture. More specifically, the

direct LOS path from TX to RX as well as the ground reflection

path, which form the dominant terms in the background radiation,

can be space-varying over the RX array and, as such, a simple DC

removal would not suffice to remove their impact. One possible so-

lution to compensate for these paths would be to use a model-based

approach to estimate their impact e.g., use Friis formula for the

direct LOS path and a two-ray model for the ground reflection. In

principle, the parameters of such a model can be learned by making

a small set of measurements between the TX and RX, placed in the
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Figure 17: Validation of the underlying Geometrical Theory of Diffraction and the resulting Keller cones. (Left) A single edge is illuminated by
TX1. The figure also shows the parts of the receiver grid that is expected to have a non-negligible received power predicted by the Geometrical
Theory of Diffraction. (Right) The true power of the measured CSI showing that the diffracted waves primarily affect the area predicted by the
left figure. See the color PDF for a better viewing of this figure.

same environment (or in an environment with a similar ground),

but far from objects. A further investigation of this, in conjunction

with near-field imaging, is a potential future work direction.

Impact of the neural network: In Sec. 5.3, we fed Wiffract’s

output to a shallow neural network classifier, in order to provide

an unbiased quantitative metric for Wiffract’s performance. As a

byproduct, we showed how to use the last layer’s activation data of

our predicted class to further enhance our imaging quality by me-

thodically suggesting edges to improve the original edge image. In

Fig. 16, we showed how Wiffract can be extended to image general

everyday objects as part of future work. When imaging general

objects, one can generalize the neural network part accordingly.

For instance, one can use a general object classifier at the end of the

pipeline by taking any of the existing object classifiers and retrain-

ing it using the Hough domain representation. If the information of

the application is available (for instance imaging household items),

one can better tailor the neural network to that subset of objects.

Impact of surface curvature – How sharp should the edge
be? As discussed in Sec. 4, an edge is any surface curvature whose

radius is less than half of the wavelength [30], and is thus not

limited to the visually-sharp edges. For instance, the microwave

oven of Fig. 16 has round sides. This then allows our approach to

be applied to a wide set of objects. As part of future work, one can

further explore the relationship between the curvature of a surface

and its impact on our proposed edge-based imaging method.

Applicability to other frequencies/modalities: Even

when a surface texture appears diffuse to an incoming signal, one

can in principle utilize our edge-based approach, in addition to

traditional back propagation-based methods, in order to improve

the imaging quality. More detailed investigation of the applicabil-

ity of the proposed approach to other frequencies or with other

modalities (e.g. acoustic signals) is part of future work. Finally,

while imaging with WiFi cannot capture the depth information, the

proposed approach can be used with a larger bandwidth to get the

depth information and image in 3D, as part of future work.

7 CONCLUSIONS
In this paper, we showed that high-quality imaging of still objects,

with only the received power measurements of commodity WiFi

transceivers, is possible. More specifically, we proposed Wiffract, a
new foundation for imaging objects via edge tracing. Our approach

uses the Geometrical Theory of Diffraction and the corresponding

Keller cones to image edges of the object. We extensively validated

our approach with 37 experiments in three different areas, including
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Figure 18: Impact of interference from a moving entity – imaging
an edge in the presence of interference caused by a moving person.
The interference level is quantified by the percentage of time the
person moves near the TX/RX during the data collection process.

through-wall scenarios, by imaging several alphabet-shaped objects.

We further showed how our approach can enable WiFi to read for

the first time, i.e., correctly classify the letters, with an accuracy

of 86.7%. Finally, we showed how our approach enables WiFi to

image and read through walls, by imaging and further reading the

letters of the word “BELIEVE” through walls. Overall, our proposed

approach can open up new directions for RF imaging.
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A DERIVATION OF LEMMA 4.1
The complex baseband received signal at RX location p𝑟 ∈ 𝑅𝑋

is a linear superposition of the direct TX path (from p𝑡 ), back-
ground reflections (such as those from the ground or any back-

ground objects at locations p𝑏 ∈ B) and object based reflections

(from p𝑜 ∈ Θ), and can be written as 𝑅(p𝑟 ) = 𝛼 (p𝑡 , p𝑟 )𝑔(p𝑡 , p𝑟 ) +∑
p𝑏 ∈B 𝛼 (p𝑏 , p𝑟 )𝑔(p𝑏 , p𝑟 ) +

∑
p𝑜 ∈𝑂𝐵p𝑟

𝛼 (p𝑜 , p𝑟 )𝑔(p𝑜 , p𝑟 ), where
𝛼 (p𝑏 , p𝑟 ) = 𝛼 (p𝑡 , p𝑏 )𝑔(p𝑡 , p𝑏 )𝛼 (p𝑏 , p𝑟 ). Assuming the direct path

is much stronger than all scattered paths [16], the power of the re-

ceived signal at p𝑟 can be written as: 𝑃 (p𝑟 ) = 𝐶𝑜 +𝐶p𝑏 ,B +𝐶p𝑜 ,𝑂𝐵p𝑟
,

where 𝐶𝑜 = |𝛼 (p𝑡 , p𝑟 ) |2 +
��� ∑p𝑏 ∈B 𝛼 (p𝑏 , p𝑟 )𝑔(p𝑏 , p𝑟 )

���2 +��� ∑p𝑜 ∈𝑂𝐵p𝑟
𝛼 (p𝑜 , p𝑟 )𝑔(p𝑜 , p𝑟 )

���2 ,𝐶p,P is a cross term given by𝐶p,P =

2R
{∑

p∈P 𝛼 (p, p𝑟 )𝛼∗ (p𝑡 , p𝑟 )𝑔(p, p𝑟 )𝑔∗ (p𝑡 , p𝑟 )
}
andR{.} is the real

part of the argument. If power measurements are collected in

the absence of the object, i.e., in the presence of only the back-

ground and the TX, we can perform a similar analysis to get:

𝑃𝑏𝑔 (p𝑟 ) = |𝛼 (p𝑡 , p𝑟 ) |2 +
��� ∑p𝑏 ∈B 𝛼 (p𝑏 , p𝑟 )𝑔(p𝑏 , p𝑟 )

���2 + 𝐶p𝑏 ,B . By

subtracting the background measurements from 𝑃 (p𝑟 ), we then get

Lemma 4.1. □
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