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ABSTRACT OF THESIS

WiFi AND LTE COEXISTENCE IN THE UNLICENSED SPECTRUM

by

R.A. Nadisanka Rupasinghe

Florida International University, 2015

Miami, Florida

Professor İsmail Güvenç, Major Professor

Today, smart-phones have revolutionized wireless communication industry towards an era

of mobile data. To cater for the ever increasing data traffic demand, it is of utmost impor-

tance to have more spectrum resources whereby sharing under-utilized spectrum bands is

an effective solution. In particular, the 4G broadband Long Term Evolution (LTE) technol-

ogy and its foreseen 5G successor will benefit immensely if their operation can be extended

to the under-utilized unlicensed spectrum.

In this thesis, first we analyze WiFi 802.11n and LTE coexistence performance in the

unlicensed spectrum considering multi-layer cell layouts through system level simulations.

We consider a time division duplexing (TDD)-LTE system with an FTP traffic model for

performance evaluation. Simulation results show that WiFi performance is more vulnerable

to LTE interference, while LTE performance is degraded only slightly.

Based on the initial findings, we propose a Q-Learning based dynamic duty cycle se-

lection technique for configuring LTE transmission gaps, so that a satisfactory throughput

is maintained both for LTE and WiFi systems. Simulation results show that the proposed

approach can enhance the overall capacity performance by 19% and WiFi capacity per-

formance by 77%, hence enabling effective coexistence of LTE and WiFi systems in the

unlicensed band.
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CHAPTER I

Introduction

With the emergence of new wireless applications and devices, the demand for radio spec-

trum has been dramatically increasing over the last decade. Cisco has recently predicted

an 11-fold increase in global mobile data traffic between 2013 and 2018 [4], while Qual-

comm has predicted an astounding 1000x increase in mobile data traffic in near future [5].

President Obama, in his memorandum [6], had foreseen this and specifically asked to make

available a total of 500 MHz of spectrum over the next 10 years to support new applications

and technologies. Further, National science foundation, with the launch of its enhancing

access to the radio spectrum (EARS) solicitation, took the initiatives in exploring the op-

portunities for a more effective utilization of the radio spectrum [7].

Effectively sharing the under-utilized spectrum bands by different wireless technologies

can bring enormous opportunities in enhancing radio spectrum access. Specially, the 4G

broadband Long Term Evolution (LTE) technology and its foreseen 5G successor, which

will be the dominant technologies to keep up with the emerging traffic demand, can benefit

immensely from spectrum sharing as they can get access to more spectrum resources. Iden-

tifying this potential, the 3GPP standardization group has recently initiated a study item

(SI) on licensed-assisted access (LAA) using LTE in the unlicensed spectrum [8]. Through

LAA, LTE operation is expanded to the unlicensed band, where it can coexist with the other

deployments such as the WiFi technology. LTE can achieve carrier aggregation utilizing

licensed spectrum for primary carrier and the unlicensed spectrum for secondary carrier.
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In order to access unlicensed spectrum by LTE, properly designed coexistence tech-

niques are essential. As proposed in SI [8], LAA operation of LTE should not impact WiFi

services more than an additional WiFi network on the same carrier. Hence, it is of utmost

importance to develop resilient coexistence mechanisms for the simultaneous operation of

WiFi and LTE in the unlicensed spectrum. With that, there will be significant potential to

enable broadband wireless communication with high data rates, that use LTE in the unli-

censed spectrum.

In this research, first we evaluate the WiFi 802.11n and time division duplex (TDD)-

LTE coexistence performance in the 5 GHz industrial, scientific and medical (ISM) band

considering a multi layer cell layout. A comprehensive system level simulator is developed

by incorporating TDD-LTE and WiFi 802.11n, medium access control (MAC)/ physical

(PHY) functionalities [1] and a non-full buffer data traffic model [3] using Matlab, for

accurate performance evaluations. With this simulator, extensive computer simulations are

carried out to obtain insights on the WiFi-LTE coexistence behavior under several different

realistic implementation scenarios.

Based on the results of initial coexistence performance evaluation, we propose a novel

reinforcement learning (RL) based WiFi and LTE coexistence mechanism in the unlicensed

spectrum. In particular, we use Q-Learning to dynamically configure transmission gaps in

LAA periodically, based on its learnings from the environment. First, we evaluate the

system performance under different duty cycles of the transmission gaps. Then, the perfor-

mance of Q-Learning based dynamic duty cycle selection technique is evaluated. The sim-

ulation results show that the Q-Learning based approach improves overall system capacity

performance by 19% and WiFi capacity performance by 77% compared to the scenario

with fixed duty cycles that yields the highest aggregate capacity.

The rest of the thesis is organized as follows. In Chapter II, we provide a summary of

different techniques proposed in the literature for facilitating the coexistence of different

2



wireless technologies. Chapter III presents initial WiFi-LTE coexistence performance eval-

uation results while providing details about simulator implementation and different scenar-

ios considered. The novel Q-Learning based dynamic duty cycle based approach for LTE

transmission to facilitate simultaneous operation of WiFi-LTE in the unlicensed spectrum

is explained in detail in Chapter IV. Finally, Chapter V provides concluding remarks.
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CHAPTER II

Literature Review

This section summarizes coexistence studies / techniques proposed in the literature be-

tween different wireless technologies. These studies mainly focus on the simultaneous

operation of IEEE 802.15.4 and WiFi, LTE and Wide band - code division multiple access

(W-CDMA), and WiFi and LTE in TV white space, ISM bands and also licensed spectrum.

2.1 Coexistence Between Different Wireless Technologies

Simultaneous operation between different wireless technologies in the same frequency

band is studied in the literature. Coexistence impact of IEEE 802.11 b/g on the IEEE

802.15.4 is studied in [9]. In that, a coexistence model between IEEE 802.15.4 and IEEE

802.11 b/g is presented. Based on the transmit power and receiver sensitivity between two

technologies, three coexistence regions have been identified in the model. In [10], coexis-

tence performance of IEEE 802.15.4 with Bluetooth and WiFi is evaluated based on dif-

ferences in the implementation aspects of these technologies. To facilitate the coexistence

between IEEE 802.11 and Bluetooth, an adaptive frequency hopping mechanism to modify

Bluetooth frequency hopping sequence and an interference aware scheduling strategy for

Bluetooth, are proposed in [11].

An experimental study of coexistence issues between IEEE 802.15.4 and IEEE 802.11b

is presented in [12]. In that, insights on the coexistence performance between these tech-

nologies is studied focusing on physical layer and as well as network/transport layers as-

pects. Authors suggest that this study helps in taking efficient actions to the problems arise
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due to the coexistence of IEEE 802.15.4 and IEEE 802.11b. Another measurement based

coexistence study between IEEE 802.11 and IEEE 802.15.4 is presented in [13]. In that,

observed results show that IEEE 802.11 performance degrades considerably with this coex-

istence. On the other hand, [14] proposes an interference mediation scheme as a solution to

performance degradation experienced by IEEE 802.15.4 due to the coexistence with IEEE

802.11b in the ISM band. Interference mediation is achieved through an interference me-

diator which coordinates between two technologies. In [15], laboratory experiments are

carried out to identify ZigBee communication performance in all 16 Zigbee transmission

channels, under WiFi interference. Performance is evaluated by varying transmit power,

communication channels and communication distance in ZegBee transmission.

Mechanisms to operate ultra-wideband (UWB) and WiMAX devices in the same fre-

quency band are studied in [16], using spectrum sensing techniques. In that, detect-and-

avoid mechanisms are proposed for mitigating interference. In [17], WiFi and WiMaX

coexistence in adjacent frequency bands is analyzed; to overcome adjacent channel inter-

ference, time sharing techniques are proposed across different technologies.

2.2 Coexistence Between LTE and Other Wireless Technologies

To facilitate simultaneous operation of LTE with other wireless technologies in the same

frequency band, there are several studies/techniques proposed in the literature. In [18], an

approach to facilitate the coexistence between multicarrier and narrow band (i.e., LTE and

W-CDMA) technologies in the same frequency band, is presented. In that, by treating both

co-channel signals as desired signals, they are enhanced in an iterative manner. In every

iteration, one co-channel signal is subtracted from the received signal successively in or-

der to obtain a better estimate of the other co-channel signal. A receiver which suppresses

the co-channel dominant interference by blanking frequency-domain samples where the

desired and interfering signals ovarlap, is proposed in [19], to facilitate simultaneous op-
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eration of different wireless technologies in the same band. A coexistence study about

downlink high-speed railway communication system with TDD-LTE is presented in [20].

In that, it has been identified that when these two technologies are deployed in the same

frequency band, the high speed railway communication system is severely affected from

interference. Additional isolation schemes are proposed as a solution to over come this

problem. In [21], coexistence study between LTE and digital video broadcasting 2nd gen-

eration terrestrial (DVB-T2-Lite) system, is presented. The paper basically analyzes impact

of LTE on DVB-T2-Lite system, when they operate in the same frequency band. In another

coexistence study, coexistence performance is evaluated between LTE and mobile satellite

services (MSS) systems [22]. Based on the simulation results it has been concluded that,

for LTE DL, there is not much of an issue from the coexistence whereas for LTE uplink

(UL), severe performance degradation is observed due to interference.

2.3 Coexistence Between WiFi and LTE

Simultaneous operation of LTE and WiFi in the same frequency band is receiving high

attention recently as this can be an effective solution for the spectrum shortage problem.

This potential has also been identified by the 3GPP standardization group and they recently

initiated a SI for LAA operation of LTE which is expected to be completed by June 2015.

This SI will be followed by a LTE Rel-13 work item (WI).

Study Item Work Item 

RAN#64 

Jun. ‘14 

RAN#65 

Sept. ‘14 

RAN#66 

Dec. ‘14 

RAN#67 

Mar. ‘15 

RAN#68 

Jun. ‘15 

RAN#69 

Sept. ‘15 

RAN#70 

Dec. ‘15 

RAN#71 

Mar. ‘16 

Figure 1: LAA standardization time line [2].

There are several objectives identified in this SI for proper LAA operation of LTE in

the unlicensed spectrum. Among them, defining an evaluation methodology and possible
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scenarios for LTE deployments in the unlicensed spectrum, identifying and defining design

targets for coexistence with other unlicensed spectrum deployments, identifying and evalu-

ating physical layer options and enhancements for LTE to meet the requirements and targets

for the unlicensed spectrum deployments, and identifying the need of enhancements to LTE

radio access network (RAN) protocols to support deployment in the unlicensed spectrum,

are important. When coexisting with WiFi, it has been specifically mentioned in the SI

that LAA should not impact WiFi services more than an additional Wi-Fi network on the

same carrier. Further, when identifying and defining design targets, facilitating coexistence

between different LAA operators is also considered as an important objective in the SI.

For LAA operation of LTE, main focus will be on 5 GHz unlicensed spectrum. It is sug-

gested to reuse most of the current features of LTE, when extending LTE operation to the

unlicensed spectrum [8].

Possible operating modes and deployment scenarios for LAA operation of LTE are

proposed in [23]. Regarding possible operating modes, the unlicensed spectrum can be

used for carrier aggregation (CA) only for downlink (DL) and for both UL and DL, as

can be seen from Fig. 2. Here the primary carrier is from the licensed spectrum whereas

the secondary carrier is from the unlicensed spectrum. Initially it is expected to give high

priority for CA based DL only LAA deployment. After that, for both UL and DL, CA from

the unlicensed band will be introduced. [8].

Different possible deployment scenarios for LAA are discussed in [23,24]. Due to reg-

ulatory conditions, transmit power is limited in most of the unlicensed bands. Further, as

unlicensed spectrum is usually from higher frequency bands compared to the licensed spec-

trum, achievable coverage with unlicensed bands is comparatively low. Hence as shown in

Fig. 3 (a), by deploying both the licensed and the unlicensed carriers together and utilizing

licensed carriers for control data transmission, better performance can be achieved.
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Primary Carrier 

Licensed spectrum 

Secondary Carrier 

Unlicensed spectrum 

Primary Carrier 

Licensed spectrum 

Secondary Carrier 

Unlicensed spectrum 

UL DL 

(a) (b) 

Figure 2: LTE uses secondary carrier from the unlicensed spectrum: (a) only for DL carrier

aggregation. (b) Both for UL and DL carrier aggregation.

Non-Co-located deployment (see Fig. 3 (b)) is another possibility where macro LTE

base stations (BSs) use the licensed spectrum while small cell LAA BSs utilize the unli-

censed spectrum. Inter-site aggregation between macro and LAA BSs is achieved through

a high speed backhaul [23].

LAA BS 

Licensed Spectrum 

Unlicensed Spectrum 

Co-located 
Non-Co-located 

Macro BS 

LAA BS 

Figure 3: LAA BSs operating in the unlicensed spectrum.

Possible sub-bands within 5 GHz unlicensed spectrum is investigated in [25] for LAA

operation. It is suggested that 5724 MHz - 5825 MHz is a good candidate for most regions

of the world for LAA operation as it allows highest possible transmit power compared to

other sub-bands. As can be seen from Fig. 4, within some sub-bands dynamic frequency
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selection (DFS) and transmit power control (TPC) are necessary for the operation. In addi-

tion, 5350 MHz - 5470 MHz and 5850 MHz - 5925 MHz are also in favor of LAA operation

with revised or new regulations.

Indoor 

Outdoor 

Indoor 

Indoor 

Indoor 

Indoor 

Indoor 

US 

EU 

China 

Japan 

Korea 

5150 5250 5350 5470 5725 5825 5925 

MHz 

Indoor 

Outdoor 

DFS,TPC 

Indoor 

DFS,TPC 

Indoor 

DFS,TPC 

Indoor 

Outdoor 

DFS,TPC 

Indoor 

Outdoor 

DFS,TPC 

UNII-1 UNII-2A UNII-2B 

Indoor 

Outdoor 

DFS,TPC 

Indoor 

Outdoor 

DFS,TPC 

Indoor 

Outdoor 

DFS,TPC 

Indoor 

Outdoor 

DFS,TPC 

UNII-2C 

Indoor 

Outdoor 

Indoor 

Outdoor 

Indoor 

Outdoor 

UNII-3 UNII-4 

Operational Planned 

Figure 4: Available Sub-bands in 5 GHz unlicensed spectrum [25]. Transmit power control

(TPC) and Dynamic frequency selection (DFS) are necessary for transmission in some of

the sub-bands.

However, there are some more regulatory conditions defined for some regions in the

world when operating in 5 GHz unlicensed band. Eliminate/mitigate interference to radar

transmissions is one such requirement applicable to most of the regions in the world. For

Japan, 4 ms maximum transmission duration and Listen-Before-Talk (LBT) transmission

have to be satisfied for operating in the unlicensed spectrum. LBT, maximum transmission

duration limit and transmission bandwidth are important regulatory conditions for the unli-

censed band operation in Europe [26]. In [25], a case study about feasibility of introducing

DFS for LAA mainly to avoid LAA getting interfered to radar transmission is presented.
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Some interesting motivating factors for deploying LAA in the unlicensed spectrum are

presented in [27]. Among them, achievable capacity enhancement, seamless connectivity,

better handing of operation and maintenance (O&M) and quality of service (QoS) issues,

utilizing same core network with the licensed band LTE, and longer range and higher effi-

ciency than WiFi, are important.

Before initiating the SI in Sep. 2014, 3GPP group organized a workshop in Jun. 2014,

fully focusing on LAA operation of LTE in the unlicensed spectrum [28]. In that, some

interesting solutions/studies were presented by different companies [24,27,29–38]. In [29]

from [28], experiment based and simulation based studies of WiFi and LAA coexistence

are carried out to get insight on the coexistence performance. Based on the experimental

study, it is concluded that, for single WiFi access point (AP) and LAA BS scenario, LAA

outperforms WiFi in terms of both coverage and cell throughput. Further, from the simu-

lation based study it has been shown that, with carrier selection based LAA transmission,

WiFi-LAA coexistence performance can be enhanced. In [39], coexistence between WiFi

and LTE (900 MHz) is investigated considering single floor and multi floor indoor office

scenarios. By using system level simulations, it has been shown that the WiFi performance

affected heavily when WiFi and LTE operates simultaneously in the unlicensed spectrum.

In [27] also some interesting simulation results from a LAA-WiFi coexistence study

are presented. In that, it is shown that the achievable aggregate throughput when two

LAA networks (operators) operate in fully overlapping channels is larger compared to two

WiFi networks operating in the same manner. Further, by deploying LBT based LAA

transmission with a fairness algorithm and WiFi in a fully overlapping unlicensed band, it

is shown that higher aggregate throughput can be obtained compared to two WiFi networks

operating in the same channel.
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Qualcomm in [40–42] provides some important studies about facilitating WiFi-LAA

coexistence in the unlicensed spectrum. As main advantages of LTE operation in the un-

licensed spectrum better coverage and increased capacity are identified. Since LTE is a

coordinated and managed architecture, LTE in the unlicensed spectrum can offer higher

performance than WiFi for the same transmit power. Based on their initial studies, it has

been shown that it is possible to achieve two fold or higher performance with LAA as

compared to WiFi. For an instance, LTE operating in the unlicensed spectrum can provide

twice the capacity of WiFi with the same number of nodes.

In order to achieve harmonious coexistence where LTE-Advance (LTE-A) can become

a good neighbor to WiFi, [41] proposes some interesting solutions. In that, LAA small cells

carry out initial channel search to identify suitable channels in 5 GHz band with minimum

observed interference level. Based on the interference level, they dynamically adjust the

channel for continued interference avoidance. However if there is no clear channel avail-

able, carrier sensing adaptive transmission (CSAT) mechanism is proposed where duty

cycle based LTE-A transmission is deployed. This solution is specially applicable to coun-

tries where there is no regulatory requirement for LBT waveform for the unlicensed band

(i.e. US, China and South Korea). CSAT mechanism can ensure fair spectrum sharing with

WiFi nodes even in a very dense LTE-A nodes deployment. Medium sensing duration is

longer in CSAT compared to regular LBT mechanisms. Based on the sensed medium ac-

tivities of other technologies, the duty cycle of transmission vs gating off will be defined

by CSAT [42]. Further, it is proposed that the unlicensed spectrum access by LTE-A small

cells should be done on-demand basis, meaning that only the small cells having active users

are able to transmit in the unlicensed spectrum. This type of an approach is possible since

there is a mandatory anchor from the licensed band. Transmit power adjustment is also

proposed for minimizing the interference to WiFi.
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Coexistence performance of LAA and WiFi based on different deployment scenarios

is evaluated in [43] with LBT implemented on LAA. Based on the simulation result it has

been shown that the coexistence performance is very sensitive to deployment. For an exam-

ple, in dense deployments, WiFi median throughput performance degrades when coexisting

with LAA. But in sparse deployments there is not much difference in WiFi median through-

put performance when coexisting with LAA. Further, based on the indoor/outdoor mixed

deployment evaluations, it has been identified that LAA requires request-to-send (RTS)

and clear-to-send (CTS) like operation to achieve fairness and spectral efficiency, due to

hidden node problem. Another interesting observation in this evaluation is that, LBT based

LAA operation shows better balancing between improving fairness and maximizing overall

spectral efficiency compared to 50% duty cycle based transmission.

In [44], for the simultaneous operation of WiFi and LTE in the TV white space, two

techniques are proposed to facilitate interference management: 1) spectrum sensing (LBT)

by LTE, and 2) coexistence gap during which LTE refrain from transmitting. Frequency di-

vision duplexing (FDD)-LTE is considered here and LTE BS attempts to access the channel

only at pre-assigned time instants denoted as transmission opportunities which are aligned

with sub-frame boundaries. With LBT approach for DL transmission, LTE BS performs

energy detection based sensing of the medium for predefined time interval (during trans-

mission opportunity). If the channel is sensed to be idle (detected energy is below a thresh-

old), LTE BS accesses the channel and starts DL transmission. This transmission will take

place for fixed number of sub frames and there will not be any sensing involved within this

duration. The DL transmission is followed by a coexistence gap, to enable other secondary

users such as WiFi to access the channel.

To access license-exempt band for CA, LBT based LTE transmission along with RTS/CTS

message exchange prior to starting the actual LTE transmission is proposed in [45]. LTE

BS will sense the license-exempt band before transmitting and if the medium is detected to
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be idle, LTE BS will start transmission. For UL, UE is responsible for sensing the medium

before initiating a UL transmission. However, unlike in WiFi, the proposed LBT approach

for LTE does not consider a random backoff and once the medium is detected to be idle,

LTE BS/UE will start the transmission. LBT based approach proposed in [33] for LTE

transmission considers handling of both inter-radio access technology (RAT) interference

and intra-RAT interference. To handle inter-RAT interference, energy detection based LBT

approach is proposed, whereas to handle intra-RAT interference, LBT based on cross cor-

relation detection is proposed.

Blank sub frame allocation technique by LTE is introduced in [46] to facilitate simul-

taneous WiFi and LTE operation in the unlicensed spectrum. During silent subframes re-

ferred to as blank subframes, LTE refrains from transmitting and as a result WiFi gets more

opportunities to access the channel. This mechanism is very much similar to almost-blank-

subframe (ABS) concept introduced in LTE - Rel.10 for enhanced inter-cell interference

coordination (eICIC). However, unlike in ABS, subframe blanking mechanism introduced

here will not transmit any reference signals (RSs) during blank subframe. Similar approach

is considered in [47], in which LTE allocates silent gaps with a predefined duty cycle to

facilitate better coexistence with WiFi. However, this technique will refrain from achiev-

ing maximum gain of LTE operation in the unlicensed spectrum due to its discontinuous

transmission. An UL power control based mechanism is evaluated for LTE systems in [48]

to allow simultaneous operation of WiFi and LTE in the unlicensed spectrum. In that, LTE

UL transmit power is reduced in a controlled manner based on interference measurements,

generating more transmission opportunities to WiFi. Exchanging spectrum allocation in-

formation between WiFi and LTE via a common database is considered in [34] for enabling

simultaneous access to the unlicensed spectrum by LTE and WiFi.

In [23], performance degradation due to multiple operators utilizing the same unli-

censed band, is studied. Simulations are carried out for a 2 operator case and it is shown
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that the user experience degrades heavily due to uncoordinated LAA BSs deployments. As

viable solutions [23] suggests: 1) an agreement could be reached between multiple oper-

ators for orthogonal/exclusive use of the unlicensed spectrum within a given region. This

can totally avoid inter-operator interference, with the cost of potentially inefficient use of

spectrum due to the lack of dynamic spectrum sharing, and 2) introduce some dynamic

schemes where unlicensed spectrum can be shared between operators. In this case, op-

erators can occupy/release the unlicensed spectrum through some dynamic coordination

and information exchange between them. To achieve coordination between different op-

erators, [23] suggests that the monitoring of LTE transmission over the air interface could

provide potentially enough cooperation information between LTE transmissions of differ-

ent operators. A game theoretic approach to share unlicensed spectrum between several

operators is proposed in [49]. In that, it is shown that, selfish and strategic operators find

that being entirely non-cooperative is a Nash equilibrium; yet cooperative sharing is to the

best interest of all. Further some mechanisms have been designed such that operators seek

a subgame perfect Nash equilibrium where all operators are fully cooperative.

In [50], user equipment (UE) side necessary enhancements for the LTE unlicensed band

operation is discussed. For the DL only CA from the unlicensed spectrum, channel quality

information (CQI) has to be sent by the UE for the unlicensed band as well. Further, when

the unlicensed band transmission introduces to both UL and DL CA, radar detection and

LBT has to be implemented on UE side.

In this thesis, we propose a RL based coexistence mechanism to facilitate simultaneous

operation of WiFi and LTE in the unlicensed spectrum. Through system level simulations,

first, initial coexistence performance evaluation is carried out [51]. After that, proposed Q-

Learning based coexistence mechanism is implemented and performance is evaluated [52].

Next few sections will provide detailed description about initial performance evaluation

and proposed Q-Learning based WiFi and LAA coexistence mechanism.
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CHAPTER III

WiFi-LTE Coexistence Performance Evaluation

In order to develop effective coexistence techniques, it is of utmost importance to study

the coexistence performance between WiFi and LTE. From that, it is possible to identify

which technology will be suffering heavily from this coexistence and what can be the pos-

sible solutions to facilitate this coexistence. Hence in this section, we evaluate WiFi-LTE

coexistence performance under different criterias.

First, coexistence performance under different LTE traffic arrival rates is evaluated.

Then, WiFi-LTE coexistence performance under different LTE TDD configurations with

different duty cycles of UL subframes, is studied. Finally, coexistence performance with

different path loss compensation factors is analyzed. The simulation results provide useful

insights on PHY/MAC operating regimes, which will help in developing effective coexis-

tence techniques for LAA.

3.1 Deployment Scenario

In order to evaluate the coexistence challenges and related interference management meth-

ods for LAA operation of LTE, we consider a scenario as shown in Fig. 5, where M LAA

BSs and WiFi APs are operating simultaneously in the unlicensed band. Each WiFi AP

(LAA BS) consists of N WiFi stations (STAs) (LAA UEs), which are uniformly randomly

distributed within the cell coverage area. TDD-LTE is considered and it is assumed that

LAA BSs and LAA UEs are synchronized together all the time.
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Figure 5: WiFi APs and LAA BSs operating simultaneously in unlicensed spectrum.

As shown in Fig. 5, due to simultaneous operation of WiFi and LAA in the unlicensed

spectrum, targeted WiFi STA experiences interference from LAA DL/UL transmissions

and other WiFi DL/UL transmissions. This will result in degrading the signal to interfer-

ence plus noise ratio (SINR) at the targeted WiFi STA. In the same way, for WiFi UL trans-

missions and LAA DL/UL transmissions, WiFi and LAA simultaneous operation will in-

crease interference and hence reduce SINR which will then degrade capacity performance.

Due to carrier sense multiple access with collision avoidance (CSMA/CA) mechanism in

WiFi [1], when coexisting with LTE, WiFi transmissions get delayed, further degrading

WiFi capacity performance.

For both WiFi and LAA, we have considered a non full buffer traffic model as given

in 3GPP FTP traffic model-2 [3]. In order to evaluate the capacity of WiFi and LAA for

different simulation scenarios, a PHY layer abstraction is used. In particular, Shannon
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capacity is calculated at the granularity of each WiFi OFDM symbol duration (4 µs) to

obtain the number of successfully received bits. In all the simulations, wireless channel

is modeled according to [3]. Both for WiFi and LAA, Indoor Hotspot (InH) scenario is

considered when determining path loss and shadowing parameters used in the simulations.

For better understanding of coexistence mechanisms between the two technologies,

brief summaries of PHY layer and medium access control (MAC) layer implementations

of WiFi and LTE technologies are reviewed in the next sections.

3.2 Review of WiFi 802.11n MAC/PHY

In order to understand how LTE and WiFi systems can coexist with each other in the same

frequency band, it is important to study the MAC implementation of both systems. In

this section, MAC layer of WiFi will be reviewed, which is responsible for controlling

the channel access procedure for multiple WiFi stations (STAs) to share the same wireless

channel [1]. The MAC layer of WiFi is based on the carrier sense multiple access with

collision avoidance (CSMA/CA) mechanism, where, if the wireless medium is sensed to

be idle, an STA is permitted to transmit. However, if the channel is sensed to be busy, then

the STA defers its transmission. The CSMA/CA mechanism particularly used in the IEEE

802.11 MAC is known as the distributed coordination funtion (DCF).

An example CSMA/CA scenario with four STAs (STA 1, STA 2, STA 3, and STA 4)

which share the same wireless spectrum is shown in Fig. 6. STA 1 will start transmission

of its physical protocol data unit (PPDU) and STA 2, STA 3 and STA 4 will back-off (will

not access the medium) until STA 1 completes its transmission. Once the transmission of

STA 1 is completed, PHY of the other three STAs start sensing the channel during a time

period defined by the arbitration inter frame space (AIFS) parameter. At the end of the

AIFS time period, STA 2, STA 3, and STA 4 will randomly back-off, and STA with the

shortest back-off (STA 3) will occupy the medium for the next transmission. Subsequently,
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Figure 6: Back-off (BO) procedure in WiFi.

STA 2 and STA 4 will again go to back-off mode; however, as shown in Fig. 6, after the

transmission of STA 3, STA 2 and STA 4 will use the remaining back-off time from the

initial random back-off time. This will allow STAs to access the channel according to the

order they start sensing the channel.

To gain a better insight about WiFi behavior during medium access, we describe the

channel access procedure and physical carrier sensing mechanism known as clear channel

assessment (CCA) of WiFi in the following subsections.

3.3 Enhanced Distributed Channel Access (EDCA)

The Enhanced distributed channel access (EDCA) is an extension of the basic DCF in WiFi

which consists of four different types of access categories (ACs) (background, best effort,

video, voice) to support prioritized quality of service (QoS) for different traffic types. As

shown in Table 1, each category has different CSMA/CA parameters according to the traffic
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Table 1: Default MAC parameters for different access categories of WiFi systems [1].

Access Category AIFSN CWmin CWmax TXOPlimit

Background 7 31 1023 0

Best effort 3 31 1023 0

Video 2 15 31 3.008 ms

Voice 2 7 15 1.504 ms

Legacy 2 15 1023 0

type. The AIFS time period of an AC can be determined as follows:

TAIFS[AC] = TSIFS +AIFSN[AC]×Tslot, (1)

where TSIFS is the Short inter frame space time which is 16 µs, AIFSN[AC] is defined in

Table 1 for each AC, and Tslot refers to the slot time which is 9 µs [1]. From (1), AIFS is

the highest for background traffic, while it is the lowest for video and voice to ensure lower

delay.

During the AIFS time period, if the medium is sensed to be idle, STAs will back-off

for another random time period which is determined using the contention window (CW)

parameters (CWmin, CWmax) shown in the Table 1. The random back-off time is a pseudo

random integer drawn from a uniform distribution over the interval [0,CW ]. The CW at an

STA starts from the CWmin and effectively doubles on each unsuccessful Aggregate MAC

protocol data unit (A-MPDU) transmission.

3.4 Clear Channel Assessment Based on Carrier Sense

The CCA is composed of two related functions: carrier sense (CS) and energy detection

(ED). During CS by the PHY of a particular STA, if 1) the detected energy level is higher

than the defined threshold (set to -82 dBm for WiFi), and 2) the header information of the

PPDU currently occupying the channel is successfully decoded, that STA will back-off till

the end of a PPDU transmission from a different STA. This is achieved through the network
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allocation vector (NAV) which operates at the MAC layer. According to the information

extracted from the header, the NAV will inform PHY that the channel will be busy till the

completion of current PPDU transmission. As a result, PHY will start sensing again at the

end of the current PPDU transmission.

3.5 Clear Channel Assessment Based on Energy Detection

While CCA based on CS detects the presence of a decodable WiFi signal, CCA based on

energy detection (ED) allows an STA to detect the non WiFi energy level present on the

current channel (e.g., an LTE signal). This can be due to another electromagnetic signal in

the same frequency band, or due to unidentifiable WiFi transmission that may be corrupted

and the header information of the PPDU can no longer be decoded. The ED threshold level

is normally 20 dB higher than the corresponding WiFi energy level threshold [1]. If the

medium is identified to be busy due to ED, the STA has to sense the medium every slot

time, to determine whether the energy still exists. When WiFi and LTE operate in the same

spectrum, WiFi access points (APs)/STAs have to follow this procedure more frequently

before gaining the channel access. This will inversely affect the achievable throughput

from WiFi (diminishing the performance on WiFi side), since the sensing time will increase

when LTE interference is present.

3.6 WiFi PHY Abstraction

In order to evaluate the capacity of WiFi for different simulation scenarios, a PHY layer

abstraction is used. In particular, Shannon capacity is calculated at the granularity of each

WiFi OFDM symbol duration to obtain the number of successfully received bits.

Fig. 7 shows the WiFi PPDU format considered in simulations. Physical service data

unit (PSDU) coming from MAC to PHY consists of one 64 kB A-MPDU. WiFi throughput

is averaged over a one second time duration as shown in Fig. 8. During this simulation
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Figure 7: WiFi PPDU format.

interval, there can be several PPDU transmissions and in between two transmissions there

is a random wait time (TRand), which is determined using the FTP traffic model described

earlier [3]. During that time period, it is assumed that there is no data in the WiFi AP/STA

queue. Therefore, for throughput calculations, intervals where there are no packets in the

queue are not taken into consideration.

Figure 8: WiFi PPDU arrivals. WiFi capacity is averaged over 1 s time duration in the

simulations.

Considering the aforementioned assumptions, number of successfully received bits,

NWiFi
B , for each transmitted WiFi OFDM symbol is given by:

NWiFi
B (i) = BWiFi log2

(

1+SINRWiFi(i)
)

TOFDM, (2)

where BWiFi is the allocated WiFi transmission bandwidth, SINRWiFi is the signal to inter-

ference plus noise ratio (SINR) of WiFi devices where interference term consists of both

WiFi and LTE interference at the ith OFDM symbol, and TOFDM is the WiFi OFDM symbol

duration.
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Average WiFi capacity (CWiFi) within one second duration as in Fig. 8 can then be

written as

CWiFi =

N

∑
i=1

NWiFi
B (i)

N×TOFDM +∑TBO +∑TWait +∑TAIFS
, (3)

where N is the number of WiFi OFDM symbols transmitted during a one second dura-

tion, TAIFS is the AIFS time between two PPDU transmissions, and TBO is the back-off

time between two PPDU transmissions. Note that this back-off time will not capture the

complete waiting time of a WiFi AP/STA which is expecting to access the channel. As

described in Section 3.4, if the header information of currently ongoing WiFi transmis-

sion is successfully decoded, WiFi AP/STA can identify the time taken to complete that

WiFi transmission. Therefore, as shown in Fig. 6, the total waiting time (TWait) between

two PPDU transmissions should be captured separately for throughput calculations. In (3),

∑TBO, ∑TWait and ∑TAIFS capture total back-off, waiting and AIFS time within one second

duration respectively.

3.7 Review of LTE MAC/PHY

Since the users are centrally scheduled by a base station, LTE MAC layer operation is quite

different than the DCF based MAC approach in WiFi described in the previous section. In

this thesis, TDD-LTE is considered for coexistence performance evaluation with different

TDD configurations [53]. FTP traffic model-2 is implemented based on [3], where delay

(d) between two packet arrivals is exponentially distributed with the probability density

function given by

f (d) = λexpλd, (4)
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where λ is the packet arrival rate to the data queue. Fig. 9 shows how packets arrive at a

user data queue based on the considered non-full buffer traffic model. Size of a data packet

is fixed and assumed to be 0.5 MB.

Figure 9: Traffic arrival to data queue according to FTP traffic model-2 [3]. The di is the

delay between two data packet arrivals, which has an exponential distribution as outlined

in (4).

The UL power control is achieved using the fractional power control mechanism in LTE

as follows [53]

PUL = P0 +αPL+10log10 M, (5)

where, PUL is the UL transmitting power of the LTE UE, P0 represents the base power level,

PL is the path loss from LTE BS to LTE UE, and α is the path loss compensation factor.

When α = 0, no power control is applied in the uplink, and when α = 1, path loss is fully

compensated through power control. The number of RBs allocated to an LTE UE for UL

transmission is denoted by M.

In all the simulations, wireless channel is modeled according to [3]. Both for WiFi and

LAA, Indoor Hotspot (InH) scenario has been considered when determining path loss and

shadowing parameters used in the simulations.
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Figure 10: LAA capacity is captured over each WiFi symbol duration. It is then averaged

over 1 s time duration in the simulations.

3.8 LTE PHY Abstraction

Similar to WiFi capacity abstraction, Shannon capacity equation has been used for LAA

PHY abstraction. Due to WiFi OFDM symbol transmissions, interference at LAA changes

with a time granularity of TOFDM. Number of successfully received bits for LAA is then

calculated for TOFDM time granularity, and aggregated over one second duration (Fig. 10).

As opposed to LAA, WiFi STAs do not use UL power control and all the time transmit

at full power (23 dBm). Hence, observed interference at LAA BS and LAA UE due to

WiFi UL / DL transmissions are similar. Number of bits received at LAA BS/UE during ith

TOFDM time interval within one second is given by

NLAA
B (i) = BLAA log2

(

1+SINRLAA(i)
)

TOFDM, (6)

where BLAA is the allocated LAA bandwidth, SINRLAA term captures both WiFi and LAA

interference at LAA BS/UE, and BLAA directly relates to the number of RBs allocated dur-
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Figure 11: WiFi APs and LAA BSs in a multi layer cell layout.

ing a TTI. As the traffic is not full buffer, depending on the allocated RBs, WiFi interference

at LAA is calculated.

LAA capacity in DL(UL) (CLAA) is averaged over one second duration and can be

calculated as

CLAA =

M

∑
i=1

NLAA
B (i)

M×TOFDM
, (7)

where M represents number of TOFDM time intervals within one second (Fig. 10) with LAA

DL (UL) transmission exist.
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Table 2: WiFi PHY/MAC parameters.

Parameter Value

Transmission scheme OFDM

Bandwidth 20 MHz

DL/UL Tx Power 23 dBm

AC Best Effort

MAC protocol EDCA

Slot time 9 µs

CCA-CS threshold -82 dBm

CCA-ED threshold -62 dBm

No. of service bits in PPDU 16 bits

No. of tail bits in PPDU 12 bits

CW size U(0,31)
Noise figure 6 [1]

Traffic model FTP Traffic model-2 [3]

3.9 Simulation Results Discussion - Initial Coexistence Performance Evaluation

Computer simulations are carried out to gain insights related to coexistence performance

of WiFi and LAA in the unlicensed band under different simulation configurations. We

consider a two layer cell layout, one each for WiFi and LAA, as shown in Fig. 11. Each

layer consists of M = 7 cells. There are N = 10 WiFi STAs (LAA UEs) associated with

each WiFi AP (LAA BS). WiFi STAs (LAA UEs) move within the cell with a speed of 3

km/h.

In the simulator, CCA based on CS and ED mechanisms are implemented as described

in Section 3.4 and Section 3.5. During channel sensing, if two or more WiFi transmis-

sions are observed by a particular STA with energy level greater than the CS energy level

threshold, it is assumed that the header decoding is not possible. This situation is handled

as an ED problem. All the traffic is assumed to be from best effort AC. Hence, Transmit

Opportunity (TXOP) allocated is zero as per Table 1. Accordingly, during a channel ac-

cess, only one PPDU transmission is allowed. Other parameters used for WiFi MAC/PHY

implementation are summarized in Table 2.
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Table 3: LTE PHY/MAC parameters.

Parameter Value

Transmission Scheme OFDM

Bandwidth 20 MHz

DL Tx power 23 dBm

UL Tx power PL based TPC

Frame duration 10 ms

Scheduling Round robin

P0 -106 dBm

α 1

TTI 1 ms

Traffic model FTP Traffic model-2 [3]

TDD-LTE is considered in simulations and it is assumed that LAA BSs and LAA UEs

are synchronized together all the time. LAA UEs report the observed DL SINR value

during a DL transmission to the LAA BS, which is then used by the LAA BS to deter-

mine the number of RBs to be allocated for the next DL transmission. Round robin user

scheduling is considered in DL and only one user is scheduled during each transmission

time interval (TTI). Based on the number of LAA UE requests for UL transmission during

one subframe, bandwidth (BW) is equally divided between them. All the LTE MAC/PHY

parameters used in the simulator are given in Table 3. In the remainder of this section, we

study the simulation results obtained for different WiFi and LAA coexistence scenarios. In

all these scenarios, we focus on the performance of center cell in both WiFi and LAA cell

layouts.

3.9.1 Coexistence Under Different LAA Traffic Arrival Rates

In Figs. 12 - 15, WiFi and LAA coexistence performance is presented for different LTE

traffic arrival rates, λ = 1.5,2.5. In Fig. 12, WiFi and LAA DL capacity is compared.

From that, it can be seen that WiFi performance degradation is high compared to LAA

when they coexist in the same frequency band. Results in Fig. 13 show the cumulative

density functions (CDF) of WiFi DL SINR for different LAA traffic arrival rates. From
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Figure 12: Average DL capacity (bits/s) of WiFi and LAA with different λ values.

these CDFs, it can be inferred that WiFi DL performance degradation is larger for higher

λ.

Note that, in Fig. 13, there is a step-like behavior when LAA interference is present.

This is because the LAA UL interference at the WiFi is lower when compared to the LAA

DL interference, both of which can appear in a TD-LTE frame as shown in Fig. 10. This

can be seen more clearly in Fig. 14, which plots the CDFs of LAA interference observed at

WiFi devices. Over 30 dB difference in the interference power CDFs in Fig.14 manifests

itself in the step-like behavior in the Fig. 13. As opposed to WiFi DL performance, results

in Fig. 12 and Fig. 15 show that the LAA DL performance is not affected significantly from

the presence of WiFi devices in the vicinity.

3.9.2 Coexistence Under Different LTE TDD Configurations

The TDD mode in LTE can be configured to have different number of DL and UL sub-

frames, to support different traffic conditions. As shown in Fig. 16, in TDD configuration 1,
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the number of UL subframes are two times that of configuration 2. The impact of different

TDD configurations on the WiFi-LAA coexistence performance is shown in Figs. 18 - 19.

Fig. 18 compares WiFi and LAA DL capacity under different LTE TDD configura-

tions. It can be seen that, with TDD configuration 1, WiFi capacity has increased. The

main reason for that is in TDD configuration 1, number of UL subframes are larger when

compared to TDD configuration 2. As explained in Section 3.9.1, LAA UL interference is

lower compared to LAA DL interference. Hence, it can be inferred that LAA interference

is lower with TDD configuration 1 when compared with configuration 2, and as a result,

WiFi capacity increases with TDD configuration 1. On the other hand, LAA DL capacity

under TDD configuration 1 is slightly reduced when compared to configuration 2. This is

because, as WiFi gets more opportunities to transmit, interference from WiFi at LAA DL

is higher with TDD configuration 1.

Fig. 17 plots the WiFi SINR CDFs with different LTE TDD configurations. As can be

seen, WiFi SINR with TDD configuration 1 is improved when compared to TDD configu-
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Figure 16: LTE-TDD configurations.
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ration 2. This is because, as explained earlier, LAA interference at WiFi with TDD config-

uration 1 is lower compared to configuration 2. Therefore, when there are larger number

of UL subframes, interference at WiFi is lower and as a result better WiFi performance can

be observed.

Finally, Fig. 19 plots SINR CDFs of LAA DL for different TDD configurations. Slight

SINR degradation in LAA DL can be observed for TDD configuration 1 when compared

to configuration 2. As explained earlier, this is because of the increased WiFi interference

with TDD configuration 1.

3.9.3 Impact of Path Loss Compensation Factors

To investigate the impact of fractional power (control based on (5)), the coexistence per-

formance with different LTE α values is studied in Figs. 21 - 22. Fig. 21 shows LAA and

WiFi DL capacities for different α values. It can be observed that the WiFi capacity is
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better with α = 0.5, than with α = 1. With smaller α values (<1), only a fraction of PL

is compensated in LAA UL transmission. Hence, LAA interference at WiFi is lower with

smaller α values due to low LAA UL transmission power, resulting in higher WiFi DL

capacity. Fig. 20 plots WiFi DL SINR CDFs for different α values, which again shows the

WiFi DL performance improvement with smaller α values due to lower LAA interference

at WiFi.

Fig. 22 plots LAA UL/DL SINR CDFs with different α values. From that, it can be

observed that LAA UL SINR with α = 0.5 is around 35 dB lower when compared that

with α = 1. This is because, LAA UL transmit power is lower with α = 0.5 compared to

α= 1 (according to (5)). However, as can be seen from Fig. 22, LAA DL SINR is not much

affected from different α values and as a result, in Fig. 21, LAA DL capacity degradation

is lower.

In this section, we studied WiFi and LAA coexistence performance under three different

scenarios, considering a multi layer cell layout. Simulation results show that performance
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Figure 22: SINR distribution of LTE UL/DL with different α values.

degradation of WiFi is higher compared to LAA when they operate in the same frequency

band. Nevertheless, by using different LTE TDD configurations (with more UL transmit-

ting subframes), or LTE UL fractional power control mechanisms, it is possible to improve

the WiFi performance, but with a slight degradation in LAA performance.

In the next section, a dynamic duty cycle selection mechanism for LTE transmission

based on Q-Learning is presented to facilitate the simultaneous operation of WiFi and LTE

in the unlicensed band.
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CHAPTER IV

Reinforcement Learning for WiFi-LTE Coexistence

In this section, we introduce a reinforcement learning based dynamic duty cycle selection

technique for LTE to facilitate WiFi-LAA simultaneous operation in the unlicensed spec-

trum. In particular, we use Q-Learning to dynamically configure transmission gaps in LAA

periodically, based on its learnings from the environment. First, using a 3GPP-compliant

simulation setting, we evaluate the system performance under different duty cycles of the

transmission gaps. Then, the performance of Q-Learning based dynamic duty cycle selec-

tion technique is evaluated.

To achieve better coexistence performance evaluation with the proposed mechanism,

we have explicitly taken in to consideration WiFi beacon transmission and in the next

section a summary of the implemented beacon transmission model is provided.

4.1 WiFi Beacon Transmission

Beacon transmissions in WiFi networks are utilized by the WiFi STAs to detect WiFi APs.

Reception of beacon frame is important since it contains information such as beacon in-

terval, supported rates by the WiFi AP, and time stamp to synchronize with WiFi AP for

transmission/reception of data to/from WiFi AP by a WiFi STA

Basic service set (BSS) is the basic building block of an 802.11n wireless local area

network (WLAN) [1]. A BSS is formed when an association is created by STAs which are

located within a certain coverage area. There are two types of BSS: 1) independent BSS

(IBSS), and 2) infrastructure BSS (see Fig. 23). In IBSS, STAs communicate directly with
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one another in an ad-hoc network. However, in infrastructure BSS, STAs associate with a

central STA referred to as AP (WiFi AP is also an STA) which is dedicated to manage the

BSS. The AP can be connected to a distribution system (DS) as shown in Fig. 23, through

which AP is receiving data.

STA 1 

STA  2 
STA  3 

STA  4 
STA  6 

STA  5 

STA  7 

STA  8 
STA  9 

Server 
(WiFi AP) 

(WiFi AP) 

IBSS 

BSS-1 

(ad-hoc) 

BSS-2 

BSS-3 

Infrastructure BSS 

ESS 

DS 

Figure 23: Structure of Basic Service Set (BSS). Two BSS types: 1) Infrastructure BSS

2) Independent BSS (IBSS). There can be several Infrastructure BSSs connected together

via a Distribution System (DS). The BSSs interconnected by a DS is known as Extended

Service Set (ESS).

The WiFi AP in an infrastructure BSS, periodically broadcasts beacon frames. The

time period for beacon transmission is known as target beacon transmission time (TBTT).

Beacon transmissions are utilized by the WiFi STAs to detect WiFi APs. There are two

ways to associate with an infrastructure BSS : 1) passive scanning, and 2) active scanning.
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In passive scanning, STA scans the channel and try to detect a beacon frame. If required,

STA may switch to other available channels and continue on scanning. Once STA discovers

an AP through its beacon frame, it may request for additional information, if required, using

a probe request/response frame exchange. Beacon frame usually includes information such

as the country code, maximum allowable transmit power, and the channel to be used for

the regulatory domain, among other information [1]. On the other hand, in active scanning,

STA transmits probe request frames on each of the channels it is seeking a BSS. For this

probe request, an AP that receives the request will send a probe response frame, if some

conditions are satisfied.

As shown in Fig. 24, in an infrastructure BSS with passive scanning, sometimes it is

not possible to transmit beacon exactly at the TBTT by WiFi AP. This is because, WiFi

AP has to wait till the completion of all the ongoing WiFi transmissions of STAs associ-

ated with that AP, before transmitting the beacon frame. STAs refrain from starting new

WiFi transmissions when TBTT time is approaching. Before transmitting a beacon frame,

WiFi AP waits for a time duration specified by the point co-ordination function inter-frame

space (PIFS) to ensure medium is free. Successful reception of beacon frame is important

because, without that it is not possible for an STA to transmit/receive data. In this thesis,

we consider infrastructure BSS with passive scanning for WiFi transmission as explained

here.

4.1.1 Beacon Frame

Beacon is a management medium access control (MAC) frame. Fig. 25 shows the beacon

physical protocol data unit (PPDU) considered in the thesis. In that, beacon payload rep-

resents the MAC frame. Beacon frame is always transmitted using BPSK modulation with

code rate of 1/2.
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Figure 24: Beacon transmission

Figure 25: Beacon PPDU.

Modeling of Beacon Transmission

As PHY layer abstraction is used to calculate the capacity in WiFi and LTE transmissions,

we implement following method to identify successful reception of a beacon PPDU (frame)

at an STA.

First, to determine whether an orthogonal frequency division multiplexing (OFDM)

symbol carrying a portion of the beacon PPDU was received at an STA, observed SINR of

that OFDM symbol (SINROFDM
B ) is compared against a threshold (SINRTh) as follows;

SINRBeacon
B ≥ SINRTh (8)

If above (8) is satisfied, it is assumed that the information in that OFDM symbol was
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properly received by the STA. The same detection mechanism is used by the STA for all

the OFDM symbols belongs to a particular beacon PPDU. At the end of the beacon PPDU

transmission, WiFi STA calculates erroneously received beacon PPDU bits by summing up

bits in all the unsuccessfully received beacon OFDM symbols. Then, the ratio (ρ) between

erroneously received bits to all the transmitted beacon bits (NB) of the beacon PPDU is

calculated as

ρ =
Nerr×NOFDM

B

NB
, (9)

where Nerr and NOFDM
B are the number of erroneously received beacon OFDM symbols and

number of bits in a beacon OFDM symbol, respectively. The ratio in (9) is then compared

with a predefined threshold for acceptable bit error ratio of a beacon PPDU and determines

whether the beacon PPDU is successfully received at the WiFi STA.

4.2 Duty Cycle Implementation for LAA

To implement duty cycle based LAA transmission, we consider a TDD configuration as

shown in Fig. 26. The rationale behind selecting this type of a TDD configuration is to keep

the UL to DL sub frame ratio constant irrespective of the selected duty cycle. In particular,

a sequence of four subframes are assumed always to consist of two DL subframes, one UL

subframe and one guard subframe.

Four different duty cycles are considered with a transmission gap duty cycle period of

20 ms. As shown in Fig. 26, LTE transmits for x percentage of time from the allocated

duty cycle period. For an example, if we consider 60% duty cycle, LTE will transmit for

12 ms out of 20 ms duty cycle period. When moving between adjacent duty cycles (i.e.,

from 20% to 40%), LTE transmission duration is increased/decreased with a granularity

of 4 ms. As the subframe pattern gets repeated for every 4 ms, changing between duty

cycles will add/remove block(s) of considered subframe pattern while keeping DL to UL
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Figure 26: Proposed TDD configurations for LTE

subframe ratio constant.

4.3 Q-Learning Based Dynamic Duty Cycle Selection for LAA

In this section, we present Q-Learning based dynamic duty cycle selection algorithm for

LAA transmission. Dynamic duty cycle selection is important since the network traffic is

bursty in realistic systems. Hence, the proposed approach can help in enhancing LTE oper-

ation in the unlicensed spectrum while providing more opportunities for WiFi transmission.

As proposed in [54], we consider a Q-Learning algorithm with ε-greedy policy. In that, a

pre-defined target capacity value (Ctar) is set for LAA DL, and LAA BSs autonomously

aim to operate at a capacity close to Ctar by dynamically adjusting their duty cycles.

When formulating the proposed Q-Learning algorithm, we consider set of LAA BSs

(B), as the players/agents of the multi-agent system. Each player i ∈ B has set of actions

Ai = {ai,1,ai,2, ..,ai,|Ai|} and states Si = {si,1,si,2, ..,si,|Si|} where ai, j and si,k represents

a possible action and a state of player i, respectively. In Q-Learning, each player i ∈ B

keeps a Q-table with Q-values Qi(si, j,ai,k) for each state si, j ∈ Si,1 ≤ j ≤ |Si| and action

ai,k ∈ A ,1≤ k≤ |Ai| pair (see Fig. 27). This Q-value provides an estimate for future costs,
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Figure 27: Q-Table maintained by each LAA BS.

if the player i selects the action ai,k when he is in the state si, j.

A player i in a particular state si, j, selects and deploys an action ai,k. Then, based on

the feedback from the environment, the player learns about the outcome of the deployed

action ai,k in state si, j. This feedback is given as a cost value ci, i ∈ B , which determines

the absolute difference between the achieved LAA DL capacity CLAA,i, i ∈ B , during the

previous duty cycle period and the target capacity Ctar. Using CLAA,i new state of player i,

si,l ∈ Si,1≤ l≤ |Si| is also identified. Then, using the identified next state si,l and calculated
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cost value ci, Q-value of the current state (si, j) and action (ai,k) pair is updated as follows:

Qi(si, j,ai,k)← (1−α)Qi(si, j,ai,k)

+α
[

ci + γminai,mQi(si,l,ai,m)
]

,

(10)

where, α, γ are the learning rate and discount factor respectively. As can be seen from (10),

the new Q-value of the current state/action pair depends on the current Q-value of that

state/action pair (Qi(si, j,ai,k)), calculated cost (ci), and minimum Q-value of the identified

next state, minai,mQi(si,l,ai,m). In this way, learning is achieved in the proposed algorithm.

The learning rate α (0 ≤ α ≤ 1) determines how quickly the learning can occur. If α

is too small, it will take long time to complete the learning process, while if it is too high,

algorithm might not converge. The discount factor γ (0 ≤ γ ≤ 1) controls the value placed

on the future costs. If γ is too small, learning will not depend on future costs much and

immediate costs are optimized. On the other hand, if it is too high, learning will count on

future costs heavily. Through a careful selection of these two parameters, it is possible to

effectively control the learning process of the proposed Q-Learning approach.

Once the Q-value of the current state (si, j) and action (ai,k) pair is updated, an action

ai,m ∈ Ai,1 ≤ m ≤ |Ai| is selected for the next state si,l . A random number r ∈ U(0,1)

is generated first and compared against the ε-greedy parameter which is usually a very

small value (0.01 ≤ ε ≤ 0.05). If r is smaller than the ε-greedy parameter, an action

will be selected randomly. Otherwise, the action with the minimum Q-value, (ai,m =

argminai,m
Qi(si,l,ai,m)) in the identified next state (si,l), is selected. The ε-greedy parameter

allows selecting an action in an exploratory way, and ensures that all state/action pairs will

be explored as the number of trials goes to infinity. The proposed Q-Learning algorithm is

summarized in Algorithm 1.
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Algorithm 1 Q-Learning for duty cycle selection of LAA BS i ∈ B

1: Initialize:

2: for each si, j ∈ Si,1≤ j ≤ |Si|, ai,k ∈ A ,1≤ k ≤ |Ai| do

3: Initialize the Q-value representation mechanism Qi(si, j,ai,k)
4: end for

5: Evaluate the starting state s = si, j ∈ Si,1≤ j ≤ |Si|
6: Learning:

7: loop

8: Generate a random number r ∈U(0,1)
9: if (r < ε) then

10: Select action randomly

11: else

12: Select the action ai,m ∈ Ai characterized by the min(Q-value)

13: end if

14: Execute ai,m

15: Receive an immediate capacity CLAA,i and cost ci

16: Observe the next state si,l ∈ Si,1≤ l ≤ |Si|
17: Update the Q-table entry as follows:

18: Qi(si, j,ai,k)← (1−α)Qi(si, j,ai,k)
+α[ci + γminai,mQi(si,l,ai,m)

19: s = si,l

20: end loop

Without any loss of generality, we consider that the action, state and cost definitions in

the proposed algorithm are defined as follows.

• Action: Ai = {20%,40%,60%,80%}.

• State:

si, j =















































































0, CLAA,i < 1 Mbps

1, 1 Mbps≤CLAA,i < 10 Mbps

2, 10 Mbps≤CLAA,i < 20 Mbps

3, 20 Mbps≤CLAA,i < 30 Mbps

4, 30 Mbps≤CLAA,i < 40 Mbps

5, CLAA,i ≥ 40 Mbps

. (11)
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• Cost:

ci = |Ctar−CLAA,i|, (12)

where CLAA,i is given by,

CLAA,i =
NDC

Bits,i

T DC
Tx,i +T DC

Wait,i

. (13)

In (13), for LAA BS i∈B , NDC
Bits,i represents number of bits successfully transmitted during

the previous duty cycle period. T DC
Tx,i and T DC

Wait,i are the total transmitting time and the

waiting time due to silent subframe allocation1 respectively, during the previous duty cycle

period.

4.4 Simulation Results Discussion - Q-Learning Based WiFi-LTE Coexistence

In simulations, we consider a two layer cell layout as shown in Fig. 11. Each layer consists

of M = 7 cells. There are N = 10 WiFi STAs (LAA UEs) associated with each WiFi AP

(LAA BS). WiFi STAs (LAA UEs) move within the cell with a speed of 3 km/h. WiFi

and LAA traffic arrival rates, λWiFi = λLAA = 2.5, are considered in all the simulations.

LTE and WiFi 802.11n MAC and PHY layers are implemented as described in section III.

Round robin user scheduling is considered in LAA DL transmission and only one user is

scheduled during each transmission time interval (TTI). The LAA UEs report the observed

DL SINR value during a DL transmission to the LAA BS, which is then used by the LAA

BS to determine the number of RBs to be allocated for the next DL transmission. Based on

the number of LAA UE requests for UL transmission during one subframe, bandwidth is

equally divided between them. All the configuration parameters used for LAA in simula-

tions are given in Table 3.

1LAA BS i ∈ B has data to schedule in DL. However, due to silent subframe allocation, it has to wait.
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Table 4: WiFi beacon model parameters.

Parameter Value

Beacon Interval 100 ms

Beacon OFDM symbol detection threshold 10 dB

Beacon error ratio threshold 15

For WiFi, CSMA/CA is implemented with enhanced distributed channel access (EDCA)

and clear channel assessment (CCA) [51]. WiFi beacon transmission is implemented, as

discussed in Section 4.1, for realistic performance evaluations. All the STAs (including

WiFi AP) having data in their respective queues can compete for the channel access when

no transmission is going on in the cell. The WiFi STA (or the WiFi AP) sensing the chan-

nel to be idle and having the shortest back-off time will gain the access to the channel if

it has received the most recent beacon successfully. If the beacon has not been received

successfully, the WiFi STA can not initiate any transmission or reception. All the configu-

ration parameters used for WiFi in simulations are summarized in Table 2 and Table 4. In

all performance evaluations, we focus on the performance of center cell in both WiFi and

LAA cell layouts.

4.4.1 Performance Analysis with WiFi Beacon Transmission

We evaluate WiFi and LAA performance with WiFi beacon transmission considering TDD

configuration 2. Fig. 28 shows WiFi and LAA DL average capacity, with/without beacon

transmission. There is an improvement in LAA DL capacity and degradation in WiFi ca-

pacity when beacon transmission exists. The reason for this is that, when a STA misses

a beacon, it cannot transmit or receive until a beacon is received successfully. Therefore,

when WiFi beacon transmission exists, number of simultaneous WiFi data transmissions

reduces. As a result, WiFi interference on LAA DL reduces and LAA DL capacity im-

proves. Moreover, missing a beacon at a WiFi STA further delays WiFi transmission. This

will result in increasing WiFi waiting time, and hence reduces WiFi capacity.
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Figure 28: WiFi and LAA DL capacity variation with/without beacon transmission.
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Fig. 29 shows SINR distributions at WiFi and LAA DL with/without WiFi beacon trans-

mission. The LAA DL SINR improves with WiFi beacon transmission, since the WiFi in-

terference on LAA reduces due to the reduction of the number of simultaneous WiFi trans-

missions. WiFi SINR distribution with/without WiFi beacon transmission is also shown

in Fig. 29, where an improvement in WiFi SINR can be seen with beacon transmission.

This is due to the lower WiFi interference with the reduced number of simultaneous WiFi

transmissions. Note here that the SINR is captured during WiFi transmission and this does

not help much for improving WiFi capacity, as waiting time for WiFi increases with missed

beacons. That is why we see a capacity reduction in Fig. 28 for WiFi, when WiFi beacon

transmission exists.

4.4.2 Performance Analysis with Different LAA Duty Cycles

In this section, we evaluate WiFi and LAA performance under four different duty cycles

considering TDD configuration presented in Section 4.2. Fig. 30 shows WiFi and LAA

capacity variation under different LAA duty cycles. While the WiFi capacity decreases with

larger LAA duty cycles, the LAA capacity increases. This is because, with larger LAA duty

cycles, LAA interference on WiFi increases and as a result WiFi capacity decreases. On

the other hand, LAA capacity increases with higher duty cycles due to more transmission

opportunities. Note here that the rate of WiFi capacity degradation reduces with LAA duty

cycle. The reason for this observation is, with higher duty cycles, number of simultaneous

WiFi transmissions reduces. Therefore, WiFi interference is reduced, decreasing the WiFi

capacity degradation rate.

Fig. 31 captures WiFi DL SINR distributions with four different duty cycles. The results

show that WiFi SINR degrades with higher LAA duty cycles. This is because, interference

coming from LAA increases with higher LAA duty cycles. A step like behavior can be

observed in the WiFi DL SINR distribution. This is due to the difference in LTE DL and

UL interference on WiFi as explained in section 3.9.1.
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Figure 30: Average LAA DL and WiFi capacity variations with different duty cycles for

duty cycle period of 20 ms.

From Fig. 32, we can observe LAA DL SINR distribution with four different duty cy-

cles. In that, LAA SINR improves with larger duty cycle. This is because of the lower WiFi

interference experienced due to the reduced number of simultaneous WiFi transmissions.

4.4.3 Performance Analysis with Q-Learning Based Dynamic Duty Cycle Selection

for LAA

In this section, we evaluate the performance of the proposed Q-Learning based dynamic

duty cycle selection technique. For simulations, we consider α = 0.5, γ = 0.9, ε = 0.03,

and Ctar = 30 Mbps with the TDD configuration introduced in Section 4.2.
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Fig. 33 shows the aggregate capacity variation (WiFi and LAA DL) with different duty

cycles and Q-Learning based dynamic duty cycle selection technique. The Q-Learning

based dynamic duty cycle selection technique provides highest total capacity when com-

pared with fixed duty cycle and full LAA transmission scenarios. The reason for this capac-

ity gain is that, as the LAA BSs dynamically adjust their operating duty cycles based on the

bursty traffic arrival given the capacity constraint Ctar, WiFi gets fair amount of transmis-

sion opportunities. As the medium sensing procedure in WiFi is one of the main barriers

which prevents WiFi from achieving higher capacities, the proposed technique provides a

solution to overcome that problem. According to Fig. 33, the next highest total capacity

is achieved when operating without any transmission gaps. However, as can be seen from

Fig. 30, achievable WiFi capacity is the lowest (21.45 Mbps) in this case, whereas with

Q-Learning based approach, WiFi capacity of 39.7 Mbps could be achieved while keeping

LAA capacity around Ctar = 30 Mbps.
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4.5

5

5.5

6

6.5

7
x 10

7

Duty cycle of LAA transmission

C
ap

ac
ity

 (
bi

t/s
)

λ
WiFi

 : 2.5
λ

LAA
 : 2.5

Dynamic0.4 0.6 0.80.2 1

Aggregate Capacity (WiFi + LAA DL)

Figure 33: Aggregate capacity (WiFi + LAA DL) variation

51



CHAPTER V

Concluding Remarks

In this thesis we studied WiFi and LAA coexistence performance under three different sce-

narios, considering a multi layer cell layout. Simulation results show that performance

degradation of WiFi is higher compared to LAA when they operate in the same frequency

band. Nevertheless, by using different LTE TDD configurations (with more UL transmit-

ting subframes), or LTE UL fractional power control mechanisms, it is possible to improve

the WiFi performance, but with a slight degradation in LAA performance.

Then, to facilitate this coexistence, we have proposed a Q-Learning based dynamic duty

cycle selection approach in which periodic transmission gaps are configured by LAA, so

as to effectively coexist with WiFi systems in the unlicensed spectrum. First, we evaluate

WiFi and LAA performance with a fixed value of the transmission gap. Then, the over-

all system performance with the proposed Q-Learning based dynamic duty cycle selection

approach is evaluated. Simulation results show that the proposed dynamic duty cycle se-

lection approach for LAA can effectively enhance the overall capacity performance.
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