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Fig. 12. Convergence for different update FFT lengths L. 

output error is defined by 

This error is independent on the way of realizing the filter part of the 
algorithm. The convergence properties of NU-PBFDAF algorithm 
will be equal to the properties of a DPBFDAF algorithm with an 
equal partition factor and block length in the update part. The two 
most important parameters for the behavior of the error are a and 
L (the update part FFT length). In Fig. 12, the dependency of the 
error on L is depicted. For increasing L the convergence behavior 
becomes better. 

IV. CONCLUSIONS 

The introduced new method for fast real-time convolution in 
the frequency domain by using nonuniform partitioning reduces the 
required number of real multiplications compared with a traditional 
approach using uniform partitioning. 

For the case of adaptive filtering, the computational complexity 
can be reduced enormously, compared the traditional approaches in 
DPBFDAF. Complexity becomes almost independent on the max- 
imum allowable delay. As a rule of thumb, the number of real 

multiplications per sample equals approximately 45 log, ( N )  - 160, 
with N the number of filter coefficients. 
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Wigner-Based Formulation of the Chirplet Transform 

Richard G. Baraniuk and Douglas L. Jones 

Abstract- Using the Wigner distribution, we derive and analyze a 
matrix formulation for the chirplet transform, a signal analysis tool 
that generalizes the wavelet and short-time Fourier transforms. The 
formulation expresses the translations, scalings, and shears of the chirplet 
transform in terms of affine matrix transformations on the time-frequency 
plane. Our approach leads naturally to several new signal transforms, 
which we derive, analyze, and extend. 

I. INTRODUCTION 
The short-time Fourier transform (STFT) and the continuous 

wavelet transform (WT) are time-frequency signal representations 
that indicate the time-varying frequency content of one-dimensional 
(1-D) signals [l], [2]. Both transforms have proven useful in a wide 
range of applications, including the analysis of radar, sonar, and 
geophysical signals, and the analysis and coding of speech signals 
and images. 

Manuscript received March 1, 1996; revised June 18, 1996. This work 
was supported by the National Science Foundation under Grants MIP 90- 
12747 and MIP 94-57438, by the Office of Naval Research under Grant 
N00014-95-1-0849, and by the Joint Services Electronics Program under 
Grant NOOO14-90-5-1270. The associate editor coordinating the review of this 
manuscript and approving it for publication was Dr. Jose Moura. 

R. G. Baraniuk is with the Department of Electrical and Computer Engineer- 
ing, Rice University, Houston, TX 77251-1892 USA (e-mail. richb@rice edu) 

D. L. Jones is with the Coordinated Science Laboratory, University of 
Illinois, Urbana, IL 61801 USA (e-maild-jones@csl.uiuc.edu). 

Publisher Item Identifier S 1053-587X(96)09061-7. 

1053-587X/96$05.00 0 1996 IEEE 



3130 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL 44, NO. 12, DECEMBER 1996 

The STFT 11. WIGNER-BASED FORMULATION OF THE CHIRPLET TRANSFORM 

(C""'s)(t, f )  = J' s ( u ) g * ( u  - t)e-32"fu du 
(l) A. Affine Time-Frequency Transformations 

projects the signal s onto the set of functions { g ( u  - 
t)e32"fu}(,, SlER2 formed by shifting and modulating a lowpass 
window function g. Shifts and modulations translate the essential 
support of the window in time-frequency (see Fig. l(a)). The WT 

projects s onto the set of functions {e - " /2g[e -" (u  - t ) ] } ( t , a ) E R ~  
formed by shifting and scaling a bandpass wavelet function g .  Shifts 
and scale changes translate and scale the support of the wavelet in 
time-frequency (see Fig. l(b)). 

The STFT and WT perform best for signals whose character- 
istics match the time-frequency transformation employed in their 
analysis. The time-frequency translations of the STFT match sig- 
nals having a constant-bandwidth behavior (frequency-shift keying 
signals, for example), whereas the time translations and scalings 
of the WT match signals having a proportional-bandwidth behavior 
(Doppler-shifted transients and fractal signals, for example). While 
the signals encountered in many applications are often approximately 
constant- or proportional-bandwidth, for many signals neither trans- 
form is suitable. Examples include dispersive or chirping signals 
that are matched only by chirping functions that slant in time- 
frequency. 

The chirplet transform was developed to fill this need for a class of 
signal representations more general than the STFT and WT [3]-[SI. 
This transform projects the signal onto analysis functions that shear 
and rotate in time-frequency, in addition to translate and scale (see 
Fig. l(c)). Besides providing a unifying framework for studying the 
STFT and WT, the chirplet transform provides a systematic method 
for designing new representations with properties useful for certain 
types of signals. 

A Brief History of Chirplets: The chirplet transform has appeared 
under a number of different guises, first in optics (its origins can 
be traced back as far as Fresnel in the 1820's [9]) and quantum 
mechanics, and then in signal analysis. An essentially identical trans- 
form has been independently introduced and developed by several 
authors, each with a different emphasis. In quantum mechanics, 
Grossman and Paul studied the affine coherent states [3].  In signal 
theory, Berthon emphasized radar applications [4], Mann and Haykin 
considered "physical considerations" and coined the term chirplet 
[5], [6], and Baraniuk and Jones introduced a Wigner distribution 
interpretation [7], [8]. Closely related work has included the study of 
shear transformations in the ambiguity domain by Papoulis [lo] and 
in the time-frequency domain by Janssen [ 111 and Jones and Parks 
[12], Schempp's study of the same using harmonic analysis [13], 
and TorrCsani's time-frequency-scale "wavelet packet" transform 

In this correspondence, we present a framework for the chirplet 
transform that provides a reinterpretation of [3]-[8] and yields new 
insight into its properties. Our formulation expresses the translations, 
scalings, and shears of the chirplet transform in terms of affine matrix 
transformations on the time-frequency plane. In Section 11, we use 
the Wigner distribution to derive the transform. The chirplet concept 
leads to several new signal transforms, which we derive, analyze, 
and extend in Section 111. We close in Section IV with a discussion 
and conclusions. 

~ 4 1 .  

The basic transformations underlying both STFT and WT analyses 
can be neatly summarized in terms of matrix transformations on the 
time-frequency plane (recall Fig. 1). In the STFT (1), setting the 
analysis parameters to ( t ,  f )  translates the feature of the window g 
at time r' and frequency U' to the new location 

[I] = [; E] [I;] + [.:I. (3 )  

In the WT (2), setting the analysis parameters to ( t ,  a )  translates and 
scales the feature of the wavelet g at time T' and frequency U' to 

(4) 

The chirplet transform unifies and extends these transforms through 
the more general affine transformation 

(5) 

with A a 2 x 2 unimodular matrix and b a 2 x 1 vector. This transfor- 
mation allows shears and rotations of the analyzing windowlwavelet 
on the time-frequency plane [lo]-[13]. 

B. Wigner Distribution 
Before we can relate the analysis transformation (5) to operations 

on an analysis function, we must make precise the correspondence 
between a function and its representation on the time-frequency plane. 
The Wigner distribution (WD) is natural for this purpose, since it is 
an isometric and invertible operator from the signal space L2 (IR) into 
the time-frequency plane L2 (EL2). The WD of a signal s is defined as 

The isometry of the WD follows from Moyal's formula [I], which 
equates the squared magnitude of the inner product of two signals 
with the inner product of their respective WDs:' 

C. Chirplet Transfomz 
Both the STFT and WT fit in the general mold 

(CS)(Z)  = ( s ,  M z g )  

where we project the signal to be analyzed s E L2(IR) onto a set of 
functions {M,g},~x obtained by operating on a basic analyzing 
function or generalized wavelet g E L2(IR). The analysis map 
M; L2(IR) i L2(IR) is a parameterized unitary operator with z 

from some index set X .  From the isometry of the WD, we can write 

I(CS)(2)l2 = I(s, M,g)I2 = (Ws, M , W g )  (7) 

with n/r, denoting the action of M, on the time-frequency plane 
L2 (EL2). This coordinate transformation is defined by 

m, = WMzW-l (8) 

and maps the subset W of L2(IR2) containing valid WD's into W .  
Because of the close relationship between R/I, and M,, we will also 
refer to M, as the analysis map. 

'L2( IR)  and L2(R2) have inner products (9 ,  h )  = s g(u)h*(u) du, for 
g , h  E L2(IR.),and(c, d) = ss c(u ,  v)d*(u, v)dudv,forc,d E L 2 ( R 2 )  
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time (z) 

(b) 

Fig. 1. Time-frequency transformations underlying the short-time Fourier transform (STFT), the continuous wavelet transform (WT), and the chirplet 
transform. Each box corresponds to an idealized time-frequency representation of one of the functions onto which the signal is projected. (a) The STFT 
translates its window function in time-frequency. (b) The WT translates and scales its wavelet function in time-frequency. (c) The chirplet transform can 
translate, scale, shear, and rotate its generalized wavelet function in time-frequency to match chirping signals. 

[I:] = A-1 ([I] - 6) 

and IA( = 1. Using the five free parameters of szt (three from A 
and two from b) ,  we can translate, scale, and shear W g  in the time- 
frequency plane (see Fig. 2). In addition, we can rotate Wg using a 
coordinated scale and shear. 

Remark: The WD formulation of the chirplet transform (9) pro- 
vides a simple rationale for the restriction IAl = 1. The determinant 
(A( controls the time-bandwidth product of the chirplet signal anal- 
ysis. In a perfect world, this product could be set to any value, so 
long as the time-frequency uncertainty principle [ 11 was not violated. 
However, since the scaled WD (Wg)(w, CV) is not a valid WD 
of any function save for the special case T = c-l [ l l ] ,  the map 
W-lm; W-and hence the chirplet transform itself-is not defined 
for [AI # 1. 

D. Elementary Chirplet Transformations 
To exhibit the chirplet transform more explicitly in terms of signals 

and analyzing wavelets, we can decompose the analysis map (9) into 
a composition of five distinct one-parameter transformations on the 
time-frequency plane [9]-[1212 

A-1( [:I -0) = [-; 9 [; -:I [e;. .'"I 
([I] - [a] - [;I). (lo) 

2We assume that IA( = 1 and that the diagonal elements of A-l are 
nonzero. Otherwise, if a diagonal element of A-' is zero, then a permutation 
matrix of the form [ y  i] must be added to the decomposition (10). This 
permutation has the simple effect of interchanging the time and frequency 
coordinates T and U. 

I...... 
time (T) 

Fig. 2. Wigner distribution (ED) Wg of a Gaussian analyzing 
wavelet g (bottom left) and MitWg transformed according to (9) 
with A = [-; E ,, Eo] and b = [:\I (upper nght). The corresponding 
analysis parameters are z = (10, 1.5,  -0.7, 0, -1.25); we compute the 
chirplet transform l(Ccts)(z)12 at z as the inner product of the WD of 
the signal with w2Wg. The analysis map Mkt translates, scales, and 
shears Wg. 

The component transformations correspond to (from left to right): 
shearing in the frequency direction, shearing in the time direction, 
axis scaling, translation in time, and translation in frequency (recall 
Fig. l(c)). Axis scaling and time and frequency translation are 
familiar from the STFT and WT; the two shear transformations are 
less well known. 

The five parameters controlling these primitive coordinate trans- 
formations define an analysis coordinate z = (t ,  f, a ,  p ,  q )  in a 
five-dimensional (5-D) analysis space X = R5. The transformation 
illustrated in Fig. 2, for example, corresponds to the analysis point 

By applying the inverse of (8) to each primitive component 
operator in (lo), we obtain a corresponding set of unitary component 
operators of MZt [3], [9]-[12], as follows: 

z = (10, 1.5, -0.7, 0, -1.25). 

1) Time Translation: 

2) Frequency Translation: 
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3)  Axis Scaling: 

(A,Wg)(T, U )  = ( W g ) ( e - " ~ .  eav)  

( A a g ) ( u )  = e-"'2g(eC"u). 

4) Frequency Shear: 

Frequency shear skews the wavelet in the frequency direction in the 
time-frequency plane through modulation with a linear chirp function. 
Time shear is obtained through convolution "*" with a linear chirp. 
(Note that lim,,o Ppg-=2.) - - 

Since m2 = F f T t A , P p Q ,  implies that M$ = 
F f T t A , P p Q , ,  we can write the chirplet transform of signal 
s using generalized wavelet g as 

By analogy with the spectrogram (the squared magnitude of the 
STFT) and the scalogram (the squared magnitude of the WT) [2], 
we could refer to ICcts/2 as the chirpogram. 

111. CHIRPLET SUBSET TRANSFORMS 
The chirplet concept is more than just a signal transform; within 

the 5-D chirplet analysis space lie an infinite number of new, lower 
dimensional signal transforms. For instance, the STFT and WT 
lie on the 2-D planes parameterized by z = ( t ,  f ,  0, 0, 0) and 
z = ( t ,  0, a ,  0, O), respectively. 

In this section, we go beyond the STFT and WT and construct 
several new signal transforms, simply by restncting the computation 
and display of CCt s to different analysis subsets. A subset of analysis 
need not be planar; it could even be curved. Fig. 3 illustrates the 
action of the chirplet analysis map confined to the tilted analysis 
plane z = ( t ,  f ,  0, t / 2 ,  0). 

A. Dispersion Transform 
Dispersion artifacts occur in signals acquired from media in which 

the wave propagation velocity vanes with the frequency of the 
signal. The components of a dispersed signal are tilted in time- 
frequency-see [15] and [I61 for good examples. Fig. 4(a) and (b) 
illustrates a fundamental limitation of both the STFT and WT for 
dispersed signals: Since the STFT and WT analysis maps do not 
tilt the analysis wavelet in time-frequency, the STFT and WT smear 
dispersed signal components. 

time (7) 

Fig. 3. Dispersion transform. Idealized time-frequency representations of the 
analysis functions Mztg for several points lying on the analysis surface 

= ( G  f, 0, t / 2 ,  0 ) .  

The action of the dispersion transform analysis map was shown in 
Fig. 3 for p ( t ,  f )  = t / 2 .  Since p ( t ,  f )  contxols the degree of tilt at 
the point (t ,  f )  in time-frequency, we call it the tiltfunction. 

The dispersion transform is a form of "matched signal processing." 
If the dispersion characteristics of the medium are known, then a tilt 
function can be specified to compensate for dispersion and yield a 
highly concentrated time-frequency representation of the signal. For 
example, the dispersion transform of the example dispersed signal on 
the surface z = ( t ,  f ,  0, t / 2 ,  0) is shown in Fig. 4(c). Generally, 
in situations where the dispersion characteristics of the medium are 
known or can be estimated, the dispersion transform will yield a more 
concentrated time-frequency representation than either the STFT or 
the WT. 

Conversely, adaptation of the tilt function could be useful in 
situations where the dispersion characteristics are not known a 
priori. Tuning the tilt function to yield the "most concentrated" 
representation (several measures of time-frequency concentration are 
discussed in [17]) results in not only a concentrated time-frequency 
representation of the signal, but also information on the dispersion 
characteristics of the medium. 

Dispersion transforms based on time-scale-shear surfaces z = 
[t, 0, a ,  p ( t ,  a ) ,  01 can be formulated similarly. 

B. Nonuniform Filterbanks 
The 2-D chirplet analysis surface x = [t, f ,  a ( f ) .  0, 01 yields 

a "wavelet-packet-like'' time-frequency representation in which the 
analysis frequency versus analysis bandwidth relationship is uncon- 
strained [14]. This is in contrast to the fixed constant-bandwidth 
analysis of the STFT and the fixed proportional-bandwidth analysis 
of the WT. 

A nonuniform filterbank allows for closer matching of the trans- 
form to signals and systems whose behavior is neither exactly 
constant nor proportional bandwidth. As an example, consider the 
human auditory system, in which the analysis is approximately 
constant bandwidth below about 500 Hz and proportional bandwidth 
above 500 Hz. Given a wavelet function centered at zero frequency, 
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Transform 

STFT 

time 

Plane Signal space Admissibility Condition 

( t ,  f )  L2 g E L2 

Fig. 4. Comparison of three time-frequency representations of a simulated dispersed signal. (a) STFT. (b) WT. (c) Dispersion transform. 

WT 

Scale and shear 

Translation 

and shear 

Double shear 

a chirplet analysis surface matching this characteristic is given by 

(t? 4 L2 G E  L ~ ~ K ~  

(f 9 a )  L2 g E L 2 n K 1  

(w) L2 g € L 2 n K 2  

(t, q )  L2 g E  L2nK1 

(p ,q )  K1 n L2 G E  L 2 n K l  

L2 G E  L2nKz (alp) 

(f,p) L2 G € L 2 n K i  

f 5 500 Hz 

C. Isometry of Coordinate Analysis Planes 
Isometry is a potentially desirable property for a signal transform. 

Isometry facilitates detection and estimation procedures, in which 
the inner product of two transforms should equal the inner product 
of the two signals. Isometry also leads to simple inverse formulas for 
obtaining the signal corresponding to a given transform. 

Generally, the requirement of isometry places constraints on both 
the transform and the analyzing function. The STFT computed with 
window function g is isometric with respect to the measure d t  d f  [18] 

SJ' (Cst f ts l ) ( t ,  f ) (CSt f ts2)*( t ,  f) d t d f  = Ilsll$(s1, sz) 

provided g E L2(lR). Similarly, the WT computed with wavelet g is 
isometric with respect to the measure d t  d a  

JJ'(CWtsl)(t, a ) ( c w t s z ) * ( t ,  a ) d t d a  = llG1l?kl(s~, sz) 

provided the wavelet satisfies the admissibility condition G E 
L2(IR) n l i l  (R) [18].3 On the contrary, the chirplet transform is not 
isometric with respect to its natural (Haar) measure d t  df d a  d p  dq .  
In fact, it is not even square integrable, as in 

JJJ/J I(c="s)(t, f, a ,  P ,  r l )12dtdf  d a d p d q  

= 11.11; Ilgll; /I/ d a d p d q  = 00. 

When properly restricted to an appropriate analysis subset, the 
chirplet transform gains the isometry property. (The 2-D analysis 
planes corresponding to the STFT and WT supply two obvious 
examples.) In Table I, we summarize the isometry properties of the 
transforms generated by the 2-D planes lying along the coordinate 
axes in R5 [SI. These planes are parameterized by all possible 
conjugate combinations of two of the five chirplet parameters. We 
call two chirplet parameters conjugate if the restricted analysis 
map mz maps EX2 (the conjugate parameter space) onto EX2 (the 
time-frequency plane). (In words, M, must reach all points in the 
time-frequency plane.) Not all combinations of the five chirplet 

3Capital letters denote Founer transforms, and Ilgllz = (9, g) d y t e s  
the usual L2(IR) norm. In addition, define the weighted norm IlhllKT = 

lh(u)12 I U I - ~  d u ,  T E IR, and corresponding weighted Hilbert space 
K,(R) = {h:  I l h l ( ~ ~  < m}. Note that &(E%) = L 2 ( R ) .  

TABLE I 
FIVE 2-D COORDINATE PLANE TRANSFORMS INHABITING THE 5-D CHIRPLET 

ANALYSIS SPACE. SUMMARIZED ARE THE ANALYSIS PLANE OF DEFINITION, THE 
SIGNAL SPACE FROM WHICH THE TRANSFORMS ARE ISOMETRIES (THEY ARE ALL 

CONDITIONS ON THE WAVELET g OR ITS FOURIER TRANSFORM G FOR THE 
TRANSFORM TO BE ISOMETRIC. W E  USE THE ABBREVIATIONS L2 FOR L2(R) 

AND I<, FOR IC, (R) AND ASSUME THAT THE NATURAL LEBESQUE 

ISOMETRIES I N T O  SUBSETS OF L2 ( I R ~ ) ) ,  AND THE ADMISSIBILITY 

MEASURE d u  dw Is EMPLOYED IN THE TRANSFORM SPACE L2 (a')). 

parameters are conjugate. For example, time-shift t and time-shear 
p are not conjugate, because both are capable of displacements only 
in the time direction. 

For each coordinate plane, isometry places an admissibility con- 
straint on the generalized wavelet g (see Table I). We demonstrate 
only for the ( a ,  p )  scale-shear transform case; the others are similar. 
Using the WD and Moyal's formula (6), we have 

Il(ccts)(% P )  11: 
= I/ I ( C c t s ) ( a ,  p)I2 d a d p  = I(s, AaP,g)I2 d a d p  II 
= JJ (ws, KaFpwg) d a  d p  

= ////(WS)(T, u)(Wg)(ePa.r - p e a u ,  e " v ) d T d v d a d p  

= //I/ (Ws)(.r, v)(Wg)(u, v)v-' d.r d u  d u  d v  

I [I 1 
= 11.11; J' IG(w)12v-2 d v  = 11.11; IlGllk,. 

(12) 

(Wg)(u,  v ) d u  v - ' d v  

(13) 

= / / ( W S ) ( T ,  v ) d ~ d v  

Therefore, the (a, p )  transform is isometric if G E L2(lR) n Kz(R) 
with unit l i z  norm. To obtain (12), we made the change of variables 
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time (2) 

(a) 

time (2) 

(b) 

Fig 5 
and (c) the (p, q )  double shear transform To obtam the transformatlons underlying the (a, q)  and ( f ,  p )  transforms, rotate (a) and (b) by 90’ 

Time-frequency transformations underlying the new transforms from Table I (a) the (a, p) scale-shear transform, (b) the (t, 4 )  bme-shear transform, 

U = eFaT - peav, v = eau;  to obtain (13), we used the marginal 
property J ( W h ) ( u ,  U )  du = / H ( v ) I 2  of the WD [13. 

Fig. 5 illustrates the action of the analysis map on the time- 
frequency plane for three of the new transforms appearing in Table I. 
The scale-shear, translation-shear, and double-shear transforms each 
involve either modulation or convolution with linear chirp functions. 

D. New Bilinear Distribution Classes 

As an added bonus, our energetic derivation of the chirplet trans- 
form permits a straightforward denvation of quadratic distributions 
extending STFT’s and WT’s. In particular, replacing Wg in (11) 
with an arbitrary 2-D kernel function @ yields a class of bilinear 
chirplet distributions 

(Zs)(z) = (WS, FfifitAaFpg,@) 
with a continuously variable time-frequency-scale-shear smoothing 
tradeoff. This class of transforms is very large, and contains the 
distributions of both Cohen’s class [l] and the affine class [2]. 

Iv. DISCUSSION AND CONCLUSIONS 

In addition to generalizing and providing a unifying framework 
for studying existing linear signal representations like the STFT 
and the WT, the chirplet transform provides a systematic method 
for designing new signal representations with interesting and useful 
properties. The example transforms presented in Section 111 indicate 
that there is something to be gained from stepping out of the strict 
time-frequency or time-scale paradigms. Furthermore, these examples 
merely scratch the surface of possible linear signal representations 
that can be derived using the chirplet transforn-there are as many 
different representations in the chirplet space as there are subsets in 
IR5. 

The chirplet concept also provides a convenient framework for 
formulating adaptive or signal-dependent time-frequency or time- 
scale representations. In this case, the three extra degrees of freedom 
can be tuned to optimize some measure of performance in the 
representation. For example, both the adaptive-window STFT of 
Jones and Parks [19] and the adaptive bowtie transform of Mann 
and Haykin [5] can be formulated as finding the 2-D surface in the 
5-D chirplet space such that GCts evaluated along that surface is 
maximally concentrated. 

Many connections exist between the affine transformation (3, the 
analysis map of the chirplet transform, and the representation 
theory of the extended metaplectic group [9]. This group contains 
as subgroups both the Weyl-Heisenberg group, which spawns the 

STFT, and the 1-D affine group, which spawns the WT and the (a, p )  
and ( a ,  q )  scale-shear transforms [7], [8], [20]. The utility of group 
theoretic constructs for defining new transforms is limited, however, 
because many interesting transforms (the (t ,  q)  time-shear transform 
represents only one example) correspond to surfaces in the chirplet 
analysis space that lack a group structure. 

The STFT and WT share the attractive property that both can be 
discretized to form orthogonal bases and frames for L2 (R) . While a 
general theory of discrete chirplet transforms has yet to be discovered, 
a successful discretization has been performed along the (a, p) scale 
and time-shear plane in the chirplet space to yield thefan bases [21], 
[22]. Interestingly, this orthonormal basis represents signals without 
using any translations of the mother wavelet function. 

Finally, note that the generalization of the STFT and WT does not 
have to stop at 2-D affine transformations such as (5). In addition to 
shearing and rotating functions in time-frequency, transforms based 
on higher dimensional analysis spaces (using quadratic frequency 
modulations, eJku3, for example) will manipulate their curvature 
[221. 
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proposed a spectral factorization approach to the PQMF design, which 
has an advantage over others in that the design of the prototype filter 
is very easy and efficient since no optimization is involved; rather, it 
is found by simply factorizing a 2Mth band filter. This is relatively 
simple to carry out using Kaiser window, FFT, and Levinson-Durbin 
algorithms [3]. Our experiences show that it is easy to obtain high 
stopband attenuation (z -100 dB) and small aliasing (z -100 dB). 
The total magnitude response is flat with a reasonably small distortion 
level(= -5OdB)intheregion~ 5 w 5 n - - ~ , w h e r e O < a < x / 2 M .  
These specifications are particularly attractive for audio coding. The 
filters do not have linear phase, but the overall transfer function has a 
linear phase. In a recent paper [4], a filter bank design method for less 
flatness distortion and a linear-phase prototype filter was proposed, 
but the prototype filter design relies on optimization and demands 
more complexity. 

The authors are currently using the Koilpillai-Vaidyanathan PQMF 
(KVPQMF) bank for work on subband coding of digital audio 
signals [5], and this has been the motivation for developing a fast 
implementation. 

The structure of the KVPQMF bank is the same as the conventional 
PQMF bank. The difference lies in the derivation of the analysis and 
synthesis filters. From a prototype filter h(n) of length N ,  where 
( N  - 1) = m M  and m is an integer, the kth channel analysis filter 
coefficients h ~ , ( n )  and synthesis filter coefficients gI, (n)  are found 
as (l), which appears at the bottom of the next page, where 

(2) 
O < k < M - l  

glC(n) = hI,(N - 1 - n) O < k < M - l  

and where M is the number of channels, and 01, is an arbitrary angle 
[3]. Aliasing may occur in the reconstructed signal, but with certain 
constraints on the @ I , ,  the significant aliasing terms are cancelled. Not 
losing generality, we adopt the constraints on angles as [3] 

Efficient Implementation of Koilpillai-Vaidyanathan Ok+l = ~ / 2  - % I , ,  0 < k < M - 2. (3) 

The total magnitude response is flat except around 0 and 7r, where Pseudo Quadrature Mirror (’QMF) Banks 

Xiang Wei, Martyn J. Shaw, and Martin R. Varley 

Abstruct- An efficient implementation algorithm for the Koil- 
pillai-Vaidyanathan pseudo quadrature mirror filter (KVPQMF) 
hank, which is useful in audio compression schemes, is presented. 
The implementation employs a polyphase system with discrete cosine 
transforms (DCT’s). Theoretical and practical results show a typical 
saving in computational load of 82% over the direct implementation. 

I. INTRODUCTION 
Subband coding has been widely used for audio compression [l]. 

By means of filter banks, it splits the signal into M frequency 
channels, encodes and decodes each channel, and reconstructs the 
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some peaks and troughs appear, but they can be minimized by 
optimizing the single parameter 80 [31. 

It has been shown that by taking advantage of the cosine-modulated 
structure, the implementation of conventional PQMF banks can be 
made efficient by deriving a polyphase structure employing discrete 
cosine transforms (DCT’s) 161, 171. In 131, comparisons were made 
between KVPQMF banks and conventional PQMF banks, and it was 
stated that the KVPQMF banks do not possess this property. In this 
paper, it will be shown that this is not true, and the work in [6] and 
[7] is extended to KVPQMF banks. The method relies on a polyphase 
structure that is suitable for KVPQMF banks by employing M -  
point DCT’s and inverse DCT’s (IDCT’s). It is shown that efficient 
implementation has a considerable saving in computational load over 
the direct method. The saving increases with the number of channels 
and the length of prototype filter. Programs written in the C language 
running on an Hp workstation shows that the saving in time is about 
82% for 32-channel KVPQMF banks of filter length N = 225. 

In the following sections, it is explained how the polyphase 
structure of the analysis and synthesis filter banks is derived. The 
block diagram of the efficient implementation is shown. Finally, 
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