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Wigner Crystallization in Mesoscopic 2D Electron Systems
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Wigner crystallization of electrons in 2D quantum dots is reported. It proceeds in two stages: (i) via
radial ordering of electrons on shells and (ii) freezing of the intershell rotation. The phase boundary of
the crystal is computed in the whole temperature-density plane, and the influences of quantum effects
and the particle number are analyzed.
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In recent years there is growing interest in finite quan-
tum systems at high density and/or low temperature. In
particular, the behavior of a small number of electrons in
quantum dots is actively investigated both experimentally
[1] and theoretically [2,3]. The limiting behavior of two-
dimensional (2D) finite quantum systems at zero tem-
perature has been studied by unrestricted Hartree-Fock
calculations [2] which revealed a transition from a Fermi
liquid to an ordered state called “Wigner molecule.” The
same crossover at finite temperature has been recently
demonstrated by fermionic path integral Monte Carlo
simulations [3]. It has to be expected that further increase
of correlations (increase of the Brueckner parameter rs)
will lead to a still higher ordered quantum state resembling
the Wigner crystal (WC) [4,5].

On the other hand, for finite classical systems, Monte
Carlo simulations have shown evidence of crystallization
for sufficiently large values of the coupling parameter G �
U�kBT , where U is the interaction energy. These classical
clusters consist of well-separated shells [6–9], and melting
proceeds in two stages: first, orientational disordering of
shells takes place—neighboring shells may rotate relative
to each other while retaining their internal order. Further
growth of thermal fluctuations leads to shell broadening
and overlap — radial melting. The temperature of radial
melting Tr may be many orders of magnitude higher than
the orientational melting temperature To [8]. Large clus-
ters with N . 100 have a regular triangular lattice struc-
ture and exhibit only radial melting.

Now the question arises, how does the behavior of
finite electron clusters change at low temperature, i.e., in
the quantum regime? In this Letter we demonstrate that,
indeed, Wigner crystallization in 2D quantum electron
clusters exists and that it is accompanied by two dis-
tinct — radial and orientiational —ordering transitions too.
However, in contrast to classical clusters, we observe a
new melting scenario which is caused by quantum fluc-
tuations and exists even at zero temperature (“cold” melt-
ing [10]). We present a detailed analysis of the two-stage
quantum melting process and provide numerical data for
the phase boundaries of both crystal phases, for particle
numbers in the range N � 10 20.
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Model and characteristic parameters.—The theo-
retical analysis of quantum confined electrons at finite
temperature requires the simultaneous account of strong
correlations and quantum effects which excludes, e.g.,
perturbation or mean field methods. We, therefore, use a
path integral Monte Carlo (PIMC) approach. We consider
a finite unpolarized [11] 2D system of N electrons at
temperature T . The electrons interact via the repulsive
Coulomb potential and are confined in a harmonic trap of
strength v0. The system is described by the Hamiltonian
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where m� and eb are the effective electron mass and back-
ground dielectric constant, respectively. We use the fol-
lowing length and energy scales: r0, given by e2�ebr0 �
m�v2r2

0 �2, and Ec, the average Coulomb energy, Ec �
e2�ebr0. After the scaling transformations �r ! r�r0,
E ! E�Ec� the Hamiltonian takes the form
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where n �
p

2 l20�r2
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B�r0�1�2, a�
B is the effective

Bohr radius, and l20 � h̄��m�v0� is the extension of the
ground state wave function of noninteracting trapped
electrons. Further, we define, in analogy to macroscopic
systems, rs � r0�a�

B � 1�n2 [12]. (Note that in meso-
scopic clusters, rs and n characterize only the average
electron density.) Finally, we introduce the dimensionless
temperature T � kBT�Ec which allows us to define
G � 1�T [7,12].

To obtain the configuration and thermodynamic proper-
ties of clusters of N electrons described by the Hamilto-
nian (2), we performed fermionic PIMC simulations using
a standard bisection algorithm [13]. The number of time
slices M has been varied with n and T according to M �
ln�T , where l was typically in the range of 1 10 to achieve
an accuracy better than 5% for the quantities (3) and (4);
see below. To obtain the phase boundary of the Wigner
crystal, calculations in a broad range of parameter values
© 2001 The American Physical Society 3851
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�n,T ,N� were performed. For each set of parameters, sev-
eral independent Monte Carlo runs consisting of approxi-
mately 106 steps were carried out.

Structure of electron clusters.—The simulations yield
the spatial electron configurations in the trap [14], ex-
amples of which are shown in Figs. 1 and 2. One clearly
sees the formation of shells. Our analysis revealed the
same shell structures as reported for the corresponding
classical systems [6,7]. The number of shells and shell oc-
cupation depend on N; cf. Table I. Clusters, in which the
particle number on the outer shells are multiples of those
on the inner shells, have the highest symmetry which leads
to particular properties. Examples of these magic numbers
are N � 10, 12, 16, 19; cf. Table I. Let us now discuss
the influence of quantum effects on the clusters. In con-
trast to classical systems, where the electrons are pointlike
particles, in our case, the wave function of each electron
has a finite width and may be highly anisotropic, which
is typical for low temperature, as is most clearly seen in
Fig. 1(a). This peculiar shape results from a superposition
of N-body correlations, quantum effects, and the confine-
ment potential. Varying the density and temperature, the
shape changes in a very broad range, which can lead to
qualitative transitions of the cluster, including cold quan-
tum melting, as will be shown below.

Melting and phase transitions.—Wigner crystallization
is known to occur when the ratio of the Coulomb energy to
the kinetic energy exceeds a certain threshold. In the quan-
tum and classical limits, this ratio is given by the Brueckner

FIG. 1. Snapshots of the cluster with 12 electrons [14], (a) in
the orientationally ordered state (n � 0.01); (b) at orientational
melting (n � 0.014); (c) in the orientationally disordered/
radially ordered state (n � 0.02). Lower right figure shows the
corresponding angular pair distribution functions for electrons
on the inner shell. T � 1.0 3 1024.
3852
parameter rs and the classical coupling parameter G, re-
spectively. Let us first consider the classical case. At
sufficiently low T (high G), a classical cluster is in the
orientationally and radially ordered crystal phase. Our
simulations revealed that in a finite system (in the clas-
sical part of the phase space), both orientational and ra-
dial melting are determined by characteristic values of G

which, however, strongly depend on the particle number
N . We find that orientational melting occurs at tempera-
tures which vary over many orders of magnitude, T�

o �
3 3 1023 10212 and are very sensitive to the shell con-
figuration, as observed in Ref. [8]. Higher temperatures
(lower G) are found for magic clusters; cf. Table I. The
magic cluster with N � 19 has unusual stability against
intershell rotation, as the ratio of particle numbers on the
three shells is optimal for the formation of a triangular
lattice. In contrast, nonmagic clusters have much lower
orientational melting temperatures (see Table I), which is
particularly striking for N � 20. The situation is com-
pletely different at radial melting. Here, the critical tem-
peratures for intershell particle jumps (radial disordering)
for magic clusters have been found to be approximately
2 times smaller than those for nonmagic clusters (Table I).

We now investigate the phenomenon of quantum ori-
entational melting (OM). As an illustration, consider the
cluster with N � 12 particles. Figure 1 shows three snap-
shots of particle configurations at low temperature where
the density increases from (a) to (c), and (b) corresponds
to the critical density. One of the characteristic features of
quantum OM is a high anisotropy of the electron wave
function. Its main spread is along a high and narrow
ravine formed by the many-body potential. The growth of
quantum fluctuations from 1(a) to 1(c) is predominantly in

FIG. 2. Relative angular and radial fluctuations, Eqs. (3) and
(4), in the vicinity of orientational (OM) and radial melting
(RM) for N � 12 and N � 19 versus density. Insets show
snapshots of the “magic” cluster with N � 19 in the three phases
(left, n � 0.025; middle, n � 0.06; right, n � 0.14). T �
5.0 3 1024. Error bars shown are typical for all curves.
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TABLE I. Classical Wigner crystal: critical temperature T �

and coupling parameter G� corresponding to the orientational
(o) and radial (r) melting for clusters of size N in the classical
limit (n ! 0). Second column contains the shell occupancy,
starting from the inner shell. Nonmagic clusters are typed italic.

N T�
o G�

o T �
r G�

r

10 2, 8 1.5 3 1025 6.7 3 104 5.9 3 1023 169
11 3, 8 2.6 3 1027 3.85 3 106 1.25 3 1022 80
12 3, 9 8.0 3 1024 1250 6.0 3 1023 166
16 1, 5, 10 1.7 3 1023 590 6.2 3 1023 161
19 1, 6, 12 3.0 3 1023 330 6.5 3 1023 154
20 1, 7, 12 2.9 3 10212 3.4 3 1011 1.2 3 1022 83

angular direction leaving the radial component practically
unchanged. Figure 1(b) shows that, at quantum OM, the
probability density of each inner shell electron splits in
two maxima which are due to electron transitions between
two closely lying energy levels. At still higher density,
Fig. 1(c), the electron wave function spreads further, split-
ting into three maxima, and it starts to spread in a radial
direction. Obviously, OM is accompanied by intensifica-
tion of angular distance fluctuations; cf. Fig. 1(d). The
spread of the electron wave functions smears out the en-
ergy barrier for intershell rotation which, in turn, reduces
the melting temperature. In the limit T ! 0 this leads to
so-called cold orientational melting.

To allocate the melting temperatures and densities ac-
curately, we examine the relative mean angular distance
fluctuations of particles from different shells
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where fi and fj are the angular positions of particles on
shells s1 and s2, respectively, and ms1 and ms2 are the total
number of particles on the shells. We further consider the
magnitude of the relative distance fluctuations
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where rij is the distance between particles i and j. We
found that, in the vicinity of orientational and radial melt-
ing, quantities (3) and (4) show a strong increase, thus
providing a suitable quantitative criterion for these phase
transitions, as can be seen in Fig. 2.
TABLE II. Quantum Wigner crystal: critical density and Brueckner parameter rs for orientational (o) and radial (r) melting at
zero temperature. T̃max

o,�r� is the highest possible melting temperature, T̃ � nT . The critical parameters n�
o , r �o�

s and T̃max
o for N � 11

and 20 are estimates [16].

N n�
o r �o�

s n�
r r �r�

s T̃max
o T̃max

r

10 4.5 3 1023 4.9 3 104 0.120 69 5.0 3 1028 2.2 3 1024

11 5 3 1023 4 3 106 0.148 45 7 3 10211 9.4 3 1024

12 1.4 3 1022 5102 0.123 66 5.0 3 1026 2.4 3 1024

19 5.0 3 1022 400 0.125 64 6.0 3 1025 2.5 3 1024

20 1.7 3 1026 3 3 1011 0.140 51 3 3 10218 7.5 3 1024
We computed the n dependence of the fluctuations at
fixed T , as well as the T dependence at n � const (which
corresponds to the dependence on rs and G, respectively).
The latter was mainly used in the classical region of the
phase space. On the other hand, in the strong quantum
limit, there is only a weak temperature dependence, so the
first method is advantagous. To highlight the peculiarities
of quantum melting, in the following, we concentrate on
the density dependence of the fluctuations.

Figure 2 shows the n dependence of uf and ur , at a
fixed temperature T � 5 3 1024, for the magic clusters
N � 12 and N � 19. The first jump of the fluctuations
at comparatively low cricitical densities n�

o corresponds to
quantum OM. At densities n $ n�

o , the angle between par-
ticles from neighboring shells can take arbitrary values.
There is a significant difference in the magnitude of the
melting densities for the clusters under consideration. As
in the classical case, the highest stability (highest value n�

o)
is found for the magic clusters, with the maximum value
found for N � 19. In particular, we obtained the densities
of cold orientational melting by extrapolation of our data to
zero temperature. The corresponding values for the density
and Brueckner parameter r �o�

s are listed in Table II.
Let us now proceed in Fig. 2 to higher densities. We

observe a clear second jump of the fluctuations uf and ur ,
which is related to total melting of the WC. It is instruc-
tive to compare the state of the cluster before and after this
jump; see middle and right shapshots in Fig. 2, respec-
tively. Evidently, when the density is increased, the peaks
of the wave functions broaden in radial (and angular)
direction until their width becomes comparable with the
intershell spacing. As a result, the probability of inter-
shell transfer of electrons grows rapidly, causing a sud-
den increase of the radial fluctuations and the onset of
radial melting. Our simulations revealed that the jumps of
uf and ur are clearly visible along the whole WC phase
boundary. In the limit of zero temperature, we observe
cold radial melting; cf. Table II.

Phase boundary of the mesoscopic Wigner crystal.—
The results are summarized in Fig. 3 and Tables I and II
for various particle numbers. Consider first the line of ra-
dial melting “RM.” At low densities, n , 0.03, crystal-
lization occurs at critical values of G � 1�T�

r ; see the data
in Table I. We found that, for magic (nonmagic) clusters,
G is above (below) the 2D bulk value, G` � 137; e.g.,
[7]. This shows that nonmagic clusters are more stable
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FIG. 3. Phase diagram of the mesoscopic 2D Wigner crystal.
“OM” (“RM”) denotes the orientational (radial) melting curves
for N � 10, 11, 12, 19, and 20. Inset shows an enlarged picture
of the low-density region. Dotted straight lines indicate the
radial melting transition of a macroscopic classical and quantum
WC. Brueckner parameter follows from the density by rs �
1�n2. Error bars shown are typical for all curves.

against radial disordering. The same tendency is observed
for cold melting, where the critical values of rs are sys-
tematically lower for nonmagic clusters. Interestingly, for
all comparatively small clusters with 10 # N # 20, the
critical rs (Table II) exceeds the known value of an infi-
nite 2D system r`

s � 37 [15]. This systematic deviation
from the critical data of a macroscopic system points to the
existence of a different scenario of radial melting typical
for finite systems. For example, for clusters with N � 10
(19), when approaching the phase boundary, we observe
increasingly frequent transitions between the shell configu-
rations �2, 8� - �3, 7� (�1, 6, 12� - �1, 7, 11�). The expla-
nation is the lowering of the potential barrier for intershell
transitions of individual electrons between these two ener-
getically rather close configurations.

A particularly interesting feature which is missing in in-
finte systems is the existence of the second transition char-
acterized by freezing of the intershell rotation; cf. areas
bounded by the lines “OM” in Fig. 3. This highly or-
dered state is confined to the region of low density and
low temperature. Its phase boundary is highly sensitive to
the angular symmetry of the cluster. The most symmet-
ric clusters are the magic ones which are essentially more
stable against orientational melting which is seen in their
relatively low values of G�

o and r �o�
s ; cf. Tables I and II.

The critical values for the nonmagic clusters are several
orders of magnitude larger, confining their orientationally
ordered state to much lower densities and temperatures.
Finally, the last two columns of Table II contain the maxi-
mum temperatures at which the orientationally and radially
ordered crystal phases may exist.
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In summary, we have presented a detailed PIMC analy-
sis of Wigner crystallization of finite electron systems con-
fined in a 2D harmonic trap including the critical data in
the whole density-temperature plane. We have shown that
there exist two phases characterized by radial and radial
plus angular ordering, respectively, which is essentially
different from macroscopic systems. The phase bound-
aries have been found to be very sensitive to the electron
number and to the shell symmetry. In contrast to classical
clusters, we observed cold orientational and radial melting
which is governed by the spread of the electron wave func-
tions in angular and radial directions. The predictions of
our model calculations are expected to be relevant, in par-
ticular, for electrons in external fields. Furthermore, they
lead us to expect Wigner crystallization also in small 2D
islands of electrons (holes) in semiconductor heterostruc-
tures: for example, in GaAs�AlGaAs systems, crystalliza-
tion is predicted for carrier densities below approximately
108 cm22 [�109 1010� cm22] and for temperatures below
1.6 5.5 K, for confinement potentials of 3 10 meV.
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