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We introduce a new approach for the correlation energy of one- and two-valley two-dimensional electron gas

(2DEG) systems. Our approach is based on an interpolation between two limits, a random phase approximation at

high densities and a classical approach at low densities which gives excellent agreement with available Quantum

Monte Carlo (QMC) calculations. The two-valley 2DEG model is introduced to describe the electron correlations

in monolayer transition metal dichalcogenides (TMDs). We study the zero-temperature transition from a Fermi

liquid to a quantum Wigner crystal phase in monolayer TMDs. Consistent with QMC, we find that electrons

crystallize at rs = 31 in one-valley 2DEG. For two valleys, we predict Wigner crystallization at rs = 30, implying

that valley degeneracy has little effect on the critical rs , in contrast to an earlier claim.

DOI: 10.1103/PhysRevB.95.115438

I. INTRODUCTION

For a two-dimensional (2D) electron gas (2DEG) in a

conventional semiconductor, quantum Wigner crystallization

(WC), i.e., freezing of electrons induced by very strong

electron-electron interactions [1], is predicted to occur only for

extremely low electron densities ρ, corresponding to rs � 31,

see Refs. [2–5]. Following Ref. [6] we define the parameter

rs = 1/
√

πρa∗
B for both one- and two-valley systems. rs

measures the relative importance of the average electron-

electron interaction energy to the Fermi energy. a∗
B is the

effective Bohr radius.

The quantum WC at zero magnetic field has not yet been

observed and remains an experimental challenge. Of the

new 2D materials such as graphene and the semiconducting

transition metal dichalcogenides (TMDs), e.g., MoS2, WS2,

MoSe2, WSe2, WTe2, etc. [7–9], graphene is always a weakly

interacting system since rs in a graphene monolayer is always

less than unity independent of the density [10]. For this reason

graphene is expected not to exhibit a WC transition [11]. In

contrast, for TMD monolayers with quasiquadratic low energy

dispersions, rs is density dependent and becomes large for

experimentally accessible densities. For example, at a density

ρ = 1 × 1011 cm−2 in monolayer MoS2 (see supplementary

of Ref. [12]), one has rs ∼ 30. This makes monolayer TMDs

a new class of candidates where the quantum WC may be

experimentally observable.

At low densities, the correlations between the electrons

due to the repulsive Coulomb interaction become sufficiently

strong to drive the system from a liquid phase to the WC phase.

The inversion symmetry breaking in 2D monolayer TMDs

leads to a direct band gap located at the two inequivalent valleys

at the K points (corners of the first Brillouin zone). With the

additional valley index degree of freedom the electrons have

significantly different correlation energies than electrons at the

same density in a one-valley system.

The energy differences between the WC and liquid phases

are very small and to get reliable predictions, extremely

high accuracy such as offered by Quantum Monte Carlo

(QMC) methods is required [2,3,6]. Reference [6] obtained

the correlation energy for a two-valley 2DEG system using

QMC calculations to describe the ground state energy of

electrons confined in a Si metal-oxide-semiconductor field-

effect transistor (MOSFET). They predicted that for two

valleys the density for the WC transition shifts to a much

lower density, rs ≈ 45. This would make the formation of the

WC much more difficult as compared to the one-valley system.

However, in the present work we challenge this result.

Apart from pinning the WC, disorder in monolayer TMDs is

not expected to play an important role in the WC transition. For

example, for a typical low temperature mobility value in a high

quality sample of MoS2 of 500 cm2/(V.s), the corresponding

disorder energy scale is only ∼5 meV [13], while the average

Coulomb interaction energy exceeds 40 meV, even at a density

as low as ρ = 1 × 1011 cm−2. In the present work we neglect

disorder.

There can be spin polarization in the TMDs at very low

densities because of splitting of the spin bands by spin-orbit

coupling (SOC). However, for densities near the WC transition

in the one-valley system, spin polarization should have little

effect on our quantitative conclusions and we neglect it.

The reason is that by such low densities the spin-polarized

and unpolarized pair correlation functions have become very

similar [4]. In addition, the large semiconducting gap in TMDs

means that we need only to consider the conduction band

in which the SOC splitting �c
SOC is much smaller than in

the valence band. However, for lowest densities, �c
SOC in the

conduction band [14] can be significant on the scale of the

Fermi energy, resulting in some spin polarization.

In our work we first discuss a density functional approach

to describe the ground state energy for a nonuniform density

distribution corresponding to a 2D hexagonal lattice. To obtain

the correlation energy in monolayer TMDs, i.e., two-valley

2DEG system, we then introduce a new approach based on

the random phase approximation (RPA) at high densities and

a classical approach at low densities. We demonstrate that our

results for the correlation energies are in very good agreement

with QMC for both one-valley and two-valley 2DEG systems.

We discuss our results for the WC and liquid ground state

energy as a function of density in Sec. IV and present a

summary and conclusions of the paper in Sec. V.

II. DENSITY FUNCTIONAL THEORY

We recall that in density functional theory the ground state

energy functional E[ρ] for a system of interacting electrons
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with density distribution ρ(r) is written as the sum,

E[ρ] = K[ρ] + Ecoul[ρ] + Ex[ρ] + Ec[ρ], (1)

where K[ρ], Ecoul[ρ], Ex[ρ], and Ec[ρ], respectively, denote

the noninteracting kinetic energy, Hartree term, exchange,

and correlation energy functionals of the density distribution.

We will compare the ground state energy for the liquid of

uniform density ρ0 with the ground state energy of the WC

with nonuniform density distribution ρ(r) on a 2D hexagonal

lattice.

Within the local-density approximation (LDA), approx-

imate forms of the kinetic-energy and Hartree functionals

expressed in terms of inhomogeneous density distributions

are,

K[ρ] =
1

8

∫

d2r
∇ρ(r) · ∇ρ(r)

ρ(r)
+

π

2gv

∫

d2rρ(r)2, (2)

and

Ecoul =
1

2

∫

d2r

∫

d2r ′ [ρ(r) − ρ0][ρ(r ′) − ρ0]

|r − r ′|
. (3)

gv = 1,2 distinguishes the one- and two-valley 2DEG systems.

We also define the functional forms of the exchange

and correlation energies within LDA. LDA assumes that the

exchange-correlation energy ǫxc(ρ) at a point r is equal to the

exchange-correlation energy of a uniform electron gas with

the same density as at the point r . Thus we can write

Exc[ρ(r)] =
∫

ρ(r)ǫxc(ρ)d r. (4)

Using Eq. (4) we write

Ex[ρ] = −
4

3

√

2

πgv

∫

d2rρ(r)3/2, (5)

Ec[ρ] =
∫

d2rρ(r)ǫc[ρ(r),gv], (6)

where ǫc[ρ0,gv] is the correlation energy for a system of

uniform density ρ0. In the next section we introduce a new

approach to obtain ǫc[ρ0,gv].

III. CORRELATION ENERGY

An exact expression for the exchange-correlation functional

Exc[ρ] in terms of the coupling constant integral was given in

Refs. [15,16],

Exc[ρ] =
∫ 1

0

dαWα[ρ], (7)

where Wα[ρ] = 〈�α[ρ]|V̂ee|�α[ρ]〉 − Ecoul[ρ] is the poten-

tial energy functional excluding the Hartree contribution, for a

fictitious system interacting via a Coulomb-like interaction

V̂ee =
∑

i<j |ri − rj |−1 that is scaled by a multiplicative

coupling constant factor α. �α is the wave function that

minimizes the expectation value 〈K[ρ] + αV̂ee〉 for the fictive

electron system with the kinetic-energy operator K and the

interaction αV̂ee with the same ground-state density ρ as for

the real system where the interaction is V̂ α=1
ee .

Since Wα[ρ] is expected to be a smooth function of α [17],

Refs. [18–20] proposed an interpolation procedure for Wα[ρ],

between the α = 0 (weakly-interacting, high density limit) and

α = ∞ (strongly-interacting, low density limit),

Wα[ρ] ≃ W∞ +
W0 − W∞√

1 + 2Xα
, X =

W ′
0

W∞ − W0

(8)

where W ′
0 = dWα/dα|α=0. The properties required for Wα

have been extensively discussed in Refs. [18–20]: Wα should

be a smooth function of α and should converge to W0 + W ′
0α

and W∞ in the limits α → 0 and α → ∞, respectively.

Substituting Eq. (8) into Eq. (7) and integrating, we obtain

for the correlation energy,

Exc[ρ] = W0 + (W0 − W∞)

[√
1 + 2X − 1

X
− 1

]

. (9)

Weakly-interacting regime. We employ RPA to obtain W0

and W ′
0. We recall that RPA is exact in the high-density

limit [22]. Using RPA offers significant advantages over the

approach of Ref. [19] which calculated W0 for a 2DEG using

the Fock integral with the (occupied) Kohn-Sham orbitals

while W ′
0 was the second order coefficient in Görling-Levy

perturbation theory [21]. In particular our RPA calculations of

W0 and W ′
0 can be readily generalized to finite temperatures

and to nonparabolic energy dispersions.

There exist exact expressions for W0[ρ] and W ′
0[ρ] [22],

W0[ρ]= WRPA[ρ],
(10)

W ′
0[ρ]=W ′

RPA[ρ] + W
(2)′
0 [ρ],

where the RPA interaction energy WRPA[ρ] and its derivative

with respect to α, W ′
RPA[ρ], are expressed as integrals along

the imaginary frequency axis,

WRPA[ρ]=
∑

q

vq

[

−
h̄

2πρ

∫ ∞

0

dωχ0(q,iω) − 1

]

,

W ′
RPA[ρ]=−

h̄

2πρ

∑

q

vq

∫ ∞

0

dω[dχα(q,iω)/dα]α=0. (11)

vq = e2/κq is the Coulomb potential with κ the dielectric

constant and χα(q,iω) is the RPA density-density response

function.

The term W
(2)′
0 [ρ] in Eq. (10) is determined from the

contribution of the second-order correction to the correla-

tion energy E(2)
c given by Eq. (14) in Ref. [23]. Using

the linear expansion Wα = W0 + αW
(2)′
0 and performing the

integral in Eq. (7) gives W
(2)′
0 [ρ] = 2 × E(2)

c , with E(2)
c ≈ gv ×

0.105 Hartree. We use Hartree units throughout the paper.

The RPA density-density response function is,

χα(q,iω) =
χ0(q,iω)

1 − αvqχ0(q,iω)

χ0(q,iω) = gsgv

∫

d2k
fk − fk+q

h̄ω + εk − εk+q + iη
. (12)

fk is the Fermi-Dirac function for the wave vector k, gs and

gv are the spin and valley degeneracies, εk is the lowest energy

band, and η > 0 is an infinitesimal number.

115438-2
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The expression for W ′
0[ρ] in Eq. (10) then gives

W ′
0[ρ]=−

h̄

2πρ

∑

q

v2
q

∫ ∞

0

dωχ0(q,iω)2 + 2E(2)
c . (13)

The integrals in Eqs. (10) must be obtained to an extremely

high accuracy. With our approach we can arrive at the accuracy

needed with computational times that are orders of magnitude

less than those for the equivalent QMC calculations.

For the case of TMDs with gs = 2 and gv = 2 we assume

a parabolic dispersion εk = h̄2k2/2m∗
e . Due to the existence of

the large semiconducting gap we can neglect the influence of

the hole band in the response function.

Strongly-interacting regime. In the opposite limit of large

α → ∞, the ground state is the classical WC. We can treat the

classical crystal as a collection of neutral unit cells, each cell

containing its electron, embedded in a uniform neutralizing

background. To determine the total energy, we represent each

unit cell as a disk of diameter r0 with the electron at its center.

r0 = 1/
√

πρ is the average interparticle spacing. W∞ is the

electrostatic energy of a single unit cell consisting of the

potential energy between the electron and the positive charged

disk Ee⊕ plus the self energy of the charged disk E⊕⊕,

W∞ = Ee⊕ + E⊕⊕ = −
2

rs

+
8

3πrs

. (14)

Having W0, W ′
0, and W∞ we obtain the correlation energy

using Eq. (9).

In Fig. 1(a) we compare our results for the correlation

energy Ec = Exc[ρ] − W0 (red curve) with those obtained

from diffusion QMC (open circles) and pure RPA (green

curve) for a one-valley 2DEG system. Comparing with QMC

data, adopted from Refs. [2] and [3] we see that our approach

exhibits excellent agreement. We also obtained the correlation

energy as a function of rs for a monolayer TMD [Fig. 1(b)],

which we compare with the corresponding QMC calculations

for the two-valley 2DEG [6]. We found that the relative errors

between the correlation energies of the present approach and

QMC are always less than 5%.
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FIG. 1. Correlation energy of a uniform (a) one-valley 2DEG and

(b) two-valley 2DEG systems. The results of the present approach are

the solid red curves. The QMC results (blue open dots) are taken from

Refs. [2] and [3] for one-valley and Ref. [6] for two-valley 2DEG

systems. The pure RPA results are also shown (dashed green curves).

IV. WIGNER CRYSTALLIZATION

We obtain the total energy per particle, ǫ[ρ] = E/
∫

d2rρ0,

defined in Eq. (1), for a liquid of uniform density ρ0 and for

a WC with nonuniform density distribution ρ(r) given by the

variational form,

ρ(r) =
β

π

∑

m,n

exp[−β(r − ma1 − na2)2] . (15)

ρ(r) is a superposition of normalized isotropic Gaussians

centered on the WC lattice sites. m and n are integers and

a1 = (a,0) and a2 = (−a/2,
√

3a/2) are the lattice vectors for

the two-dimensional hexagonal lattice. a1 and a2 are deter-

mined by the average electron density, with a =
√

2/
√

3ρ0.

The variational parameter β determines the degree of localiza-

tion on the lattice sites. Equation (15) may also be written as

a summation of the reciprocal-lattice vectors kmn, viz.

ρ(r) = ρ0

∑

m,n

e−k2
mn/4βeikmn·r . (16)

We determine the total ground state energy E[ρ] from Eqs. (1)–

(3) and (9). Using this form of density Eq. (15), the Coulomb

energy Eq. (3) can be solved analytically. The final expression

of the Coulomb energy per particle is given by

ǫcoul = πρ0

∑

kmn �=0

exp
(

− k2
mn/2β

)/

kmn. (17)

We numerically calculate the total energy per particle of

the ordered phase as follows. For fixed rs , we calculate the

total energy ǫ(β), with β as the variational parameter. We look

for a minimum in ǫ(β) and use that as the energy for the

inhomogeneous phase. If the minimum is at β = 0 the system

is in the liquid state.

The calculated energies for densities ρ0 and ρ(r) are plotted

as a function of rs in Fig. 2 for the one-valley 2DEG system.

We observe a stable WC at rs = 31, in excellent agreement

with QMC calculations. (At rs = 31, there is a bifurcation,

indicating a transition to the WC, i.e., the WC energy is lower

than the liquid.) The upper inset in Fig. 2 shows the total energy

as a function of the variational parameter β for two fixed values

of rs near the transition. For rs = 30 we see that the minimum is

at β = 0 (liquid phase), while at rs = 31 the minimum energy

occurs at a nonzero β ∼ 0.0012 (WC phase). In the lower inset

we show βmin, the value of β at which the energy is minimum,

as a function of rs . Since at rs = 31 the localization parameter

is βmin ≈ 0.00121/(a∗
B )2, and for the hexagonal WC lattice

constant a =
√

2π/
√

3rsa
∗
B , we obtain for the half widths

of the Gaussians σ ≈ 0.3a, indicating localized WC density

profiles around each lattice point.

The liquid and WC ground state energies for a two-valley

2DEG system corresponding to monolayer TMDs are shown

in Fig. 3. We observe a transition into WC at rs = 30. For the

two-valley case the plot βmin as function of rs is very similar to

the one-valley case (lower inset in Fig. 2), and our discussion

for the amount of localization remains the same.

Our result for the transition density at rs = 30 in a two-

valley 2DEG system is in contrast with results obtained using

QMC [6]. Reference [6] reports the WC transition in the

two-valley system at rs ≈ 45, corresponding to a much lower

115438-3



M. ZARENIA, D. NEILSON, B. PARTOENS, AND F. M. PEETERS PHYSICAL REVIEW B 95, 115438 (2017)

29 30 31 32 33 34 35

0.718

0.72

0.722

0.724

0.726

0.728

rs

(
−

M
)
×

r3
/
2

s
(H

a
rt

re
e)

30 35 40
0

0.001

0.002

rs

0 0.0005 0.001 0.0015

0

1

2

3

4

5

β [1/(a∗

B)2]

[1
−

/
m

in
]×

10
5

rs = 30

rs = 31

r
s
= 31

βmin [1/(a∗

B)2]

Wigner crystal

Liquid

FIG. 2. The total energy per particle of a one-valley 2DEG system

for the liquid (blue curve) and WC (red curve) phases. The transition

to a WC occurs at rs ≈ 31, indicated by the vertical arrow in the figure.

Upper inset: total energy as a function of variational parameter β for

rs = 30 (blue curve) and rs = 31 (green curve). Lower inset: βmin as

a function of rs . ǫM = −1.1061/rs is the Madelung energy. ǫmin is

the minimum of ǫ(β).
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FIG. 3. The total energy per particle of a two-valley 2DEG system

for the liquid (blue curve) and WC (red curve) phases. The transition

to a WC occurs at rs = 30, indicated by the vertical arrow in the figure.

Upper inset: total energy as a function of variational parameter β for

rs = 29 (blue curve) and rs = 30 (green curve). Lower inset: total

ground state energies as function of rs for the gv = 2 liquid with a

gv = 1 WC (see text).

TABLE I. Wigner crystal electron density of monolayer TMDs at

rs = 30. The effective electron masses (m∗
e ) are taken from Ref. [24]

and the out-of-plane (in-plane) dielectric constants κ⊥(κ‖) from

Ref. [25].

TMD MoS2 MoSe2 WS2 WSe2 MoTe2 WTe2

κ⊥(κ‖) 4.8(3.0) 6.9(3.8) 4.4(2.9) 4.5(2.9) 8(4.4) 5.7(3.3)

m∗
e [m0] 0.46 0.56 0.26 0.28 0.62 0.26

ρ0 [×1011 cm−2] 1.85 1.5 0.66 0.875 1.37 0.45

transition density than for the one-valley 2DEG. In Ref. [6] the

authors correctly note that the liquid energy reduces with the

addition of a second valley because the kinetic, exchange, and

correlation energies reduce. However they incorrectly assumed

that the WC energy is independent of the increase in the

number of components (spin and valley). In their approach,

since the liquid energy is lower with two valleys while the

WC energy remains unchanged, the liquid energy crosses the

WC energy at a larger rs . In the lower inset of Fig. 3 we

indeed confirm that the gv = 1 WC ground state energy crosses

the gv = 2 liquid energy at rs ≈ 43, which is consistent with

Ref. [6].

However, the WC energy is in fact also reduced when the

number of valleys is increased. This can be seen by comparing

QMC results for the fully spin-polarized and unpolarized

2DEG in the WC regime. One can compare the WC energy at

ξ = 0 (unpolarized) and ξ = 1 (fully-polarized) in Fig. 5 of

Ref. [2]. By strict analogy, this energy difference will be the

same for the unpolarized WC between the one- and two-valley

systems. Thus both the liquid and the WC energy reduce

when we go from the one-valley to the two-valley system.

The reduction in energy turns out to be similar for the liquid

and the WC, and so the WC transition density does not change

very much between the one- and two-valley systems (i.e., from

rs = 31 to 30).

The results for the corresponding electron density at

rs = 30, i.e., in the WC regime, are shown in Table I for

different TMDs. The electron density is calculated using

ρ0 = 1/π (a∗
Brs)

2 where a∗
B = h̄2κ/e2m∗

e with κ = √
κ⊥κ‖.

We find that rs = 30 corresponds to carrier densities ρ0 �
0.4 × 1011 cm−2 for the TMD monolayers of Table I, which

is well within the lower limit of experimentally attainable

densities for monolayer TMDs (of the order of ρ � 1010 cm−2,

e.g., see Refs. [26–28]).

V. CONCLUSIONS

In summary, we have presented a new approach to obtain

the correlation energy in 2D systems. The approach is based on

an interpolation of the exchange-correlation energy between

the weakly-interacting regime and the strongly-interacting

classical regime. For the weakly-interacting limit we employed

RPA which is exact in this limit. In the strong interaction

regime, i.e., in the low density limit, a WC occurs with the

electrons forming a lattice, and we obtained the electrostatic

energy for an assembly of unit cells that are neutralized by a

uniformly charged background. We calculated the correlation

energies for one- and two-valley 2DEG systems. The present

approach is extremely fast and provides accurate results in
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excellent agreement with QMC. The approach can readily be

extended to: (i) 2D systems with nonparabolic low energy

bands such as the bands present in few-layer graphene, and

(ii) to nonzero temperatures.

We utilized density-functional theory within the local-

density approximation to contrast the zero-temperature tran-

sition from a Fermi liquid to the WC phase in one- and

two-valley 2DEGs. We find that the WC transition occurs for

the one- and two-valley systems at very similar densities, i.e.,

around rs ∼ 30 in contrast to an earlier claim [6] that rs should

be much larger for a two-valley system. In the two-valley

monolayer TMDs, rs = 30 corresponds to a density ρ0 �
0.4 × 1011 cm−2, which lies well within the experimentally

achievable density range. We conclude that monolayer TMDs

could be ideal systems for the observation of WC in zero

magnetic field.

The results in this paper are for zero temperature. However,

the energy differences in the total energies of the Fermi liquid

and the WC phase could provide us with an upper limit estimate

of the transition temperatures. We found this energy difference

of the order of 10 K at rs ≈ 30.

There are number a of ways that a WC phase could be

experimentally identified. Wigner crystallization is accompa-

nied by a transition to an insulating state caused by pinning of

the Wigner lattices by residual disorder. This can be detected

using transport measurements [29,30]. A modulated density

distribution can be experimentally observed using scanning

tunneling microscopy (STM). This, for example, has been used

to identify a charge-density-wave phase [31,32] and could be

equally well used to observe a WC phase.
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