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WIGNER DISTRIBUTION FUNCTION: RELATION TO SHORT-TERM
SPECTRAL ESTIMATION, SMOOTHING, AND PERFORMANCE IN NOISE

INTRODUCTION

The potential of the Wigner Distribution Function (WDF) for
characterizing the short-term local time and frequency content of a
transient waveform has been amply demonstrated in a series of papers; for
example, see the recent publications [1,2,3)] and the extensive references
1isted therein. In particular, [1] contains numerical examples of the WDF
for rectangularly gated linear frequency modulation and a version which has
been smoothed with a square window in the time-frequency plane, in order to

yield positive distribution values. Here, we will be concerned with

smoothing so as to minimally spread the WDF, but will not presume all the
information that is required for implementation via [2], nor do we limit
consideration to a constant-magnitude function. We will then use the close
connection between short-term spectral estimation and smoothed WDFs to
suggest a possible analysis procedure and philosophy to extract information
about a given waveform without an extensive search in waveform parameters.
Finally, the performance of a particular WDF estimator in the presence of

additive noise will be analyzed, both in terms of bias and variance.

This report summarizes and compiles many of the results in the
publications noted above in a unified framework and notation. Also,

numerous examples are presented in the various sections of this report to
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illustrate and bring out some of the fundamental concepts and limitations of
the WDF; these examples can be evaluated analytically in closed form,
W allowing for close investigation of the behavior of the WDF, and as contro)

" cases on any computer-written program for numerical evaluation of the WDF.
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BASIC PROPERTIES OF THE WOF

DEFINITIONS

A natural definition of the time-varying correlation of a nonstationary

complex stochastic process s(t) is

%

3 ()

R(LT) = s(t + 3) s™(t -

where the overbar denotes an ensemble average. The “center® time in (1) is
t, while the "separation” time is T. However, if an ensemble is not
available, or if s(t) is a deterministic waveform, the obvious extension of

(1) is simply

R(LT) = s(t + 5) s7(t - §) : (2)

This quantity is interpreted as the instantaneous correlation of waveform

s(t) at time t, for separation (or lag) T.

The associated "spectrum" at time t is then available, as usual, by

Fourier transforming (2) on separation variable T, to get at frequency f,

W(t,f) = g 4T exp(-122fT) R(L,T) =

= S.dt exp(-12«fT) s(t + %) s*(t - %) . (3)
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(Integrals without 1imits are over the range of nonzero integrand. Also, it
is presumed that s(t) and its derivatives decay fast enough to zero at t = to0
for all the integrals to converge.) This time-frequency function W(t,f) is
called the Wigner Distribution Function (WDF). It is a real function, even

when s(t) 1s complex, since

* T
j‘dr exp(i2«fT) s (t + 5) s(t -

*
W (t,f) g

) =

J~du exp(-12«fu) s (t - %) s(t + %) = W(t,f) . (4)

However, it is not necessarily positive, as the simple example of a

rectangularly gated pulse quickly shows: for

a for [t| <7172
s(t) = ,
0 otherwise

then
_ sinf2«f(T - 2]t])] T
W(t,f) = 2€ e for Jt| <5, attf,
and zero otherwise, where € is the waveform energy:
£ = .[ aths(t))? = a2 1. (5)

An even simpler example is furnished by waveforms with odd symmetry,
s(-t) = -s(t). Substitution in (3) immediately yields W(0,0) =

--jdtls(‘t'/Z)l2 = -2E. Thus the origin value of the WDF is always

negative for an odd waveform.
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More generally, when waveform s(t) is expressed in terms of its even and

odd parts according to

s(t) = e(t) +o(t) , (6)
then the origin value of the WDF is
* *
W(0,0) = J‘dr s(T/2) s (-T/2) = Z.f dt s(t) s (-t) =

< Zfdt ect) + o(tﬂ [e*(t) - o*(t)] = 2, - 2, , (TA)

where
E, - S-dt el 2. gy = et fort)? (78)

are the energies of the even and odd parts respectively. For nonzero t,f,
it can readily be shown that the magnitude of the WOF is upper bounded by

2t = 2(£e +E).

0o
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PROPERTIES OF WOF

For s(t) real, it readily follows from the definition of the WDF in (3)

that

W(t,-f) = W(t,f) for s(t) real . (8)

In this special case, it is only necessary to evaluate W(t,f) for f > 0.

Define the voltage density spectrum of waveform s(t) as

S(f) = ~f dt exp(-i2«ft) s(t) .

Then an alternative form for the WDF in (3) is

w, W(t,f) f dr exp(-i2«fT) s(t + :g) s*(t - %') =

. v, X v
S‘dv exp(i2wvt) S(f + 5) S (f - 5) .

in terms of S(f).

Integration on (10) immediately yields the marginals

fdt Wt f) = |s(hH)] 2, (1)

de Wit f) = [s(v)] 2, (12)

T T R S T B T R



A J \J N AR ‘At

TR 8225

where we used the result

j‘dx exp(i2uxy) = &(y) . (13)

The quantity in (11) is the energy density function, while that in (12) is
the instantaneous power. 1f we complete the integrations on the remaining

variables in (11) and (12), they both yield
Ja dt df W(t,f) = £ =

jdt |s(t)|2 = jdfls(f)lz,

where E is the total waveform energy.

If waveform s(t) satisfies a time-limited restriction, namely

s(t) » 0 only fort, <t<t,,

1 2

then (3) reduces to
Tm

W(t,f) = jdt exp(-i2vfT) s(t + %’) s (t - %') for t; <t <t, , (16)
T

and zero otherwise, where

'Cm=2rmn(t2—t. t-t) for t, <t <t,. (17)

Thus the WDF is time-limited if waveform s(t) is time-limited; however, if

there are gaps in s(t), the behavior of the WDF is more complicated, as will

be demonstrated later.
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d PRODUCT AND CONVOLUTION
G 1f waveform s(t) is the product of two other waveforms,
iy s(t) = a(t) b(t) . (18)

Ry then the WOF of s(t) is (inserting subscripts as needed)

W (t,f) = jm: exp(-12¢fT) R(t,T) =

J.dt exp(-12«fT) Ra(t.t) Rb(t.f) =

[}

: 5(1» Na(t,v) Wy (t.f - v) =

-
-
n

£
W (. F) ® W (t,f) (19)

which is a convolution on frequency f, for fixed t.

In a similar fashion, if s(t) is the convolution in time, of two other

'y waveforms,

t
J s(t) = a(t) ® b(t) = Jdt a(om) b(t -1T) , (20)

o then the WOF of s(t) is

R ")3'.‘:0}’ ad b
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t
ws(t,f) = Na(t.f) ® Nb(t.f) = Id’t wa(t,f) wb(t -T,f) , (21) ®
which is a convolution on time t, for fixed f. )
AMBIGUITY FUNCTION

The WDF is closely related to the complex ambiguity function of s(t),

which is defined here as [4; section 7.2] A

xX (Y, T) jdt exp(-i2wvt) s(t + g) s*(t - g) = 3!

L

fdt exp(-i2wvt) R(t,T) = :;Ik

Saf exp(12¢fT) S(f + 3) S'(F - ) . (22) .'n.

In fact, the two are double Fourier transforms of each other: tar

ﬂ dt df exp(i2nTf - i2wvt) W(t,f) = o

T *
Sgdt df exp(i2«Tf - i2wuvt) fdt] exp(-iwat]) s(t + —2') s (t - l2'-) = S,

* T
uth d‘t] exp(-i2wvt) s(t + %) s (t - —5) 6(‘C—‘t]) = (N

Sdt exp(-i2wvt) s(t +§) s*(t - %‘.) = ¥(»,7) . (23)
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Here we used (3), (13), and (22).

In a similar fashion, the following (single) Fourier transform

relationships on the WOF hold:

de exp(i2efT) W(t,f) = s(t + f) st - &

2) = R(t,T)

J‘dt exp(-i2wvt) W(1,f) = S(f + %) S*(f - g) = A(v,f) .

These properties are summarized in the following diagram, where an arrow

denotes a Fourier transform:

R(£,T) =——F—= W(t,f)

tile t|v

X(”ot) - A(V:f)

f

Not every function of t,f is a (legal) WDF; in fact, from (24) there

follows

de exp (i2wf(t, - t,) NC—]——

1
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Thus, in order for a candidate function W(t,f) to be a WDF, the function
resulting on the right-hand side of (25) must be separable in -the variables
t] and t2. When and only when that separability occurs, the waveform s(t)
can be recovered from correlation R or W (within a constant unknown phasor)

as follows: let
s(t,) = js(to)l exp(ie(to)) . R(t,,0) = |s(to)‘2 .

where to is arbitrary, except that s(to) # 0. Then, from the right-hand

side of (25%5),

C +t +t

R - —0 ¢t -t !

2 ’ 0

s(t) = . - exp(‘ie(to)) for all t . (27)
s (t,) V R(to.O)

The special case of to = 0 was given in [3; (17)]. The fact that the
constant phase e(to) is irretrievably lost in R and W can easily be seen

by considering s(t) = ¢ g(t), for which W (t,f) = ]c]z wg(t,f).

The box-like function rect(t/T) rect(f/F) =1 for |t| < 7/2 and
[f] < F/2, zero otherwise, which was employed for smoothing in [1], is not a
WDF, since the transform on the left-hand side of (25) yields

F sinc(rt] - th) for ,t] + t2| < 1, which is not separable in t, and t2'

1
Also, the Gaussian function exp(—tz/o2 - b2412f2) is a legal WDF if and only

if b = o, in which case s(t) = (4«02)_”4 exp(—tZ/(Zoz)). with o arbitrary.

XTI a 4 TR a wy AT STk 5.7
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FIRST MOMENTS OF W

1he marginal integrals of W were given in (11) and (12). The

(conditional) first moment of W, with respect to frequency, is

Idf f W(t,f) = de f Idl' exp(-12«fT) s(t +'_2[_') s*(t - %t) =

- fdt s(t + g) s (t - 'g) fdf f exp(-i2xfT) =

T * *
- 51 Jdt S(t +3) s (t - %') §'(T) - 2—1 Im{s'(t) s (t)} :
Here we used the result

i?fj.dx X exp(i2wxy) = &'(y) ,

obtainable directly from (13) by taking a derivative with respect to y.

Therefore the "frequency center at time t" of waveform s(t) is defined as

jﬁf f w(t,f) _ A [m{;'(t)S*Lgi_ (30)
{ar wee,ey 2 Ba]?

up(t) -

upon use of (28) and (12). 1f we let complex waveform s(t) be represented

in terms of its amplitude and phase modulations according to

s(t) = M(t) explie(t)] ,
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then (30) yields simply

we(t) = oL e(t) (32)

w

which is independent of amplitude modulation M(t). (32) can also be

interpreted as the instantaneous frequency at time t of waveform s(t).

The "time center at frequency f" follows in an analogous fashion as

fat t w1

2 mfsn s'e} 39)

w ()= fdt Wt,f) 2T ls(5)]

1f we represent the voltage density spectrum S(f) in terms of its magnitude

and phase,

S(f) = A(f) exp[-ie(f)] . (34)
then (33) reduces to

w(F) = 55 8(F) (35)

which is independent of A(f). (35) can also be interpreted as the group

delay al frequency f of waveform s(t).

The unconditional firsit moments of W are frequency center

§lar or 1 wct.n) fas ¢ s 2 fdf £ a%(f)

‘UdAt—df WLLf) -Idf lsch] 2 jdf a2(f)

f 3 (36)

13
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and time center

o _ ffdt df tw(t,f)  Jdtt s (1)) 2 Jﬁt t M2(t)
W t =

g (fat ar wet.ry fat fsv) 2 ) Jar Wiy

(37)

(36) follows directly from (11) and (34), while (37) follows directly from

(12) and (31). Thus, T is independent of o(f), and 1 is independent of e(l).

") Alternative forms to (36) and (37), in the complementary domains, are

oM available:

3 .3 gdt infs' (1) s*(tﬂ . Jht m(t) e'(t)
en jdt ls(t)] 8 2m Jdtnzun '

(38)

E A &
-
1

and

e o Jermfsos’ o} Jar a2 00

X 2 far Jsen)? S jdf A2(f)

(39)

.‘;
" P
[ad]

[t}

{: The result in (38) follows from the use of (28) and (12) in definition (36);
‘? a similar procedure yields (39). The frequency center T in (38) is an
average of the instantaneous frequency uf(t) in (32), weighted according

i to the magnitude-squared waveform, Mz(t); similarly, time center t in (39)
Ca

is a weighted average of "t(f) in (35).
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SECUND MOMENTS OF W

By taking two partial derivatives with respect to T in (24), there

follows

2 1 s *
df - W(t,f) = —x "(t) - R (1) (t) . 40
f 8«2 Hs } e {s s }] (40)

When we then employ (12) and (31), the (conditional) second momeni with

respect 1o f develops into the form

2

2 ,2 " !
far 2 wit.n) o W win] ) Jelt (41)
jdf . =22 M(t) 2n |

(1,f) 8n" | M°(1)

Therefore the instantaneous "mean-square frequency spread" is

Sdf [F - e ()17 W(t,f)

(tye S : =
fdf W(t,f)
.2 " '
R I . BES TG D I _Q{L‘Kil} (42)
ael [Mo(t) MV ge? 4t (MY

where we employed (32) and (12). This result does not depend on phase
modulation @(t). However, it should be observed that this quantity can be
negative; consider the example M(t) = exp(-t®) for t > 0, with 0 < v < 1.
Thus (42) can not be interpreted as a true variance. This unfortunate
feature of the WDF is due to the fact that W(t,f) can go negative for some

values of t,f.
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1he unconditional second moment with respect to f follows from (40) and

(11), respectively, as

5fdt df 2 W(t,f) - 4—‘—2— fdt s ()] 2 - de elsen)? . (43)

w

Analogous relations for the second moments with respect to t can also be

derived via a similar approach.

n MOMENTS OF W°

The marginal inteqral of the square of the WDF with respect to f is, via

(3), (13), and (2),

jdf wWl(t,f) - jdf ﬁ 4T du exp (-i2wf(T - u)) R(L,T) R (t,u) =

2 2 2
=de|R(t,T:)l = Jd‘l’ ls(t + :25), Is(t - §>| =

@ = 2{|s(t)‘2® ’s(t)l 2} . (44)
T=2

which is the convolution of ]5\2 with itself, at arqument 2t. The

complementary result, integrating with respect to t, is

2 v 2
ls(f - %)

. 2{[5(0)] 28s(v) 2} v=2f. . (45)

th wl(t,f) - jdu lS(f )
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E)

- o .-
¥ -

R ~ NS NN . oy WL
i ! . B850, ..““l AT RN N

................



TR 8225

g AX3

If we complete the integrations in (44) and (45) on the remaining

-~ -
T~

variables, both yield the result

-
.,

ol
)
-

55 dt df Wo(t.f) = E° ; (46)

-
T,
- .

_.
Ty

see (14). Also note, for comparison, that the double integral on W yielded

E.

D e e oy *4‘

] Although the results in (44) and (45) are not overly simple, continued

integration does yield a surprisingly simple result; multiplying (44) by t,

there follows '4

Sfdt df t w(L,f) = Idt t Zjdx |s(x)|2 ket - x)| ‘. )

2 2 2 2
- de ko] 2 jdt t et - x| - de Is(x)| Idy k)] (v +x)/2 -

- -
T T T L}

-
-

2

-

2 - -
-1 fdx ool [Te s x€) = HTE2 + T EY) = €9 T . (47)

Here we used (44), (37), and (14). Thus "

_SL!E__d_f_t Wl (t,f) = ~fdt t |s(t)] ‘ V.

Hat af wi(L,f) e fat Jv)? o)

from (47), (46), and (37). This result in (48) is the same as (37), but now

for w2 rather than W.

117
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Conditional first moments of w2 with respect to f and t are also

deriveable; for example,

Sdf fwl(t,f) 1]2 j-dt R (E,T) 5= R(t T) -

2
= -2-]; .“dt ls(t +'§)| lm{s'(t —%) s (t —g)} -

= ‘; fdx ls(2t - x)l2 Im{s'(X) S*(X)]
- ]; de M2(2t - x) M3(x) ®'(x) . (49)

Here we used (3), (29), (2), and (31). When normalized by the quantity in
(44), the result is considerably more complicated than the corresponding
result for W in (30) and (32); nevertheless, continued integrations simplify
tremendously. In particular, there follows, from (49), (14), (38), (46),

and (36),

Sfdt df £ Wo(t, n - jdf f |S(f)|
6§ av ar Wit J‘df [s(h)] 2

(50)

This is the dual relation to (48), but derived by means of a different
approach. Comparison of (50) with (36) reveals the same result for W as for

We.

18
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w J
CROSS WIGNER DISTRIBUTION FUNCTION

"

’I

The cross WDF of two complex waveforms a(t) and b(1) is a generalization ::

O

of (3) and (10) according to -

n

O

s

wab(t.f) = Jdt‘exp(-iZ«ft) Rab(t,t) = g

* ]

= Jd‘C exp(-i2«fT) a(t + %) b (t - g) = ::

!

.

X

. v * v .

= J.du exp(i2wvt) A(f + 5) B (f - -2-) , (51) y

+

!

which is generally complex. If a(t) and b(t) are nonzero only for ::

W

a, < t < a2 and b] <t< b2. respectively, then the integral limits .

U

\

on T in (51) are explicitly 'E], 7_'2. where

r=2max(a]—t,t—b

] T=2m1n(a2-t.t—b1)

2) 2

If T] > 1'2, then W, is zero.

The following properties of the cross WDF result immediately:

e o

*
wa*b*(tvf) = wab(tl_f) ’

PERE. S

*
Nba(t,f) = Nab(t.f) ’

de W, (t.f) = a(t) b (1) ,




TR 8225

*
Sdt W (t.f) = ACF) B ()

Sfdt df Nab(t,f) = Jdt a(t) b*(t) = de A(f) B*(f) ,

ﬁdt df |wab(t.f)|2 =€ E .

ggdt df Naa(t,f) wbb(t,f) lydt a(t) b*(t), ‘ = det df Nab(t,f) ‘ ,

* * *

‘Udt df wab(t,f) wcd(t,f) = fdt a(t) ¢ (1)« fdt b (t) d(t) . (52)
: The last three relations follow upon substitution of (51), interchanging
()
oy integrals, and the use of (13). Again, the double Fourier transform of the
‘:: cross WDOF yields the cross ambiguity function:
2
of 5‘[ dt df exp(-i2wvt + i2«fT) Nab(t,f) =
‘0
L)
B *
- Idt exp(-i2wvt) a(t + g) b (t - ’25) =
B
l..
d *
" = jdf exp(i2«ft) A(f + %) B (f - %) =
W@
M
W%
o
;E‘ =Xab(u,t) = jdt exp( -i2wvt) Rab(t,t) . (53)
..I
g‘l
)
.
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1he magnitude -squared cross-WOF of waveforms a and b is also related to

the auto-WDFs by means of a double convolution:

ap(t.0) 2 = Jfos, ar, exp(ianrcr, - T,) *
T, +T T, -T T +T, T, -T
1 2 1 2 2 1 2
* Raa<t + 4 ’ 2 ) Rbb(t - 4 . 2 ):

] . o £ T T T T\,
= SSdt dT exp(-12«fT') Raa(t +2 . 2) Rbb( T 2)-

- Hdt' dT exp(-i2=fT') Raa(t + I %)fdf' expéZ«f' 12-) Nbb(t -T, f') n
. Udt df’ Nbb(t -3 ,f') Jdt' exp(—iZw(?f - t—z) Raa(t +'§, %):
-2 Hdt df wbb(L -7 .f) waaé +§,2f . f) -
=Sfacauwaa(ug,mg)wbb(c-g,f-g), (54)

where we let T- (t] +’C?)/2. T - 't] - ‘CZ in the third line.
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i@ NARROWBAND REAL WAVEFORM
L3¢
o
e& when waveform s(t) is narrowband and real, it can be expressed in terms
‘.l
k: of its low-pass complex envelope c¢(t) according to
0“
l.
” s(t) = 2 Refc(t) exp(izef )} -
&
7y
= ¢(t) exp(i?«fot) + c*(t) exp(-iZ'fot) .
N
5
B where fo is the carrier or center frequency of s(t). The WDF of s(t) is
Y
) then expressible as
P
™ . T )
,o W (t.f) - jdt exp(-i2efT) s(t + 5) s (t - Iy =
! SS 2 2
k0
A
oy - - _f -
' = Ncc(t.f fo) + Hcc(t. f fo) +
"
L}
b + 2 RefW__4(t.F) exp(idsf 1)} . (55)
\
:‘ Here, we substituted for s(t), and used (51) and (52). Since complex
s
3’ envelope c(t) is low-pass, a representative contour plot of (55) appears as
: shown in figure 1. The wiggly lobe centered at f = 0 is subject to rapid
» . . .
.? oscillations in t, whereas those lobes centered at tfo are slowly varying
»
X
k with f and t. A sme)l amount of averaging in time would wipe out the
undesired oscillating lobe, but maintain the desired components at f = tfo.
0
o
¥
W

b 22

»
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Figure 1. WDF for Narrowband Real Waveform

SAMPLING PROPERTIES

By letting u = T/2 in (3), the WDF becomes

W(t,f) = 2 fdu exp(-idwfu) s(t + u) s*(t - u) ,

where we again now allow general complex s(t). If this integral is to be
evaluated numerically on a computer, we will need to sample the integrand at
some increment At' and apply some integration rule. In particular, if we

use the Trapezoidal rule and carry out the summation over -e, +e, we have

approximation

~ *
W(t,f) & 21\t Eexp(r-ihfut) s(t + kAt) s (t - ka
k

t)

for all t,f. Since it is immediately seen from (57) that

TR I 3 » A LAEARENOGN LN AT Ty TR e
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Al
3 1

) o L \-w
w<t,f + “t) W(t,f) , (58)
L

~ . -1 . :

.p. it follows that W(t,f) has period (ZAt) in f, when waveform s{t) 1is
' -
h& sampled at increment At' In fact, it can be shown that W is the aliased
l'.

)
B version of W:
o, W(t.f) =§ W(t,f - 5r (59)
Hl : ' 28’ -
1y n
N
" ~
b Thus, W(t,f) need be evaluated only over one period, say (0”5/At)'
;
) Since (57) cannot be evaluated for all continuous values of t and f,
i

¥
m, we will limit its evaluation to
bt n
™ t=ma, , f= . (60)
R )
ek t 2NfAt
s

where m, n, Ng¢ are integers. Then (57) becomes (exactly)

‘.'|
3§' g(,,m ¢3= 24 Zexp(-iZ'nk/N ) s((m + K)a,) s*((m -8 ). (6)
W t 2NfAt t : f t t
b
i the right side of which is recognized as an Nf—point discrete Fourier

(2
4
:ﬁ transform. 1f the number of nonzero samples in k is greater than N., we
)

simply collapse them mod Nf. without loss of accuracy, see [5; page 7].

[ ~ -
N Since the period of W(t,f) is (ZAt) ! in f, we only need consider
» _
b' 0<nc«< Nf—], that is, 0 < f < (ZAt) ]. values of m must be considered
A wherever the summand of (61) is nonzero.
)
",
:? A plot of two of the infinite number of lobes of W(t,f) in (59) is
- depicted in figure 2 for a representative bandpass analytic waveform s(i).

N 24
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Figure 2. WDF for Sampled Version W(t,f)
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Figure 3. W(t,f) for Real Waveform s{t) N
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The spreads of the desired WOF term W(t,f) are T and B in time and frequency,
respectively. In order to guarantee that aliasing is insignificant in

figure 2, we must choose
(284)") > B, that is, a¢ < (2B)7) . (62)

for Nf equal to a power of 2 in (61), an FF1 can be employed to evaluate W
and will give the vertical slice in f indicated in figure 2 between f - 0 and
f = (ZAt)-1, for the particular m value under consideration. Since the
spacing of frequency values in (61) is (2NfAt)—]. then in order to

keep track of the wiggles in ﬁ(t,f) as a function of f, we must choose

1

(NfAt)—] < T ', that is, Ng > T/8, > 281. (63)

Thus the FFT size may have to be quite large for an extended WDF in t,f

space.
If s(t) is real, then (8) applies, meaning that W in (61) need only be
computed for
0 <n<N/2, thatis, 0<f<(da) . (64)
The pertinent approximate WDF Wis depicted in figure 3. 1In order to avoid
aliasing now, we must have

(4At)_] > f that is, a, < (4fH)" ) (65)

H'

26
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where fH is the highest frequency contained in s(t). This sampling rate

is twice as fasl as the usual Nyquist rate for waveform s(t), and is due to

the unavoidable factors of 1/2 in definition (3).

The procedure described above, in (61) et seq., realizes a slice in f,
al fixed t, of the WDF; see figures 2 and 3. An alternative procedure for
obtaining slices of the WDF in t, at fixed f, is described in appendix A;
however, starting with time sampies of s(t), it requires an additional

large-size FF1 to start the calculations.
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o EXAMPLES OF WDF
e
()
;ﬁ In this section, we present several examples of the WOF for waveforms
l. )
'& that are likely to be encountered in practice, and that are amenablie to
0..
v simple closed form solution. A significant shortcut in the presentation is
'..
e possible when it is observed from (3) that if
g
"
r(t) = s(t - to) exp(12«f0t + 190) . (66)
1
o
B
:ﬁ which corresponds to a time delay and frequency shift, then
c,::
w Nr(t,f) = ws(t - to' f - fo) . (67)
R
)
" Thus we can choose any convenient origin for the waveform s in time and
‘¥
:’ frequency, without loss of generality, and then merely shift the WDf
0.
'; according to (67), as appropriate.
b
o
:« We will place heavy emphasis here on combinaticns of Gaussian pulses,
555 both because of their analytic tractability and due to the fact that any
b
waveform can be expanded into elementary waveforms consisting of Gaussian
Yﬂ wavelets; see, for example, Gabor's original paper [6, part ), section 5]}.
[
v
L
In the following, frequent use will be made of the following integral:
1 4
y_ 1 2 ) 1/2 2
i j\dx exp(- 7 ax Bx) = ~§ exp %; for a, > 0, (68)
4;.
"
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where a and B can be complex, with components
a: a +ia, , B:-8 + iﬁi . (69)

Alsa, as a special case, there follows

: 2 2
. 2 a (B° - BY) + 2a.8 8.
be exp( - 1 axz t fx) .l exp r—r ) Lra , (70)
2 L 1/2 2 2
(02 + az) %p toay
r i
written out in terms of purely real quantities.
GAUSSIAN WAVEFORM
Let waveform
t2
s(t) - a, expl- =51, a, complex . (71)
20
0
(Parameters will be real unless indicated otherwise.) Use of (3) and
(68) yields WDF
t2 2
W(t,f) = 2E expl- i (waco) , (72)
L 9%
where £ is the waveform energy:
£ = voh,|° o (73)
0 o’

1he WOF consists of a single positive lobe in t,f space,centered at the

origin.
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Observe that W(0,0) is equal to 2E for this example; in fact, from (3),
*
W(0,0) = J-dt s(T/2) s (-T/2) = 2t if s(-t) = s(t) . (14)

Thus waveforms s(t) with this even symmetiry result in peak WDF values of 2t
at the origin. However, if s has odd symmetry about zero, s(-t) = -s(t),

then W(0,0) = -2E.

The contours of equal height of the WDF in (72) are ellipses. The
contour for the case where the levels are down to exp(-1) of their peak
value is the ellipse indicated in figure 4. The area of this particular
level ellipse is 1/2 in the t,f plane. When this area is multiplied by the
peak height of 2E, the product is £, which is just the volume under the WODF;
see (14). Thus the "effective extent" of the WDF in (72) is that given in

figure 4, for relative level 1/e of the peak.

Q

Figure 4. Contour of WDF (72) at 1/e Relative Level

o
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GAUSSIAN -MGDULATED TONE

" . w e s a e .

s(t) = b0 cos(Z«fOt + no) exp(E

20

- e e -

The energy of this waveform is

1= 2 2
E = 3 Vrbg o (1 + cos(28 )exp(-y)] ,

and its WOF is

-1
GF’ bg oo) W(t,f) = exp[—x2 -(y - yo)z] + exp[—x2 -(y + yo)z] +

+ 2 cos(4wfot + 2n0) exp[-x2 - y2] '

where dimensionless variables
X = t/uo , y = waoo . Yo = Zﬂfooo . (78)

There are two positive lobes centered at (t,f) = (O.fo) and (0.-fo). each of

peak height approximately E (if Yo is large). The contours of each of these

lobes are circles in the x,y plane, or ellipses in the t,f plane, as indicated
in figure 4. There is also an oscillating lobe centered at the origin; this

is an example of the general situation depicted in fiqure 1.

It should also be observed from (77) that if a slice in frequency is taken
of the WDF, at fixed time t, that there is no fast oscillation in any of the
ihree lobes. Whatever value of the cos is encountered, that value is main-
tained, and the only variation with y (frequency) is the Gaussian dependence.
Thus if we 1ncally averaged the WDF with respect to frequency alone, that

would not eliminate the undesired oscillating lobe centered at (0,0).
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MULTLPLE MODULATED TONES

"
:‘ Consider complex waveform

B . (t - tk)z
& s(t) = Eak exp |i2uf, t - 5— | {ak} complex .

i 2o
r: k k

This is a collection of tone bursts centered at (tk,fk) in the t,f
X plane, with energy Ek = ﬂr’\ak‘z % The corresponding WDF follows
from (3) and (68) as
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where
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s
o

e lhe first line of (80) represents the desired positive lobes centered at
ib (tk,fk), each scaled according to its energy. 1lhe remaining undesired
’
O lobes are centered at

¢
i
&

| - t +t f + f
" koAb A eranks R, (82)
o
""
“H and oscillate with t and/or f. T1These locations in (82) are halfway between
jg; every possible pair of desired lobes; their amplitudes are proportional to
yy
Y the geometric means of the corresponding interacting lobes, and therefore
"
IV constitute significant interference effects to interpretation of the

*
Y computed WOF. Furthermore, the locations in (82) can occur in time where

»
o the waveform s(t) is zero, and/or in frequency where the spectrum S(f) is
P
Bl zero. This most undesirable feature of the WDF has been reported previously
&: in [7,8]. The only saving feature, that should allow salvaging the WDF, is
)
4
5$ that the undesired lobes, k <2 in (80), oscillate positive-and-negative and
4:"

ot can he averaged out by smoothing the WDF. Of course, via this smoothing
:‘) procedure, the desired lobes will also be smeared somewhat, but this
3
L)
5‘ trade-of f appears to be required in order to make a meaningful, useful
|‘.'

U

& interpretation of the WDF at all points of the t,f plane.
.;'f
l‘:‘.
$r
;s“ The envelope of the k,L lobe in (80) is proportional to an exponential
s.q‘b
- of an elliplical function. When this exponential has decreased to 1/e of
ty
{5’ its peak value, the corresponding elliptical contour has area
P
s:‘:
R

’ -

no g g,

‘ ek T Y b S A YN | (83)
R 2ro. \A %)

oy K’.
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in the t,f plane, the latter value of 1/2 being the area of every desired

:Q: lobe. Thus the undesired oscillating lobes are smeared out more than the
")
i R N
ng desired positive lobes.
1:&
{‘ " . . » . )
Vs If we restrict {(79) to two equal-duration bursts with the same time
O‘r
3 \ . .
Q center, but different center frequencies, the undesired lobe oscillates only

with t, not f. This is similar to example (75)-(77). On the other hand, if

"
pﬂ (74) is restricted to two equal-duration bursts with different time centers,
13
I“
Qf but the same frequency center, the undesired lobe oscillates only with f,
W
‘ not t.
?v
{3
;
5 More generally, for two equal-duration bursts with different time and
&

frequency centers, the undesired lobe has no fast oscillation along lines in
Iy .
;g; the t,f plane which are parallel to the line joining the centers of the iwo
E& positive lobes in the WDF. For two unequal-duration bursts, the situation
"‘ »

is more complicated, and there is generally oscillation along all straight
"
:f lines in the t,f plane.
e
D.'
%

What these simple examples demonstrate is that if we want to locally

e
5: smooth (average) the WDF, in an effort to wipe out the undesired oscillating
‘0
ﬁ: cross-terms, that smoothing must be applied in both t and f, not either one :
e _
2 alone. Of course, such smoothing will also tend to smear the desired
' .
g: positive lobes; thus the minimum amount of smoothing to guarantee a
)
4,
» nonnegative WDF is of interest.
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Although these conclusions have been drawn from the particular example
of Gaussian-modulated tone bursts in (79) (for analytic simplicity), they
hold generally. Appendix B demonstrates the oscillating character of the
interacting cross-terms of the WODF for a waveform with two separated energy

bursts in time of general shape.

The ambiquity function of waveform s(t) in (75) is considered in
appendix C. It has some similar properties to the WDF and some significant
differences, which make it much less desirable as a descriptor of a signal's

concentration in time-frequency space.
LINEAR FREQUENCY MODULATION

Here, we consider waveform

t2 % .2
s(t) = ao exp|- ~—5 + i —E ; a, >0

, a_complex . (84)
)
200

The instantaneous frequency, according to (31) and (32), is a linear

function of time,

Vf(t) = -t ’ (85)

while the envelope is Gaussian. When
t=t =4 o\w2, (86)
the magnitude of the waveform s(t) is

[s(ty)] = lag) exp(-wsa) - 456 |s(0)] . (87)

35 !
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(88)

(89)

(90)

(91)

s

t

K

L.

; If we define the duration, at, of s(t) as the time between these

)

U

b function values, then

K.

.!

4: At - GOVEI .

: During this time interval, the instantaneous frequency in (85) sweeps
through a bandwidth

<

a

» Af = 2v At - a,o ﬂ?v .

“

; The time-bandwidth product of waveform s(t) is therefore

y

Y, At Af = a 02 t0 (>0)

» 0 0 = o - ’

W«

)

1 when the time duration is defined as the interval between the function

4 values in (87). This quantity, 8,. is an important parameter of the

)

4 linear frequency modulation waveform (84).

L)

K

'y The WOF of (84) follows, upon use of (3) and (68), as

W(t.f) = 2F ex i 2ouf - a 1)?] -
' ' B P 2 % %o
%
= 2¢ exp[}x2 -(y —xeo)ﬁ] =
2 2
= 2t exp[}xz(] +0 ) +2xy 8 - y:] .

, o o

1

4]

p where we employed (78) and (90). This is an everywhere -positive lobe
centered at the origin of time-frequency space, with contours that are
tilted ellipses. The peak value, 2f, is independent of the amount of
frequency modulation.
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For a given value of time t, the frequency f that maximizes the WOF in )
(91) is K
00 .
f - 7e t, that is, y = xeo . (92)

which is just the instantaneous frequency in (85). However, this line, J

(92), in the t,f plane is not the major axis of the elliptical contours of
the WDF. A similar observation regarding the ambiguity function Z(»,T), \
{
(?3), of the linear frequency modulation waveform, namely ::
.|
X, T) = ¢ exp[— 2{3('2(] + 9(2)) - 2)(‘5;'6o + y'z}] . (93) X
where X

1] £ ] -
x'= o7 y' - Zwuco R (94) :
o
has been made in [4; page 124]. A
)
What this means is that, if the WDF of a waveform is evaluated '
4
)
numericaily from a given data sequence (via (61) for example), then the tilt A,
'!
of the major axis of the contours of the computed WDF is not directly the .
amount of linear frequency modulation in the waveform. Rather, the major '
axis of the ellipse in (91) lies along the line ;
y = x tan ¥ (95) i
A |
\
in the x,y plane, where .
1]
\£0+ 4 60 h
tan‘v = > e . (96) :
Y
4
37
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(See appendix D for detailed derivations on the rotation of coordinate
axes.) Thus, the major axis (95) of the ellipse is more tilted than the
instantaneous frequency line (92). Equation (96) can be inverted and solved

for the linear frequency modulation parameter 90 according to
8, - tany - V/tany , (97)

in terms of the measured or calculated major axis tilt, tanv', in the x,y
plane. The detailed procedure for solving for both % and a, in terms
of a computed WDF in the t,f plane, is discussed in the example in appendix

D, especially (D-28) and (D-29).

When the exponential in (91) is down to 1/e of its peak value, the

ellipse at that level has area » in the x,y plane. This may be seen by use

of (D-1) and (0-29), with A = 1 + Os, B--26,C:1,D=¢t=0,F= -1,

0
for which G = 1 via (D-19). This corresponds to area 1/2 in the t,f plane,

as seen by (78). Therefore, the peak height, 2t, times the "effective" area
is again E, as it was for the simple Gaussian pulse of (71) and figure 4.
Thus, although the volume of the WDF in (91) has been redistributed in the
t,f plane, by virtue of linear frequency modulation, the effective area is

maintained, although now located as a tilted ellipse.

A plot of the ellipse of (91) at the 1/e level, namely

v (y - xe)° =1 v 6)) - axye v yP o,

is given in figure 5, when 90 = 1.5. The instantaneous frequency line
(92) as well as the major axis (95) are delineated, and are clearly seen not

to overlie each other.
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Figure 5. Contour of (91) for @ = 1.5
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GATED LINEAR FREQUENCY MODULATION

All the previous examples in this srction had Gaussian envelopes. We

now consider a rectangularly gated waveform with linear frequency modulation:

x
- 0 .2 T
s(t) = a, exp[} > t-] for \t( < 5 3, complex . (99)
Equation (3) yields directly WDF

sinl(2«f - a t)(T - 21th))

- I
W(t,f) = 2 (onf —a DT for It] <5, annf, (100

and zero otherwise. Along the instantaneous frequency line, (85), the WD}
is 2 (1 - 2\tl/1) for Jtl < 1/2, which is nonoscillatory and positive.

However, in other portions of the t,f plane, (100) does go negative, due to

the sin term.

For a given value of t, the quantity W in (100) is maximized by choosing
f = aot/(Zw), but, again, this is not the major axis of the contours of the
WDF. In figure 6, these contours are plotted for QOTZ = 1 and 00T2 = 10.
In fact, the contours are no longer ellipses, although they tend to resemble
ellipses near the origin, when frequericy modulation parameter oolz is large;
see the bottom figure, where the instantaneous frequency line and the

mountain ridge (curve of slowest descent) have been sketched.
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) The ambiguity function of waveform (99) is

b sin[%(hu - a D) (1 - JTh)]
ol X@,T) = &~ ——=  for JTl<1, all v, (101)
E(Zwv - aot)T

and zero otherwise. It is similar to the WDF in (100), but is spread out

more in the »,T plane.
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SHORT-TERM SPECTRAL ESTIMATION

Some advantaqeous features of the WDF have been brought out by earlier
examples, such as the concentrated positive lobes in the t,f plane about
locations corresponding to obvious bursts of energy. However, the WOF also
goes negative in surrounding regions, causing difficulty in interpretation;
see fiqure 1, (80), appendix B, or [7,8]. What is needed is some form of
smoothing of the WDF so as to eliminate or suppress the oscillating
components; however, this averaging must be two-dimensional, carried out in
both time and frequency, for the reasons presented in the sequel to (83).
We now present one method of smoothing the WDF, which guarantees a

non-negative distribution in time-frequency.
WEIGHTED SPECTRAL ESTIMATE

The voltage density spectrum S(f), corresponding to waveform s(t), was
defined in (9) as the Fourier transform over all time. 1In order to bring
out properties which are local in time, a weighting must be applied before

transformation. 1In particular, we generalize (9) to

*
Su(t.f) = j‘dt] exp(—i?«ft]) S(t1) u (t - tl) =

= exp(-i2«ft) [ df] exp(iZ«tfl) S(f]) U*(f - f]) , (102)
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where weighting u will tend to be a narrow function centered about its
origin; thus the weighting in (102) will accent the behavior of waveform s
in the neighborhood of time t. The function U is the Fourier transform of
u. The short-term power spectral estimate (at time t and frequency f) of

waveform s, relative to weighting u, is then defined as

lsu(t,f)l2 . (103)
See also [2, p. 768].

The following symmetry properties of definition (102) follow:

x
Su(t,f) = Us(t,f) exp(-i2nft) ,

|su(t,f)\2 - IUS(t.f)l2 . (104)

where US is the spectrum of waveform u relative to weighting s. That is,

US is the dual of Su. Also, by use of (53), we can express
Su(t,f) ='Xsﬁ(f,t) exp(-inft) , (105)

in terms of the complex cross-ambiguity function of s and u, where U is the
mirror image of u: u(t) = u(-t). Also, the same shifting property, given

in (66) and (67) for the WDF, holds as well for quantity (103).

RELATION TO WDFs

There is a very important relation between the short-term spectral
estimate (STSE), (103), and the WDFs of s and u; namely, by use of (102),

(2), and (3), we have
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lSu(t,f)l 2 =ffdt] dt, exp (-ianf(t; - tz))s(t])s*(tz)u*(t - tult - t,) -

- ﬂdt dt' exp(-i2nfr) S<t' +§) s*<- -g-) u(t St o4 g) u*(t Y ‘g) .

n

ﬁ-d't dt' exp(-i2«fT) R (t',T) R (t - t',T) =

jj.dt' df' ws(t',f') wu(t -t',f-f') =

= Ns(t,f) és wu(t,f) . (106)
This relation states that the STSE is a double convolution, in both t and f,
of the WDFs of waveform s and weighting u. That is, the STSE lSu(t,fﬂ 2
of waveform s, relative to weighting u, is a smoothed version of the WDF of
waveform s, where the smoothing function is the WOF of weighting u.
furthermore, since the left-hand side of (106) can never be negative, and
since s and u are arbitrary, (106) shows that the double convolution of any
two WDFs is never negative for any values of t,f. This furnishes a
possibility of accomplishing smoothing of a computed WDF of waveform s, with
a quaraniee of a nonnegative distribution resulting; of course, wu must be
a leqgal WDF, as discussed in (25) et seq., in order to guarantee this

nonnegative property.

Since ‘Su‘2 is a double convolution of WOFs ws and Nu' it

follows that the doubie Fourier transform of the STSE is given by
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Udt df exp(i2nfT - 12xtv) ]su(t.f)|2 =, 0 X (v, D (107)

where 2; and ]% are the complex ambiguity functions of u and s,
respectively; see (23). This leads to an alternative expression for the

STSE as

lSu(t.f)l2 - Hdt dv exp(-i2nfT + i2nty) Xy (v, T) X (»,T) . (108)

Therefore, if the complex ambiguity function of s is computed, it can be
multiplied by the ambiguity function of an arbitrary weighting function u,
and followed by a two-dimensional fFourier transform. There is no need to
calculate the WDF NS via this route; also several different weighting
functions could be utilized, each at the expense of a two-dimensional
Fourier transform. The end result for the STSE is always nonnegative. Of
course, the same result is obtainable directly by taking the magnitude-

square of definition (102).
MARGINALS OF SPECTRAL ESTIMATE

There follows, from (106) and (12), the marginal relation
t
Jar Js,t.0] 2= Jorr peenf 2luct - £9) 2 = s 2@ Jucw] 2 . 100)

Thus, the time marginal of ISU\2 is not directly |s(t)|2, but is
smeared by the weighting, according to ‘u(tﬂ 2. In a similar fashion,

from (106) and (11), the frequency marginal is
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f
ert s, (t.0)] 2 = [s(n)] 2 @ Jun] (110) 3

Again, lS(f)\2 is smeared by window |U(f)|2. !

Finally, completing either of the integrations in (109) or (110), over

Cac S S ls o ga g e g a m oe g
- d

the remaining variable, yields ~

(fat af |s,ctn)2=€ €, . (1) "

where ES and Eu are the energies of s and u, respectively; see (14).
Since weighting u is arbitrary and under our control, we can easily choose N
Eu to be 1, without loss of generality; then the volume under the STSE

will be equal to the energy in waveform s being analyzed, just as for the

WOF in (14). :

MOMENTS OF SPECTRAL ESTIMATL &

PN O
-
-

If we use (110) and (14), we find the following development: b

Hdt df f lsu(t,n\? - fdf f fdv Is(o)| 2 s - w)] % = A

{ av Isw) 2 )Pdf (f - v+ o) ucf - )2 =

jdv |s(v)] ZUdf] f uce] 2+ ”Eu]= :

- Eg jdfl £ Jucey)) 2ie, fdv v s 2. (12)

" T

-
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Combined with (111), there results

ﬂdt df f]su(t.f)l2 ) Jar cjuny? far rlscn)? . (113)

{{ at of lSu(t.f)‘z ) {af |uce)] 2 ' { af]sen)?

That is, the first moment in f of the STSt is the sum of the frequency
centers of lU|2 and Is]2. This should be compared with the

corresponding result in (36) for the WDF, where only the last term in (113)
is present. The presence of weighting u in definition (102) adds an
additional term to the frequency center unless lU(f)l is even about f = O;

in this latter case, (113) reduces to (36).

In a similar fashion, the first moment in t of the SISt is found to be

ffatar el ]2 far tp) 2 fat thoul?
= +
SS at of st 00} 2 far Juty) ? fatkan?

(114)

Again, a sum of time centers results; but if weighting Ju(t)] is even about

t = 0, then (114) reduces to the same result, (37), as for the WOF.
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CONDI{ TONAL MOMENT

defined. For example, directly from (105), we have

: in terms of the cross-ambiguity function of s and U, where u(t) = u(-t).

An alternative time-domain expression is possible for the frequency

moment in (115): define

g(t,ty) = s(ty) u™(t - ty) . (116)

Then from (102) and (29),

fdf fISu(t,f)l 2 . faf f H dt; dt, exp (-121f(t] - tz)) g(t,t,) g*(t,tz) =

* i, ~
= gg dt] dt2 g(t,t]) g (t'tZ) = ) (t] - tz) =

where

Just as in (28)-(35) for the WDF, conditional moments of the SISE can be

5df fFls,t.o)] % = Idf fXgtfo0) % (115)

| . *
* 5y Jdt] 9'(t,t)) g (t,t,) , (171)

1R 8225

4 g'(t,t)) = ’ata—] g(t,t)) = ﬁ; s(ty) u*(t - t1)} . (118)

If we represent waveform s in terms of its magnitude and phase according to

(31), and do likewise for weighting u as

Y et 1 . " y g Vi » -, ¥ o » > y
-l."‘:ll‘t‘n.'.':(“\“-.tt‘f ' i ta ..,-|?‘.;“n‘ .","‘ i‘!;"t.' y} S 'A:i‘i Iq?t“!""l“‘;‘-i“ ..I N K .\,' s J‘i" 1) .i.:!“g. .".l’i“‘t -‘.A,.“» .'Q “;Q‘: P LNSUN AN "g"'t“'. RN LA |'.'_‘N¥‘
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u(t) = E(t) exp[iP(t)] , (19

then substitution in (117) results in the simplified form

j\df flSu(t,f)|2 . 2—1 ’gdt]Es'(t]) S Pt - t])] Mz(t]) £t - t) . (120)

When this result is combined with (109), the normalized conditional

first moment is

(af fls,(t.0)] B far,[orcty) - Pt - )] ME(e) €t - 1))

fo [sce.)]? 2 [at, W) et -t

. (121)

(This reduces to (38) when E(t) = 1, P(t) = 0, that is, u(t) = 1, in which
case Su(t,f) = S(f).) Generally, (12)) is an average of e'(t]) - P(t - t]),
weighted according to the instantaneous powers of s and u.

50
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EXAMPLES OF SHOR1-TERM SPELCTRAL ESTIMATION

Here we will reconsider many of the examples presented earlier for the
WOF investigation. The particular example of weighting u adopted here in

spectral definition (102) wil)l be, for the time being,

) -1/4 t2
u(t) = (w o) exp(- —“5 , (122)
2a

where duration measure o is under our control. The energy Eu of this
waveform is unity, in keeping with the discussion in (111) et seq., which
qudrantees that the volume under the SISE will be the energy Es = £ of the

waveform s being analyzed.
GAUSSIAN WAVEFORM

The waveform s was given in (71); its transform Su(t,f) is obtained by

substituting (71) and (122) in (102) and using (68):

\172 ) 2
S (t.f) = [E Y expl- b - 2022 - inft 2 + i arg(a )] . (123)
u ] 2 h 2 o}

a 4oa %,

where £ is the energy of s and

2 _1f2 .2y a_rfa,a\ %a_1fls, %
°a'2é+°o)' 2‘2(2*2 '0‘2( “o)' (124)
oh o oo h 0
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JE 2 2
¢ The quantity os is the arithmetic average of o and Iy while
”. .
% js the harmonic average. The STSt then follows immediately (or by
2
':" use of (70) directly) as
:-‘«-
W Stfz—E?ﬂex—1£+42f22 (125)
4 l U( » ) = o p 2{ 2 « oh
a o
a
L4
',:.f
,: The volume under STSE (12%) is readily verified to be t, as it must be.
A The half widths of the ellipse at the 1/e relative level are V?'oa, Vﬁ? (210h)—],
ﬁ, respectively, in the t,f plane. The area of this ellipse in the t,f plane is
l:.
W o ) o
s .22 2)50 . (126)
W s 2 o o)
n
j: This area is at least twice as great as that for the corresponding WDF in
LY,
G. figure 4, and even then, only when the proper guess is used for the
" weighting u, namely o = 9, Since waveform duration % will likely be
L)
fﬂ unknown in practice, the mismatch factor in (126) will smear the
)
i) concentration of the STSE somewhat. For example, if o is off by a factor of
IS
. 2 from 9, (either double or half), (126) is 1.25 instead of its minimum
0.
: value of 1.
]
0“
“ Ihe area enlargement factor °a/°h in (126) is also the same factor
" by which the peak of the STSE in (125) is down from its best value of E.
¢
:;', Thus, the STSE has a decreased peak and enlarged effective area relative to
the WDF, the relative factor being at least 2, and being o/ao + 00/0 in
‘
C general. Both distributions contain volume E, independent of o.
B
‘:.
Y
i
e
o 52
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This example demonstrates the presence of *window effects" in the SISt t:
LN
that are not seen in the WOF. That is, whereas the effective ellipse in f{
fiqure 4 depended only on waveform parameter 9> the ellipse here depends N
additionally on weighting parameter o, in such a fashion as to always smear o
the concentration of energy in the t,f plane by at least a factor of 2. In N
N
LS
trade, we always have the quaraniee that the SISE (103) will be nonnegative, _;
and that it will not contain the large interference phenomena inherent in o,
l"t
the WDF; see (80)-(81). E;i'
"
a
&
MULTIPLE MODULATED TONES q:
e
2
)
vy
The waveform of interest is given in (79). The transform Su(t,f) is "
»
found by use of (122), (102), and (68): X
)
1/2 2 .5
“nk (‘ ~ Y 2 2 2 I
Su(t,f) =z Ek o—ak‘ exp - T -« (f - fk) Gk " A
X ak L
W
2 3
. Ok t + o t . ;\‘
- iw(f - fk) - + 13 arg(ak) . (127) fk
°ak [
2 z
where energy b, = 0., and averages !
k v?.kk‘ k 3:
&:
ak 2 k/' 2 21 2 2 {1 4:‘
“hk " "
N
".,

[ YO
O TOCX
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b
e}
ﬁ? The STSE is the magnitude squared value of (127); the resulting double
:’l'
) sum has diagonal terms
i SN
o hi A 2 2 2 ,
;2: :EEK S expf- > + 4uC(f - fk) %k . (129)
g k ak %k
,?: which are identical to (12%), except for the indexing by k and the shiftl to
%; center tk'fk in the t,f plane, as expected. If one value of weighting
§
" parameter o is used to evaluate the SISE for all t of interest, it cannot
ﬁﬂ simultaneously match all the different possible values of fok} for the
) 1]
ﬁ various pulses. This will cause some of the components in (129) to be more
1) v,
- severely degraded than others, in terms of decreased peaks and spread
y,
h: effective areas; the pertinent factor is again
)
:‘"é' ak _ 1{a %k
N one 2o T o (130)
, hk k
o
‘3 for the k-th component lobe. If some apriori knowledge of the values of
1~
b {ok} is available, this suggests using different values of o for those
e values of t near the corresponding values of {tk}, in an effort to
L
o minimize the factors (130) for different k.
R
1|.
“' As for the off-diagonal terms of ISu(t,f)'2 in (127), the k fterm is
l|.
N proportional to
l.q
K] 2 2
Wt - -
; (t-t) -4y o, 2 2 2 2 2
™ exp|- 2 - . 2 -w (f —fk) ohk-w(f _fp) %e |- (131)
J 4 o o
ak ag
M
{:‘
N
"
2
::5
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]
a:
(ol
W,
{]
)
I[f t is not near one of the time centers {tk}, or if f is not near one of ;
.
the {fk}. this term will be very small, due to the exponential decay. 1In a
y
particular, halfway between the dominant desired peaks of (129) at {tk'fk}' N
' the quantity (131) will be essentially zero. This is in distinction to the ¢
3 £
{ WOF result in (80) et seq. h
‘0
LINEAR FREQUENCY MODULATION =
.
X
W
This waveform is specified in (84). [Its STSE is, upon use of (70), }
L
!
lS (t,f)l2 - 2 exp| - 1 {xz(l +r+r 92) + N
u \ﬁ;ﬂ H2 o ¢
2 *
\J
2 )
+¥2(1 + /e - 2xy eo}], (132) X
“
(B
where %
\
2 02 1 2 L
60 a, 9 r 5 H2 - +2+r +r 60 . (133) 3
[} J
0 A
t
and where we define, here, E
[}
_t - J
X=—, ¥y= 2#fo . (134) ::.
g'e
N
4,
By means of the results in appendix D, the area of the contour ellipse 0
)
in (132), at the 1/e relative level, is found to be 3
2
] \
area = §Vﬁ; in the t,f plane. (135) X

s ¥
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Thus, the product of the peak height of the STSE ir (132) and the effective
area is again E, the volume under the STSt, regardless of the values of o,

9y eo. (For 60 = 0, (135) reduces to (126), as it must.)

To minimize the effective area and to maximize the peak value of the

-
STSE, the common quantity H2 in (133) should be minimized. This is :
&
accomplished by choosing the weighting parameter o in (122) as i
"
o l l‘;
. o . S 2
) “opt , 178 Topt = , k' (136) o
(1 + eo) (1 + eo) q
|
which would require knowledge of both the duration % and the amount of g
(]
o,
frequency modulation eo in waveform s. Even if that information were kg,
¥
availabie, the minimum area in (135) becomes :,
t
5\ 1/2 3
mininum area = — in the t,f plane , (137) )
&
|I
. : . . ]
which still increases asVGO/Z for large eo. Thus, even the best choice ';
\
of o for the weighting results in considerable spreading of the concentration
ellipse and in peak reduction of the STSE; searching in o is not overly z
..‘
helpful because the simple weighting pulse (122) is a poor facsimile to the ?ﬁ
linear frequency modulation waveform (84), especially for large amounts of t:
v ll
frequency modulation, as measured by parameter 60. .n
-
W
A
Yy
1Yy
’
56
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MOREt -GENERAL WEIGHTING

There is no need to restrict the weighting u in STSE (102) and (103) to

be the simple Gaussian pulse in (122). In this section, we generalize it to

allow for some linear frequency modulation:

1/4 2
W) = (v %) exp[— L4

20

The waveform of interest here is again the linear frequency modulation

2 a
~ __t . 0 .2
s(t)-aoexp{—22+12t]. aogo,
%

as in (84).

example

The SISt follows from (102), (103), and (70), after a considerable

amount of manipulations, as

2 _2E 152 2 2 2.2
lSu(t.f)l = exp[; H3 {x (1 +r + reo +rg eo) +

Hy

+ y2(1 +r)/r - 2xy(1 + rq)eo}i],

+2+r +r(g - 1)2 eg ,

) Ry Wy w » ) gy ¥ . Ay p j Y
PRCOLOOUOC IO X .. LSS SOSANICARON U R O S S -..
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0
e in addition to (134). The quantities r and g are mismatch factors,
X0
W
ot reflecting the lack of knowledge of weighting (138) about the waveform (139).
,."
L
EB The area of the contour ellipse of (140) at the 1/e relative level is
Q“
"‘ (by means of appendix D)
|:i !
D 1 .
';:,. area = 2VH:‘ in the t,f plane . (142)
D
!,:t
B This is also the same factor by which the peak of (140) is down from E.
",
N Thus, a minimum value for H3 is desired. This can be achieved by choosing
>,
_J% r=1,q=11n (141), for which the minimum H3 = 4 and the minimum area = 1;
Yl
> however, this requires that we choose o = % and a = a which is not a
$$ likely situation in practice, without some apriori knowledge about the
Iy
K waveform s. If this fortuitous situation of perfect match of the parameters
8
?
. does occur, the STSE in (140) reduces to
2%
*‘
: 2 _ 1f 2 2 2}]
;_ ‘Su(t,fﬂ =t exp[ > X (1 + 90) 2xy eo +y . (143)
2
o which is identical to the corresponding WDF in (91), except for a factor of
0
My 2 outside and inside the exponential. Thus, the effective area is doubled
?j and the peak is halved.
.
:2 As special cases of weighting (138), if « = 0 (no frequency modulation
iﬁ in the weighting), then H3 in (141) reduces to H2 in (133). Alternatively, if
Y9
v, @, 0 (no frequency modulation in the waveform s), then eo(q -1) =
2 2 (afa. - 1) ~ a oo and
-.. ao co auo adoa
L]
A
2
KX
g
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fo] .
H~l+2+r‘+r‘u204=("2+—g’ +(acd)2. (144) :

3 r o]

o
o

This is minimized by choosing a = 0 and o = Iy giving value 4

N

as usual. Finally, for given q, H3 in (141) is minimized by

choosing r = (1 + (q - 1)2 eg)—]/z, for which the minimum H, = 'y

b 2 +2(1 +(q - 1)2 eg)]/z; however, again, this increases as

(1

|':

L]

2( - 1le as @ increases. o)
a - 1e, as e, s

o A
Pt 2l X WA

-

Pl O]
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M)
o
‘0
B SMOOTHING THE WDF
W
;y
¥
Jn‘ It was demonstrated in (106) that the double convolution of any two WDFs
.Q"
s is always nonnegative, and is in fact equal to the SISt of one waveform
S& relative to the other:
Q‘q
;':, tf )
N W (. F) @ W (t.f) - |5 (t,0]° . (145)
Wy
$: This suggests that one should choose a (legal) WDF for weighting u which is
0
ﬂ' as narrow as possible (least area or spread) in the t,f plane, in order to
i.’
minimize the inherent spreading that (145) implies. The simple examples in
Zt the previous section demonstrated that, for the best choices of duration and
»
: Tinear frequency modulation parameters in the Gaussian weighting, an
tg
increase of .5 in the effective area in the t,f plane of the S1SE, relative
N
‘: to the WDF, resulted.
‘.;
&
7 PHILOSOPHY AND APPROACH
»
&
2
\)
Ef Since fine detail of the WDF Ns(t.f) will Tikely vary in different
s,
portions of the t,f plane, this suggests the following possible procedure
.
fs for analysis: For a given waveform s(t), compute and plot the WOF ws(t,f)
;‘!
zs according to (3) or (61). Locate a t,f region of interest in the plane,
o
) where large (perhaps oscillatory) values of HS occur; denote the center of
I‘
,” the region as tc,fc. Estimate the duration, O and linear frequency
N

ew

T

60

K
i,

'
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modulation index, @ of this particular region in the t,f plane. Perform

the S1SE of waveform s(t) according to (102)-(103), with weighting

-1/4 2 a
_ 2 R A _ 2
u(t) = (v o) exp[— 22 +i t} » 8. =a 9 , (146)
%

(for reasons to be given below), but only for locations t,f in the plane

near t =t , f = f .
c c

The WDF of weighting (146) is (with a. = Z«Bc)

2
_ - 2 2 _ 21 _
wu(t,f) = 2 exp 02 4% oc(f Bct)-} =
- ¢
[ 42 2 2.2 2
= 2 expl- —5 (1 +8 ) + 4«fte_ - 49 f o , (147)
LOC C C C

which has a contour ellipse, at the 1/e relative level, of area 1/2 in the
t,f plane, regardless of o and a.. This STSE procedure is equivalent

to smoothing the WDF ws of waveform s with the WDF in (147), for values
near tc,fC in the t,f plane. Thus we have two alternative procedures

for conducting the smoothing of a calculated WOF NS, the first via direct
evaluation of double convolution (145) for values of t,f near regions of
interest, and the second via the STSE in (102) and (103). Which one to
adopt will likely depend on the number of points that must be closely

investigated in the t,f plane.
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g
? For other regions of interest in the t,f plane of the original WOt ws,
x
4
' different values of tc. fc' O ac must be extracted and the smoothing
M
‘2 procedure repeated. Although tedious, this procedure will minimally spread
1
z'.
5: the WDF ws (by area .5) and it will guarantee a nonnegative distribution.
«'I
This procedure is similar to that given in [2]; however, the information
8
: required to implement (2] is not easily available, and the current approach
)
s is not limited to constant-magnitude waveforms. A fine-grained analysis of
)
a given general waveform s, for various t,f values and yielding nonnegative
:..
a‘ distribution values, is not going to be achieved without the expenditure of
Y
;2 considerable effort and interaction between a user and preliminary analysis
)
RN
results.
‘l
()
v
b This two-stage procedure, of observing the raw WDF and then computing
"2
different smoother versions in different regions, avoids the arbitrary
‘I
2 pre-selection of time duration and frequency modulation content of the
«?’
N weighting in the STSE, which would overly smear the modified WDF for
E.
improper matches of parameter values. It also guarantees nonnegative
.
ol
f estimates. 1In trade, there is approximately an increase of .5 in the
.‘!
h effective area of the distribution in the t,f plane that must be accepted,
)
in addition to a decreased peak value. For WDFs, Hs. with lobes which
¥
" already occupy portions of the t,f plane with areas significantly greater
¥
: than .5, this additional spreading (by area .5) is not very damaging,
‘ !
) -provided that 9. and a. are chosen correctly. Perhaps simultaneous
. plots of WOF Ns(t,f) and STSE \Su(t.f)l2 would yield maximum
',.
a information about waveform s.
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"4
In actual practice, where the integral definition in (102) is replaced o
9"
by a numerical summation of samples taken at increment a, the quantity (145) L
Yy

is necessarily approximated. This problem is addressed in appendix E, where

it is shown that the dominant term in the numerical approach is

approximately the desired quantity (145). Furthermore, since the definition ¢
in (E-1) involves a magnitude-square, the approximation is guaranteed to be y

Y
nonnegative. This need not be the case if the double convolution of WDFs ¥

Ns and wu in (145) is approximated by sampling directly in the t,f plane
and performing a double summation. However, for small enough increments in i
both t and f, this nonnegative aspect should be small and probably X

negligible; this latter approach was used in [1], although the smoothing

¢ function was not a legal WDF. "
4

) !
]

; ALTERNATIVE AVERAGING PROCEDURES o
. ' ":

1ot

y

. T, * T, . . W

Instead of using R(t,T) = s(t + 5) s (t - 5) in (2) as the instantaneous h

correlation at time t and separation T, one could use a local average, in "

hopes of improving the correlation and distribution functions. That is,

consider correlation definition

st

A t t * ‘t .
) R(t,Y) = v](t) ® R(t,T) = j dt' v](t - t') s(t' + 5) s (t' - 5) . (148) o
1 - '0'
‘.

where vy is a fairly sharp, even, real function centered at the origin. |
The corresponding "locally averaged" WDF is ﬁ
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N A . A .
X W(t,f) = ‘(dt exp(-i2«fT) R(t,T) -

8 t

@ = _(dt' vp(t - t') W(t',f) = v](t)Ow(t,f) ) (149)

This is a convolution, in time only, of the WOF of s with weighting vy-

Reference to the discussion following (83) reveals that this form of

i averaging is inadequate, since it does not average additionally on
[)
\ frequency. Also, (149) need not remain positive, as would be desired of a
smoothed WDF. "
3 )
. Al
t
: Furthermore, the Fourier transform in (149) (as well as (3)) is over all '
]
T, thereby involving argument values of waveform s in (148) which are very ;
s :
; distant from the time point, t, of interest. If ﬁ(t.f) or W(t,f) is to be ﬂ
Y considered as the "spectrum at time t," it is hard to justify why :
arbitrarily distant time points from location t should enter into their J
(]
) ]
evaluations. Therefore, in addition to the local average in (148) for !
_ N
K stability purposes, there should be a weighting in T in (149) to better ¢
‘ confine the Fourier transform to local values of waveform s about time s
¥ 0
. instant t of interest. ?
]
;
b To this aim, consider the more general form of average given by t
N
A t 8
R(E,T) = v (LD @R(L,T) = [dt' vy(t - t',0) R(t',T) = "
>
1
\3
= J-dt' v2(t -1',7) I df' exp(i2«tf') W(t',f') , (150) g
n
:
’4
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1
where weighting vy depends additionally on U. Define its transform o
)
Vo(t.f) = fdt exp(-i2vfT) v, (t,T) . (151) :::
[}
e,
A
Then the modified WDF corresponding to R in (150) is ?
W(t,f) -ﬁdt' df* W(E',F) Vo(t - t', f - f') = '.;
)
J
tf o
= W(t,f) & v,(t.f) , (152) \
A
S'
which is a double convolution of W with V,. on both t and f. However, '
a v
since V2 need not be a WDF, W in (152) can become negative for some t,f :2
values. This form of smoothing was considered previously in [9; (1.5)] and E
)
(10; (2.1)]. &:
]
An additional justification of two-dimensional smoothing, from the o
s‘(
frequency domain alternative viewpoint, is given in appendix F. Also, a ;E
0“
generalization of the Gaussian WDF (147), with arbitrary area and linear k
frequency modulation content and which guarantees a positive distribution ﬁ, -?
)
is given in (F-7)-(F-19); this result generalizes that in [11] for no Yy
‘-,
frequency modulation. 3
)
il
(]
]
[f we specialize weighting Vo in (150) to the form W
‘0
v
X, * 1 x
vo(t,T) = u(t + =) u (t -3, (153)
2 2 2 "
3@
K
then (151) yields 0
::2
Vz(t.f) = Wu(t.f) , (154) ’

65
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"
¥
t
:: and the general result in (152) specializes to (106), which is guaranteed
L)
u' n 3 .
positive. Thus the special case of weighting v2 in (153) leads to the
" STSE of s, relative to u.
"
K
.':
EFFICIENT CALCULATLION OF SHORT-TERM SPLCTRAL ESTIMATL
A
)
f 1f we employ the weighting u in (146) with linear frequency modulation
' parameter acs the spectrum in (102) becomes
"
k)
:!. *
) . -3 - -
? Su(t.f) = j.dt] exp( 12«ft]) s(t]) u (t t])
A
oy . . *
g = exp(‘12wft).( dt2 exp(—v?:ftz) s(t + tz) u (- tz) =
0
J
4 -1/4 tg a
\: =(w uc) exp(-i2wft) fdt2 exp(—12«ft2) s(t + t2) expl- ;—5 -1 > tz
: e |
W (155)
EN
’..‘ 2 2 3
B The exD(itZ/(2°cb term gates out the portion of s(t + t2) near \
1,
5 the origin in t2, while the exp(-i actf/Z) term cancels linear
frequency modutation in waveform s. .
L ) ‘
"
;: An approximation to (155) is obtained by sampling at increment A and
4 using the Trapezoidal rule:
o
. t
§
N
L]
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W
1/4 "
2 o2V . . !
$,(tf) = (v 00) exp(-i2uft) & O exp(-i2ufak)*
Kk .
1} ":
\ 3
2 * st + ka) expl- S k2?2 v ia )], (156) )
: 2 2 C d
h % ,
* ]
-
which has period 1/4 in f. In particular, the approximation to the STSE, '
at selected points, is \
D) ]
| = n 2 A2 ’
S [ma , — = ;Eexp(—12¢nk/N)* b
U NA V?O
C k y
[} £
; ) 3
g 1.2,2/1
* s(mA + kA) expi- 3 k™A — + i a, . (157)
: o f
4 'l
1 .l
3
which is an N-point discrete Fourier transform; m, n, N are integers. ﬂ
1
]
N The procedure for analysis is as follows: for a region of interest "
" v
l centered at tc,fC in the t,f plane, choose time values mA near t.. 5
) Then for each m, sweep out n such that frequency n/(NA) is near fc; an FFT ;
' t
K will give all f values in (0,1/4). Plots of (157) give a fine-tuned STSE .
[y 1'
N near tc,fC for the particular choices of L Additional estimates {
with different parameters will be required in other regions; there is no 7]
(]
i )
! globally optimum smoothing that will yield high-quality positive spectral ?
¥ 1
! estimates for all t,f values. Y
; .
‘ L
' )
' )
by
5
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! The numerical evaluation of the exponential quantities

¥ 1,221 .

i 02(k) = exp[} > k A > e}l = 02(-k) (158)
c

in (157) can be effected very efficiently by the methods given in [12].
They are given by recurrences (which need to be evaluated only once for each
¥ °c'°c)
:‘{ Q](k) & 0](k - 1) exp(?cz)

for k > 1, (1%59)
& Q,(k) = Qy(k - 1) Q (k)

e with starting values

01(0) = exD(_ CZ) ’ 02(0) =1,

! AT
:‘:: ¢, --—ZA(°2+1QC). (160)

C

::.‘: Only two complex multiplications per stage are required in (159).

o Furthermore, since

. 2
Y 2 1aCA
P exp(- c2) = exp|—> |exp|—, TE(C+ iS) , (161)
A
Ay 20(:

and
)
o 2 2
o - -
N exp(2c,) - &=~ 1BL (162)
E

only one exp, cos, and sin must be evaluated to accomplish (159) for all k.

T v
- o
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WOF WITH MINIMUM SPREAD

The virtues of smoothing WOF NS of waveform s with the WDF Nu'
(147), of weighting u, (146), were discussed earlier in this section. At
that time, the selection of rorm (146) for the weighting was seemingly
arbitrary. However, it is shown in appendix G that the weighting, u, which

has a minimally spread WDF, is precisely that given in (146). The measure

of spread is

. i 2
1 - H dt df W (1) (f - B 1), (163)

where BC is a specified (observed) sliope of interest in the t,f plane, and

a = 2'Bc' This measure of spread concentrates the WDF about the

specified slope; see (147). 1lhe actual minimum value of spread (163) is

given in (G-24) as

minimum 1 = ; 5 (164A)
8
'dc

when weighting u is constrained to have mean square duration
2 2 °<2:
fdt ) -5, (1648)

in addition to unit energy. Without these two constraints, the minimization

of spread (163) is ill-posed; see appendix G.
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PERFORMANCE IN NOISE

L

N

)

o

]

ﬁ: In this section, we investigate the bias and stability of a WOF estimate
. obtained from a noisy waveform. In particular, the given waveform x is

L)
..o'

3y x(t) = s(t) + n(t) , (165)
™
where s is a deterministic signal of interest, and n is an additive

",
)

:z zero-mean stationary noise. In fact, we have

|:|
4

U ———
W _— *

_ n(t) =0, n(t])n (tz) = cn(t] - t2) R

S

[

o
i, .
oy Gn(f) = f.dt exp(-i2wfl) Cn(t) . (166)
'..
Q where Cn and Gn are the noise covariance and power density spectrum,
G
D respectively.
u
i3 WAVEFORM WEIGHTING

“

) 1)
. If the WOF of given waveform x in (165) were directly evaluated via
i)
;V' definition (3), the result would be infinite, since the NxN (noise-

2
fz cross-noise) terms do not decay for large arguments. Also, since the signal
: s will be assumed to be transient and decay to zero for large arguments,
)
)
‘Q' some gating or weighting of given waveform x is appropriate, in order to

70

"."’4‘!,! e e N T AT 1 W A ) A% 17, S o ¢ R Wy 'Y a 0 0 g T TNt 4
RO PE B A S PO YOS i --h’,(h.—!", S R e M R T N R D R O S

-



T g Fam gty
AT e

TR 8225

concentrate on the time regions where signal s is largest. Accordingly, we

consider the weighted waveform

y(t) = v(t) x(t) = v(t) [s(t) +n(1)] ., (167)

where v(t) is a deterministic function under our control.

The WDF that will be calculated is therefore

_ : ) SUaPUE S
wyy(t.f) = jldt exp(-i2ufx) y(t + 2) y (t 2) =
=a+b+c¢c+d, (168)
where
a-= Sdt exp(-i2+fT) R (t,T) s(t + 5) s (t - 5)
A AR 2 27
- _3 T *. T
b = jdt exp(-i2«fT) va(t,t) n(t + > n (t 2) .
. L S I
¢ = Idt exp(-i2#fT) va(t,t) s(t + 2) n(t - 2) .
. < * T
d = Idt exp(-i2vfT) R (1,T) n(t + %) s (t - 5 , (169)
vV 2 2
and

1- *
va(t.T) = v(t + 2) v (t - (170)

~n e
~—

The first two quantities in (168) are, respectively, SxS and NxN terms,
while the last two are SXN terms; here, S denotes signal, while N denotes
noise. The SxS term, a, in (169) is real and non-random, while NxN term, b,
is real and random. On the other hand, the SxN terms, c and d, are complex

*
random, with d = c.

n

Y : 2 " i L g ey » 3 3 RIS - ;' N N (8]
SN R BN S e N T T It e R AR T e R T T R e Y A T



- -

o

W

-

- -

A
"
]
B0

LA e e 0 b b bbb i S v e A R SR B T T L A S LERTET R

TR 8225

MEAN VALUES

An alternative expression for the SxS term in (169) is

a - jdt exp(-i2nfT) R, (1,7) R (1,T) =

f
= ww(t.f)ONSS(t.f) , (171)

in terms of the WDFs of weighting v and signal s.

The mean of the NxN term is

‘Idt exp(-i2«ft) R

[~ 4
"

WD (T =

f
= ww(t.f) Oen(f) . (172)

where we made use of (166). And since noise n has zero mean, there follows,
for the SxN terms, T = d = 0. Collecting these results together, the mean
of WDF estimate (168) is

- f
Nyy(t.f) = va(t.f) ® [Nss(t’f) + Gn(f)] . (173)

No additional statistica) properties on the noise n, such as a Gaussian
process, are needed for result (173); this holds for an arbitrary stationary
noise process. The difference in mean outputs, for signal present versus

signal absent, is just a, as given by (171).

12

; D I ; o T - Ao, L -, - o e
A RN R A e e S L O Do s DO SOGENE O ’r‘\‘; LGUCHOM I NONNRK A ECAREESRENANSINAANS



PR et

ey
3 -
5_‘?‘.. e

)

s

At by® 02 a0n 020 g% 2% Fa® dat Ga¥ SaS BV A8 §a¢ §00 D2 Bad a® Pt fat ot § 0 A Dot 0ot B PaC 0ot §.0 a0 0a0 S0 009 8 Bl Lo B8 el ey &'t ‘Ala 'e fia B
.

TR 8225

VARIANCE OF WOF ESTIMATE

In order to determine the variance of estimate (168), we need to assume
that noise n is Gaussian. Furthermore, in addition to properties (166), we

will presume that

n(ty) n(t,) =0, (174)

as i1s true when n is an analytic process or a complex envelope [13, ch.2].

Then (168) yields

2 2 2. .2 2
Wy, (t.F) = lwyy(t,fﬂ =a +# b+ [c]° + Jd]° +
_ * *
+2ab +cd +cd, (175)

the other terms being zero due to n being zero-mean Gaussian noise.

The second term on the right-hand side of (175) can be developed from

(169) as

;)2 = ~h—)l—z = Jfa] dt, exp (~1'21rf(‘C] —Tz)) Ryy(t,Ty)*

o x 2[G ~ T
Ry, (LT C (T ey + 25—, (176)

where we used (166) and (174). Referring to (172), we have

13
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o l
N
it

=2 (.
b ‘4 Udt] at, exp Cizef (T, -T,) R, (t,T))*

-T
wo® 24 2
R,y (. T,) cn(.r—————2 ) ) (177)

) At this point, it is convenient to define

vy -

" ng)(f) = ‘fdt'exp(-i4wft) Cﬁ(t) . (178)

NS

o
. e -

Then

-

6l (ts2) = fdt exp(~12+fT) C3(T) = G, (f) ® 6 (f) (179) :

Ry

and *

-

cé(n) jdf exp(i2#fT) ef‘”(f/z) -

ox
"

2 }.dv exp(id«uvT) ng)(v) . (180)

R When this result is substituted in (177), there follows

- 2
b + ZIdv W (t,f - v) 88 -

o
~N
1]

-

2 §
~ 2 (2)
b + 2 Hw(t.f)OGn (f) . (181)

74
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The third and fourth terms in (175) are ,

a2 - 12 - ([ oy a0y exo Cizer@, -T) wpt.2r

' T LY [t -T '
* hi I IR 2 2] 3
{ " Ry (0 T) S(t + 2) s (t * 2) Cn( 2 ) = 4
= dv G Bft,f - 2 i (182) :
= v n(v) ’ 2 y '

where Yy

8
. T\ _
S dT exp(-i2«fT) va(t.t) s é + 7) = .

: B(t,f)

)

-

= j dv exp(i2wwt) ww(t,f - %) S(v) . (183)

gy

(As special cases, if weighting v(t) = 1 for all t, then va(t,t) = ]

and

e R

C X

IEP - 4fdu 6,(v) [s(2f - v)] 2. (184)

o)
ey

while, instead, if G (f) - N, for all f, then €, (T) = ﬁd §(T) and :

d

2 9]
) 2 _ A 2 L \
; ICI = 2 Nd Idt va(t.t) lsél + ﬁ . (185) :.

1f both conditions above hold, then i

E. ) (186)

75
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Returning to the general case again, the fifth term in (175) is given by

combining (171) and (172), while the sixth term is

*
cd = ﬁ-dt] d1.'2 exp (—'IZuf(T] —t2)) Rw(t,l']) *

« R* (t,T,) s(t +El) s*é—&) n*(t—ﬁ)n*(tirg-:O (187)
vy T2 2 2 2 2 ’

by use of (174).

Combining the above results, we have, for the variance of the WDF
estimate,
a2+ b+ 2lc|2 +2ab - (a + b)° -

2

= b2 -b 2|c|2 =

n

Var{wyy(t,fﬁ

f
2 w2 (t.f) @ 6L (f) + (NXN)

-+

2 Idv G, (v) lB(t,f - %)lz . (SxN) (188)

This result holds for arbitrary signal s, weighting v, and noise spectrum

Gn. The gquantities ng) and B are defined in (178) and (183),
respectively.
76
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o
"
t
If we do not weight waveform x(t), that is, choose v(L) = 1 for all t in \
(167), then va(t,'C) =1, va(t,f) = §(f), and the NxN term in (188) :‘
becomes infinite; that is, the WDF estimate (168) has infinite variance if W
(]
we do not weight in time, regardiess of what the actual noise spectrum, 3
4 Gn’ is. (
j \
{ A
'y
5 On the other hand, if the noise n is white, then G (f) = Ny for all f, "
A h
: ¢, (@) = Ny 8(T), and 6{%) in (178) is infinite, which makes the NxN term
in (188) infinite. Thus, if we do not filter out the noise which is out of 2
¥
the band of the signal, the WDF estimate has infinite variance, regardless "
'
of what time weighting v is employed. ;,
9
l.v
¢ .l/
: WDF PROCESSOR e
4
'* é
h In view of the above observations, we now consider the general WDF 2
)
processor depicted in figure 7. The only new element here is the ﬂ
et
, S+n®)  [Filter | sfant) y© | WDF | We &9 o
— ‘ !
: H{f) Gleulation g 3
"z‘
t
| Weighting ’
{ )
v it) )
M
]
Figure 7. WDF Processor A
i
W
&
time-invariant lirear filter with transfer function H. The input noise no 3
[}
js presumed to be white over the band of the input signal St mathematically, K
Q"
this is handled by letting N
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Gno(f) = Nd for all f , (189) |

where Nd is the double-sided noise spectral density level in watts/Hz.

The linear filter H(f) approximately matches the bandwidth of the input
signal and passes So(f) essentially unaltered, while filtering out
undesired noise spectral components. The actual filter output signal s is

given by

s(t) =n(t)® So(t) = J‘df exp(i2«ft) H(f) So(f) . (190)

The weighting v(t) approximately matches the duration of the signal and
passes s(t) essentially unaltered, while gating out undesired noise temporal
components. Representative plots of the various quantities in figure 7 are

given in figure 8.

A numerical example of the WDF processor in figure 7 is carried out in
complete detail in appendix H, including the mean and variance results given
earlier in this section. In’particular. the input signal So is a linear

frequency modulation waveform with Gaussian amplitude modulation.

18
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Figure 8. Time and Frequency Characteristics of Figure 7
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SUMMARY

When a segment of a stationary random process is available, the method
of Blackman and Tukey [14) tells us that, to estimate the correlation
function at delay T, we should average the product of waveform values
separated in time by T seconds, and that we should carry out this averaging
over the total available data record, in order to reduce the effect of
random fluctuations. For a nonstationary process, the averaging interval is
further limited to that in which a significant change is statistics does not

occur.

After obtaining the estimated correlation, the Blackman-Tukey method
further directs us to weight the correlation values in the neighborhood of
T= 0 more heavily than those for larger T, and to Fourier transform the
weighted correlation estimate. The weighting should taper off to zero for
larger T, so as to suppress these more noisy estimates, and the taper should
be gradual so as not to create significant positive and negative sidelobes

in the frequency domain.

These two operations, averaging in time and weighting in delay, are both
totally absent in the WDF, as may be seen from (2) and (3). In fact, (2)
and (3) might be viewed as the ultimate in greediness of a spectral
estimate, since they include no averaging and no weighting. Viewed in this
1ight, it is not surprising that the WDF has some very debilitating behavior

in terms of negative distribution values and large interference terms.

80
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The inclusion of averaging and weighting in the spectral estimate, as
typified by (150)-(152) and (F-1), results in a modified distribution
function which is a double convolution with a smoothing function in the t,f
plane. Furthermore, the averaging and weighting in (F-1) takes place both in
the f and v domain (line 4) just as well as in the t and T domain (line 3).
Alternatively, line 2 indicates that the complex ambiguity function may be
weighted in two dimensions and doubly Fourier transformed. However, the

resultant modified WOF need not be positive.

The identity of this double convolution with a positive STSE, when the
smoothing function is a legal WDF, allows for an alternative approach that
is very attractive computationally and is easy to interpret. The preliminary
calculation of the WDF serves to point out regions of interest in the t,f
plane and to quantify the time and frequency extents, as well as the amount
of linear frequency modulation, to utilize in weighting u in the STSE. This
procedure is illustrated in appendix 1 for the waveform s(t) = t exp(—t2/2)
and shown to yield a physically meaningful smoothed distribution function,
whereas the WOF is very difficult to justify and interpret on any physical

grounds.

It was pointed out earlier that double convolution of a given WDF with a
Gaussian WDF increases the spread of the smoothed function by area .5 in the
t,f plane, since the effective area of a Gaussian WOF is .5. Strictly
speaking, this is only true when the Gaussian WDF contour ellipse has the
same tilt and the same ratio of major-to-minor axes as the given WDF

(assumed Gaussian in the region of interest in the t,f plane). More
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I generally, if there is a mismatch in tilt or ratio of major-to-minor axes,
the effective area is increased by more than .5, thereby leading to
;& additional spreading in the t,f plane. The detailed derivations are

‘ﬁ presented in appendix J.

o The performance of an estimator of the WDF of a signal in the presence
i of noise depends on the amount of filtering and weighting employed to

suppress noise components in frequency and time. Exact relations for the

" mean output, the bias, and the variance of the WOF estimate are given.
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APPENDIX A. SLICES IN TIMt OF THt WDF

The voltage densily spectrum of waveform s{t) was given in (9). [If s(t)

is sampled at increment A,, an approximation is afforded according to

tl

S(f) = f dt exp( -i2wft) s(t) =

= 8, > exp(-i2ufka,) s(ka,) = 3(f) for all f. (A-1)
K

The summation on k runs over the range of nonzero summand. Since

§<f +K];)=§(f) , (A-2)

then §(f) has period l/At in f. We limit the evaluation of §(f) to the

values

—~ n _ 3 _ -
S(§;Ki) = b, :E exp( 12wnk/Nf) s(kAt) for 0 < n < Nf 1, (A-3)
k

where n and Nf are integers, and thereby cover a full period of g(f). A

representative plot of ‘g(f)land its sampled values appears in figure A-1.

for the low-pass case of §(f) depicted in figure A-1, it is necessary to

choose

Ay < (2fg) 7! (A-4)

A-1

oA d N
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Figure A-1. Low-Pass Spectrum S(f) ,:

&

;

in order to avoid aliasing. We will also need frequency spacing ~.§
e

I:"

-1 - . ) .

(NfAt) < (27T) , that is, Nf > ZI/At (A-5) o

"

‘.

n::

in order to track the wiggles of S(f) in frequency, where 1 is the effective ;"
. . . -1 4
time duration of s(t). In fact, we may need frequency spacing (NfAt) to .'E
()

be very small if we are to do further accurate integrations on S(f). Thus &:{
l,':

we need s
Nf > 4 fH T, (A-6) ::,'

e

and perhaps much larger for further manipulations. “"
o

u

The WDF can be written in terms of the spectrum S(f) according to (10): :g;

¥y

i

: vy ¥ v L

W(t,f) = de exp(i2xvt) S(f + 5) S (f - 5) = - R

v:4

.n&t

. * ,

= 25. du exp(idwut) S(f + u) S (f - u) . (A-17) oy

E P FC Ry %, & -7 =0 Res a .-
R O N R R e R I R
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If we sample S(f) atl increment Af in frequency, the Trapezoidal
approximation to the WDF is
A . *®
W(t,f) = 2Af§_exp(14wtﬂAf) S(f +A48.) S (f - 4a) (A-8)
A
for all t,f. Since
~ ', A
Wt + YV f] = W(t.f) , (A-9)
8¢
then a(t,f) has period (ZAf)-] in t. Accordingly, we evaluate only
nf_m . ; * B, -
w(thAf . nAf> - 2Af%exp(121m1/Nt) s{(n +2)a) 5™ ((n -2)a;) (A-10)

for 0 <m< N, -1, where m, n, Nt are integers. In this manner, we get

t
A
a slice of W(t,f) in time t (m) for fixed frequency f (n). The operation in

(A-10) can be efficiently realized as an N,-point FF1 of collapsed samples

t

when Nt is a power of 2.

Now the only information on S(f) that we have available are the samples

of S(f) given in (A-3). If we choose, without loss of generality,

-1
8¢ = (NfAt) : (A-11)
then (A-10) becomes (exactly)
A ma N * -
w(~2—t L -N—';—>= . %exp(ihm}/Nt) s(ﬂ K'Q) s“(3 f) (A-12)
t ft ft ft ft
for 0 <m < N, - 1. We then adopt as our approximation to W, which itself

t
is an approximation to W, the quantity

A-3

Vil AL LS A CIPECCOCLS M7 D I~ LA AL, T e

[ e S Te S T N

SRR OGN G o a0

2 W WK R ™




a, N - % _
W("—z- Ni . ﬁ) T N% exp(i2and/N,) s({‘,—}% S (SKA) (A-13)
t o V0t 1 fel o 5
for 0 <m < Nt - 1, where
L ¢ iy denotes |n+ £] < Ngs2 (A-14)

and we presume that §(f) has been calculated for |f| < (2At)”]; see

figure A-1.

The quantity Nca, may have to be large, in order to sample S(f)
finely enough for an accurate WDF. Then since the spacing in t, applied to

N A
W(t,f), is —%ﬁi , it may require a large value of Nt in order to keep track
t

of the variations versus t. Also, n may not have to run through consecutive
integer values, but may take on decimated values, so that n/(NfAt)

tracks the f behavior adequately.

A-4

|
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APPENDIX B. OSCILLATING WDF FOR SEPARATELD PULSES

Consider the waveform s(t) in fiqure B-1 consisting of two separated

enerqy bursts of general shape. Let t] and t2 represent the "center" of

each pulse, and let 1] and T2 be some measure of their durations. Define

t, - %(t] ft,) . (B-1)

Let us investigate the WOF of s(t) for t near tc' that is, near the center

of the two pulses. In particular, let time
t:tc+A. (8-2)

where A is small. Then from (3),

W(L_ + a,f) = f dT exp(-12«fT) s(t_+ 4 + 1-) s*(t + 4 - I) =
o ' c 2 c 2

- exp (-i2wf (1, - tz))de exp(-i2ufx) s(t, + & + 5) s'(t; + 8 - §), (8-3)

Figure B-1. Waveform s(t)
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where we let T=1t, - t. + x.

It can be seen from the integral expression in (B-3) and figure B-1,
that for small A, only small values of x will contribute to the value of the

WOF. In fact,

x| < min(1,,75) (8-4)

is the dominant range of contribution to the integral. Thus the variation
with f of the integral component of (B-3) is slow. By contrast, the leading

exponential term in (B-3) vartes much faster with f, since

ty - ty > max(Ty,Tp) > min(Ty,Tp) . (B-5)

Since these faster varying oscillations of the exponential term cannot be
cancelled by the slower integral contribution of (B-3), the WDF will
oscillate in f, for times t near tc = (t] + tz)/z. Thus separated

time pulses will lead to oscillations (in f) of the WDF, near times midway
between the pulses, regardless of their detailed shapes. An analogous

argument can be presented for spectral components, based upon form (10) of

the WOF.

Notice that as t2 approaches t]. and the two pulses become one, the
oscillating exponential term in (B-3) disappears, allowing for the

possibility of a slowly varying (hopefully positive) lobe in the WODF.

B-2
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APPENDIX C. AMBIGUITY FUNCTION OF (79)

The compiex ambiguity function of waveform s(t) in (79) is obtained by

substitution into (22) and use of (68):

2
* . T 1 ~
xm.,t) = WZaka‘! %q ©XP —l—% -Zauz Vi! +
kf ke
02‘02
1% T % . _ ) )
*’202+021uvu”2"fu% Tty Vg + 120F, (1, *5!)]. (C-1)
Nt %
where
t, = St +t,) foo=3F + )
-2\ YR s B AL R
-2 _1, 2 2 0 DU Y A R
o = 2(% *q) =2 2(02*02)
ke k %
Tg =Ty ~to Vg =v e b - f) . (C-2)
The diagonal terms of (C-1) are
1_f_1_ 2,22 .
sz exp[—4dz 1 ol 4x% +i21fkT—127tkv]. (C-3)
k K

which are compliex and oscillate with T and v due to the imaginary terms.
The contour at the 1/e relative level, of the magnitude of the k-th term, is
an ellipse with axes twice as large as those depicted in figure 4. In

addition, the peak amplitude is decreased by a factor of 2 below that for

€
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the WDF in (80). Thus the ambiguity function is a more smeared function of

time-frequency than the WOF.

The ambiguity function has peaks of value

W ag oy expfin(r, + (Y, - )] (C-4)

centered at

(Tv) = (4 - .y - &) (c-5)

for all k, 2. The phases of (C-4) are virtually random relative to each
other. A slice in v, for fixed T, varies (in addition to the Gaussian

envelope) as

2

Oy — ©

2

1 k
explizxvls

2 qi + ol

LRER N I (C-6)
%k

which could be either a slow or fast variation, depending on the particular
parameter values. All of these features make physical interpretation of the

ambiguity function very difficult.

-2 X
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APPENDIX D. ROTATION OF AXES
Consider the general second-order curve described by
sz + Bxy + Cy2 +0x +Ey + F=0.
1f we rotate the x,y coordinate axes according to figure D-1, we have

x' cos(B) - y' sin(B) ,

x
n

x' sin(p) + y' cos(B) .

<
"

Substitution in (0-1) yields

A'x'2 rB'x'y' + C'y'2 +0'x' + E'y' +F =0,

where

\ .
X
\ __x

\ -~
am—
= —SF X

Figure D-1. Rotated Coordinate Axes

R W W

TR 8225
(D-1)
(D-2)
(D-3)
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A' = E[A +C + (A -2C) cos(2B8) + B sin(2B8)]

B' = B cos(28) + (C - A) sin(28)

C' = 3[(A +C - (A -C) cos(2) - B sin(28)]

D' = D cos(B) + E sin(B)

E' = - D sin(B) + E cos(B) . (D-4)

If we want to eliminate the cross -product term in (D-3), we must make

B' = 0, that is, take

tan(28) = 7o - (D-5)

We will also choose 28 in the principal value range:

B )
28 = arc tan (A - C) ; (D-6)

that is

-5 <2< (D0-7)

n R
I
aia
A
o]
tA

N
Py

A1l other solutions for 28 differ by n«x; that is, B differs by n«/2. These

are the major and minor axes of the curve described by (D-1).

If we now define

R_vk 2 . 2 )
=\J(A -C)" +8B , P =sgn(A-C), (D-8)

where V—'denotes the positive square root, we find

0-2
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cos(2B) = L ; cl - A ; ¢ P ; (0 -9)

see figure D-2. And since sin(2B8) has the same polarity as tan(2B) in the

principal value range,

sin(2B) - J%J- sgnC B )= Bp . (D-10)

Also, since

cos?(B) = ‘5(1 + cos(28)) ‘56 + A c)' (D-11)

then

-
cos(B) =\/ &—t—%%—:-gl

sin(B) —\/R—;Jz,‘?——Cl sgn( 2 ) : (0-12)

A-C
It then follows that the coefficients in (D-4) simplify to
A' = %(A + C + RP)
B' =0

c' = %(A +C - RP) , (0-13)

26 |

A-C

Figure D-2. Triangle Interpretation of (D-5)
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from which there follows

A'C' = AC - % B2 . (D-14)
Additionally, we have

tan(s) = R=LA=L)

cot(B) = BB—i-éA =0 . (D-15)

As a result of the above, the general equation in (D-3) can be written as

2 2 2 .2
fyr o DY fyr o By D0 BT B}
AG+2A') *C(V*zc')‘w*t;c' F o (0-16)
where
A+ C - RP 1 _A+C+RP
- AtC-Br L ArCeRP (0-17)
2" anc - 82 20" aac - 82

The simplest expressions for D' and E' appear to be those given in (D-4), in

conjunction with (D-12). However, 0'2 and E'2 can be simplified,

resulting in expression

p'\? £'\?
A'(x' + W) + C'(y' + -ZF) =6, (0-18)
where
2 2
G - AES + CD ~gDE . (D-19)
4AC - B
2

Now suppose that A and C in (D-1) are positive and that 4AC > B .

Then A* > 0 and C' > 0, meaning that (D-18) 1s an ellipse if G > 0.

YRy
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Furthermore, if A < C, then A' < (' and x' is the major axis. On the other
hand, if A > C, then A' > C' and x' is the minor axis. See fiqure D-3. The g

area of this ellipse is

wG 2%G

Area = VW = Vﬁ, (D-20)

by use of (D-14), where G is given by (D-19).

It follows directly from (D-18) that the curve is a circle if and only
if A' = C', that is, R = 0 via (D-13), which in turn means A = C and B = 0
from (D-8).

o

X +

—
N =

Figure D-3. Ellipse in Rotated Coordinates
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EXAMPLE

T

Consider the ellipse in (91), for which

e

A=1+ 62 , B = - 290 , =1, 8 >0. (D-21) ‘ !

(=]
i

o

Then (0-5) yields
tan(28) = - 2/6, (D-22) ~

from which there follows by
tan (23 + %) = -1/tan(28) = o /2 , )

't

2) '

arc tan (—9> - =, (0-23) b

n
B = 2) " 4

N =

As 8, varies from 0 to +e, B varies from -«/4 to 0; thus B always lies in h

the principal value range, as required by (D-7). v

However, since A > C in (D-21), then B is the angle in the x,y plane of ﬁ

the minor axis of ellipse (91). The major axis angle in the x,y plane is (F

Y=8+3, (D-24) )

which varies from »/4 to »/2. There follows Yy
tan(2¥) = tan(2B + ) = tan(2) = - 2/8 (D-25)

from (D-22), whereupon the slope of the major axis in the x,y plane can be b

obtained as

0-6 v

3

e X ; - . ’
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tan“y=]§é° +V§F). (D-26) .

This slope varies from 1 to +e as eo varies from 0 to +e. Conversely,

H

! !
b given a measured slope, tanyk. of the major axis of a WDF contour in the x,y t
3

: plane, the corresponding amount of linear frequency modulation can be }

determined from (D-25) or (D-26) as

e

8, = tany - 1/tany . (D-27)
i B
: The final determination of frequency modulation parameter °, in (B84) o
X requires the additional knowledge of o in (90). A
3 -
In practice, where both o, and o are unknown apriori, the WDF i

will 1ikely be plotted directly on the t,f plane. According to (78) and

’ (D-24), the major axis will then lie on the line

F=t L‘EZY . (D-28)
2nao i
\J
. which can be observed and measured. But o, can be determined separately é
B l]"
from a slice in f (at fixed t) of the WDF, since the variation in f in (91) '
; is proportional to %

2 _
' exp[— og (211’ - a%t) ] (D-29) r

Thus the distance, between frequency values that are down by 1/e from the

peak on this frequency slice, is («oo)-], and can be used for direct ;

calculation of o . Then (D-28) and (D-27) yield tany¥ and 8, b

1

respectively. $

:1

D-7/D-8 b
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APPENDIX E. ODISCRETE APPROXIMATION TO SHORT-TERM SPECTRAL ESTIMATE

The STSE is given by (102) and (103). A discrete approximation, by
means of the Trapezoidal rule, is furnished by

2

Jt,f) = /AE exp(~12xfak) s(ka) u (t - ka)
k

- AZZ exp (~izwfa(k -,Q)) s(ka) s (fa) u (t - ka) u(t - Q4) =

ke
22exp<12wa(k— )) ( A, kA —,QA> ué-k_;‘q_A’ ka —,\A>.
(E-1)
where 4 is the sampling increment in time. Let
m=k-0,n=k+4, (E-2)
to get
Jit.f) = a2 E exp(-i2ufam) R ("’z’.nm) u(t - mA) : (E-3)
m+n
even
Define, for use below, the function
f
C(t],t,f) = Ns(t],f) @wu(t - t'l'f) =
= Jkdfl ws(t1,§) wu(t - t],f - f]) , (E-4)
£E-1
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which is the convolution, on f, of WDfs HS and wu. When the integral on

i t, is effected, it yields the desired double convolution:

¢!

o tf

i dt] C(t].t.f) = Ns(t.f) ® Nu(t.f) . (£-5)
"

R

2y

i; We now express Rs and Ru in (E-3) in terms of the inverse transforms

vy

" of ws and wu. respectively, according to (24), interchange summations

;‘;: and integrations, and use the facts that [4, chapter 2]

&

R

A

K Z exp(-i2wxm) = %Z&(x - ]51) ,

b m even A

w'i

R 2 exp(-i2exm) = L > (11 s(x - 1y (£-6)
-" 2 J 2

R m odd

E;" to get approximation (E-1) in the form

!

% Jun =45 > C(n—%,t,f - 1215) .

. A n even

¥

cl. ‘

Y AS E na X )
e + 22( 1) C(Z.t.f ZA) : (E-7)
: 2 n odd

X

::: The R = 0 terms together give, where the sum is now over all n,

(:‘

"

iti

.‘::
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EC( ALF) (E-8)

which is a discrete approximation to desired quantity (E£-5).

The 2= 1 terms in (E-7) yield
4 R RN TaLL] -1 -
2‘25( " z.t.f TR (£-9)

which is approximately zere. A similar result holds for £ = -1.

The A= 2 terms in (E-7) are
) na 21 -
D - b, (E-10)
n

which is a discrete approximation to convolution (E-5), but shifted by
frequency 1/8. For smail sampling increment 4 in approximation (E-1), the
quantity (£-10) will be small in the fundamental region centered at f = 0,

and can be neglected. Thus (E-8) is the dominant term, giving
« 8 “A -
(”’22 2t f) =
n

tf
o j.dt] C(t].t.f) = Hs(t.f) () Nu(t.f) . (e-11)

E-3/t -4
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APPENDIX F. SOME SMOOTHING CONSIDERATIONS

This discussion complements and extends that given in (148)-(152)
regarding two-dimensional smoothing of the WDF. For easy reference, we
repeat the diagram under (24) and furnish an additional one for the

smoothing functions that will be employed here. An arrow denotes a Fourier

transform.
WAVEFORM FUNC1IONS
*
s(t +§) s (t - 15:) = R(t,T) <——fl—> W(t,f)
tiv tlv

row) <—m wwn =3+ )57 3)

SMOOTHING FUNCTIONS

Vo(t,T) s V,(1,f)

tlv tlv

qz(”nr) “_-—.tf_* Qz(v'f)

By using the basic Fourier transform relations above, we may readily
show that two-dimensional smoothing of WDF W with general function V2 may

be written in several alternative forms:

F-1
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tf
W(t,f) @ Vy(t,f) =

= ‘U.dv dT exp[i2n(vt - f¥)] X(v,O qz(v,‘t‘) =

t
f deexp(-i2nfT) [R(1,T) @ vz(t.T)] =

1}

f
fdv exp(i2wvt) [A(v,f) @ Qz(u,f)] . (F-1)

The second line says that the ambiguity function X of waveform s should be
weighted by q2 and the product then double Fourier-transformed into the

t,f plane. The third line indicates smoothing of R on t, followed by
transformation of a weighted function of €, The last line performs
smoothing of A on f, followed by transformation of a weighted function of v.
These relations extend those given in (150)-(152). The function V2 above
need not be a legal WDF. The volume under the smoothed distribution (F-1)

is the product of the volumes under W and V_; if the latter volume is

2
unity, the energy of waveform s results again, as is desired.

INADEQUACY OF TIME SMOOTHING ALONG

Consider the special case where smoothing function V_ is a delta

function of f; then 2
Vo(t,f) = vi(1) &(f)
vo(t,T) = v, (1)
q,(»,T) = V,(»)
Q,(v,f) = V,(v) &(f) . (F-2)
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N WL 7,

S

tquation (F-1) then simplifies to an averaging of the WDF solely in time:

LR

t
Wt f) @ v, (1) = W

= ffdv dr exp[i2wu(vt - fT)] W »,T) V](v) =

t ?
= S dT exp(-i2+fT) [R(t,T) ® vi(t)] = nye

= f dv exp(i2wvt) A(v,f) Vi (v) , (F-3) o

which is an extension of (148)-(149). ’.
t

The advantageous feature of locally averaging the instantaneous !
correlation R in time, indicated in line 3, is equivalent to weighting the »

"local spectrum" 8
&,

A(v,f) = S(F + 2) 5(F - 2) (F-4) &

in line 4 by function V](v), prior to Fourier transforming back into the t k
domain. This weighting on v is sensible, since if WOF W(t,f) or some :
modified version is to represent the spectrum at f, the transform on v in
line 4 of (F-3) ought not to involve arbitrarily distant values of v; y
otherwise, waveform spectrum S in (F-4) will then be utilized at argument o
values very different from the frequency f of interest and would be
nonrepresentative. However, there is no weighting onT in line 3 of (F-3), K

thereby allowing arbitrarily distant argument values of signal s, from the b

F-3 X
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i time instant t of interest, to be considered; this unrealistic feature of

the WDF is one of the reasons for its undesirable properties.
B INADEQUACY OF FREQUENCY SMOOTHING ALONE

ﬁ‘ Now consider the alternative special case where V2 in (F-1) is a delta

W) function of t; then

[}

t
J Vz(t.f) §(1) V](f)

o Vo(1,T) = &(1) v, (@)

KR Q2(v't) 1 (T)

e Q,(v,f) = Vy(F) . (F-5)

" Equation (F-1) then simplifies to an averaging of the WOF solely in
freguency:

-‘l’g f

o W(t,f) @V, (f) =
s = [ av ac explizntot - 1)) Ho,T) v (1) -
= S dt exp(-i2«fT) R(t,T) vl(t) =

) f
s = j'd» exp(i2wvt) [A(v,f) @V, ()] . (F-6)

F-4
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The advantageous feature of averaging the "local spectrum" A in

frequency, indicated in line 4, is equivalent to weighting the instantaneous

LR -

correlation R(t,t) in line 3 by function v](t). prior to Fourier

transforming back into the f domain. This weighting on T is sensible, since
if WDF W(t,f) or some modified version is to represent the time behavior at

t, the transform on T in line 3 of (F-6) ought not to involve arbitrarily

Ria i i XN X JC 2

distant values of T; otherwise, waveform s will then be utilized at argument

values very different from the time t of interest and would be non-

- e w W R,

representative. However, there is no weighting on v in line 4 of (F-6),

-

thereby allowing arbitrarily distant arqgument values of spectrum S, from the
frequency f of interest, to be considered; this unrealistic feature of the

WOF is an additional reason for its drawbacks.

SEPARABLE SMOOTHING

If smoothing function V_ is separable, then

2
Vo(t.f) = v, (1) Vp(f)
vz(t.'t) = va(t) Vb(t)
Ay (v,T) = V,(v) v (T)

0y(v,f) = V,(v) Vp(f) .

(F-1) gives, for example,

3 LR LR RS DCRMK AR
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t f
WL, F) @ v, (1) @V (f) =

= S‘dt exp(-i2«fT) vb('l.') j‘dt' R(t - t',T) va(t')

This has both the desirable features of locally averaging the correlation
and suppressing large-T contributions. However, it restricts the form of
averaging in the t,f plane and specifically disallows tilted smoothing

regions which are not parallel to the t or f axes.

GENERAL GAUSSIAN TWO-DIMENSIONAL SMOOTHING

The inadequacies of smoothing in time alone or frequency alone suggesti
consideration of the general two-dimensional result in (F-1):

A tf
W(t,f)s W(t,f) @ Vo(t,f) =

= J.d'[ exp( -i2«fT) Idt' R(t - t',T) v2(t'.T) =

= Sdt exp(-i2wfT) [dt' s(t - t' + g) S*(t -t - g) v2(t','l') . (F-7)

If we let t] = t' +

, this becomes

Nl
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Now let two-dimensional smoothing function V_, have the general

2
Gaussian form

V,(1,f) = 277 exp(-alt? - 4nlblfl _ agctf) , (F-9)
where a,b,c are real constants and
Q= a%h? - 2. (F-10)

The scale factor, 2VQ, is chosen so that the volume under v2 in the t,f
plane is 1; this keeps the volume under the smoothed distribution in (F-1)

or (F-7) at &, the enerqgy of waveform s. In order that V2 tend to zero at

infinity in the t,f plane, we must have Q > 0. The area in the t,f plane of

the contour ellipse of (F-9), at the 1/e relative level, is (appendix D)

Area = — & _ 1/2 (F-11)
72 .2 Vo

The transform on f of V; in (F-9) is

vz(t,T) = b/ exp[ {Q t° + —— + 1ctt}] (F-12)

For completeness, the two remaining smoothing functions in (F-1) are

qz(v,T) = exp[} z%(;ztz + 412b2v2 + 41ct§)} .

Qy(v.f) = 2 VTT" exp{: L <§f 23 - 1cf£5]

We can now determine the quantity necessary for evaluation of (F-8), namely

F-7
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+t
v 1 2 o -t,] = Yﬁzg'exp . {(0 + 1 + 12¢) t2 +
2 2 1 2 b 4b2 1

+(Q +1 - i2¢) tg +2(Q - 1) t]tz}] . (F-13)

By the discussion in (25) et seq., this function in (F-13) is separable in

t1 and t2 if and only if

Q -1, that is, azb2 - c2 = 1. (F-14)

Then V2 in (F-9) is a legal WDF and the area in (F-11) becomes 1/2. Also,
smoothing V2 in (F-9) is then exactly equivalent to the Gaussian smoothing

considered previously in (147).

We are interested here, however, in the more general case of v2 where

Q is not necessarily 1, and therefore V_ is not a legal WDF. If we

2
substitute (F-13) in (F-8), the smoothed WDF becomes

W(t,f) = _Q__‘b/' Hdt] dt, x(t;) x (t,) exp [— ﬁl? t]t?_] : (F-15)

where

2
t

x(t)) = s (t - t;) exp [—mft, S (Q +1 + i2¢) J—,j] (F-16)
ab

By expanding the exp in (F-15) in a power series, there follows

[ o)
n 2
WLLf) = !EZ‘Z ;‘- (‘—'—Z—Q) ”dt] x(t)) t?' : (F-117)

2b

F-8
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It is obvious from (F-17) that a sufficient condition for smoothed WDF ﬁ

to be non-negative is Q < 1, that is
ap? - ¢2 < . (F-18)

(The special case of ¢ = 0 was given in [11, (5)].) When this condition is

used in (F-11), we see that the area of the concentration ellipse of (F-9) is
Area > 1/2 . (F-19)

Thus, smoothing with the Gaussian two-dimensional function V2 in (F-9) always
results in a non-negative distribution, provided that the area of the ellipse
at the 1/e relative level is greater than or equal to 1/2. It is not

necessary that V., in (F-9) be a legal WDF; that is, the area of the ellipse

2
need not be precisely 1/2. However, the most concentrated V2 in (F-9), that

guarantees nonnegative results, has area 1/2. The only restrictions on

parameters a,b,c are given by 0 < ¢ <1, that is, 0 < azb2 - c2 <1.

F-9/F-10
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APPENDIX G. DERIVATION OF MINIMUM-SPREAD WOF

The short-term spectral estimate of waveform s, relative to weighting u,

is given by the double convolution (10%),

2 Lf &
syt 6] € = woct.f) @ Wty (6-1) o

of the WDFs of s and u. It is therefore important to use, for weighting u, 'y
a function which has as narrow a WDF as possible, so that the smearing
implied by (G-1) is minimized. In particular, since we are interested in ht
analyzing waveforms with linear frequency modulation, we are interested in )

minimizing the spread of WDF wu. as measured by the quadratic quantity Wy
= ffat af wit.h) (r - 8002, (6-2)

where Bc is a specified (observed) slope in the t,f plane. P
By expanding the quadratic in (G-2), we obtain spread bare,

(6-3) o

where W)

—
"

$fat ar 2wt

=

—ZBC IS dt df t f wu(t,f) , :

—
n

2 2
By Ss‘dt df € W (t,f) . (6-4) K

G-l :"c.
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Reference to (43), (28), and (12), respectively, allows the terms in (G-4)

to be simplified and expressed solely in the time domain as

p—
"

2
. 4‘—2 fdt o o) .
w

-t
i

= - B—f’jdt t mfurct) w0}

—
|

2
) = BE fdt lun)] . (6-5)

Adding these results together, the spread in (G-3) becomes

2
1= —5 Jdt lutct) - et ut)] (6-6)

where we define
e = ZuBC . (G-7)

Observe that the spread I in (G-6) is nonnegative, for all weightings u.

The function that minimizes I in (G-6) is

[+ 3

- £ ,? .
u(t) = a, exp(i 2 t) . a, complex, (G-8)

for which

G-2
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A
kS
¥
_ ETRY: b
=0, WI(tf) = |a0] $(f - B.t) . (6-9) .
That is, the WDF is concentrated on the f = Bct line in the t,f plane. 0
]
o
However, the energy of (G-8) is '
- o
Ey =, (G-10) ‘
Y,
which is unacceptable. :::.f
-
. N
1f we attempt to approximate (G-8) by unit energy weighting o
o,
-1/4 2 3
u(t) = (ﬂoz) exp(- —t—2- + i %t2> , (6G-11) L]
20 %
ot
the spread of u, as given by (G-6), turns out to be l&."-
11, 2 2 3

1 = 8~~2—[—2— t o (a - ac) . (G-12)
n g i
o
Now if a = @, that is, the linear frequency modulation parameter a in
weighting u is exactly equal to given quantity o (from (G-7) and (G-2)), 4-:
b
the spread is \'
1 ]
l=—55>0. (6-13) Q

8n o

[
However, as duration o of weighting (G-11) gets larger, the spread I tends ‘
\
1)
to zero, even though the weighting has finite (unit) energy. Also, then ‘.:'::
Py, ¢
(G-11) tends to a scaled version of (G B) at each fixed t. e
l“
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In order to eliminate these undesirable features of the weighting, it
will not be sufficient to minimize spread 1, subject only to a constraint on
the energy of u. Rather, it will also be necessary to constrict the time
duration of the weighting u. Accordingly, we will minimize spread 1 in

(G-2)-(G-6), under the two constraints that

fat )2 =1 Hdt df W (t,f) ,

2 2 o 2
dat tlut)] = Udt df t W (t,f) ; (6-14)
see ('4) a... (12).
Thus consider

Q- sdt lurct) - da t u)]? +a jdt Juct)} 2 + Idt 2 Jut))?, (6-15)

where A and yu are real Lagrange multipliers. Replacing u(t) by

u(t) + en(t), where n(t) is an allowed variation, we have

Q0+ 4Q = j.dt [u'(t) + en'(t) - 1cct (u(t) + en(t))] [u'*(t) + c*n'*(t) +

+ ot (U (1) + e ()] +fdt [u(t) + en(t)] LU () + ¢ n ()] (n +w t?) .
(G-16)

Lo ary ATEL R AT A3 B RAE ARE ! ¢ ! . .
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Since the coefficient of ¢* must be zero, in order for u(t) to be the

I optimum [15], we require the following:
|

fdt n'*(t) fu'(t) - iact u(t)] + S.dt n*(t) [u'(t) - iact u(t)l iact +

+ J'dt n*(t) u(t) (n + utz) =0 for all n(t) . (6-17)

We now integrate by parts on the first term of (G-17), and presume that
n,u,u' all decay to zero at te. Since n is arbitrary, its coefficient
under the integral must be zero; namely, we find that u must satisfy the

following differential equation:

Su(t) + 120t u'(1) + (fa + agtz fx+ut?) u(t) = 0 forallt. (G-18)

If we try solution

u(t) = a exp(% ct?) , 4a,c complex , (G-19)

in (G-18), we find that

tz(—c2 + izccc + og +p) -C + iac +Av=0 forallt . (G-20)

Then a solution of the form (G-19) exists with the choices

¢ =fa, tyw, A=t . (G-21)

G-5 El
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To determine u(t) explicitly, we substitute (G-21) into (G-19) to get
u(t) - a exp(i lz‘ac t? + %T&‘ t2) : (6-22)

When the two constraints in (G-14) are satisfied, there follows, for the

optimum weighting,

-1/4 2 a
u(t) = (« "E) exp(— —% +i 5 t"’) . (6-23)

20C

This is linear frequency modulation with a Gaussian envelope.

The minimum value of the spread 1 in (G-6) for the optimum weighting

(G-23) is
minimm 1 = —— , (6-24)
2 2
8w o
C
and the corresponding WDF is
t 2 2 2 2
wu(t.f) = 2 exp| - 5 4v ac(f - Bct) =
[+ ]
c
= 2 exp|- 1‘36 + 92) + Axfte - 4nlflq? (6-25)
o2 c c c|’

C

where ec = a 05. The area of the contour ellipse at the 1/e relative

level is 1/2 in the t,f plane.

The mean-square time extent of the optimum weighting u in (G-23) is
aﬁ/z. as required by constraint (G-14). The mean-square frequency

extent is obtained from voltage spectrum

G-6




20 1/2 —212f202
1/4 c
U(F) =« (78 EXPl1 - de
c
as
2
1 +8
fdf Plueh) 2 - —5¢ .
8« .

(6-26)

(6-27)
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APPENDIX H. EXAMPLE OF WDF PROCESSOR

The processor of interest here is depicted in figure 7, while
representative characteristics of the waveforms and devices are sketched in
figure 8. The mean output is given by (173) and the variance is given by
(188). We will use the definitions and results in (165)-(189) freely in the

following.

INPUT INFORMATION

The input signal waveform to figure 7 is Gaussian-modulated linear

frequency modulation:

lagd
~N

a
- 9,2 - 2 -
so(t) = a, exp|- i tj} . Ey =V |a°[ oy (H-1)

o N

20

where a, can be complex. The instantaneous input signal power,
2 2 2,2
lso(0) € = Ja | exp(- t/o)) (H-2)
peaks at t = 0 and has effective duration %"

The corresponding signal voltage density spectrum is

22 2

ou 1/2 2% % f 2
So(f) = aooo T‘j';g; exp |- _T_:—?S; . 90 = a0, - (H-3)
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R
Y
! The energy density spectrum is
'é ? 21,601200 4'20z f2
;~: Iso(f)i . exp |- —— |, (H-4)
\ \/1 + e5 1+0
' 0 0
R
, which peaks at f = 0. When
p
K 1+ 6’
= -9 -

. f =1 fo ==, (H-5)
;a
&
W
:% the energy density spectrum is reduced to 1/e of its peak value; hence fo
£
L]

is a measure of the bandwidth of the linear frequency modulation waveform.
2
/4
W The input noise "o to figure 7 has a white spectrum
X
By Gn (f) = Nd for all f . (H-6)
) 0
»
i )
. The filter transfer function is
i"
4 (2
¥ H(F) = exp{- — ], (H-T7)
%) 28
k which peaks at f = 0; this coincides with the signal spectrum peak, which
: means that we are considering the most fortuitous situation. The weighting
vy in figure 7 is taken to be

)

\ tz
¥ v(t) = exp|- —5 | (H-8)
2L

. He2
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which peaks at t = 0; again, this coincides with the signal peak and is most
favorable. The maximum values of H and v, being equal to 1, are chosen for
convenience, without loss of generality; absolute level does not influence

the performance of the processor in figure 7.

CALCULATIONS OF BASIC FUNCTIONS

We will make frequent use of (68)-(70) in evaluating the following
quantities which are needed in (165)-(189); the choices for Gaussian
functions for so.H.v, above, were made for analytic simplicity, since the
various integrals can be conducted in closed form. More general cases would

require numerical integrations.
The noise spectrum at the output of the filter is
2 2 ,n2
Byl = Gy () MCOL S - Ny exp(- £2/8%) (H-9)
The corresponding noise correlation is
. 2922

¢, () - [df exp(i2efT) 6 (f) - V2 Ny B exp(-«°B°T) . (H-10)
The auxiliary spectrum in (178) is

612(f) = [ dt exp( -1axfr) cd - ’z"‘g B exp(- 2£2/8%) . (H-11)

The instantaneous correlation of the weighting is

H-3
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. 2 2
R,(L,T) = v(t ‘ g) v (t - g) s exp(— t—z - —~2> (H-12)

and its corresponding WDF is

12 22,2
W, (t,f) - de exp(-i2eft) R (1,T) = 2\ L exp (- =5 - 4x°LFS) . (H-13)
L

The filter impulse response is

hT) = Sdf exp(i2«fT) H(f) - VZu' B exp(-242B2T?) , (H-14)

leading to filter output signal

s(t) = f dt h(T) so(t -T) -

172 V- e
="‘06+o~1e exp| - 2x’8° 1+D-ieot ' (H-15)

) 2
90 ta. o, D= (2'860) . (H-16)

where
This filter output signal is again a Gaussian-modulated linear frequency
modulation waveform.

In general, for signal

2 . 2 )
s(t) = ¢, exp(-ct°/2) , CorC complex , € = v71c°i /Vcr', (H-17)

H-4
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the WOF is
col2 t? |c|2 v 4xlfl 4 4xfic,
W (t,f) = 2¥w exp|- (H-18)
S \/;\ C.
When applied to example (H-15), we identify
172 1 - i@
_ A ' _ 2,2 _ 0 i
Co'aoG'rD—ie\ ’C—4'81+D-19’ (H-19)
0 o
to obtain
2 2 D 2 s * @
lcol = lao, V—.D:z . Icl = (2«B) D ,
0 De
¢ - 44282 1, . - - ag%82 =2, (H-20)
r 0 i 0
2 2
where
_ 2 R 2 2 _
D]-1+D+80.02-(]+D) 0-90. (H-21)

When substituted in (H-18), there follows, for the WDF of s in (H-15),

1/2 2
0 1 2 2 f f
ws(t.f) = ZEO(D]) EXD[- 0_1‘{(1 + 60)(21Bt) + 02(-8-) - 2090(21Bt)(§>}] .

(H-22)
As bandwidth B of filter H in (H-7) tends to infinity, then D » 00,
D, » 0, D, » D%, and (H-2?) yields
2 t2 2
ws(t.f) > 2Eo expi- (1 + eo) ;—5 - (Z'aof) + heoft as B » o | (H-23)
H-5
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This agrees with (91) and (78). More generally, in order to keep the scale

factor (D/D])]/2 in (H-22) near 1, we need

0> 1 +e§ . that 1s, B > ) (H-24)

according to (H-21) and (H-16). But this latter quantity is just the
bandwidth of signal so; see (H-5). Thus condition (H-24) yields the
physically intuitive statement that the filter passband should be wider than
the input signal bandwidth, in order not to decrease the peak value of the

WOF of the filter output signal.

The area of the elliptical contour of the general WDF in (H-22), at the
1/e relative level, is 1/2 in the t,f plane, regardless of the values of any
of the parameters of the input signal and filter; this follows by the direct
use of (D-1), (D-19), and (D-20). It is also consistent with the general
fact that this is true for any signal of the form of (H-17), as may be seen
by application of appendix D directly to (H-18), where ¢ and c° are

arbitrary complex constants.

The peak height of the signal WDF in (H-22) is ZEOVD/D'; hence, the
product of peak height and effective area is EOVD/D]. which is just the

energy of s:

E - jdt sty 2 = Eo\}b% - Hdt df W (t,f) . (H-25)

This follows directly from (H-15) or (H-17).

H-6
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The tilt of the major axis of the elliptical contours of (H-22) is given
by 8 radians in the (2«Bt,f/B) plane, where

e

tan(28) - 77575 -

according to (D-5) and (H-21).
MEAN SIGNAL OUTPUT

The mean signal output of the WDF processor in fiqure 7 is given by

(171) as

J‘dt exp(-12«fT) Rv(t,Tj Rs(t.T) =

j.dt exp(-12+fT) Rg(t,T) = Hg(t,f) .

(1) = (1) s(t) = ¢, exp(-T t2/2)

according to (H-8) and (H-15)-(H-19). By analogy to (H-18), we have

. : S I _ : o : S
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le |2 t22]% ¢ aaf? 4 anft T,
a = W (t,f) 2 exp| - = =
3 VE:‘ Cp
1/2
- OR 1 2 2 B
= ZEO(H]) exp[- H][HZ X+ 02y 2R080 xy]i], (H-30)

where we defined

R - (2¢BL)Z , x - t/L, y = 2«flL

Hy = D, ¢ RDp = (1 +D)(1 # D +R) + (1 +R) eg ,

2 2 2 2_2
= \ - -_—
H2 02 + 2RD] + RO(1 + 90, (1 +D + R) + (1 +R) eo . (H-31)
and used
H ROG H
€, = 2] TR 2. iflz = 42 . (H-32)
L 02 L D2 L 02

The area of the concentration ellipse of wg in (H-30) at the 1/e
relative level is 1/2 in the t,f plane, regardless of the sizes of D and R;
so the signail WDF is not spread by the filtering and weighting operations in

figure 7, at least for this example of (H-1) coupled with (H-7) and (H-8).

The peak height of WOF wg is given by the leading factor in (H-30).
Since the effective area of this WDF is 1/2, the product of peak height and

effective area is Eo DR/H], which is just the energy of §S:

1/2

F- (at [re)?-¢ DR
Y | e roer v (1 eryed) (H-33)

H-8
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~
3
lThe parameters eo,D.R are given in (H-16) and (H-31). y
{
4
We now define h
L L 1 1 2
L, = = s i o = 5+ (20B)° . (H-34)
D Vi s R b+ (2eBL) 28

Then (H-30) and (H-31) become

Ya H 2
DR ‘ 1 72 t 2 t ’
We(t,f) - ZEo(u]) exp |- H]{; TR (Lb) + D,(1+R) (20l F)° - 2R080(2anf)(Lbj§.

(H-35)
The major axis of the elliptical contours is at angle B radians in the
(t/Lb.ZuLbf) plane, where
60(1 + R)
tan(28) = (H-36)

1 +R+D + RD/2 -

Given measurements or observations B and % this can be immediately
solved for 90, where it is presumed that B and L are known since they are

under our control.
As alternative fundamental parameter is more useful than the above; we
introduce
M= (L/ag)? , (H-37)

which is the square of the ratio of weighting time to input signal duration.

Then (H-31) yields

R =DM, (H-38)

1

-

e - a . » v - .M . . R . . P
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where D - (2wBoo)2 just as defined in (H-16). Eliminating R in favor of

D and M, the peak height of W, in (H-30) becomes

3

’ 1/2

Peak - 2E, oM - 5 . (H-39)
((1 £0)(1 £ D L OM) ¢ (1 + DM)E]

As checks on this quantily, observe that as D »e, the factor of ?Eo
in (H-39) approaches (M/(M + ]))]/2; in order to keep this latter quantity
near 1, we need M > 1, that is, L > %y This is consistent with physical
reasoning on figure 7. Alternatively, as M »e, the factor of 2E0 in
(H-39) approaches (D/(1 + D + eg))]/z; in order to keep this near 1, we

need (H-24) to be observed, just as before.

More generally, in order to keep the signal factor in (H-39) near unity,
we need to choose the combination of D and M large enough. For example, to

keep the factor at value F, that is, maintain

1/2
DM
5)  =F (<1, (H-40)
(1 + 0)(1 +D +DM) + (1 + DM)e0
we need to choose L in (H-37) such that
F2ra + 0y2 v ef)]
M= > 2 . (H-41)
D[O - F°(Y + D + 90)]
However, this relationship is useful only for
F2 2
D> ;_j—;§(] + eo) . (H-42)

H-10
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A representative sketch of (H-40) is displayed in figure H-1. Small values
of parameters M or D are not realizable without the other parameter tending
to infinity, in order to maintain the factor in (H-40) at value F. Three
numerical examples, for eo = 0,1,5 are given in figures H-2, H-3, and H-4,
respectively. The larger F values can only be achieved through rather large

0§ and/or M values.

There is, however, a minimum value of the product, MD, required to
realize a specified value F for the factor in (H-40), when eo is
specified. 1In fact, we find from (H-41) that, for given F and eo’ the

product MD is minimized by the choices

2 4 2

1+6 1+Fe
Pt 1 - 1+6
2
2 1+Fe6
ot-——?F51 W—= | (H-43)
Py - f 1+ 8

The value "opt is relatively insensitive to eo; in fact, it varies from
4F2/(1 - F4) to 2F2(1 - Fz) as 80 varies from 0 toed, which is

less than a 2:1 variation.

The corresponding minimum product is

2 3
(MD) s = ——2—':——2—5[1 + erﬁ v \ln + eﬁ)(\ N F4e§)] . (H-44)
<
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In particular,

2
. 1 252 ) _
(MD) .~ 5 (1 +F%0) +1 ase e, (H-45)

G-+

in fact, this is a good approximation except near eo = 0. Thus, large
amounts of linear frequency modulation, or values of F near 1, require very

large MD.

At the other extreme,

4 2
(MD) = —— fore_ =0. (H-46)

min <] _FF,‘,)? 0

For example, if F = 1/y7, this product is 8; thus relatively large values of
the product are required, even at the low end where there is no linear
frequency modulation. A plot of (H-44) is given in figure H-5, for various

/1 A )
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/
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Figure H-5. Minimum MD Product
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As a particular numerical example, for 8, = 0, F = Y\/WN7, we find

8 _ a-
D. .. =3, M =3'("D)min-8' (H-47)

So both Dopt and Mopt are somewhat lérger than unity, even for F equal

1/VZ. A1 these conclusions are drawn relative to the mean signal output

alone; we now consider the noise output contributions.

MEAN NOISE OuTPUl

The mean noise output of the WDF processor in figure 7 is given by

(172), (H-9), (H-13), and (H-31) as

_ f
= Hv(t,f) ® Gn(f) =

e \172
”‘dGTR) exp

(As L 9, that is, no weighting, than R +e, and b - Ny

(H-48)

— 1
— |+
ol
@ |+
rol ro
—
+|=
E)
—
[ 2

- o~ - -
AT -
T -

exp(-F2/B%) = G (f),

-~ >

as expected.)

The noise factor in (H-48), namely

1/2 1/2
(1 + R (] + DH) (H-49)

is virtually unity when the mean signal degradation is small, according to

the results of figure H-5. Thus the ratio of peak signal-to-noise means is

according to (H-30) and (H-48). These latter

approximately 2t /Nd,

‘D.u L1
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quantities, Eo and N,, are directly the input parameters to the WOF

d!
processor in figure 7; see (H-1) and (H-6).

VARIANCE OF NxN TERM

The variance of the NxN term at the WDF processor output is given by the

third line of (188) as

f
- 2 (2) N
vNN = 2 Hv(t.f)O Gn (f) =

2t 2f R

2 R
= N, ———— exp|-
dvif'R [Lz 82]+R

(H-50)

~N
[}
~N
e J

Here, we also used (H-11) and (H-13). As L »o0, then M 50, R +00, and
VNN 200, Alternatively, as 8 »00, then 0§ +2, R +»e, and v"N 300,
These results for this particular example confirm the general observations

in the sequel to (188).

The standard deviation of the NxN term, namely VVNN.' is precisely equal

to the noise mean output in (H-48) for all t,f, except for a constantl factor

1/4 = (1 + DH)]M. Also, the axes of the elliptical contours of

(1 +R)
(H-48) and (H-50) are parallel to the t and f axes and are independent of

eo, the amount of linear frequency modulation in the input signal.

ASLA v €y 8y .
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VARIANCE OF SxN TERM

The variance of the SxN terms at the WOF processor output is given by

the last line of (188) or by double the results in (182). Upon substitution
of (H-10), (H-12), and (H-15) in (182) and an extreme amount of

manipulations, there follows variance

R]D'
Vo, = 4E N exp[-€(t,f)) ,
SN od ‘["

Hy

H3 = (1 +#D +R/2)(V + D + R +DR/2) ¢+ (1 + R)() + R/2) Oi (H-52)

and €(t,f) is an eliiptical function with minimum value at t = f = 0.

Namely,

® *
t? e ¢ ap ¢ 2y]ul?

2(1al? - ¥9)

)
.'
&
K
¥
'
4
%
b

RS

=—(%t+12¢f).

% 1282 .




-

o

TR 8225

The quantity in the denominator of (H-53) can be simplified to

2(Jal® - ¥) = (H-55)

however, £(t,f) has not been reduced to its most compact form,

b 2 2

| + bzf + 2D3tf . (H-56)

due to the excessive amount of labor required to simplify and obtain

b],bz.b3.

QUALITY MEASURE OF PERFORMANCE

We define a quality measure for the WOF processor output in figure 7 as

Q - Difference of mean outputs _ a . (H-57)
Standard deviation of output V.. + V. \Y2
SN NN
The relevant quantities are given by (171) and (188) generally. For the
specific example in this appendix, the quality measure, at peak signal

location t = f = 0, is obtained by combining (H-30),(H-50), and (H-51):

1/2
259 DYl + R
1/2
Eo N
0={n, 13 (H-58)
d 1+ _0,/D(1 + R)
N Hy

for convenience, we repeat the parametler definitions here:

H-18
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2 . 2 i 2
8, - a, 9 » D= (20Ba ), M= (L/o )",
R =DM,
2
H]:U*D)(]*D*R)*(\*R)Oo.
Hy= (1 #0 ¢ R/2)(D + D+ R+ DR/2) + (1 + R)(D + R/2)8§ . (H-59)

It has already been observed in (H-24) and in the sequel to (H-39) that
D>1 + eg and M > 1 are desirabie, in so far as the mean signal output is
concerned. However, if filter bandwidth B (D) is made too large, then too
much noise is allowed through; alternatively, if weighting duration L (M) is
made too large, a noise degradation also results. Thus, it is expected that
the quality ratio Q will peak for D in the neighborhood of 1 + eg and

for M near 1.

It should be observed from (H-58) that even if input signal-to-noise
measure EO/Nd gets extremely large, the quality measure Q behaves
according to Vfg7iﬁ, and not EO/Nd. This is due to the saturation
effects caused by the SxN term in the denominator of definition (H-57); it
can also be seen directly from the quantitative result in (H-51), where
variance V_, is directly proportional to input signal energy Eo as well

SN

as the noise density level Nd'
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Qﬁ: The quality ratio Q in (H-58) is plotted versus M in figures H-6, H-J,
oy ‘
1,40, . |
B H-8 for eo = 0,1,9, respectively. The input ratio EO/Nd is kept at
RN .
~Q& value 20 in all cases; the only other fundamental parameter, D, is varied
-
$$ over a range wide enough to encompass the maximum of Q. However, for ease
(K
Hs of plotting the results, the values of D which are less than the critical
:" value, which leads to the peak Q, are separated from those that are greater
4 .
N than the critical value. For example, in figure H-6, D = 1 leads to the
A
" maximum value of Q that can be achieved for any value of M; thus, the upper
X part of figure H-6 contains results for D < 1, while the lower part contains
S
$. the remainder for D > 1. The corresponding critical values of D are 8 and
> 80 in figures H-7 and H-8, when eo = 1 and 5, respectively.
o
W
.\. . N . . .
Y One important observation that is made apparent by these figures is that
i)
AN .
near the maximum, the quality ratio Q is not too sensitive to M and D; that
,I
o is, the maximum is broad in the neighborhood of the best parameter pair
¥
[}
G
:ﬂ M,D. It should also be observed that as 90 increases, the peak value of
'l".
decreases, although the decrease is not very significant, at least over the
\'i'
ﬁf range eo = 0,1,5 used here. Finally, the values of the peaks in these
W
$f figures are slightly less than VEO/Nd, as anticipated above. ‘
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APPENDIX 1. SMOOTHED WOF FOR s(t) = t exp(—t2/2)
For the waveform
s(t) = t exp(-t2/2) for all t ,

the WDF is

W (L,f) = 27 exp(-t2 - 4x2£2) (12 + 4422 - %) = 207 exp(-rd)(r? - %) L (1-2)

with energy

- _fdtls(t)\z =y /2 .

Contour plots of the WDF in (I-2) are concentric circles in the (t,2«f)

242 ¢ (2eF)2. The

plane; in fact, (I-2) is a function only of r
origin value of wS is -2 = -yw, and the WDF is negative for r < 1/Y7,

while it is positive for r > 1/Y2.

Let us smooth this WOF with the most compact WDF; namely, use the

Gaussian weighting function in (G-23) with WDF (G-25) with ec = 0, o, = 1:

W(t,f) = 2 exp(-t° - 4x°f%) = 2 exp(-rl) . (1-4)

The reason for these parameter choices of ec and o, is that the contours
of (1-4) are also circles in the (t,2«f) plane and exactly match those of

the waveform WOF in (1-2); this should lead to minimal spreading.

I
Y - . R - » —
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The result of smoothing (I-2) by (I-4) is

) tf
s (t )] € = W (t.F) @ W(t,f) -

- 2w (12 - Al exp(— Tt s 4«2f2)> R A I

which has volume E as given by (I-3). Again, this is a function only of

r2. but it is never negative. This smoothed distribution is zero at r = 0,
and peaks at r = Vﬁ'with value .326. By contrast, the WOF in (I-2) is -1.77
at the origin, a large negative value. However, the waveform WDF in (1-2)
does decay faster than the short-term spectral estimate in (I-5); this is an

example of the tradeoffs that must be accepted when using short-term

spectral estimation versus the WDF.

To lend credence to (I-5) as a better measure of the time-frequency

content of s(t), we observe that at t = 0, the center of gravity of (I-5) is

Eflsu(o'f)lzf 1.[2
el i _\E'_

=~ (1-6)
{df [su(o,f)] 2

0

Then we expect that

A sin(zufot) (1-7)

ought to be a good fit to s(t) of (I-1) for t near zero. In fact, plots of

(I-1) and (I-7) for A = exp(-.5) overlap for -1 <t < 1.

I-2

D v v
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If we attempt this same procedure for WDF NS in (I-2), the denominator
is
o0
j\df W,(0,f) = 0, (1-8)
(o)

giving rise to fo = @, which is useless.

With respect to t = 1 instead, we find center of gravity

[
2
- Ldesu(l.f)lz f %ﬁj% . (1-9)
‘Gflsu(hf)l

Since s(t) in (I-1) peaks at t = 1, we expect that

A cos(2nf (t - 1)) (1-10)
ought to be a good fit to s(t) for t near 1. 1In fact, plots of (I-1) and

(I-10) for A = exp(-.5) show very good agreement for .8 <t <1.7.

Thus, smoothing of the WDF ws in (I-2) by means of WOF “u in (I1-4),

for this example, results in a very meaningful distribution function.

! 1-3/1-4
Reverse Blank
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APPENDIX J. DOUBLE CONVOLUTION OF TWO GAUSSIAN FUNCTIONS
By means of the double integral result
_ffdx dy exp[- ]5 axz - % By2 + YXy + ux + wy] =
2 2
- —2_1[—"7§ exp By + av + gYm’] (3-1)
(«B _ 72) 2(aB - Y°)
2 .. .
for a. >0, Br >0, “rBr > Yo it is readily shown that the
double convolution of two general Gaussian functions is given by
1..2 2
exp[- 7 ax* - 1 by - Yab' pxy] exp[- -1 dy - Yed axy]l = (3-2)
o N]x2 + N2y2 + 2N3xy
N 20 (3-3)
for a,b,c,d >0, |o| <1, IA] <1, where
2 2
D=ab(l -p ) +cd(l -2") + ad + bc - Zvabca'p A
Ny = ac(b(l - p%) + d(1 - %))
N, = bd[a(1 - pz) +c(1 - kz)]
Ny = Yabed (VAF A1 - p7) + Y@ p(1 - 2] . (3-4)
J-1
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Also, a useful auxiliary relation is

2 2 2
NN, - N3 = D abed (1 - p)(1 - 2°) . (3-5)

Now let

sin(e), where - - < ©® <

A
i}
~ (A

>
[}

sin(e), where - > < @8 < % . (J-6)

NI

Then the area of the contour ellipse at the 1/e relative level of the first
exp in (J-2) is

2%

AL = ————
! V?t?cos(e)

(3-7)

in the x,y plane, where we used (D-1), (D-19), and (D-20). Similarly, the

area of the second exp in (J-2) is

2w
A2 = (J-8)

Vt-:?cos(n) ‘

The sum of these two effective areas is

. A = 24 Yab cos(®) + Ycd cos(s) _

A
! 2 Vabcd cos(®) cos(s)

(J-9)

On the other hand, the area of the contour ellipse at the 1/e relative

level of the smoothed exp in (J-3) is

A, = 2« LLN

(J-10)

i 3 \ebed' cos(e) cos(s)
J-2
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in the x,y plane, where we can express 0 from (J-4) as
D =ab cosz(e) + cd cosz(o) +ad + bc - 2“53?3 sin(@)sin(s) =
= [yab cos(@) + Ycd cos(s)]2 + lﬁa‘ exp(i8) - ybc exp(in)l2 ) (3-11)

Comparison of the square root of (J-11) with the numerator of (J-9) reveals

that

Az > A + A, (J-12)
with equality occuring if and only if
Vad=Ybc and e =1 . (3-13)

That is, in order for A3 = A] + Az. we must have

and A =p . (J-14)

na
[ -4

Physically, this requirement states that the contour ellipses of the two exp
terms in (J-2) must have the same ratio of major-to-minor axes and they must
have the same tilt. If either condition is violated, then A_ > A_ + A

3 1 2’
the exact amount depending on the second term in (J-11).

EFFICIENT CALCULATION OF GAUSSIAN FUNCTION

If the general two-dimensional Gaussian function in (J-2) is sampled on

an equi-spaced grid, for purposes of convolution, it will be necessary to

compute the quantity

Q2(m,n) = exp(-am? - bnZ - cmn) (3-15)

J-3
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for integers -M <m < M, -N < n < N. The following efficient procedure is

based upon the general method given in {12].

We observe first that

02("“‘—“) = OZ(mon) ’ (J']b)

which cuts the effort by one-half. There also follows

02(M.n) = Oz(m.n - 1) Ol(m.n) . (3-17)

where

Q1(m,n) = exp[-b(2n - 1) - cm] = Qy(m,n - 1) exp(-2b) . (J-18)
These recurrences can be started with
Q,(m,0) = exp(b - cm) ,
Qz(m,O) = exp(-amz) = 02(—n.0) . (J-19)

Furthermore, these latter two quantities are available through the

recurrence

Ol(m.O) = Qy(m - 1,0) exp(-c)

form > 1 , (J3-20)

0,(m -1,0) = OI(M.O) exp(+c)

gy




The only case not covered by the above recurrences is for m = 0; then
02(0.0) = 02(0.0 - 1) F(n)
F(n) = F(n - 1) exp(-2b)

with

A program for the evaluation of (J-15) is given below. Only three

required is for the final quantity Oz(m,n) in lines 60-70. The auxiliary

variables Q](m,n). E(m), F(n) introduced above need never be stored. The

check on accuracy in lines 390-470 would be discarded, of course, in any

TR 8225

with
01 (0,0) = exp(b) , (J-21)
and the recurrence
02(".0) = Qz(m - ],0) E(M)
form>1 , (J-22)
E(m) = E(m - 1) exp(-2a)
with
Q2(0,0) =1, E(0) = exp(a) . (J3-23)

for n > 1, (3-24)

F(0) = exp(b) . (J-25)

exponentials, in lines 90-110, need to be evaluated. Also, the only storage

sy

%
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150
160
170
189
190
200
210
220
230
240
250
259
27

239
239
2009
3109
329
239
340
359
368
379
3389
399
499
419
429
439
440
4%9
48Q
479

in entering the program into another computer.

R=,037 I exp(-A m~2 - B
B=.051 ! for -M(=m(=M,
C=.044

M=S

N=?

REDIM Q2¢-M:M,-N:N>
DIM Q2¢(S0Q,58)>
DOUBLE M,N,Ms,Ns '
Ea=EXPC(RAD
Eb=EXP (B>
EcsEXP(C)
Q2¢(0,08)>=1,
E=Ed
E2b=Eb+#ED
FOR Ns=1 TQ N
E=E/E2b
QA2(0,Ns)>=Q2(0,Ns-1)*E
NEXT Ns
E=Ea
E2a=Ea+Ea
Glpo=Qimo=Eb
FOR Ms=1 TO M
Qlp=Qilpo=Qlpo-Ec
Qlm=Qimo=Qlmo*Ec
E=E-E2a
Q2¢(-Ms,D>=22(Ms, D> =Q2(Ms-1,0)+E
FOR Ns=1 TO N
Qlp=21p-EZD
Qim=21m- EZD
Q27 M3 Ns)=N2Ms , Ns-1)>+idlp
R2C-M3 N3 2>=Q2-M3 ,N3-122Qim
NEXZT Ns
NEXT Ms
FOR Ms=-M TO M
FOR Ns=1 TO N
Q2(~Ms,~-Ns>=Q2:Ms,Ns)
NEXT Ns
NEXT Ms
Big=9. !
FOR Ms=-M TO M
FOR N3=-N TO N
E=EXP(-A*Mg#M3-BaNg#Ng~CxM3%Ns)
Error=E-Q2<(Ms,Ns)
Big=MAX(Big,ABS(Error))
NEAXT Ns
NEAXT Ms
PRINT B13
END

INTEGERS

AN T AR

practical appiication; it is appended as a check on any typographical errors

n2 - Cmnd
-N<=n{=HN

MAXIMUM ERROR CHECK
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