

10

(6) nUSC Technical Report 8225

16 February 1903
AD-A193

Wigner Distribution Function: Relation to Short-Term Spectral Estimation, Smoothing, and Performance in Noise

Albert H. Nuttall

Surface ASW Directorate

Naval Underwater Systems Center Newport, Rhode lsland/New London, Connecticut

$88 \quad 5 \quad 05 \quad 019$

Preface

This research was conducted under NUSC Project Nos. A60080 and G20021, "CUARP3." Principal Investigator Dr. Kent Scarbrough (Code 3331), Program Manager Mr. Ronald Tompkins (Code 33A). The sponsoring activities are the Office Uf Naval Technology (Code 231). Program Manager Dr. Tom Warfield, and the Naval Sea Systems Command (Code 63D), Program Manager CDR L. Schneider. Also, this research was conducted under NUSC Project No. A75205. Subproject No. ZR0000101, "Applications of Statistical Communication Theory to Acoustic Signal Processing," Principal Investigator Dr. Albert H. Nuttall (Code 304). This technical report was prepared with funds provided by the NUSC In-House Independent Research and Independent Exploratory Development Program, sponsored by the Chief of Naval Research.

The Technical Reviewer for this report was Or. John W. Fay (Code 3331).

Reviewed and Approved:

UNCLASSIFIED
SEUMATY Clanglfica tion of phis Pact
18. SUBJECT TERMS (Cont'd.)

Interference Effects,
Gaussian Amplitude Modulation
Marginals
Moments
Spread of Distribution
Positive Distributions
Ambiguity Function
i

table of contents

Page
I.IST OF ILLUSTRATIONS iii
I.IST OF SYMBOLS iv
INTRODUCTION 1
BASIC PROPERTIES OF THE WDF 3
Definitions 3
Properties of WDF 6
Product and Convolution 8
Ambiguity Function 9
First Moments of W 12
Second Moments of W 15
Moments of W^{2} 16
Cross Wigner Distribution Function 19
Narrowband Real Waveform 22
Sampling Properties 23
EXAMPLES OF WOF 28
Gaussian Waveform 29
Gaussian-Modulated Tone 31
Multiple Modulated Tones 32
Linear Frequency Modulation 35
Gated Linear Frequency Modulation 40
SHORT-TERM SPECTRAL ESTIMATION 43
Weighted Spectral Estimate 43
Relation to WOFs 44
Marginals of Spectral Estimate 46
Moments of Spectral Estimate 47
Conditional Moment 49
EXAMPLES OF SHORT-TERM SPECTRAL ESTIMATION 51
Gaussian Waveform 51
Multiple Modulated Tones 53
Linear Frequency Modulation 55
More-General Weighting 57
SMOOIHING THE WOF 60
Philosophy and Approach 60
Alternative Averaging Procedures 63
Efficient Calculation of Short-Term Spectral Estimate 66
WDF With Minimum Spread 69
table of contents (Cont'd)
PERFORMANCE IN NOISE 70
Waveform Weighting 70
Mean Values 72
Variance of WOF Estimate 73
WDF Processor 77
SUMMARY 80
APPENDIX A. SLICES IN TIME OF THE WDF A-1
APPENDIX B. OSCILLATING WDF FOR SEPARATED PULSES B-1
APPENDIX C. AMBIGUITY FUNCTION OF (79) C-1
APPENDIX O. ROTATION OF AXES 0-1
APPENDIX E. DISCRETE APPROXIMATION TO SHORT-TERM SPECTRAL ESTIMATE E-1
APPENDIX F. SOME SMOOTHING CONSIDERATIONS F-1
APPENDIX G. DERIVATION OF MINIMUM-SPREAD WDF G-1
APPENDIX H. EXAMPLE OF WOF PROCESSOR H-I
APPENDIX I. SMOOTHED WDF FOR $s(t)=t \exp \left(-t^{2} / 2\right)$ I-1
APPENOIX J. DOUBLE CONVOLUTION OF TWO GAUSSIAN FUNCTIONS J-I
REFERENCES R-1

LIST OF ILLUSTRATIONS

Figure Page
1 WDF for Narrowband Real Waveform 23
2 WDF for Sampled Version $\tilde{W}(t, f)$ 25
3 $\tilde{W}(t, f)$ for Real Waveform $s(t)$ 25
4 Contour of WDF (72) at 1/e Relative Level 30
5 Contour of (91) for $\theta_{0}=1.5$ 39
6 Contours of WDF for Gated Linear Frequency Modulation 41
7 WDF Processor 77
8 Time and Frequency Characteristics of Figure 7 79
A-1 Low-Pass Spectrum S(f) A-2
B-1 Waveform $s(t)$ 8-1
D-1 Rotated Coordinate Axes D-1
D-2 Triangle Interpretation of (0-5) D-3
D-3 Ellipse in Rotated Coordinates D-5
$\mathrm{H}-1 \quad$ Plot of ($\mathrm{H}-40$) or ($\mathrm{H}-41$) for Fixed $\boldsymbol{\theta}_{0}$ H-12
H-2 Plot for $\Theta_{0}=0$ H-12
H-3 Plot for $\theta_{0}=1$ H-13
H-4 Plot for $\theta_{0}=5$ H-13
H-5 Minimum MD Product H-14
H-6 Quality Ratio for $\theta_{0}=0, E_{0} / N_{d}=20$ H-21
H-7 Quality Ratio for $\theta_{0}=1, E_{o} / N_{d}=20$ H-22
H-8 Quality Ratio for $\theta_{0}=5, E_{0} / N_{d}=20$ H-23

LIST OF SYMBOLS

WDF	Wigner Distribution Function
t	Time, (1)
$s(t)$	Waveform, function of time, (1)
τ	Time separation or lag variable, (1)
$R(t, \tau)$	Instantaneous correlation, (1)
f	Frequency, (3)
$w(t, f)$	WOF at time t and frequency f, (3), (10)
E	Waveform energy, (5), (14)
S(f)	Voltage density spectrum of $s(t)$, (9)
δ	Delta function, (13)
(1)	Convolution, (19). (20)
v	Frequency shift variable, (22)
$x(v, \tau)$	Ambiguity function, (22)
$A(v, f)$	Spectral function, (24)
Im	Imaginary part, (28)
δ^{\prime}	Derivative of delta function, (29)
$\mu_{f}(t)$	Frequency center at time t, (30)
$M(t)$	Magnitude of $s(t)$, (31)
$\theta(t)$	Phase of $s(t)$, (31)
$\mu_{t}(f)$	Time center at frequency f, (33)
A(f)	Magnitude of $\mathrm{S}(\mathrm{f})$, (34)
$\theta(f)$	Phase of S(f), (34)
f	Frequency center, (36)
$\overline{\mathrm{t}}$	Time center, (37)

LIST OF SYMBOLS (Cont'd)

$\sigma_{f}^{2}(t)$	Instantaneous mean-square frequency spread, (42)
$W_{a b}(t, f)$	Cross WDF, (51)
$a(t), ~ A(f)$	Fourier transform pair, (51)
$\chi_{a b}(v, \tau)$	Cross ambiguity function, (53)
$c(t)$	Complex envelope, (55)
f_{0}	Carrier frequency, (55)
Re	Real part. (55)
Δ_{t}	Sampling increment in time, (57)
W	Approximation to W, (57), (59)
m, n, N_{f}	Integers, (60)
T	Time spread, figure 2
B	Frequency spread, figure 3
f_{H}	Highest frequency in $s(t)$, (65)
t_{0}, f_{0}	Time and frequency shifts, (66)
θ_{0}	Time-bandwidth product, (88)-(90)
$u(t)$	Weighting in time, (102)
$S_{u}(t, f)$	Voltage spectrum of s, relative to u, (102)
STSE	Short-term spectral estimate, (103)
EFS_{5}	Energy of waveform $s(t)$, (111)
E_{u}	Energy of weighting $u(t)$, (111)
${ }^{\circ} \mathrm{C}$	Effective duration of weighting, (146)
${ }^{a_{c}}$	Linear frequency modulation parameter. (146)
θ_{C}	Time-bandwidth product, (146)
$v_{1}(t)$	Time weighting, (148)
\hat{R}	Locally averaged correlation, (148), (150)

LIST OF SYMBOLS (Cont'd)

\hat{W}	Locally averaged WDF, (149)
$v_{2}(t, \tau)$	Time and lag weighting, (150)
$v_{2}(t, f)$	Transform (on τ) of v_{2}, smoothing function, (151)
I	Spread measure, (163)
${ }^{\beta} \mathrm{C}$	Specified slope in t , f plane, (163)
${ }^{\alpha}{ }_{C}$	$2 \pi \beta_{C}$, (163)
$s(t)$	Signal, (165)
$n(t)$	Additive noise, (165)
$x(t)$	Observed waveform, (165)
$C_{n}(\tau)$	Noise correlation, (166)
$G_{n}(f)$	Noise spectrum, (166)
$v(t)$	Weighting of x, (167)
$y(t)$	Weighted waveform, (167)
a, b, c, d	Components of $W_{y y}$, (168), (169)
overbar	Ensemble average, (172), (173)
$G_{n}^{(2)}(f)$	Modified noise spectral quantity, (178)
$B(t, f)$	Auxiliary function, (183)
Var	Variance of WDF estimate, (188)
$s_{0}(t)$	Input signal, figure 7
$n_{0}(t)$	Input noise, figure 7
H(f)	Filter, figure 7
N_{d}	Noise spectral level, (189)
B	Passband of filter H , figure 8
L	Duration of weighting v, figure 8
LFM	Linear Frequency Modulation
$\operatorname{sgn}(x)$	1 for $x>0,-1$ for $x<0$

WIGNER DISTRIBUTION FUNCTION: RELATION TO SHORT-TERM SPECTRAL ESTIMATION, SMOOTHING, AND PERFORMANCE IN NOISE

INTRODUCTION

The potential of the Wigner Distribution Function (WDF) for characterizing the short-term local time and frequency content of a transient waveform has been amply demonstrated in a series of papers; for example, see the recent publications [1,2,3] and the extensive references listed therein. In particular. [1] contains numerical examples of the WDF for rectangularly gated linear frequency modulation and a version which has been smoothed with a square window in the time-frequency plane, in order to yield positive distribution values. Here, we will be concerned with smoothing so as to minimally spread the WDF, but will not presume all the information that is required for implementation via [2], nor do we limit consideration to a constant-magnitude function. We will then use the close connection between short-term spectral estimation and smoothed WDFs to suggest a possible analysis procedure and philosophy to extract information about a given waveform without an extensive search in waveform parameters. Finally, the performance of a particular WDF estimator in the presence of additive noise will be analyzed, both in terms of bias and variance.

This report summarizes and compiles many of the results in the publications noted above in a unified framework and notation. Also, numerous examples are presented in the various sections of this report to
illustrate and bring out some of the fundamental concepts and limitations of the WDF; these examples can be evaluated analytically in closed form, allowing for clase investigation of the behavior of the WDF, and as control cases on any computer-written program for numerical evaluation of the WDF.

BASIC PROPERTIES OF THE WDF

DEFINITIONS

Abstract

A natural definition of the time-varying correlation of a nonstationary complex stochastic process $s(t)$ is

$$
\begin{equation*}
R(t, \tau)=\overline{s\left(t+\frac{\tau}{2}\right) s^{*}\left(t-\frac{\tau}{2}\right)} \text {. } \tag{1}
\end{equation*}
$$

where the overbar denotes an ensemble average. The "center" time in (1) is t, while the "separation" time is τ. However, if an ensemble is not available, or if $s(t)$ is a deterministic waveform, the obvious extension of (1) is simply

$$
\begin{equation*}
R(t, \tau)=s\left(t+\frac{\tau}{2}\right) s^{*}\left(t-\frac{\tau}{2}\right) . \tag{2}
\end{equation*}
$$

This quantity is interpreted as the instantaneous correlation of waveform $s(t)$ at time t, for separation (or lag) τ.

The associated "spectrum" at time t is then avallable, as usual, by Fourier transforming (2) on separation variable τ, to get at frequency f,

$$
\begin{align*}
W(t, f) & =\int \pi \exp (-i 2 \pi f \tau) R(t, \tau)= \\
& =\int d \tau \exp (-12 \pi f \tau) s\left(t+\frac{\tau}{2}\right) s^{*}\left(t-\frac{\tau}{2}\right) . \tag{3}
\end{align*}
$$

(Integrals without limits are over the range of nonzero integrand. Also, it is presumed that $s(t)$ and its derivatives decay fast enough to zero at $t= \pm \infty$ for all the integrals to converge.) This time-frequency function $W(t, f)$ is called the Wigner Distribution Function (WDF). It is a real function, even when $s(t)$ is complex, since

$$
\begin{align*}
W^{\star}(t, f) & =\int d \tau \exp (i 2 \pi f \tau) s^{\star}\left(t+\frac{\tau}{2}\right) s\left(t-\frac{\tau}{2}\right)= \\
& =\int d u \exp (-12 \pi f u) s^{\star}\left(t-\frac{u}{2}\right) s\left(t+\frac{u}{2}\right)=W(t, f) . \tag{4}
\end{align*}
$$

However, it is not necessarily positive, as the simple example of a rectangularly gated pulse quickly shows: for

$$
s(t)=\left\{\begin{array}{ll}
a & \text { for }|t|<T / 2 \\
0 & \text { otherwise }
\end{array}\right\}
$$

then

$$
W(t, f)=2 E \frac{\sin [2 \pi f(T-2|t|)]}{2 \pi f T} \text { for }|t|<\frac{T}{2} \text {. allf. }
$$

and zero otherwise, where E is the waveform energy:

$$
\begin{equation*}
E=\int d t|s(t)|^{2}=|a|^{2} T \tag{5}
\end{equation*}
$$

An even simpler example is furnished by waveforms with odd symmetry, $s(-t)=-s(t)$. Substitution in (3) immediately yields $W(0,0)=$ $-\int d I|s(T / 2)|^{2}=-2 E$. Thus the origin value of the WDF is always negative for an odd waveform.

More generally, when waveform $s(t)$ is expressed in terms of its even and odd parts according to

$$
\begin{equation*}
s(t)=e(t)+o(t), \tag{6}
\end{equation*}
$$

then the origin value of the WDF is

$$
\begin{align*}
& W(0,0)=\int d \tau s(\tau / 2) s^{\star}(-\tau / 2)=2 \int d t s(t) s^{\star}(-t)= \\
= & 2 \int d t[e(t)+o(t)]\left[e^{*}(t)-o^{\star}(t)\right]=2 E_{e}-2 E_{0}, \tag{7A}
\end{align*}
$$

where

$$
\begin{equation*}
E_{e}=\int d t|e(t)|^{2}, \quad E_{0}=\int d t|o(t)|^{2} \tag{78}
\end{equation*}
$$

are the energies of the even and odd parts respectively. For nonzero t, f, it can readily be shown that the magnitude of the WOF is upper bounded by $2 E=2\left(E_{e}+E_{0}\right)$.

TR 8225

PROPERTIES OF WDF

For $s(t)$ real, it readily follows from the definition of the WOF in (3) that

$$
\begin{equation*}
W(t,-f)=W(t, f) \quad \text { for } s(t) \text { real. } \tag{8}
\end{equation*}
$$

In this special case, it is only necessary to evaluate $W(t, f)$ for $f \geq 0$.

Define the voltage density spectrum of waveform $s(t)$ as

$$
\begin{equation*}
S(f)=\int d t \exp (-i 2 \pi f t) s(t) \tag{9}
\end{equation*}
$$

Then an alternative form for the WDF in (3) is

$$
\begin{align*}
W(t, f) & =\int d \tau \exp (-i 2 \pi f \tau) s\left(t+\frac{\tau}{2}\right) s^{\star}\left(t-\frac{\tau}{2}\right)= \\
& =\int d v \exp (i 2 \pi v t) S\left(f+\frac{v}{2}\right) S^{\star}\left(f-\frac{v}{2}\right) \tag{10}
\end{align*}
$$

in terms of $S(f)$.

Integration on (10) immediately yields the marginals

$$
\begin{equation*}
\int d t W(t, f)=|S(f)|^{2} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\int d f w(t, f)=|s(t)|^{2} \tag{12}
\end{equation*}
$$

6
where we used the result

$$
\begin{equation*}
\int d x \exp (i 2 \pi x y)=\delta(y) \tag{13}
\end{equation*}
$$

The quantity in (11) is the energy density function, while that in (12) is the instantaneous power. If we complete the integrations on the remaining variables in (11) and (12), they both yield

$$
\begin{align*}
& \iint d t d f W(t, f)=E= \\
= & \int d t|s(t)|^{2}=\int d f|s(f)|^{2}, \tag{14}
\end{align*}
$$

where E is the total waveform energy.

If waveform $s(t)$ satisfies a time-limited restriction, namely

$$
\begin{equation*}
s(t) \neq 0 \text { only for } t_{1}<t<t_{2} \text {, } \tag{15}
\end{equation*}
$$

then (3) reduces to

$$
\begin{equation*}
W(t, f)=\int_{-\tau_{m}}^{\tau_{m}} d \tau \exp (-i 2 \pi f \tau) s\left(t+\frac{\tau}{2}\right) s^{*}\left(t-\frac{\tau}{2}\right) \quad \text { for } t_{1}<t<t_{2} \text {, } \tag{16}
\end{equation*}
$$

and zero otherwise, where

$$
\begin{equation*}
\tau_{m}=2 \min \left(t_{2}-t, t-t_{1}\right) \quad \text { for } t_{1}<t<t_{2} . \tag{17}
\end{equation*}
$$

Thus the WOF is time-limited if waveform $s(t)$ is time-limited; however, if there are gaps in $s(t)$, the behavior of the WDF is more complicated, as will be demonstrated later.

PRODUCT AND CONVOLUTION

If waveform $s(t)$ is the product of two other waveforms,

$$
\begin{equation*}
s(t)=a(t) b(t) \text {. } \tag{18}
\end{equation*}
$$

then the WDF of $s(t)$ is (inserting subscripts as needed)

$$
\begin{align*}
W_{s}(t, f) & =\int d \tau \exp (-i 2 \pi f \tau) R_{s}(t, \tau)= \\
& =\int d \tau \exp (-i 2 \pi f \tau) R_{a}(t, \tau) R_{b}(t, \tau)= \\
& =\int d v W_{a}(t, v) W_{b}(t, f-v)= \\
& =W_{a}(t, f) \stackrel{f}{*} W_{b}(t, f), \tag{19}
\end{align*}
$$

which is a convolution on frequency f, for fixed t.

In a similar fashion, if $s(t)$ is the convolution in time, of two other waveforms ,

$$
\begin{equation*}
s(t)=a(t) \stackrel{t}{*} b(t)=\int d \tau a(\tau) b(t-\tau) \text {, } \tag{20}
\end{equation*}
$$

then the WDF of $s(t)$ is

$$
\begin{equation*}
w_{s}(t, f)=w_{a}(t, f) \stackrel{t}{\otimes} w_{b}(t, f)=\int \pi \tau w_{a}(\tau, f) W_{b}(t-\tau, f), \tag{21}
\end{equation*}
$$

which is a convolution on time t, for fixed f.

AMBIGUITY FUNCTION

The WDF is closely related to the complex ambiguity function of $s(t)$, which is defined here as [4; section 7.2]

$$
\begin{align*}
\chi(\nu, \tau) & =\int d t \exp (-i 2 \pi v t) s\left(t+\frac{\tau}{2}\right) s^{*}\left(t-\frac{\tau}{2}\right)= \\
& =\int d t \exp (-i 2 \pi \nu t) R(t, \tau)= \\
& =\int d f \exp (i 2 \pi f \tau) S\left(f+\frac{v}{2}\right) s^{\star}\left(f-\frac{v}{2}\right) . \tag{22}
\end{align*}
$$

In fact, the two are double Fourier transforms of each other:

$$
\begin{gather*}
\iint d t d f \exp (i 2 \pi \tau f-i 2 \pi v t) W(t, f)= \\
=\iint d t d f \exp (i 2 \pi \tau f-i 2 \pi v t) \int d \tau_{1} \exp \left(-i 2 \pi f \tau_{1}\right) s\left(t+\frac{\tau_{1}}{2}\right) s^{*}\left(t-\frac{\tau_{1}}{2}\right)= \\
=\iint d t d \tau_{1} \exp (-i 2 \pi v t) s\left(t+\frac{\tau_{1}}{2}\right) s^{*}\left(t-\frac{\tau_{1}}{2}\right) \delta\left(\tau-\tau_{1}\right)= \\
=\int d t \exp (-i 2 \pi v t) s\left(t+\frac{\tau}{2}\right) s^{*}\left(t-\frac{\tau}{2}\right)=X(\nu, \tau) . \tag{23}
\end{gather*}
$$

Here we used (3). (13), and (22).

In a similar fashion, the following (single) Fourier transform relationships on the WDF hold:

$$
\begin{align*}
& \int d f \exp (i 2 \pi f \tau) W(t, f)=s\left(t+\frac{\tau}{2}\right) S^{\star}\left(t-\frac{\tau}{2}\right)=R(t, \tau), \\
& \int d t \exp (-i 2 \pi v t) W(t, f)=S\left(f+\frac{v}{2}\right) S^{\star}\left(f-\frac{v}{2}\right)=A(v, f) . \tag{24}
\end{align*}
$$

These properties are summarized in the following diagram, where an arrow denotes a Fourier transform:

Not every function of t, f is a (legal) WDF; in fact, from (24) there follows

$$
\begin{equation*}
\int d f \exp \left(i 2 \pi f\left(t_{1}-t_{2}\right)\right) W\left(\frac{t_{1}+t_{2}}{2}, f\right)=s\left(t_{1}\right) s^{\star}\left(t_{2}\right)=R\left(\frac{t_{1}+t_{2}}{2}, t_{1}-t_{2}\right) \tag{25}
\end{equation*}
$$

Thus, in order for a candidate function $W(t, f)$ to be a $W D F$, the function resulting on the right-hand side of (25) must be separable in the variables t_{1} and t_{2}. When and only when that separability occurs, the waveform $s(t)$ can be recovered from correlation R or W (within a constant unknown phasor) as follows: let

$$
\begin{equation*}
s\left(t_{0}\right)=\left|s\left(t_{0}\right)\right| \exp \left(i \theta\left(t_{0}\right)\right), \quad R\left(t_{0}, 0\right)=\left|s\left(t_{0}\right)\right|^{2} \tag{26}
\end{equation*}
$$

where t_{0} is arbitrary, except that $s\left(t_{0}\right) \neq 0$. Then, from the right-hand side of (25),
$s(t)=\frac{R\left(\frac{t+t_{0}}{2}, t-t_{0}\right)}{s^{\star}\left(t_{0}\right)}=\frac{R\left(\frac{t+t_{0}}{2}, t-t_{0}\right)}{\sqrt{R\left(t_{0}, 0\right)}} \exp \left(i \theta\left(t_{0}\right)\right) \quad$ for all t.

The special case of $t_{0}=0$ was given in [3; (17)]. The fact that the constant phase $\theta\left(t_{0}\right)$ is irretrievably lost in R and W can easily be seen by considering $s(t)=c g(t)$, for which $W_{s}(t, f)=|c|^{2} W_{g}(t, f)$.

The box-like function rect(t/T) $\operatorname{rect}(f / F)=1$ for $|t|<T / 2$ and $|f|<F / 2$, zero otherwise, which was employed for smoothing in [1], is not a WDF, since the transform on the left-hand side of (25) yields F sinc $\left(+t_{1}-F t_{2}\right)$ for $\left|t_{1}+t_{2}\right|<T$, which is not separable in t_{1} and t_{2}. Also, the Gaussian function $\exp \left(-t^{2} / \sigma^{2}-b^{2} 4 \pi^{2} f^{2}\right)$ is a legal WDF if and only if $b=\sigma$, in which case $s(t)=\left(4 \pi \sigma^{2}\right)^{-1 / 4} \exp \left(-t^{2} /\left(2 \sigma^{2}\right)\right)$, with a arbitrary.

FIRSI MOMENTS OF W

The marginal integrals of W were given in (17) and (12). The (conditional) first moment of W, with respect to frequency, is

$$
\begin{align*}
& \int d f f W(t, f)=\int d f f \int d \tau \exp (-i 2 \pi f \tau) s\left(t+\frac{\tau}{2}\right) s^{*}\left(t-\frac{\tau}{2}\right)= \\
& =\int d \tau s\left(t+\frac{\tau}{2}\right) s^{*}\left(t-\frac{\tau}{2}\right) \int d f f \exp (-i 2 \pi f \tau)= \\
& =\frac{i}{2 \pi} \int d \tau s\left(t+\frac{\tau}{2}\right) s^{*}\left(t-\frac{\tau}{2}\right) \delta^{\prime}(\tau)=\frac{1}{2 \pi} \operatorname{Im}\left\{s^{\prime}(t) s^{*}(t)\right\} . \tag{28}
\end{align*}
$$

Here we used the result

$$
\begin{equation*}
i 2 \pi \int d x \times \exp (i 2 \pi x y)=\delta^{\prime}(y), \tag{29}
\end{equation*}
$$

obtainable directly from (13) by taking a derivative with respect to y.

Therefore the "frequency center at time t " of waveform $s(t)$ is defined as

$$
\begin{equation*}
u_{f}(t)=\frac{\int d f f w(t, f)}{\int d f w(t, f)}=\frac{1}{2 \pi} \frac{\operatorname{Im}\left\{s^{\prime}(t) s^{*}(t\}\right.}{|s(t)|^{2}} . \tag{30}
\end{equation*}
$$

upon use of (28) and (12). If we let complex waveform $s(t)$ be represented in terms of its amplitude and phase modulations according to

$$
\begin{equation*}
s(t)=M(t) \exp [i \theta(t)], \tag{31}
\end{equation*}
$$

then (30) yields simply

$$
\begin{equation*}
\mu_{f}(t)=\frac{1}{2 \pi} \theta^{\prime}(t), \tag{32}
\end{equation*}
$$

which is independent of amplitude modulation $M(t)$. (32) can also be interpreted as the instantaneous frequency at time t of waveform $s(t)$.

The "time center at frequency f " follows in an andogous fashion as

$$
\begin{equation*}
\mu_{t}(f)=\frac{\int d t t W(t, f)}{\int d t W(t, f)}=-\frac{1}{2 \pi} \frac{\operatorname{Im}\left\{S^{\prime}(f) S^{\star}(f)\right\}}{|S(f)|^{2}} . \tag{33}
\end{equation*}
$$

If we represent the voltage density spectrum $S(f)$ in terms of its magnitude and phase,

$$
\begin{equation*}
S(f)=A(f) \exp [-i \phi(f)], \tag{34}
\end{equation*}
$$

then (33) reduces to

$$
\begin{equation*}
\mu_{t}(f)=\frac{1}{2 \pi} \sigma^{\prime}(f) . \tag{35}
\end{equation*}
$$

which is independent of $A(f)$. (35) can also be interpreted as the group delay at frequency f of waveform $s(t)$.

The unconditional first moments of W are frequency center

$$
\begin{equation*}
\bar{f} \equiv \frac{\iint d t d f f W(t, f)}{\iint d t d f w(t, f)}=\frac{\int d f f|S(f)|^{2}}{\int d f|S(f)|^{2}}=\frac{\int d f f A^{2}(f)}{\int d f A^{2}(f)} \tag{36}
\end{equation*}
$$

and time center

$$
\begin{equation*}
\bar{t} \equiv \frac{\iint d t d f t w(t, f)}{\iint d t d f w(t, f)}=\frac{\int d t t|s(t)|^{2}}{\int d t|s(t)|^{2}}=\frac{\int d t t M^{2}(t)}{\int d t M^{2}(t)} . \tag{37}
\end{equation*}
$$

(36) follows directly from (11) and (34), while (37) follows directly from (12) and (31). Thus, \bar{f} is independent of (f), and \bar{t} is independent of $\theta(t)$.

Alternative forms to (36) and (37), in the complementary domains, are available:

$$
\begin{equation*}
\bar{f}=\frac{1}{2 \pi} \frac{\int d t \operatorname{Im}\left\{s^{\prime}(t) s^{*}(t)\right\}}{\int d t|s(t)|^{2}}=\frac{1}{2 \pi} \frac{\int d t M^{2}(t) \theta^{\prime}(t)}{\int d t M^{2}(t)}, \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{t}=-\frac{1}{2 \pi} \frac{\int d f \operatorname{lm}\left\{S^{\prime}(f) S^{\star}(f)\right\}}{\int d f|S(f)|^{2}}=\frac{1}{2 \pi} \frac{\int d f A^{2}(f) \varnothing^{\prime}(f)}{\int d f A^{2}(f)} . \tag{39}
\end{equation*}
$$

The result in (38) follows from the use of (28) and (12) in definition (36); a similar procedure yields (39). The frequency center \bar{f} in (38) is an average of the instantaneous frequency $\mu_{f}(t)$ in (32), weighted according to the magnitude-squared waveform, $M^{2}(t)$; similarly, time center $\overline{\mathrm{t}}$ in (39) is a weighted average of $\mu_{t}(f)$ in (35).

SECUND MOMENIS OF W

By taking two partial derivatives with respect to τ in (24), there follows

$$
\begin{equation*}
\int d f f^{2} W(t, f)=-\frac{1}{8 \pi^{2}}\left[\left|s^{\prime}(t)\right|^{2}-\operatorname{Re}\left\{s^{\prime \prime}(t) s^{\star}(t)\right\}\right] \tag{40}
\end{equation*}
$$

When we then employ (12) and (31), the (conditional) second moment with respect to f develops into the form

$$
\begin{equation*}
\frac{\int d f f^{2} W(t, f)}{\int d f W(t, f)}=\frac{1}{8 \pi^{2}}\left[\frac{M^{\prime 2}(t)}{M^{2}(t)}-\frac{M^{\prime \prime}(t)}{M(t)}\right]+\left[\frac{\theta^{\prime}(t)}{2 \pi}\right]^{2} . \tag{41}
\end{equation*}
$$

Therefore the instantaneous "mean-square frequency spread" is

$$
\begin{align*}
& \sigma_{f}^{2}(t) \geq \frac{\int d f\left[f-\mu_{f}(t)\right]^{2} W(t, f)}{\int d f W(t, f)}= \\
& =\frac{1}{8 \pi^{2}}\left[\frac{M^{\prime 2}(t)}{M^{2}(t)}-\frac{M^{\prime \prime}(t)}{M(t)}\right]=-\frac{1}{8 \pi^{2}} \frac{d}{d t}\left\{\frac{M^{\prime}(t)}{M(t)}\right\}, \tag{42}
\end{align*}
$$

where we employed (32) and (12). This result does not depend on phase modulation $\boldsymbol{\theta}(\mathrm{t})$. However, it should be observed that this quantity can be negative: consider the example $M(t)=\exp \left(-t^{v}\right)$ for $t>0$, with $0<v<1$. Thus (42) can not be interpreted as a true variance. This unfortunate feature of the WDF is due to the fact that $W(t, f)$ can go negative for some values of t, f.

The unconditional second moment with respect to f follows from (40) and (11), respectively, as

$$
\begin{equation*}
\iint d t d f f^{2} W(t, f)=\frac{1}{4 \pi^{2}} \int d t\left|s^{\prime}(t)\right|^{2}=\int d f f^{2}|S(f)|^{2} \tag{43}
\end{equation*}
$$

Analogous relations for the second moments with respect to t can also be derived via a similar approach.

MOMENTS OF W^{2}

The marginal integral of the square of the WDF with respect to f is, via (3), (13), and (2),

$$
\begin{align*}
& \int d f W^{2}(t, f)=\int d f \iint d \tau d u \exp (-i 2 \pi f(\tau-u)) R(t, \tau) R^{*}(t, u)= \\
& =\int d \tau|R(t, \tau)|^{2}=\int d \tau\left|s\left(t+\frac{\tau}{2}\right)\right|^{2}\left|s\left(t-\frac{\tau}{2}\right)\right|^{2}= \\
& =2\left\{|s(\tau)|^{2} *|s(\tau)|^{2}\right\}_{\tau=2 t} \tag{44}
\end{align*}
$$

which is the convolution of $|s|^{2}$ with itself, at argument $2 t$. The complementary result, integrating with respect to t, is

$$
\begin{align*}
\int d t W^{2}(t, f) & =\int d v\left|S\left(f+\frac{v}{2}\right)\right|^{2}\left|S\left(f-\frac{v}{2}\right)\right|^{2}= \\
& =2\left\{|S(v)|^{2} B|S(v)|^{2}\right\}_{v=2 f} \tag{45}
\end{align*}
$$

If we complete the integrations in (44) and (45) on the remaining variables, both yield the result

$$
\begin{equation*}
\iint d t d f W^{2}(t, f)=E^{2} ; \tag{46}
\end{equation*}
$$

see (14). Also note, for comparison, that the double integral on W yielded E.

Although the results in (44) and (45) are not overly simple, continued integration does yield a surprisingly simple result; multiplying (44) by t, there follows

$$
\begin{gather*}
\iint d t d f t W^{2}(t, f)=\int d t t 2 \int d x|s(x)|^{2}|s(2 t-x)|^{2}= \\
=\int d x|s(x)|^{2} 2 \int d t t|s(2 t-x)|^{2}=\int d x|s(x)|^{2} \int d y|s(y)|^{2}(y+x) / 2= \\
=\frac{1}{2} \int d x|s(x)|^{2}[\bar{t} E+x E]=\frac{1}{2}\left[\bar{t} E^{2}+\bar{t} E^{2}\right]=E^{2} \bar{t} . \tag{47}
\end{gather*}
$$

Here we used (44), (31), and (14). Thus

$$
\begin{equation*}
\int \frac{\int d t d f t w^{2}(t, f)}{\iint d t d f w^{2}(t, f)}=\bar{t}=\frac{\int d t t|s(t)|^{2}}{\int d t|s(t)|^{2}} \tag{48}
\end{equation*}
$$

from (47). (46), and (37). This result in (48) is the same as (37), but now for W^{2} rather than W.

Conditional first moments of W^{2} with respect to f and t are also deriveable; for example,

$$
\begin{align*}
& \int d f f W^{2}(t, f)=\frac{1}{i 2 \pi} \int d \tau R^{\star}(t, \tau) \frac{\partial}{\partial \tau} R(t, \tau)= \\
& =\frac{1}{2 \pi} \int d \tau\left|s\left(t+\frac{\tau}{2}\right)\right|^{2} \operatorname{Im}\left\{s^{\prime}\left(t-\frac{\tau}{2}\right) s^{\star}\left(t-\frac{\tau}{2}\right)\right\}= \\
& =\frac{1}{\pi} \int d x|s(2 t-x)|^{2} \operatorname{Im}\left\{s^{\prime}(x) s^{\star}(x)\right\}= \\
& =\frac{1}{\pi} \int d x M^{2}(2 t-x) M^{2}(x) \theta^{\prime}(x) . \tag{49}
\end{align*}
$$

Here we used (3), (29), (2), and (31). When normalized by the quantity in (44), the result is considerably more complicated than the corresponding result for W in (30) and (32); nevertheless, continued integrations simplify tremendously. In particular, there follows, from (49), (14), (38), (46), and (36),

$$
\begin{equation*}
\frac{\iint d t d f f W^{2}(t, f)}{\iint d t d f W^{2}(t, f)}=\bar{f}=\frac{\int d f f|S(f)|^{2}}{\int d f|S(f)|^{2}} \tag{50}
\end{equation*}
$$

This is the dual relation to (48), but derived by means of a different approach. Comparison of (50) with (36) reveals the same result for W as for w^{2}.

CROSS WIGNER DISIRIBUTION FUNCTION

The cross WDF of two complex waveforms $a(t)$ and $b(t)$ is a generalization of (3) and (10) according to

$$
\begin{align*}
W_{a b}(t, f) & =\int d \tau \exp (-i 2 \pi f \tau) R_{a b}(t, \tau)= \\
& =\int d \tau \exp (-i 2 \pi f \tau) a\left(t+\frac{\tau}{2}\right) b^{\star}\left(t-\frac{\tau}{2}\right)= \\
& =\int d v \exp (i 2 \pi v t) A\left(f+\frac{v}{2}\right) B^{\star}\left(f-\frac{v}{2}\right) \tag{51}
\end{align*}
$$

which is generally complex. If $a(t)$ and $b(t)$ are nonzero only for $a_{1}<t<a_{2}$ and $b_{1}<t<b_{2}$, respectively, then the integral limits on τ in (51) are explicitly τ_{1}, τ_{2}, where

$$
\tau_{1}=2 \max \left(a_{1}-t, t-b_{2}\right), \quad \tau_{2}=2 \min \left(a_{2}-t, t-b_{1}\right)
$$

If $\tau_{1} \geq \tau_{2}$, then $W_{a b}$ is zero.

The following properties of the cross WDF result immediately:

$$
\begin{aligned}
& W_{a \star b \star}(t, f)=W_{a b}^{\star}(t,-f) \\
& W_{b a}(t, f)=W_{a b}^{\star}(t, f) \\
& \int d f W_{a b}(t, f)=a(t) b^{\star}(t)
\end{aligned}
$$

$$
\begin{gather*}
\int d t W_{a b}(t, f)=A(f) B^{\star}(f), \\
\iint d t d f W_{a b}(t, f)=\int d t a(t) b^{\star}(t)=\int d f A(f) B^{*}(f), \\
\iint d t d f\left|W_{a b}(t, f)\right|^{2}=E_{a} E_{b}, \\
\iint d t d f W_{a a}(t, f) W_{b b}(t, f)=\left|\int d t a(t) b^{*}(t)\right|^{2}=\left|\iint d t d f W_{a b}(t, f)\right|^{2}, \\
\iint d t d f W_{a b}(t, f) W_{c d}^{*}(t, f)=\int d t a(t) c^{*}(t) * \int d t b^{*}(t) d(t) . \tag{52}
\end{gather*}
$$

The last three relations follow upon substitution of (51). interchanging integrals, and the use of (13). Again, the double Fourier transform of the cross WDF yields the cross ambiguity function:

$$
\begin{align*}
& \iint d t d f \exp (-i 2 \pi v t+i 2 \pi f t) W_{a b}(t, f)= \\
& =\int d t \exp (-i 2 \pi v t) a\left(t+\frac{\tau}{2}\right) b^{*}\left(t-\frac{\tau}{2}\right)= \\
& =\int d f \exp (i 2 \pi f \tau) A\left(f+\frac{v}{2}\right) B^{*}\left(f-\frac{v}{2}\right)= \\
& =X_{a b}(v, \tau)=\int d t \exp (-i 2 v v t) R_{a b}(t, \tau) . \tag{53}
\end{align*}
$$

The magnitude squared cross-WDF of waveforms a and b is also related to the auto-WOFs by means of a double convolution:

$$
\begin{align*}
& \left|W_{a b}(t, f)\right|^{2}=\iint d \tau_{1} d \tau_{2} \exp \left(-i 2 \pi f\left(\tau_{1}-\tau_{2}\right)\right) * \\
& * R_{a a}\left(t+\frac{\tau_{1}+\tau_{2}}{4}, \frac{\tau_{1}-\tau_{2}}{2}\right) R_{b b}\left(t-\frac{\tau_{1}+\tau_{2}}{4}, \frac{\tau_{1}-\tau_{2}}{2}\right)= \\
& =\iint d \tau^{\prime} d \tau \exp \left(-i 2 \pi f \tau^{\prime}\right) R_{a a}\left(t+\frac{\tau}{2}, \frac{\tau^{\prime}}{2}\right) R_{b b}\left(t-\frac{\tau}{2}, \frac{\tau^{\prime}}{2}\right)= \\
& =\iint d \tau^{\prime} d \tau \exp \left(-i 2 \pi f \tau^{\prime}\right) R_{a a}\left(t+\frac{\tau}{2}, \frac{\tau^{\prime}}{2}\right) \int d f^{\prime} \exp \left(i 2 \pi f^{\prime} \frac{\tau^{\prime}}{2}\right) W_{b b}\left(t-\frac{\tau}{2}, f^{\prime}\right)= \\
& =\iint d \tau d f^{\prime} W_{b b}\left(t-\frac{\tau}{2}, f^{\prime}\right) \int d \tau^{\prime} \exp \left(-i 2 \pi\left(2 f-f^{\prime}\right) \frac{\tau^{\prime}}{2}\right) R_{a d}\left(t+\frac{\tau}{2}, \frac{\tau^{\prime}}{2}\right)= \\
& =2 \iint d \tau d f^{\prime} W_{b b}\left(t-\frac{\tau}{2}, f^{\prime}\right) W_{a d}\left(t+\frac{\tau}{2}, 2 f-f^{\prime}\right)= \\
& =\iint \pi d v W_{a a}\left(t+\frac{\tau}{2}, f+\frac{v}{2}\right) W_{b b}\left(t-\frac{\tau}{2}, f-\frac{v}{2}\right), \tag{54}
\end{align*}
$$

where we let $\tau=\left(\tau_{1}+\tau_{2}\right) / 2, \tau^{\prime}=\tau_{1}-\tau_{2}$ in the third line.

NARROWBAND REAL WAVEFORM

When waveform $s(t)$ is narrowband and real, it can be expressed in terms of its low-pass complex envelope $c(t)$ according to

$$
\begin{gathered}
s(t)=2 \operatorname{Re}\left\{c(t) \exp \left(i 2 \pi f_{0} t\right)\right\}= \\
=c(t) \exp \left(i 2 \pi f_{0} t\right)+c *(t) \exp \left(-i 2 \pi f_{0} t\right) .
\end{gathered}
$$

Where f_{0} is the carrier or center frequency of $s(t)$. The WDF of $s(t)$ is then expressible as

$$
\begin{align*}
W_{S S}(t, f) & =\int d \tau \exp (-i 2 \pi f \tau) s\left(t+\frac{\tau}{2}\right) s^{\star}\left(t-\frac{\tau}{2}\right)= \\
& =W_{C C}\left(t, f-f_{0}\right)+W_{C C}\left(t,-f-f_{0}\right)+ \\
& +2 \operatorname{Re}\left\{W_{c C}(t, f) \exp \left(i 4 \pi f_{0} t\right\}\right\} . \tag{55}
\end{align*}
$$

Here, we substituted for $s(t)$, and used (51) and (52). Since complex envelope $c(t)$ is low-pass, a representative contour plot of (55) appears as shown in figure 1 . The wiggly lobe centered at $f=0$ is subject to rapid oscillations in t, whereas those lobes centered at $\pm f_{0}$ are slowly varying with f and t. A small amount of averaging in time would wipe out the undesired oscillating lobe, but maintain the desired components at $f= \pm f_{0}$.

Figure 1. WDF for Narrowband Real Waveform

SAMPLING PROPERIIES

By letting $u=\tau / 2$ in (3), the WDF becomes

$$
\begin{equation*}
w(t, f)=2 \int d u \exp (-i 4 \pi f u) s(t+u) s^{\star}(t-u) \text {, } \tag{56}
\end{equation*}
$$

where we again now allow general complex $s(t)$. If this integral is to be evaluated numerically on a computer, we will need to sample the integrand at some increment Δ_{t}, and apply some integration rule. In particular, if we use the Trapezoidal rule and carry out the summation over $-\infty$, $+\infty$, we have approximation

$$
\begin{equation*}
\tilde{w}(t, f)=2 \Delta_{t} \sum_{k} \exp \left(-i 4 \pi f k \Delta_{t}\right) s\left(t+k \Delta_{t}\right) s^{*}\left(t-k \Delta_{t}\right) \tag{57}
\end{equation*}
$$

for all t, f. Since it is immediately seen from (57) that

$$
\begin{equation*}
\tilde{w}\left(t, f+\frac{1}{2 \Delta_{t}}\right)=\tilde{w}(t, f) \text {. } \tag{58}
\end{equation*}
$$

it follows that $\tilde{W}(t, f)$ has period $\left(2 \Delta_{t}\right)^{-1}$ in f, when waveform $s(t)$ is sampled at increment Δ_{t}. In fact, it can be shown that \tilde{W} is the aliased version of W :

$$
\begin{equation*}
\tilde{w}(t, f)=\sum_{n} w\left(t, f-\frac{n}{2 \Delta}\right) . \tag{59}
\end{equation*}
$$

Thus, $\tilde{W}(t, f)$ need be evaluated only over one period, say $\left(0, .5 / \Delta_{t}\right)$.

Since (57) cannot be evaluated for all continuous values of t and f, we will limit its evaluation to

$$
\begin{equation*}
t=m \Delta_{t}, f=\frac{n}{2 N_{f} \Delta_{t}} \tag{60}
\end{equation*}
$$

where m, n, N_{f} are integers. Then (57) becomes (exactly)

$$
\begin{equation*}
\tilde{W}\left(m \Delta_{t}, \frac{n}{2 N_{f} \Delta_{t}}\right)=2 \Delta_{t} \sum_{k} \exp \left(-i 2 \pi n k / N_{f}\right) s\left((m+k) \Delta_{t}\right) s^{*}\left((m-k) \Delta_{t}\right) \tag{61}
\end{equation*}
$$

the right side of which is recognized as an N_{f}-point discrete Fourier transform. If the number of nonzero samples in k is greater than N_{f}, we simply collapse them $\bmod N_{f}$, without loss of accuracy; see [5; page 1]. Since the period of $\tilde{W}(t, f)$ is $\left(2 \Delta_{t}\right)^{-1}$ in f, we only need consider $0 \leq n \leq N_{f}-1$, that is, $0 \leq f<\left(2 \Delta_{t}\right)^{-1}$. Values of m must be considered wherever the summand of (61) is nonzero.

A plot of two of the infinite number of lobes of $\tilde{W}(t, f)$ in (59) is depicted in figure 2 for a representative bandpass analytic waveform $s(t)$.

Figure 2. WDF for Sampled Version $\tilde{W}(t, f)$

Figure 3. $\tilde{W}(t, f)$ for Real Waveform $s(t)$

The spreads of the desired WDF term $W(t, f)$ are 1 and B in time and frequency. respectively. In order to guarantee that aliasing is insignificant in figure 2, we must choose

$$
\begin{equation*}
\left(2 \Delta_{t}\right)^{-1}>B, \quad \text { that is, } \Delta_{t}<(2 B)^{-1} \tag{62}
\end{equation*}
$$

For N_{f} equal to a power of 2 in (61), an FFT can be employed to evaluate \tilde{W} and will give the vertical slice in f indicated in figure 2 between $f=0$ and $f=\left(2 \Delta_{t}\right)^{-1}$, for the particular m value under consideration. Since the spacing of frequency values in (61) is $\left(2 N_{f} \Delta_{t}\right)^{-1}$, then in order to keep track of the wiggles in $\tilde{W}(t, f)$ as a function of f, we must choose

$$
\begin{equation*}
\left(N_{f} \Delta_{t}\right)^{-1}<T^{-1} \text {, that is, } N_{f}>T / \Delta_{t}>2 B T \tag{63}
\end{equation*}
$$

Thus the $F F T$ size may have to be quite large for an extended WDF in t, f space.

If $s(t)$ is real, then (8) applies, meaning that \tilde{W} in (61) need only be computed for

$$
\begin{equation*}
0 \leq n \leq N_{f} / 2, \quad \text { that is, } 0 \leq f \leq\left(4 \Delta_{t}\right)^{-1} . \tag{64}
\end{equation*}
$$

The pertinent approximate $W D F \tilde{W}$ is depicted in figure 3 . In order to avoid aliasing now, we must have

$$
\begin{equation*}
\left(4 \Delta_{t}\right)^{-1}>f_{H}, \quad \text { that is, } \Delta_{t}<\left(4 f_{H}\right)^{-1} \text {, } \tag{65}
\end{equation*}
$$

where f_{H} is the highest frequency contained in $s(t)$. This sampling rate is twice as fast as the usual Nyquist rate for waveform $s(t)$, and is due to the unavoidable factors of $1 / 2$ in definition (3).

The procedure described above, in (61) et seq.. realizes a slice in f, at fixed t, of the WOF; see figures 2 and 3 . An alternative procedure for obtaining slices of the WDF in t, at fixed f, is described in appendix A; however, starting with time samples of $s(t)$, it requires an additional large-size FFl to start the calculations.

In this section, we present several examples of the WDF for waveforms that are likely to be encountered in practice, and that are amenable to simple closed form solution. A significant shortcut in the presentation is possible when it is observed from (3) that if

$$
\begin{equation*}
r(t)=s\left(t-t_{0}\right) \exp \left(i 2 \pi f_{0} t+i \theta_{0}\right), \tag{66}
\end{equation*}
$$

which corresponds to a time delay and frequency shift, then

$$
\begin{equation*}
W_{r}(t, f)=W_{s}\left(t-t_{0}, f-f_{0}\right) . \tag{67}
\end{equation*}
$$

Thus we can choose any convenient origin for the waveform s in time and frequency, without loss of generality, and then merely shift the WDF according to (67), as appropriate.

We will place heavy emphasis here on combinations of Gaussian pulses, both because of their analytic tractability and due to the fact that any waveform can be expanded into elementary waveforms consisting of Gaussian wavelets; see, for example, Gabor's original paper [6, part 1, section 5].

In the following, frequent use will be made of the following integral:

$$
\begin{equation*}
\int d x \exp \left(-\frac{1}{2} \alpha x^{2} \pm \beta x\right)=\left(\frac{2 \pi}{\alpha}\right)^{1 / 2} \exp \left(\frac{\beta^{2}}{2 \alpha}\right) \quad \text { for } \alpha_{r}>0 \tag{68}
\end{equation*}
$$

where α and β can be complex, with components

$$
\begin{equation*}
\alpha=\alpha_{r}+i \alpha_{i}, \quad \beta=\beta_{r}+i \beta_{i} . \tag{69}
\end{equation*}
$$

Also, as a special case, there follows

$$
\begin{equation*}
\left.\left|\int d x \exp \left(-\frac{1}{2} \alpha x^{2} \pm \beta x\right)\right|^{2}=\frac{2 \pi}{\left(\alpha_{r}^{2}+\alpha_{i}^{2}\right)}\right] \exp \left[\frac{\alpha_{r}\left(\beta_{r}^{2}-\beta_{i}^{2}\right)+2 \alpha_{i} \beta_{r} \beta_{i}}{\alpha_{r}^{2}+\alpha_{i}^{2}}\right] \text {, } \tag{70}
\end{equation*}
$$

written out in terms of purely real quantities.
gAUSSIAN WAVEFORM

Let waveform

$$
\begin{equation*}
s(t)=a_{0} \exp \left(-\frac{t^{2}}{2 \sigma_{0}^{2}}\right) ; \quad a_{0} \text { complex } . \tag{71}
\end{equation*}
$$

(Parameters will be real unless indicated otherwise.) Use of (3) and (68) yields WDF

$$
\begin{equation*}
w(t, f)=2 E \exp \left[-\frac{t^{2}}{\sigma_{0}^{2}}-\left(2 \pi f \sigma_{0}\right)^{2}\right], \tag{72}
\end{equation*}
$$

where E is the waveform energy:

$$
\begin{equation*}
E=\sqrt{\pi}\left|a_{0}\right|^{2} \sigma_{0} . \tag{73}
\end{equation*}
$$

The WOF consists of a single positive lobe in t, f space, centered at the origin.

Observe that $W(0,0)$ is equal to $2 E$ for this example; in fact, from (3),

$$
\begin{equation*}
w(0,0)=\int d \tau s(\tau / 2) s^{*}(-\tau / 2)=2 E \quad \text { if } s(-t)=s(t) . \tag{14}
\end{equation*}
$$

Thus waveforms $s(t)$ with this even symmetry result in peak WDF values of 2 E at the origin. However, if s has odd symmetry about zero, $s(-t)=-s(t)$, then $W(0,0)=-2 E$.

The contours of equal height of the WDF in (72) are ellipses. The contour for the case where the levels are down to $\exp (-1)$ of their peak value is the ellipse indicated in figure 4. The area of this particular level ellipse is $1 / 2$ in the t, f plane. When this area is multiplied by the peak height of $2 E$, the product is E, which is just the volume under the WDF; see (14). Thus the "effective extent" of the WOF in (72) is that given in figure 4 , for relative level $1 / e$ of the peak.

Figure 4. Contour of WDF (72) at $1 / \mathrm{e}$ Relative Level
gaussian modulated IONE

$$
\begin{equation*}
s(t)=b_{0} \cos \left(2 \pi f_{0} t+ø_{0}\right) \exp \left(-\frac{t^{2}}{2 \sigma_{0}^{2}}\right) \tag{75}
\end{equation*}
$$

The energy of this waveform is

$$
\begin{equation*}
E=\frac{1}{2} \sqrt{\pi} b_{0}^{2} o_{0}\left[1+\cos \left(2 \varnothing_{0}\right) \exp \left(-y_{0}^{2}\right)\right] . \tag{76}
\end{equation*}
$$

and its WOF is

$$
\begin{align*}
\left(\frac{1}{2} \sqrt{\pi} b_{0}^{2} \sigma_{0}\right)^{-1} w(t, f) & =\exp \left[-x^{2}-\left(y-y_{0}\right)^{2}\right]+\exp \left[-x^{2}-\left(y+y_{0}\right)^{2}\right]+ \\
& +2 \cos \left(4 \pi f_{0} t+2 \varnothing_{0}\right) \exp \left[-x^{2}-y^{2}\right] \tag{71}
\end{align*}
$$

where dimensionless variables

$$
\begin{equation*}
x=t / \sigma_{0}, \quad y=2 \pi f \sigma_{0}, \quad y_{0}=2 \pi f \sigma_{0} . \tag{78}
\end{equation*}
$$

lhere are two positive lobes centered at $(t, f)=\left(0, f_{0}\right)$ and $\left(0,-f_{0}\right)$, each of peak height approximately E (if y_{0} is large). The contours of each of these lobes are circles in the x, y plane, or ellipses in the t, f plane, as indicated in figure 4. There is also an oscillating lobe centered at the origin; this is an example of the general situation depicted in figure 1.

It should also be observed from (77) that if a slice in frequency is taken of the WDF, at fixed time t, that there is no fast oscillation in any of the three lobes. Whatever value of the cos is encountered, that value is maintained, and the only variation with y (frequency) is the Gaussian dependence. Thus if we incally averaged the WOF with respect to frequency alone, that would not eliminate the undesired oscillating lobe centered at (0,0).

MULTIPLE MODULATED TONES

Consider complex waveform

$$
\begin{equation*}
s(t)=\sum_{k} a_{k} \exp \left[i 2 \pi f_{k} t-\frac{\left(t-t_{k}\right)^{2}}{2 \sigma_{k}^{2}}\right] ; \quad\left\{a_{k}\right\} \text { complex. } \tag{79}
\end{equation*}
$$

This is a collection of tone bursts centered at $\left\{t_{k}, f_{k}\right\}$ in the t, f plane, with energy $E_{k}=\|\left.\pi a_{k}\right|^{2} \sigma_{k}$. The corresponding wD follows from (3) and (68) as

$$
\begin{align*}
& W(t, f)=2 \sum_{k} E_{k} \exp \left[-\frac{\left(t-t_{k}\right)^{2}}{\sigma_{k}^{2}}-\sigma_{k}^{2} 4 \pi^{2}\left(f-f_{k}\right)^{2}\right]+ \\
& \quad+4 \sqrt{\pi} \sum_{k<l} \tilde{\sigma}_{k l} \exp \left[-\frac{\left(t-t_{k l}\right)^{2}}{\sigma_{k l}^{2}}-\tilde{\sigma}_{k l}^{2} 4 \pi^{2}\left(f-f_{k l}\right)^{2}\right] * \\
& * \operatorname{Re}\left\{a_{k l}^{a}{ }_{l}^{\star} \exp \left[i 2 \pi\left(f_{k}-f_{l}\right) t+i \tilde{\sigma}_{k l}^{2} 2 \pi\left(f-f_{k l}\right)\left(\frac{t-t_{k}}{\sigma_{k}^{2}}-\frac{t-t_{l}}{\sigma_{l}^{2}}\right)\right]\right\}, \tag{80}
\end{align*}
$$

where

$$
\begin{array}{ll}
t_{k l}=\frac{1}{2}\left(t_{k}+t_{l}\right), & f_{k l}=\frac{1}{2}\left(f_{k}+f_{l}\right), \\
\sigma_{k l}^{2}=\frac{1}{2}\left(\sigma_{k}^{2}+\sigma_{l}^{2}\right), & \frac{1}{\tilde{\sigma}_{k l}^{2}}=\frac{1}{2}\left(\frac{1}{\sigma_{k}^{2}}+\frac{1}{\sigma_{l}^{2}}\right) . \tag{81}
\end{array}
$$

Ihe first line of (80) represents the desired positive lobes centered at (t_{k}, f_{k}), each scaled according to its energy. The remaining undesired lobes are centered at

$$
\begin{equation*}
\frac{t_{k}+t_{l}}{2}, \frac{f_{k}+f_{l}}{2} \text { for all } k \neq l \text {, } \tag{82}
\end{equation*}
$$

and oscillate with t and/or f. These locations in (82) are halfway between every possible pair of desired lobes; their amplitudes are proportional to the geometric means of the corresponding interacting lobes, and therefore constitute significant interference effects to interpretation of the computed WOF. Furthermore, the locations in (82) can occur in time where the waveform $s(t)$ is zero, and/or in frequency where the spectrum $S(f)$ is zero. This most undesirable feature of the WDF has been reported previously in $[7,8]$. The only saving feature, that should allow salvaging the WDF, is that the undesired lobes, $k<\ell$ in (80), oscillate positive-and-negative and can be averaged out by smoothing the WDF. Of course, via this smoothing procedure, the desired lobes will also be smeared somewhat, but this trade-off appears to be required in order to make a meaningful, useful interpretation of the WDF at all points of the t, f plane.

The envelope of the k, l lobe $i n(80)$ is proportional to an exponential of an elliptical function. When this exponential has decreased to $1 / e$ of its peak value, the corresponding elliptical contour has area

$$
\begin{equation*}
-\frac{\pi \bar{\sigma}_{k l}}{2 \pi \tilde{\sigma}_{k l}}=\frac{1}{4}\left(\frac{\sigma_{k}}{\sigma_{l}}+\frac{\sigma_{l}}{\sigma_{k}}\right) \geq \frac{1}{2} \tag{83}
\end{equation*}
$$

in the t, f plane, the latter value of $1 / 2$ being the area of every desired lobe. Thus the undesired oscillating lobes are smeared out more than the desired positive lobes.

If we restrict (79) to two equal-duration bursts with the same time center, but different center frequencies, the undesired lobe oscillates only with t, not f. Ihis is similar to example (75)-(77). On the other hand, if (71) is restricted to two equal-duration bursts with different time centers, but the same frequency center. the undesired lobe oscillates only with f, not t.

More generally, for two equal-duration bursts with different time and frequency centers, the undesired lobe has no fast oscillation along lines in the t, f plane which are parallel to the line joining the centers of the two positive lobes in the WOF. For two unequal-duration bursts, the situation is more complicated, and there is generally oscillation along all straight lines in the t, f plane.

What these simple examples demonstrate is that if we want to locally smooth (average) the WDF, in an effort to wipe out the undesired oscillating cross-terms, that smoothing must be applied in both t and f, not either one alone. Of course, such smoothing will also tend to smear the desired positive lobes; thus the minimum amount of smoothing to guarantee a nonnegative WDF is of interest.

Although these conclusions have been drawn from the particular example of Gaussian-modulated tone bursts in (79) (for analytic simplicity), they hold generally. Appendix B demonstrates the oscillating character of the interacting cross-terms of the WDF for a waveform with two separated energy bursts in time of general shape.

The amoiguity function of waveform $s(t)$ in (75) is considered in appendix C. It has some similar properties to the WDF and some significant differences, which make it much less desirable as descriptor of a signal's concentration in time-frequency space.

IINEAR frequency modulation

Here, we consider waveform

$$
\begin{equation*}
s(t)=a_{0} \exp \left[-\frac{t^{2}}{2 \sigma_{0}^{2}}+i \frac{\alpha_{0}}{2} t^{2}\right] ; \quad a_{0} \geq 0, \quad a_{0} \text { complex. } \tag{84}
\end{equation*}
$$

The instantaneous frequency, according to (31) and (32), is a linear function of time.

$$
\begin{equation*}
\mu_{f}(t)=\frac{o_{0}}{2 \pi} t \text {, } \tag{85}
\end{equation*}
$$

while the envelope is Gaussian. When

$$
\begin{equation*}
t=t_{0}= \pm \sigma_{0} \sqrt{\pi / 2}, \tag{86}
\end{equation*}
$$

the magnitude of the waveform $s(t)$ is

$$
\begin{equation*}
\left|s\left(t_{0}\right)\right|=\left|a_{0}\right| \exp (-\pi / 4)=.456|s(0)| . \tag{87}
\end{equation*}
$$

If we define the duration, Δt, of $s(t)$ as the time between these function values, then

$$
\begin{equation*}
\Delta t=o_{0} \sqrt{2 \pi} \tag{88}
\end{equation*}
$$

During this time interval. the instantaneous frequency in (85) sweeps through a bandwidth

$$
\begin{equation*}
\Delta f=\frac{a_{0}}{2 \pi} \Delta t=a_{0} \sigma_{0} / \sqrt{2 \pi} \tag{89}
\end{equation*}
$$

The time-bandwidth product of waveform $s(t)$ is therefore

$$
\begin{equation*}
\Delta t \Delta f=a_{0} \sigma_{0}^{2} \geq \theta_{0}(\geq 0) \tag{90}
\end{equation*}
$$

when the time duration is defined as the interval between the function values in (87). Ihis quantity, θ_{0}, is an important parameter of the linear frequency modulation waveform (84).

The WDF of (84) follows, upon use of (3) and (68), as

$$
\begin{align*}
W(t, f) & =2 E \exp \left[-\frac{t^{2}}{\sigma_{0}^{2}}-\sigma_{0}^{2}\left(2 \pi f-a_{0} t\right)^{2}\right]= \\
& =2 E \exp \left[-x^{2}-\left(y-x \theta_{0}\right)^{2}\right]= \\
& =2 E \exp \left[-x^{2}\left(1+\theta_{0}^{2}\right)+2 x y \theta_{0}-y^{2}\right] . \tag{91}
\end{align*}
$$

where we employed (78) and (90). This is an everywhere positive lobe centered at the origin of time-frequency space, with contours that are tilted ellipses. The peak value, $2 E$, is independent of the amount of frequency modulation.

For a given value of time t, the frequency f that maximizes the WDF in (91) is

$$
\begin{equation*}
f=\frac{\alpha_{0}}{2 \pi} t, \quad \text { that is. } y=x \theta_{0} \tag{92}
\end{equation*}
$$

which is just the instantaneous frequency in (85). However, this line, (92), in the t, f plane is not the major axis of the elliptical contours of the WOF. A similar observation regarding the ambiguity function $\mathcal{X}(\boldsymbol{\nu}, \tau)$, (23), of the linear frequency modulation waveform, namely

$$
\begin{equation*}
X(v, \tau)=E \exp \left[-\frac{1}{4}\left\{x^{\prime 2}\left(1+\theta_{0}^{2}\right)-2 x^{\prime} y^{\prime} \theta_{0}+y^{\prime} 2\right\}\right] \tag{93}
\end{equation*}
$$

where

$$
\begin{equation*}
x^{\prime}=\frac{\tau}{\sigma_{0}}, \quad y^{\prime}=2 \pi v \sigma_{0} . \tag{94}
\end{equation*}
$$

has been made in [4; page 124].

What this means is that, if the WOF of a waveform is evaluated numerically from a given data sequence (via (61) for example), then the tilt of the major axis of the contours of the computed WDF is not directly the amount of linear frequency modulation in the waveform. Rather, the major axis of the ellipse in (91) lies along the line

$$
\begin{equation*}
y=x \tan \psi \tag{95}
\end{equation*}
$$

in the x, y plane, where

$$
\begin{equation*}
\tan \psi=\frac{\sqrt{\theta_{0}^{2}+4}+\theta_{0}}{2} \geq \theta_{0} \tag{96}
\end{equation*}
$$

(See appendix 0 for detailed derivations on the rotation of coordinate axes.) Thus, the major axis (95) of the ellipse is more tilted than the instantaneous frequency line (92). Equation (96) can be inverted and solved for the linear frequency modulation parameter θ_{0} according to

$$
\begin{equation*}
\theta_{0}=\tan \gamma-1 / \tan \gamma \tag{97}
\end{equation*}
$$

in terms of the measured or calculated major axis tilt, tan ψ, in the x, y plane. The detailed procedure for solving for both σ_{0} and α_{0}. in terms of a computed W DF in the t, f plane, is discussed in the example in appendix D. especially ($0-28$) and ($0-29$).

When the exponential in (91) is down to $1 / e$ of its peak value, the ellipse at that level has area *in the x, y plane. This may be seen by use of ($0-1$) and ($0-20$), with $A=1+\theta_{0}^{2}, B=-2 \theta_{0}, C=1,0=E=0, F=-1$. for which $G=1$ via (0-19). This corresponds to area $1 / 2$ in the t, f plane, as seen by (78). Therefore, the peak height, $2 E$, times the "effective" area is again E, as it was for the simple Gaussian pulse of (71) and figure 4. Thus, although the volume of the WOF in (91) has been redistributed in the t, f plane, by virtue of linear frequency modulation, the effective area is maintained, although now located as a tilted ellipse.

A plot of the ellipse of (91) at the $1 / e$ level, namely

$$
\begin{equation*}
x^{2}+\left(y-x \theta_{0}\right)^{2}=x^{2}\left(1+\theta_{0}^{2}\right)-2 x y \theta_{0}+y^{2}=1 \tag{98}
\end{equation*}
$$

is given in figure 5 , when $\theta_{0}=1.5$. The instantaneous frequency line (92) as well as the major axis (95) are delineated, and are clearly seen not to overlie each other.

Figure 5. Contour of (91) for $\boldsymbol{\theta}_{\mathbf{0}}=1.5$

GATED IINEAR FREQUENCY MODULATION

All the previous examples in this section had Gaussian envelopes. We now consider a rectangularly gated waveform with linear frequency modulation:

$$
\begin{equation*}
s(t)=a_{0} \exp \left[i \frac{a_{0}}{2} t^{2}\right] \text { for }|t|<\frac{1}{2} ; \quad a_{0} \text { complex. } \tag{99}
\end{equation*}
$$

Equation (3) yields directly WDF

$$
\begin{equation*}
W(t, f)=2 E \frac{\sin \left(\left(2 \pi f-a_{0} t\right)(T-2|t|)\right]}{\left(2 \pi f-a_{0} t\right) T} \quad \text { for }|t|<\frac{1}{2} \text {. allf. } \tag{100}
\end{equation*}
$$

and zero otherwise. Along the instantaneous frequency line, (85), the WDF is $2 E(1-2|t| / T)$ for $|t|<T / 2$, which is nonoscillatory and positive. However, in other portions of the t, f plane, (100) does go negative, due to the sin term.

For a given value of t, the quantity W in (100) is maximized by choosing $f=\alpha_{0} t /(2 \pi)$, but, again, this is not the major axis of the contours of the WDF. In figure 6, these contours are plotted for $\alpha_{0} T^{2}=1$ and $\alpha_{0} T^{2}=10$. In fact, the contours are no longer ellipses, although they tend to resemble ellipses near the origin, when frequency modulation parameter $\alpha_{0}{ }^{2}$ is large; see the bottom figure, where the instantaneous frequency line and the mountain ridge (curve of slowest descent) have been sketched.

Figure 6. Contours of WDF for Gated LFM

TR 8225

$$
\begin{align*}
& \text { The ambiguity function of waveform (99) is } \\
& X(\nu, \tau)=E \frac{\sin \left[\frac{1}{2}\left(2 \pi v-\alpha_{0} \tau\right)(1-|\tau|)\right]}{\frac{1}{2}\left(2 \pi v-\alpha_{0} \tau\right) T} \text { for }|\tau|<1, \text { allv. } \tag{101}
\end{align*}
$$

and zero otherwise. It is similar to the WDF in (100). but is spread out more in the v, τ plane.

Some advantageous features of the WDF have been brought out by earlier examples, such as the concentrated positive lobes in the t, f plane about locations corresponding to obvious bursts of energy. However, the WOF also goes negative in surrounding regions, causing difficulty in interpretation; see figure $1,(80)$, appendix B, or $[7,8]$. What is needed is some form of smoothing of the WDF so as to eliminate or suppress the oscillating components; however, this averaging must be two-dimensional, carried out in both time and frequency, for the reasons presented in the sequel to (83). We now present one method of smoothing the WOF, which guarantees a non-negative distribution in time-frequency.

WE IGHTEO SPECTRAL EStimate

The voltage density spectrum $S(f)$, corresponding to waveform $s(t)$, was defined in (9) as the fourier transform over all time. In order to bring out properties which are local in time, a weighting must be applied before transformation. In particular, we generalize (9) to

$$
\begin{align*}
& S_{u}(t, f)=\int d t_{1} \exp \left(-i 2 \pi f t_{1}\right) s\left(t_{1}\right) u^{\star}\left(t-t_{1}\right)= \\
& \quad=\exp (-i 2 \pi f t) \int d f, \exp \left(i 2 \pi t f_{1}\right) S\left(f_{1}\right) u^{\star}\left(f-f_{1}\right) . \tag{102}
\end{align*}
$$

TR 8225

where weighting u will tend to be a narrow function centered about its origin; thus the weighting in (102) will accent the behavior of waveform s in the neighborhood of time t. The function U is the Fourier transform of u. The short-term power spectral estimate (at time t and frequency f) of waveform s, relative to weighting u, is then defined as

$$
\begin{equation*}
\left|s_{u}(t, f)\right|^{2} \tag{103}
\end{equation*}
$$

See also [2, p. 768].
The following symmetry properties of definition (102) follow:

$$
\begin{align*}
& S_{u}(t, f)=u_{s}^{\star}(t, f) \exp (-i 2 \pi f t) \\
& \left|S_{u}(t, f)\right|^{2}=\left|u_{s}(t, f)\right|^{2} \tag{104}
\end{align*}
$$

where U_{s} is the spectrum of waveform u relative to weighting s. That is, U_{S} is the dual of S_{u}. Also, by use of (53), we can express

$$
\begin{equation*}
S_{u}(t, f)=\chi_{s \bar{u}}(f, t) \exp (-i \pi f t), \tag{105}
\end{equation*}
$$

in terms of the complex cross -ambiguity function of s and \bar{u}, where \bar{u} is the mirror image of $u: \bar{u}(t)=u(-t)$. Also, the same shifting property, given in (66) and (67) for the WDF, holds as well for quantity (103).

RELATION TO WOFs

There is a very important relation between the short-term spectral estimate (STSE), (103), and the WDFs of s and u; namely, by use of (102), (2), and (3), we have

$$
\begin{align*}
& \left|S_{u}(t, f)\right|^{2}=\iint d t_{1} d t_{2} \exp \left(-i 2 \pi f\left(t_{1}-t_{2}\right)\right) s\left(t_{1}\right) s^{\star}\left(t_{2}\right) u^{\star}\left(t-t_{1}\right) u\left(t-t_{2}\right)= \\
& =\iint d \tau d t^{\prime} \exp (-i 2 \pi f \tau) s\left(t^{\prime}+\frac{\tau}{2}\right) s^{\star}\left(t^{\prime}-\frac{\tau}{2}\right) u\left(t-t^{\prime}+\frac{\tau}{2}\right) u^{\star}\left(t-t^{\prime}-\frac{\tau}{2}\right)= \\
& =\iint d \tau d t^{\prime} \exp (-i 2 \pi f \tau) R_{s}\left(t^{\prime}, \tau\right) R_{u}\left(t-t^{\prime}, \tau\right)= \\
& =\iint d t^{\prime} d f^{\prime} W_{s}\left(t^{\prime}, f^{\prime}\right) W_{u}\left(t-t^{\prime}, f-f^{\prime}\right)= \\
& =W_{s}(t, f) \stackrel{t f}{*} W_{u}(t, f) . \tag{106}
\end{align*}
$$

This relation states that the STSE is a double convolution, in both t and f, of the WDFs of waveform s and weighting u. That is, the STSE $\left|S_{u}(t, f)\right|^{2}$ of waveform s, relative to weighting u, is a smoothed version of the WDF of waveform s, where the smoothing function is the WOF of weighting u. Furthermore, since the left-hand side of (106) can never be negative, and since s and u are arbitrary, (106) shows that the double convolution of any two WOFs is never negative for any values of t, f. This furnishes a possibility of accomplishing smoothing of a computed WDF of waveform s, with a guarantee of a nonnegative distribution resulting; of course, W_{u} must be a legal WDF, as discussed in (25) et seq., in order to guarantee this nonnegative property.

Since $\left|S_{u}\right|^{2}$ is a double convolution of WDFs W_{s} and W_{u}, it follows that the double fourier transform of the STSE is given by

$$
\begin{equation*}
\iint d t d f \exp (i 2 \pi f \tau-i 2 \pi t v)\left|S_{u}(t, f)\right|^{2}=\chi_{u}(v, \tau) \chi_{s}(v, \tau) \tag{107}
\end{equation*}
$$

where χ_{u} and χ_{s} are the complex ambiguity functions of u and s, respectively; see (23). This leads to an alternative expression for the STSE as

$$
\begin{equation*}
\left|S_{u}(t, f)\right|^{2}=\iint d \tau d v \exp (-i 2 \pi f \tau+i 2 \pi t v) \chi_{u}(v, \tau) \chi_{s}(v, \tau) \tag{108}
\end{equation*}
$$

Therefore, if the complex ambiguity function of s is computed, it can be multiplied by the ambiguity function of an arbitrary weighting function u, and followed by a two-dimensional Fourier transform. There is no need to calculate the WDF W_{s} via this route; also several different weighting functions could be utilized, each at the expense of a two-dimensional Fourier transform. The end result for the STSE is always nonnegative. Of course, the same result is obtainable directly by taking the magnitudesquare of definition (102).

MARGINALS OF SPECTRAL ESTIMATE

There follows, from (106) and (12), the marginal relation

$$
\begin{equation*}
\int d f\left|s_{u}(t, f)\right|^{2}=\int d t^{\prime}\left|s\left(t^{\prime}\right)\right|^{2}\left|u\left(t-t^{\prime}\right)\right|^{2}=|s(t)|^{2} \geqslant|u(t)|^{2} \tag{109}
\end{equation*}
$$

Thus, the time marginal of $\left|s_{u}\right|^{2}$ is not directly $|s(t)|^{2}$, but is smeared by the weighting, according to $|u(t)|^{2}$. In a similar fashion, from (106) and (11), the frequency marginal is

TR 8225

$$
\begin{equation*}
\int d t\left|s_{u}(t, f)\right|^{2}=|s(f)|^{2} \otimes|u(f)|^{2} \tag{110}
\end{equation*}
$$

Again, $|S(f)|^{2}$ is smeared by window $|U(f)|^{2}$.

Finally, completing either of the integrations in (109) or (110), over the remaining variable, yields

$$
\begin{equation*}
\iint d t d f\left|S_{u}(t, f)\right|^{2}=E_{s} E_{u} \tag{111}
\end{equation*}
$$

where E_{s} and E_{u} are the energies of s and u, respectively; see (14). Since weighting u is arbitrary and under our control, we can easily choose E_{u} to be 1, without loss of generality; then the volume under the STSE will be equal to the energy in waveform s being analyzed, just as for the WDF in (14).

MOMENTS OF SPECTRAL ESTIMATE

If we use (110) and (14), we find the following development:

$$
\begin{align*}
\iint d t d f f & \left|S_{u}(t, f)\right|^{2}=\int d f f \int d v|S(v)|^{2}|U(f-v)|^{2}= \\
& =\int d v|S(v)|^{2} \int d f(f-v+v)|U(f-v)|^{2}= \\
& =\int d v|S(v)|^{2}\left[\int d f_{1} f_{1}\left|U\left(f_{1}\right)\right|^{2}+v E_{u}\right]= \\
& =E_{S} \int d f_{1} f_{f}\left|U\left(f_{1}\right)\right|^{2}+E_{u} \int d v v|S(v)|^{2} . \tag{112}
\end{align*}
$$

Combined with (111), there results

$$
\begin{equation*}
\frac{\iint d t d f f\left|S_{u}(t, f)\right|^{2}}{\iint d t d f\left|S_{u}(t, f)\right|^{2}}=\frac{\int d f f|U(f)|^{2}}{\int d f|U(f)|^{2}}+\frac{\int d f f|S(f)|^{2}}{\int d f|S(f)|^{2}} \tag{113}
\end{equation*}
$$

That is, the first moment in f of the STSE is the sum of the frequency centers of $|U|^{2}$ and $|S|^{2}$. This should be compared with the corresponding result in (36) for the WDF, where only the last term in (113) is present. The presence of weighting u in definition (102) adds an additional term to the frequency center unless $|U(f)|$ is even about $f=0$; in this latter case, (113) reduces to (36).

In a similar fashion, the first moment in t of the STSE is found to be

$$
\begin{equation*}
\frac{\iint d t d f t\left|S_{u}(t, f)\right|^{2}}{\iint d t d f\left|S_{u}(t, f)\right|^{2}}=\frac{\int d t t|u(t)|^{2}}{\int d t|u(t)|^{2}}+\frac{\int d t t|s(t)|^{2}}{\int d t|s(t)|^{2}} \tag{114}
\end{equation*}
$$

Again. a sum of time centers results; but if weighting $|u(t)|$ is even about $t=0$, then (114) reduces to the same result, (37), as for the WOF.

CONUIIIUNAL MOMENT

Just as in (28)-(35) for the WDF, conditional moments of the SISE can be defined. For example, directly from (105), we have

$$
\begin{equation*}
\int d f f\left|S_{u}(t, f)\right|^{2}=\int d f f\left|X_{s u}(f, t)\right|^{2} \tag{115}
\end{equation*}
$$

in terms of the cross-ambiguity function of s and \bar{u}, where $\bar{u}(t)=u(-t)$.

An alternative time-doma in expression is possible for the frequency
moment in (115): define

$$
\begin{equation*}
g\left(t, t_{1}\right)=s\left(t_{1}\right) u^{\star}\left(t-t_{1}\right) \tag{116}
\end{equation*}
$$

Then from (102) and (29),

$$
\begin{gather*}
\int d f f\left|S_{u}(t, f)\right|^{2}=\int d f f \iint d t_{1} d t_{2} \exp \left(-i 2 \pi f\left(t_{1}-t_{2}\right)\right) g\left(t_{1} t_{1}\right) g^{\star}\left(t, t_{2}\right)= \\
=\iint d t_{1} d t_{2} g\left(t_{,} t_{1}\right) g^{\star}\left(t_{,} t_{2}\right) \frac{i}{2 \pi} \delta^{\prime}\left(t_{1}-t_{2}\right)= \\
 \tag{117}\\
=\frac{-i}{2 \pi} \int d t_{1} g^{\prime}\left(t, t_{1}\right) g^{\star}\left(t_{1} t_{1}\right)
\end{gather*}
$$

where

$$
\begin{equation*}
g^{\prime}\left(t, t_{1}\right) \equiv \frac{\partial}{\partial t_{1}} g\left(t, t_{1}\right)=\frac{\partial}{\partial t_{1}}\left\{s\left(t_{1}\right) u^{\star}\left(t-t_{1}\right)\right\} \tag{118}
\end{equation*}
$$

If we represent waveform s in terms of its magnitude and phase according to (31), and do likewise for weighting u as

$$
\begin{equation*}
u(t)=E(t) \exp [i P(t)], \tag{119}
\end{equation*}
$$

then substitution in (117) results in the simplified formi

$$
\begin{equation*}
\int d f f\left|S_{u}(t, f)\right|^{2}=\frac{1}{2 \pi} \int d t_{1}\left[\theta^{\prime}\left(t_{1}\right)-p^{\prime}\left(t-t_{1}\right)\right] M^{2}\left(t_{1}\right) t^{2}\left(t-t_{1}\right) \tag{120}
\end{equation*}
$$

$$
\text { When this result is combined with }(109) \text {, the normalized conditional }
$$

first moment is

$$
\begin{equation*}
\frac{\int d f f\left|S_{u}(t, f)\right|^{2}}{\int d f\left|S_{u}(t, f)\right|^{2}}=\frac{1}{2 \pi} \frac{\int d t_{1}\left[\theta^{\prime}\left(t_{1}\right)-P^{\prime}\left(t-t_{1}\right)\right] m^{2}\left(t_{1}\right) E^{2}\left(t-t_{1}\right)}{\int d t_{1} M^{2}\left(t_{1}\right) E^{2}\left(t-t_{1}\right)} . \tag{121}
\end{equation*}
$$

(This reduces to (38) when $E(t)=1, P(t)=0$, that is, $u(t)=1$, in which case $\left.S_{u}(t, f)=S(f).\right)$ Generally, (121) is an average of $\theta^{\prime}\left(t_{1}\right)-P^{\prime}\left(t-t_{p}\right)$, weighted according to the instantaneous powers of s and u.

EXAMPLES OF SHORI -TERM SPECTRAL ESIIMAIION

Here we will reconsider many of the examples presented earlier for the WDF investigation. The particular example of weighting u adopted here in spectral definition (102) will be, for the time being,

$$
\begin{equation*}
u(t)=\left(\pi \sigma^{2}\right)^{-1 / 4} \exp \left(-\frac{t^{2}}{2 \sigma^{2}}\right) \tag{122}
\end{equation*}
$$

where duration measure o is under our control. The energy E_{u} of this waveform is unity, in keeping with the discussion in (111) et seq., which guarantees that the volume under the SISE will be the energy $E_{S}=E$ of the waveform s being analyzed.

GAUSSIAN WAVEFORM

The waveform s was given in (71); its transform $S_{u}(t, f)$ is obtained by substituting (il) and (122) in (102) and using (68):

$$
\begin{equation*}
S_{u}(t, f)=\left(E \frac{\sigma_{h}}{\sigma_{a}}\right)^{1 / 2} \exp \left[-\frac{t^{2}}{4 \sigma_{a}^{2}}-\pi^{2} f^{2} \sigma_{h}^{2}-i \pi f t \frac{\sigma_{0}^{2}}{\sigma_{a}^{2}}+i \arg \left(a_{0}\right)\right] \tag{123}
\end{equation*}
$$

where E is the energy of s and

$$
\begin{equation*}
\sigma_{a}^{2}=\frac{1}{2}\left(\sigma^{2}+\sigma_{0}^{2}\right), \frac{1}{\sigma_{h}^{2}}=\frac{1}{2}\left(\frac{1}{\sigma^{2}}+\frac{1}{\sigma_{0}^{2}}\right) \cdot \frac{\sigma_{a}}{\sigma_{h}}=\frac{1}{2}\left(\frac{\sigma}{\sigma_{0}}+\frac{\sigma_{0}}{\sigma_{0}}\right) . \tag{124}
\end{equation*}
$$

The quantity σ_{a}^{2} is the arithmetic average of σ^{2} and σ_{0}^{2}, while o_{h}^{2} is the harmonic average. The SISt then follows immediately (or by use of (70) directly) as

$$
\begin{equation*}
\left|S_{u}(t, f)\right|^{2}=E \frac{\sigma_{h}}{\sigma_{a}} \exp \left[-\frac{1}{2}\left(\frac{t^{2}}{\sigma_{a}^{2}}+4 \pi^{2} f^{2} \sigma_{h}^{2}\right)\right] . \tag{175}
\end{equation*}
$$

The volume under SISE (125) is readily verified to be k, as it must be. The half widths of the ellipse at the $1 / e$ relative level are $\sqrt{2} \sigma_{a}, \sqrt{2}\left(2 \pi \sigma_{h}\right)^{-1}$, respectively, in the t, f plane. The area of this ellipse in the t, f plane is

$$
\begin{equation*}
\frac{\sigma_{a}}{\sigma_{h}}=\frac{1}{2}\left(\frac{\sigma}{\sigma_{0}}+\frac{\sigma_{0}}{\sigma}\right) \geq 1 . \tag{126}
\end{equation*}
$$

Inis area is at least twice as great as that for the corresponding wDF in figure 4, and even then, only when the proper guess is used for the weighting u, namely $\sigma=\sigma_{0}$. Since waveform duration σ_{0} will likely be unknown in practice, the mismatch factor in (126) will smear the concentration of the SISE somewhat. For example, if o is off by actor of 2 from σ_{0} (either double or half). (126) is 1.25 instead of its minimum value of 1.

The area enlargement factor σ_{d} / σ_{h} in (126) is also the same factor by which the peak of the STSE in (125) is down from its best value of E. Thus, the STSE has a decreased peak and enlarged effective area relative to the WDF, the relative factor being at least 2 , and being $\sigma / \sigma_{0}+\sigma_{0} / \sigma$ in general. Both distributions contain volume E, independent of σ.

This example demonstrates the presence of "window effects" in the STSE that are not seen in the WOF. That is, whereas the effective ellipse in figure 4 depended only on waveform parameter σ_{0}, the ellipse here depends additionally on weighting parameter o, in such a fashion as to always smear the concentration of energy in the t, f plane by at least a factor of 2 . In trade, we always have the guarantee that the SISE (103) will be nonnegative, and that it will not contain the large interference phenomena inherent in the WDF: see (80)-(81).

MULIIPLE MODULATED TONES

The waveform of interest is given in (79). The transform $S_{u}(t, f)$ is found by use of (122), (102), and (68):

$$
\begin{align*}
S_{u}(t, f)= & \sum_{k}\left(E_{k} \frac{\sigma_{h k}}{\sigma_{a k}}\right)^{1 / 2} \exp \left[-\frac{\left(t-t_{k}\right)^{2}}{4 \sigma_{a k}^{2}}-\pi^{2}\left(f-f_{k}\right)^{2} \sigma_{h k}^{2}-\right. \\
& \left.\cdot i \pi\left(f-f_{k}\right) \frac{\sigma_{k}^{2} t+\sigma^{2} t_{k}}{\sigma_{a k}^{2}}+i \arg \left(a_{k}\right)\right] \tag{127}
\end{align*}
$$

where energy $E_{k}=\sqrt{\pi}\left|a_{k}\right|^{2} \sigma_{k}$, and averages

$$
\begin{equation*}
\sigma_{a k}^{2}=\frac{1}{2}\left(\sigma^{2}+\sigma_{k}^{2}\right), \frac{1}{\sigma_{h k}^{2}}=\frac{1}{2}\left(\frac{1}{2}+\frac{1}{\sigma_{k}^{2}}\right) \tag{128}
\end{equation*}
$$

The STSE is the magnitude squared value of (127); the resulting double sum has diagonal terms

$$
\begin{equation*}
\sum_{k} E_{k} \frac{\sigma_{n k}}{\sigma_{a k}} \exp \left[-\frac{1}{2}\left\{\frac{\left(t-t_{k}\right)^{2}}{\sigma_{a k}^{2}}+4 \pi^{2}\left(f-f_{k}\right)^{2} \sigma_{h k}^{2}\right\}\right] \tag{129}
\end{equation*}
$$

which are identical to (125). except for the indexing by k and the shift to center t_{k}, f_{k} in the t, f plane, as expected. If one value of weighting parameter σ is used to evaluate the SISE for all t of interest, it cannot simultaneously match all the different possible values of $\left\{\sigma_{k}\right\}$ for the various pulses. This will cause some of the components in (129) to be more severely degraded than others, in terms of decreased peaks and spread effective areas; the pertinent factor is again

$$
\begin{equation*}
\frac{\sigma_{a k}}{\sigma_{h k}}=\frac{1}{2}\left(\frac{\sigma}{\sigma_{k}}+\frac{\sigma_{k}}{\sigma}\right) \tag{130}
\end{equation*}
$$

for the k-th component lobe. If some apriori knowledge of the values of $\left\{\sigma_{k}\right\}$ is available, this suggests using different values of a for those values of t near the corresponding values of $\left\{t_{k}\right\}$, in an effort to minimize the factors (130) for different k.

As for the of f-diagonal terms of $\left|S_{u}(t, f)\right|^{2}$ in (127), the k lerm is proportional to

$$
\begin{equation*}
\exp \left[-\frac{\left(t-t_{k}\right)^{2}}{4 \sigma_{a k}^{2}}-\frac{\left(t-t_{l}\right)^{2}}{4 \sigma_{a l}^{2}}-\pi^{2}\left(f-f_{k}\right)^{2} \sigma_{h k}^{2}-\pi^{2}\left(f-f_{l}\right)^{2} \sigma_{h g}^{2}\right] \tag{131}
\end{equation*}
$$

If t is not near one of the t ime centers $\left\{t_{k}\right\}$, or if f is not near one of the $\left\{f_{k}\right\}$, this term will be very small, due to the exponential decay. In particular, halfway between the dominant desired peaks of (129) at $\left\{t_{k}, f_{k}\right\}$, the quantity (131) will be essentially zero. This is in distinction to the WOF result in (80) et seq.

LINEAR FREQUENCY MODULATION

This waveform is specified in (84). Its STSE is, upon use of (70).

$$
\begin{align*}
\left|S_{u}(t, f)\right|^{2} & =\frac{2 E}{\sqrt{H_{2}}} \exp \left[-\frac{1}{H_{2}}\left\{x^{2}\left(1+r+r \theta_{0}^{2}\right)+\right.\right. \\
& \left.\left.+y^{2}(1+r) / r-2 x y \theta_{0}\right\}\right] \tag{132}
\end{align*}
$$

where

$$
\begin{equation*}
\theta_{0}=\alpha_{0} \sigma_{0}^{2}, r=\frac{\sigma^{2}}{\sigma_{0}^{2}}, H_{2}=\frac{1}{r}+2+r+r \theta_{0}^{2} \tag{133}
\end{equation*}
$$

and where we define, here,

$$
\begin{equation*}
x=\frac{t}{\sigma}, y=2 \pi f \sigma \tag{134}
\end{equation*}
$$

By means of the results in appendix 0 , the area of the contour ellipse in (132), at the $1 / e$ relative level, is found to be

$$
\begin{equation*}
\text { area }=\frac{1}{2} \sqrt{H_{2}} \text { in the } t, f \text { plane. } \tag{135}
\end{equation*}
$$

Thus, the product of the peak height of the STSE in (132) and the effective area is again E, the volume under the STSE, regardless of the values of σ, $\sigma_{0}, \theta_{0} . \quad\left(\right.$ for $\theta_{0}=0,(135)$ reduces to (126), as it must.)

To minimize the effective area and to maximize the peak value of the STSE, the common quantity H_{2} in (133) should be minimized. This is accomplished by choosing the weighting parameter o in (122) as

$$
\begin{equation*}
\sigma_{o p t}=\frac{\sigma_{0}}{\left(1+\theta_{0}^{2}\right)^{1 / 4}}, \quad r_{o p t}=\frac{1}{\left(1+\theta_{0}^{2}\right)^{1 / 2}} \tag{136}
\end{equation*}
$$

which would require knowledge of both the duration o_{0} and the amount of frequency modulation θ_{0} in waveform s. Even if that information were available, the minimum area in (135) becomes

$$
\begin{equation*}
\text { mininum area }=\left(\frac{1+\sqrt{1+\theta_{0}^{2}}}{2}\right)^{1 / 2} \text { in the } t, f \text { plane } \tag{137}
\end{equation*}
$$

which still increases as $\sqrt{\theta_{0} / 2}$ for large θ_{0}. Thus, even the best choice of a for the weighting results in considerable spreading of the concentration ellipse and in peak reduction of the STSE; searching in o is not overly helpful because the simple weighting pulse (122) is a poor facsimile to the linear frequency modulation waveform (84), especially for large amounts of frequency modulation, as measured by parameter $\boldsymbol{\theta}_{0}$.

MORE GENERAL WEIGHTING

There is no need to restrict the weighting u in SISE (102) and (103) to be the simple Gaussian pulse in (122). In this section, we generalize it to allow for some linear frequency modulation:

$$
\begin{equation*}
u(t)=\left(\pi \sigma^{2}\right)^{-1 / 4} \exp \left[-\frac{t^{2}}{2 \sigma^{2}}+i \frac{\alpha}{2} t^{2}\right] ; \quad E_{u}=1 . \tag{138}
\end{equation*}
$$

The waveform of interest here is again the linear frequency modulation example

$$
\begin{equation*}
s(t)=a_{0} \exp \left[-\frac{t^{2}}{2 \sigma_{0}^{2}}+i \frac{\alpha_{0}}{2} t^{2}\right], \quad \alpha_{0} \geq 0 \tag{139}
\end{equation*}
$$

as in (84).

The SISE follows from (102), (103), and (70), after a considerable amount of manipulations, as

$$
\begin{align*}
\left|S_{u}(t, f)\right|^{2} & =\frac{2 E}{\sqrt{H_{3}}} \exp \left[-\frac{1}{H_{3}}\left\{x^{2}\left(1+r+r \theta_{0}^{2}+r^{2} q^{2} \theta_{0}^{2}\right)+\right.\right. \\
& \left.\left.+y^{2}(1+r) / r-2 x y(1+r q) \theta_{0}\right\}\right] \tag{140}
\end{align*}
$$

where

$$
\begin{equation*}
r=\frac{\sigma^{2}}{\sigma_{0}^{2}}, \quad q=\frac{a}{a_{0}}, \quad H_{3}=\frac{1}{r}+2+r+r(q-1)^{2} \theta_{0}^{2} \tag{141}
\end{equation*}
$$

in addition to (134). The quantities r and q are mismatch factors, reflecting the lack of knowledge of weighting (138) about the waveform (139).

The area of the contour ellipse of (140) at the $1 / e$ relative level is (by means of appendix D)

$$
\begin{equation*}
\text { area }=\frac{1}{2} \sqrt{H_{3}} \text { in the } t, r \text { plane. } \tag{142}
\end{equation*}
$$

This is also the same factor by which the peak of (140) is down from E. Thus, a minimum value for H_{3} is desired. This can be achieved by choosing $r=1, q=1$ in (141), for which the minimum $H_{3}=4$ and the minimum area $=1$; however. this requires that we choose $\sigma=o_{0}$ and $\alpha=\alpha_{0}$, which is not a likely situation in practice, without some apriori knowledge about the waveform s. If this fortuitous situation of perfect match of the parameters does occur, the SISE in (140) reduces to

$$
\begin{equation*}
\left|S_{u}(t, f)\right|^{2}=E \exp \left[-\frac{1}{2}\left\{x^{2}\left(1+\theta_{0}^{2}\right)-2 x y \theta_{0}+y^{2}\right\}\right] \tag{143}
\end{equation*}
$$

which is identical to the corresponding WDF in (91). except for a factor of 2 outside and inside the exponential. Thus, the effective area is doubled and the peak is halved.

As special cases of weighting (138), if $\alpha=0$ (no frequency modulation in the weighting), then H_{3} in (141) reduces to H_{2} in (133). Alternatively, if $\alpha_{0} \rightarrow 0$ (no frequency modulation in the waveform s), then $\theta_{0}(q-1)=$ $\alpha_{0} \sigma_{0}^{2}\left(\alpha / \alpha_{0}-1\right) \sim \alpha \sigma_{0}^{2}$ and

$$
\begin{equation*}
H_{3} \sim \frac{1}{r}+2+r+r \alpha^{2} \sigma_{0}^{4}=\left(\frac{a}{\sigma_{0}}+\frac{\sigma_{0}}{\sigma}\right)^{2}+\left(\alpha \sigma \sigma_{0}\right)^{2} . \tag{144}
\end{equation*}
$$

This is minimized by choosing $\alpha=0$ and $\sigma=\sigma_{0}$, giving value 4 as usual. Finally, for given q, H_{3} in (141) is minimized by choosing $r=\left(1+(q-1)^{2} \Theta_{0}^{2}\right)^{-1 / 2}$, for which the minimum $H_{3}=$ $2+2\left(1+(q-1)^{2} \Theta_{0}^{2}\right)^{1 / 2}$; however, again, this increases as $2|q-1| \theta_{0}$ as θ_{0} increases.

SMOOTHING THE WDF

It was demonstrated in (106) that the double convolution of any two WDF is always nonnegative, and is in fact equal to the STSE of one waveform relative to the other:

$$
\begin{equation*}
w_{s}(t, f) \geqslant w_{u}(t, f)=\left|S_{u}(t, f)\right|^{2} \tag{145}
\end{equation*}
$$

This suggests that one should choose a (legal) WDF for weighting u which is as narrow as possible (least area or spread) in the t, f plane, in order to minimize the inherent spreading that (145) implies. The simple examples in the previous section demonstrated that, for the best choices of duration and linear frequency modulation parameters in the Gaussian weighting, an increase of .5 in the effective area in the t, f plane of the STSE, relative to the WDF, resulted.

PHILOSOPHY AND APPROACH

Since fine detail of the WDF $W_{S}(t, f)$ will likely vary in different portions of the t, f plane, this suggests the following possible procedure for analysis: For a given waveform $s(t)$, compute and plot the WDF $W_{s}(t, f)$ according to (3) or (61). Locate a t, f region of interest in the plane, where large (perhaps oscillatory) values of W_{s} occur; denote the center of the region as t_{c}, f_{c}. Estimate the duration, σ_{c}, and linear frequency
modulation index, α_{c}, of this particular region in the t, f plane. Perform the SISE of waveform $s(t)$ according to (102)-(103), with weighting

$$
\begin{equation*}
u(t)=\left(\pi \sigma_{c}^{2}\right)^{-1 / 4} \exp \left[-\frac{t^{2}}{2 \sigma_{c}^{2}}+i \frac{\alpha_{c}}{2} t^{2}\right], \quad \theta_{c}=\alpha_{c} \sigma_{c}^{2}, \tag{146}
\end{equation*}
$$

(for reasons to be given below), but only for locations t, f in the plane near $t=t_{c}, f=f_{c}$.

$$
\begin{align*}
& \text { The WDF of weighting (146) is (with } \left.\alpha_{c}=2 \pi \beta_{c}\right) \\
& \qquad \begin{aligned}
W_{u}(t, f) & =2 \exp \left[-\frac{t^{2}}{\sigma_{c}^{2}}-4 \pi^{2} \sigma_{c}^{2}\left(f-\beta_{c} t\right)^{2}\right]= \\
& =2 \exp \left[-\frac{t^{2}}{\sigma_{c}^{2}}\left(1+\theta_{c}^{2}\right)+4 \pi f t \theta_{c}-4 \pi^{2} f^{2} \sigma_{c}^{2}\right]
\end{aligned}
\end{align*}
$$

which has a contour ellipse, at the $1 / e$ relative level, of area $1 / 2$ in the t, f plane, regardless of σ_{c} and α_{c}. This STSE procedure is equivalent to smoothing the WDF W_{S} of waveform s with the WDF in (147), for values near t_{c}, f_{c} in the t, f plane. Thus we have two alternative procedures for conducting the smoothing of a calculated WOF W_{s}, the first via direct evaluation of double convolution (145) for values of t, f near regions of interest, and the second via the STSE in (102) and (103). Which one to adopt will likely depend on the number of points that must be closely investigated in the t, f plane.

For other regions of interest in the t, f plane of the original $W O H W_{s}$. different values of $t_{c}, f_{C}, \sigma_{c}, \alpha_{c}$ must be extracted and the smoothing procedure repeated. Although tedious, this procedure will minimally spread the WDF W_{s} (by area .5) and it will guarantee a nonnegative distribution. This procedure is similar to that given in [2]; however, the information required to implement [2] is not easily available, and the current approach is not limited to constant-magnitude waveforms. A fine-grained analysis of a given general waveform s, for various t, f values and yielding nonnegative distribution values, is not going to be achieved without the expenditure of considerable effort and interaction between a user and preliminary analysis results.

This two-stage procedure, of observing the raw WDF and then computing different smoother versions in different regions, avoids the arbitrary pre-selection of time duration and frequency modulation content of the weighting in the STSE, which would overly smear the modified WDF for improper matches of parameter values. It also guarantees nonnegative estimates. In trade, there is approximately an increase of . 5 in the effective area of the distribution in the t, f plane that must be accepted, in addition to a decreased peak value. For WDFs, W_{s}, with lobes which already occupy portions of the t, f plane with areas significantly greater than . 5, this additional spreading (by area . 5) is not very damaging. provided that σ_{c} and α_{c} are chosen correctly. Perhaps simultaneous plots of WDF $W_{S}(t, f)$ and STSE $\left|S_{u}(t, f)\right|^{2}$ would yield maximum information about waveform s.

In actual practice, where the integral definition in (102) is replaced by a numerical summation of samples taken at increment Δ, the quantity (145) is necessarily approximated. This problem is addressed in appendix E, where it is shown that the dominant term in the numerical approach is approximately the desired quantity (145). Furthermore, since the definition in (E-1) involves a magnitude-square, the approximation is guaranteed to be nonnegative. This need not be the case if the double convolution of WDFs W_{S} and W_{u} in (145) is approximated by sampling directly in the t, f plane and performing a double summation. However, for small enough increments in both t and f, this nonnegative aspect should be small and probably negligible; this latter approach was used in [1], although the smoothing function was not a legal WDF.

ALTERNATIVE AVERAGING PROCEDURES

Instead of using $R(t, \tau)=s\left(t+\frac{\tau}{2}\right) s^{*}\left(t-\frac{\tau}{2}\right)$ in (2) as the instantaneous correlation at time t and separation τ, one could use a local average, in hopes of improving the correlation and distribution functions. That is, consider correlation definition

$$
\begin{equation*}
\hat{R}(t, \tau)=v_{1}(t) * R(t, \tau)=\int d t^{\prime} v_{1}\left(t-t^{\prime}\right) s\left(t^{\prime}+\frac{\tau}{2}\right) s^{\star}\left(t^{\prime}-\frac{\tau}{2}\right), \tag{148}
\end{equation*}
$$

where v_{1} is a fairly sharp, even, real function centered at the origin. The corresponding "locally averaged" WDF is

$$
\begin{gather*}
\hat{W}(t, f)=\int d \tau \exp (-i 2 \pi f \tau) \hat{R}(t, \tau)= \\
=\int d t^{\prime} v_{1}\left(t-t^{\prime}\right) W\left(t^{\prime}, f\right)=v_{1}(t)<W(t, f) . \tag{149}
\end{gather*}
$$

This is a convolution, in time only, of the wof of s with weighting v_{1}. Reference to the discussion following (83) reveals that this form of averaging is inadequate, since it does not average additionally on frequency. Also. (149) need not remain positive, as would be desired of a smoothed WDF.

Furthermore, the fourier transform in (149) (as well as (3)) is over all τ, thereby involving argument values of waveform s in (148) which are very distant from the time point, t, of interest. If $\hat{W}(t, f)$ or $W(t, f)$ is to be considered as the "spectrum at time $t, "$ it is hard to justify why arbitrarily distant time points from location t should enter into their evaluations. Therefore, in addition to the local average in (148) for stability purposes, there should be a weighting in τ in (149) to better confine the Fourier transform to local values of waveform s about time instant t of interest.

To this aim, consider the more general form of average given by

$$
\begin{align*}
\hat{R}(t, \tau) & =v_{2}(t, \tau) \\
& =\int(t, \tau)=\int d t^{\prime} v_{2}\left(t-t^{\prime}, \tau\right) R\left(t^{\prime}, \tau\right)= \tag{150}\\
& =\int d t^{\prime} v_{2}\left(t-t^{\prime}, \tau\right) \int d f^{\prime} \exp \left(i 2 \pi \tau^{\prime}\right) W\left(t^{\prime}, f^{\prime}\right)
\end{align*}
$$

where weighting v_{2} depends additionally on τ. Define its transform

$$
\begin{equation*}
v_{2}(t, f)=\int d \tau \exp (-i 2 \pi f \tau) v_{2}(t, \tau) . \tag{151}
\end{equation*}
$$

Then the modified wDF corresponding to \hat{R} in (150) is

$$
\begin{gather*}
\hat{W}(t, f)=\iint d t^{\prime} d f^{\prime} W\left(t^{\prime}, f^{\prime}\right) v_{2}\left(t-t^{\prime}, f-f^{\prime}\right)= \\
=W(t, f) \otimes v_{2}(t, f) . \tag{152}
\end{gather*}
$$

which is a double convolution of W with V_{2}, on both t and f. However. since V_{2} need not be a WDF. \hat{W} in (152) can become negative for some t, f values. This form of smoothing was considered previously in [9; (1.5)] and [10; (2.1)].

An additional justification of two-dimensional smoothing, from the frequency domain alternative viewpoint, is given in appendix F. Also, a generalization of the Gaussian WDF (14\%), with arbitrary area and linear frequency modulation content and which guarantees a positive distribution $\hat{\mathbf{W}}$, is given in $(F-7)-(F-19)$; this result generalizes that in [11] for no frequency modulation.

If we specialize weighting v_{2} in (150) to the form

$$
\begin{equation*}
v_{2}(t, \tau)=u\left(t+\frac{\tau}{2}\right) u^{\star}\left(t-\frac{\tau}{2}\right) \tag{153}
\end{equation*}
$$

then (151) yields

$$
\begin{equation*}
v_{2}(t, f)=W_{u}(t, f) \tag{154}
\end{equation*}
$$

and the general result in (152) specializes to (106), which is guaranteed positive. Thus the special case of weighting v_{2} in (153) leads to the STSE of s, relative to u.

EFFICIENT CALCULATION OF SHORT-TERM SPECIRAL ESIIMATE

If we employ the weighting u in (146) with linear frequency modulation parameter α_{c}. the spectrum in (102) becomes

$$
S_{u}(t, f)=\int d t_{1} \exp \left(-i 2 \pi f t_{1}\right) s\left(t_{1}\right) u^{\star}\left(t-t_{1}\right)=
$$

$$
=\exp (-i 2 \pi f t) \int d t_{2} \exp \left(-i 2 \pi f t_{2}\right) s\left(t+t_{2}\right) u^{\star}\left(-t_{2}\right)=
$$

$$
\begin{equation*}
=\left(\pi \sigma_{c}^{2}\right)^{-1 / 4} \exp (-i 2 \pi f t) \int d t_{2} \exp \left(-i 2 \pi f t_{2}\right) s\left(t+t_{2}\right) \exp \left(-\frac{t_{2}^{2}}{2 \sigma_{c}^{2}}-i \frac{\alpha_{c}}{2} t_{2}^{2}\right) \tag{155}
\end{equation*}
$$

The $\exp \left(-t_{2}^{2} /\left(2 \sigma_{c}^{2}\right)\right)$ term gates out the portion of $s\left(t+t_{2}\right)$ near the origin in t_{2}, while the $\exp \left(-i \alpha_{c} t_{2}^{2} / 2\right)$ term cancels linear frequency modulation in waveform s.

An approximation to (155) is obtained by sampling at increment Δ and using the Trapezoidal rule:

$$
\begin{align*}
& \tilde{S}_{u}(t, f) \equiv\left(\pi \sigma_{c}^{2}\right)^{-1 / 4} \exp (-i 2 \pi f t) \Delta \sum_{k} \exp (-i 2 \pi f \Delta k) * \\
& \star s(t+k \Delta) \exp \left[-\frac{1}{2} k^{2} \Delta^{2}\left(\frac{1}{\sigma_{c}^{2}}+i \alpha_{c}\right)\right] . \tag{156}
\end{align*}
$$

which has period $1 / \Delta$ in f. In particular, the approximation to the STSE, at selected points, is

$$
\begin{align*}
& \left.\left|\tilde{S}_{u}\left(m \Delta \cdot \frac{n}{N \Delta}\right)\right|^{2}=\frac{\Delta^{2}}{\sqrt{\pi} \sigma_{c}} \right\rvert\, \sum_{k} \exp (-i 2 \pi n k / N)^{\star} \\
& \left.* \operatorname{s}(m \Delta+k \Delta) \exp \left[-\frac{1}{2} k^{2} \Delta^{2}\left(\frac{1}{2}+i \alpha_{c}\right)\right]\right|^{2}, \tag{157}
\end{align*}
$$

which is an N-point discrete Fourier transform; m, n, N are integers.

The procedure for analysis is as follows: for a region of interest centered at t_{c}, f_{c} in the t, f plane, choose time values ma near t_{c}. Then for each m, sweep out n such that frequency $n /(N \Delta)$ is near f_{c}; an $F F T$ will give all f values in $(0,1 / \Delta)$. Plots of (157) give a fine-tuned STSE near $t_{C},{ }_{c}$ for the particular choices of σ_{c}, α_{c}. Additional estimates with different parameters will be required in other regions; there is no globally optimum smoothing that will yield high-quality positive spectral estimates for all t, f values.

The numerical evaluation of the exponential quantities

$$
\begin{equation*}
Q_{2}(k) \equiv \exp \left[-\frac{1}{2} k^{2} \Delta^{2}\left(\frac{1}{\sigma_{c}^{2}}+i \alpha_{c}\right)\right]=Q_{2}(-k) \tag{158}
\end{equation*}
$$

in (157) can be effected very efficiently by the methods given in [12].
They are given by recurrences (which need to be evaluated only once for each $\left.\sigma_{c}, \alpha_{c}\right)$

$$
\left.\begin{array}{l}
0_{1}(k)=0_{1}(k-1) \exp \left(2 c_{2}\right) \tag{159}\\
0_{2}(k)=0_{2}(k-1) 0_{1}(k)
\end{array}\right\} \text { for } k \geq 1 \text {. }
$$

with starting values

$$
\begin{gather*}
a_{1}(0)=\exp \left(-c_{2}\right), \quad a_{2}(0)=1 . \\
c_{2}=-\frac{1}{2} \Delta^{2}\left(\frac{1}{\sigma_{c}^{2}}+i \alpha_{c}\right) . \tag{160}
\end{gather*}
$$

Only two complex multiplications per stage are required in (159).
Furthermore, since

$$
\begin{equation*}
\exp \left(-c_{2}\right)=\exp \left(\frac{\Delta^{2}}{2 \sigma_{c}^{2}}\right) \exp \left(\frac{i \alpha_{c} \Delta^{2}}{2}\right) \equiv E(C+i S) . \tag{161}
\end{equation*}
$$

and

$$
\begin{equation*}
\exp \left(2 c_{2}\right)=\frac{c^{2}-s^{2}-12 S c}{E^{2}} . \tag{162}
\end{equation*}
$$

only one exp, cos, and sin must be evaluated to accomplish (159) for all k.

WOF WITH MINIMUM SPREAD

The virtues of smoothing WOF W_{S} of waveform s with the WDF W_{U}. (147), of weighting u, (146), were discussed earlier in this section. At that time, the selection of rorm (146) for the weighting was seemingly arbitrary. However, it is shown in appendix G that the weighting, u, which has a minimally spread WDF, is precisely that given in (146). The measure of spread is

$$
\begin{equation*}
I=\iint d t d f W_{u}(t, f)\left(f-\beta_{c} t\right)^{2} \tag{163}
\end{equation*}
$$

where β_{c} is a specified (observed) slope of interest in the t, f plane, and $\alpha_{c}=2 \pi \beta_{c}$. This measure of spread concentrates the WDF about the specified slope; see (147). The actual minimum value of spread (163) is given in (G-24) as

$$
\begin{equation*}
\text { minimum } I=\frac{1}{8 \pi_{\pi}^{2} \sigma_{C}^{2}} \tag{164A}
\end{equation*}
$$

when weighting u is constrained to have mean square duration

$$
\begin{equation*}
\int d t t^{2}|u(t)|^{2}=\frac{o_{c}^{2}}{2}, \tag{164B}
\end{equation*}
$$

in addition to unit energy. Without these two constraints, the minimization of spread (163) is ill-posed; see appendix G.

PERFORMANCE IN NOISE

In this section, we investigate the bias and stability of a WDF estimate obtained from a noisy waveform. In particular, the given waveform x is

$$
\begin{equation*}
x(t)=s(t)+n(t), \tag{165}
\end{equation*}
$$

where s is a deterministic signal of interest, and n is an additive zero-mean stationary noise. In fact, we have

$$
\begin{align*}
& \overline{n(t)}=0, \quad \overline{n\left(t_{1}\right) n^{\star}\left(t_{2}\right)}=C_{n}\left(t_{1}-t_{2}\right), \\
& G_{n}(f)=\int d \tau \exp (-i 2 \pi f \tau) C_{n}(\tau), \tag{166}
\end{align*}
$$

where C_{n} and G_{n} are the noise covariance and power density spectrum, respectively.

WAVEFORM WEIGHTING

If the WDF of given waveform x in (165) were directly evaluated via definition (3), the result would be infinite, since the NxN (noise-cross-noise) terms do not decay for large arguments. Also, since the signal s will be assumed to be transient and decay to zero for large arguments, some gating or weighting of given waveform x is appropriate, in order to
concentrate on the time regions where signal s is largest. Accordingly, we consider the weighted waveform

$$
\begin{equation*}
y(t)=v(t) x(t)=v(t)[s(t)+n(t)] . \tag{167}
\end{equation*}
$$

where $v(t)$ is a deterministic function under our control.

The WDF that will be calculated is therefore

$$
\begin{gather*}
W_{y y}(t, f)=\int d \tau \exp (-i 2 \pi f \tau) y\left(t+\frac{\tau}{2}\right) y^{\star}\left(t-\frac{\tau}{2}\right)= \\
=a+b+c+d, \tag{168}
\end{gather*}
$$

where

$$
\begin{align*}
& a=\int d \tau \exp (-i 2 \pi f \tau) R_{v v}(t, \tau) s\left(t+\frac{\tau}{2}\right) s^{\star}\left(t-\frac{\tau}{2}\right), \\
& b=\int d \tau \exp (-i 2 \pi f \tau) R_{v v}(t, \tau) n\left(t+\frac{\tau}{2}\right) n^{\star}\left(t-\frac{\tau}{2}\right), \\
& c=\int d \tau \exp (-i 2 \pi f \tau) R_{v v}(t, \tau) s\left(t+\frac{\tau}{2}\right) n^{\star}\left(t-\frac{\tau}{2}\right), \\
& d=\int d \tau \exp (-i 2 \pi f \tau) R_{v v}(t, \tau) n\left(t+\frac{\tau}{2}\right) s^{\star}\left(t-\frac{\tau}{2}\right), \tag{169}
\end{align*}
$$

and

$$
\begin{equation*}
R_{v v}(t, \tau)=v\left(t+\frac{\tau}{2}\right) v^{*}\left(t-\frac{\tau}{2}\right) . \tag{170}
\end{equation*}
$$

The first two quantities in (168) are, respectively, $S \times S$ and $N \times N$ terms, while the last two are $S X N$ terms; here, S denotes signal, while N denotes noise. The $S \times S$ term, a, in (169) is real and non-random, while $N \times N$ term, b, is real and random. On the other hand, the $S X N$ terms, c and d, are complex random, with $d^{*}=c$.

TR 8225

MEAN VALUES

An alternative expression for the $S x S$ term in (169) is

$$
\begin{gather*}
a=\int d \tau \exp (-i 2 \pi f \tau) R_{v v}(t, \tau) R_{s s}(t, \tau)= \\
=W_{v V}(t, f) \otimes W_{s S}(t, f) \tag{171}
\end{gather*}
$$

in terms of the WDFs of weighting v and signal s.

The mean of the $N \times N$ term is

$$
\begin{gather*}
\bar{b}=\int d \tau \exp (-i 2 \pi f \tau) R_{v^{\prime}}(t, \tau) C_{n}(\tau)= \\
=W_{v v}(t, f) \mathcal{O}_{n}(f), \tag{172}
\end{gather*}
$$

where we made use of (166). And since noise n has zero mean, there follows, for the $S \times N$ terms, $\bar{c}=\bar{d}=0$. Collecting these results together, the mean of WDF estimate (168) is

$$
\begin{equation*}
\overline{W_{y y}(t, f)}=W_{v v}(t, f) \stackrel{f}{\rho}\left[W_{s s}(t, f)+G_{n}(f)\right] \tag{173}
\end{equation*}
$$

No additional statistical properties on the noise n, such as a Gaussian process, are needed for result (173); this holds for an arbitrary stationary noise process. The difference in mean outputs, for signal present versus signal absent, is just a, as given by (171).

VARIANCE OF WDF ESTIMATE

In order to determine the variance of estimate (168), we need to assume that noise n is Gaussian. Furthermore, in addition to properties (166), we will presume that

$$
\begin{equation*}
\overline{n\left(t_{1}\right) n\left(t_{2}\right)}=0, \tag{174}
\end{equation*}
$$

as is true when n is an analytic process or a complex envelope [13, ch.2]. Then (168) yields

$$
\begin{align*}
\overline{w_{y y}^{2}(t, f)} & =\overline{\left|w_{y y}(t, f)\right|^{2}}=a^{2}+\overline{b^{2}}+\overline{|c|^{2}}+\overline{|d|^{2}}+ \\
& +2 a \bar{b}+\overline{c d^{\star}}+\overline{c^{\star} d} . \tag{175}
\end{align*}
$$

the other terms being zero due to n being zero-mean Gaussian noise.

The second term on the right-hand side of (175) can be developed from (169) as

$$
\begin{align*}
& \bar{b}^{2}=\overline{|b|^{2}}=\iint d \tau_{1} d \tau_{2} \exp \left(-i 2 \pi f\left(\tau_{1}-\tau_{2}\right)\right) R_{v v}\left(t, \tau_{1}\right) * \\
& * R_{v v}^{*}\left(t, \tau_{2}\right)\left[c_{n}\left(\tau_{1}\right) c_{n}^{*}\left(\tau_{2}\right)+c_{n}^{2}\left(\frac{\tau_{1}-\tau_{2}}{2}\right)\right], \tag{176}
\end{align*}
$$

where we used (166) and (174). Referring to (172), we have

$$
\begin{gather*}
\overline{b^{2}}=\bar{b}^{2}+\iint d \tau_{1} d \tau_{2} \exp \left(-i 2 \pi f\left(\tau_{1}-\tau_{2}\right)\right) R_{v v}\left(t, \tau_{1}\right) \star \\
 \tag{177}\\
* R_{v v}^{*}\left(t, \tau_{2}\right) c_{n}^{2}\left(\frac{\tau_{1}-\tau_{2}}{2}\right) .
\end{gather*}
$$

At this point, it is convenient to define

$$
\begin{equation*}
G_{n}^{(2)}(f)=\int d \tau \exp (-i 4 \pi f \tau) c_{n}^{2}(\tau) \tag{178}
\end{equation*}
$$

Then

$$
\begin{equation*}
G_{n}^{(2)}(f / 2)=\int d \tau \exp (-i 2 \pi f \tau) c_{n}^{2}(\tau)=G_{n}(f)<G_{n}(f) \tag{179}
\end{equation*}
$$

and

$$
\begin{align*}
C_{n}^{2}(\tau) & =\int d f \exp (i 2 \pi f \tau) G_{n}^{(2)}(f / 2)= \\
& =2 \int d v \exp (i 4 \pi v \tau) G_{n}^{(2)}(v) . \tag{180}
\end{align*}
$$

When this result is substituted in (171), there follows

$$
\begin{align*}
\overline{b^{2}} & =\frac{2}{b}+2 \int d v W_{v v}^{2}(t, f-v) G_{n}^{(2)}(v)= \\
& =\bar{b}+2 W_{v v}^{2}(t, f) \not G_{n}^{(2)}(f) . \tag{181}
\end{align*}
$$

The third and fourth terms in (175) are

$$
\begin{gather*}
\overline{|d|^{2}}=\overline{|c|^{2}}=\iint d \tau_{1} d \tau_{2} \exp \left(-i 2 \pi f\left(\tau_{1}-\tau_{2}\right)\right) R_{v v}\left(t, \tau_{1}\right) * \\
* R_{v v}^{*}\left(t, \tau_{2}\right) s\left(t+\frac{\tau_{1}}{2}\right) s^{\star}\left(t+\frac{\tau_{2}}{2}\right) c_{n}\left(\frac{\tau_{1}-\tau_{2}}{2}\right)= \\
=\int d v G_{n}(v) \left\lvert\, B\left(t, f-\frac{v}{2}\right)^{2}\right. \tag{182}
\end{gather*}
$$

where

$$
\begin{align*}
B(t, f) & \equiv \int d \tau \exp (-i 2 \pi f \tau) R_{v v}(t, \tau) s\left(t+\frac{\tau}{2}\right)= \\
& =\int d v \exp (i 2 \pi v t) W_{v v}\left(t, f-\frac{v}{2}\right) S(v) . \tag{183}
\end{align*}
$$

(As special cases, if weighting $v(t)=1$ for all t, then $R_{v v}(t, \tau)=1$ and

$$
\begin{equation*}
\overline{|c|^{2}}=4 \int d v G_{n}(v)|S(2 f-v)|^{2} \tag{184}
\end{equation*}
$$

while, instead, if $G_{n}(f)=\hat{N}_{d}$ for all f, then $C_{n}(\tau)=\hat{N}_{d} \delta(\tau)$ and

$$
\begin{equation*}
\overline{|c|^{2}}=2 \hat{N}_{d} \int d \tau R_{v v}^{2}(t, \tau) \left\lvert\, s\left(t+\left.\frac{\tau}{2}\right|^{2}\right.\right. \tag{185}
\end{equation*}
$$

If both conditions above hold, then

$$
\begin{equation*}
\left.\overline{|c|^{2}}=4 \hat{N}_{d} E . \quad\right) \tag{186}
\end{equation*}
$$

Returning to the general case again, the fifth term in (175) is given by combining (171) and (172), while the sixth term is

$$
\begin{gather*}
\overline{c d^{\star}}=\iint d \tau_{1} d \tau_{2} \exp \left(-i 2 \pi f\left(\tau_{1}-\tau_{2}\right)\right) R_{v v}\left(t, \tau_{1}\right) * \\
* R_{v v}^{*}\left(t, \tau_{2}\right) s\left(t+\frac{\tau_{1}}{2}\right) s^{\star}\left(t-\frac{\tau_{2}}{2}\right) \overline{n^{*}\left(t-\frac{\tau_{1}}{2}\right) n^{*}\left(t+\frac{\tau_{2}}{2}\right)}=0,
\end{gather*}
$$

by use of (174).

Combining the above results, we have, for the variance of the WDF estimate,

$$
\begin{align*}
\operatorname{var}\left\{w_{y y}(t, f)\right\} & =a^{2}+\overline{b^{2}}+2 \overline{|c|^{2}}+2 a \bar{b}-(a+\bar{b})^{2}= \\
& =\overline{b^{2}}-\bar{b}+2 \overline{\left.c\right|^{2}}= \\
& =2 W_{v v}^{2}(t, f) G_{n}^{(2)}(f)+ \\
& +2 \int d v G_{n}(v)\left|B\left(t, f-\frac{v}{2}\right)\right|^{2} . \tag{188}
\end{align*}
$$

This result holds for arbitrary signal s, weighting v, and noise spectrum G_{n}. The quantities $G_{n}^{(2)}$ and B are defined in (178) and (183), respectively.

If we do not weight waveform $x(t)$, that is, choose $v(t)=1$ for all t in (161), then $R_{v v}(t, \tau)=1, W_{v v}(t, f)=\delta(f)$, and the $N \times N$ term in (188) becomes infinite; that is, the WDF estimate (168) has infinite variance if we do not weight in time, regardless of what the actual noise spectrum, G_{n}, is.

On the other hand, if the noise n is white, then $G_{n}(f)=\hat{N}_{d}$ for all f, $C_{n}(\tau)=\hat{N}_{d} \delta(\tau)$, and $G_{n}^{(2)}$ in (178) is infinite, which makes the $N \times N$ term in (188) infinite. Thus, if we do not filter out the noise which is out of the band of the signal, the WOF estimate has infinite variance, regardless of what time weighting v is employed.

WDF PROCESSOR

In view of the above observations, we now consider the general WDF processor depicted in figure 7. The only new element here is the

Figure 7. WDF Processor
time-invariant linear filter with transfer function H. The input noise n_{0} is presumed to be white over the band of the input signal s_{0}; mathematically, this is handled by letting

$$
\begin{equation*}
G_{n_{0}}(f)=N_{d} \text { for all } f \text {. } \tag{189}
\end{equation*}
$$

where N_{d} is the double-sided noise spectral density level in watis/Hz. The linear filter $H(f)$ approximately matches the bandwidth of the input signal and passes $S_{0}(f)$ essentially unaltered, while filtering out undesired noise spectral components. The actual filter output signal s is given by

$$
\begin{equation*}
s(t)=h(t) \Leftrightarrow s_{0}(t)=\int d f \exp (i 2 \pi f t) H(f) S_{0}(f) \tag{190}
\end{equation*}
$$

The weighting $v(t)$ approximately matches the duration of the signal and passes $s(t)$ essentially unaltered, while gating out undesired noise temporal components. Representative plots of the various quantities in figure 7 are given in figure 8.

A numerical example of the WDF processor in figure 7 is carried out in complete detail in appendix H, including the mean and variance results given earlier in this section. In particular, the input signal s_{0} is a linear frequency modulation waveform with Gaussian amplitude modulation.

Figure 8. Time and Frequency Characteristics of Figure 7

SUMMARY

When a segment of a stationary random process is available, the method of Blackman and Tukey [14] tells us that, to estimate the correlation function at delay τ, we should average the product of waveform values separated in time by τ seconds, and that we should carry out this averaging over the total available data record, in order to reduce the effect of random fluctuations. For a nonstationary process, the averaging interval is further limited to that in which a significant change is statistics does not occur.

After obtaining the estimated correlation, the Blackman-Tukey method further directs us to weight the correlation values in the neighborhood of $\tau=0$ more heavily than those for larger τ, and to fourier transform the weighted correlation estimate. The weighting should taper off to zero for $\operatorname{larger} \tau$, so as to suppress these more noisy estimates, and the taper should be gradual so as not to create significant positive and negative sidelobes in the frequency domain.

These two operations, averaging in time and weighting in delay, are both totally absent in the WDF, as may be seen from (2) and (3). In fact, (2) and (3) might be viewed as the ultimate in greediness of a spectral estimate, since they include no averaging and no weighting. Viewed in this light, it is not surprising that the WOF has some very debilitating behavior in terms of negative distribution values and large interference terms.

The inclusion of averaging and weighting in the spectral estimate, as typified by (150)-(152) and (F-1), results in a modified distribution function which is a double convolution with a smoothing function in the t, f plane. Furthermore, the averaging and weighting in ($F-1$) takes place both in the f and v domain (line 4) just as well as in the t and τ domain (line 3). Alternatively, line 2 indicates that the complex ambiguity function may be weighted in two dimensions and doubly Fourier transformed. However, the resultant modified WDF need not be positive.

The identity of this double convolution with a positive STSE, when the smoothing function is a legal WOF, allows for an alternative approach that is very attractive computationally and is easy to interpret. The preliminary calculation of the WDF serves to point out regions of interest in the t, f plane and to quantify the time and frequency extents, as well as the amount of linear frequency modulation, to utilize in weighting u in the STSE. This procedure is illustrated in appendix I for the waveform $s(t)=t \exp \left(-t^{2} / 2\right)$ and shown to yield a physically meaningful smoothed distribution function, whereas the WDF is very difficult to justify and interpret on any physical grounds.

It was pointed out earlier that double convolution of a given WDF with a Gaussian WDF increases the spread of the smoothed function by area .5 in the t, f plane, since the effective area of a Gaussian WDF is . 5 . Strictly speaking, this is only true when the Gaussian WDF contour ellipse has the same tilt and the same ratio of major-to-minor axes as the given WDF (assumed Gaussian in the region of interest in the t, f plane). More

TR 8225
generally, if there is a mismatch in tilt or ratio of major-to-minor axes, the effective area is increased by more than . 5 , thereby leading to additional spreading in the t, f plane. The detailed derivations are presented in appendix J.

The performance of an estimator of the WDF of a signal in the presence of noise depends on the amount of filtering and weighting employed to suppress noise components in frequency and time. Exact relations for the mean output, the bias, and the variance of the WOF estimate are given.

APPENDIX A. SLICES IN TIME OF THE WOF

The voltage density spectrum of waveform $s(t)$ was given in (9). If $s(t)$ is sampled at increment Δ_{t}, an approximation is afforded according to

$$
\begin{gather*}
S(f)=\int d t \exp (\cdot i 2 \pi f t) s(t)= \\
\cong \Delta_{t} \sum_{k} \exp \left(-i 2 \pi f k \Delta_{t}\right) s\left(k \Delta_{t}\right) \equiv \tilde{S}(f) \text { for all } f . \tag{A-1}
\end{gather*}
$$

The summation on k runs over the range of nonzero summand. Since

$$
\begin{equation*}
\tilde{S}\left(f+\frac{1}{\Delta_{t}}\right)=\tilde{S}(f) \tag{A-2}
\end{equation*}
$$

then $\tilde{S}(f)$ has period $1 / \Delta_{t}$ in f. We limit the evaluation of $\tilde{S}(f)$ to the values

$$
\begin{equation*}
\tilde{S}\left(\frac{n}{N_{f} \Delta_{t}}\right)=\Delta_{t} \sum_{k} \exp \left(-i 2 \pi n k / N_{f}\right) s\left(k \Delta_{t}\right) \quad \text { for } 0 \leq n \leq N_{f}-1 \text {, } \tag{A-3}
\end{equation*}
$$

where n and N_{f} are integers, and thereby cover a full period of $\tilde{S}(f)$. A representative plot of $|\tilde{S}(f)|$ and its sampled values appears in figure $A-1$.

For the low-pass case of $\widetilde{\mathcal{S}}(f)$ depicted in figure $A-1$, it is necessary to choose

$$
\begin{equation*}
\Delta_{t}<\left(2 f_{H}\right)^{-1} \tag{A-4}
\end{equation*}
$$

Figure A-1. Low Pass Spectrum $\tilde{S}(f)$
in order to avoid aliasing. We will also need frequency spacing

$$
\begin{equation*}
\left(N_{f} \Delta_{t}\right)^{-1}<(2 T)^{-1} \text {. that is, } N_{f}>2 T / \Delta_{t} \tag{A-5}
\end{equation*}
$$

in order to track the wiggles of $S(f)$ in frequency, where 1 is the effective time duration of $s(t)$. In fact, we may need frequency spacing $\left(N_{f} \Delta_{t}\right)^{-1}$ to be very small if we are to do further accurate integrations on $S(f)$. Thus we need

$$
\begin{equation*}
N_{f}>4 f_{H} T \text {. } \tag{A-6}
\end{equation*}
$$

and perhaps much larger for further manipulations.

The WDF can be written in terms of the spectrum $S(f)$ according to (10):

$$
\begin{align*}
W(t, f) & =\int d v \exp (i 2 \pi v t) S\left(f+\frac{v}{2}\right) S^{\star}\left(f-\frac{v}{2}\right)= \\
& =2 \int d u \exp (i 4 \pi u t) S(f+u) S^{\star}(f-u) . \tag{A-7}
\end{align*}
$$

If we sample $S(f)$ at increment Δ_{f} in frequency, the Trapezoidal approximation to the WDF is

$$
\begin{equation*}
\hat{W}(t, f) \equiv 2 \Delta_{f} \sum_{l} \exp \left(i 4 \pi t l \Delta_{f}\right) S\left(f+l \Delta_{f}\right) S^{\star}\left(f-l \Delta_{f}\right) \tag{A-8}
\end{equation*}
$$

for all t,f. Since

$$
\begin{equation*}
\hat{W}\left(t+\frac{1}{2 \Delta_{f}}, f\right)=\hat{W}(t, f), \tag{A-9}
\end{equation*}
$$

then $\hat{W}(t, f)$ has period $\left(2 \Delta_{f}\right)^{-1}$ in t. Accordingly, we evaluate only

$$
\begin{equation*}
\hat{W}\left(\frac{m}{2 N_{t} \Delta_{f}} \cdot n \Delta_{f}\right)=2 \Delta_{f} \sum_{l} \exp \left(i 2 \pi m \ell / N_{t}\right) s\left((n+l) \Delta_{f}\right) s^{*}\left((n-l) \Delta_{f}\right) \tag{A-10}
\end{equation*}
$$

for $0 \leq m \leq N_{t}-1$, where m, n, N_{t} are integers. In this manner, we get a slice of $\hat{W}(t, f)$ in time $t(m)$ for fixed frequency $f(n)$. The operation in (A-10) can be efficiently realized as an N_{t}-point fFI of collapsed samples when N_{t} is a power of 2 .

Now the only information on $S(f)$ that we have available are the samples of $\widetilde{S}(f)$ given in (A-3). If we choose, without loss of generality,

$$
\Delta_{f}=\left(N_{f} \Delta_{t}\right)^{-1}
$$

then (A-10) becomes (exactly)

$$
\begin{equation*}
\hat{W}\left(\frac{m \Delta_{t}}{2} \frac{N_{f}}{N_{t}}, \frac{n}{N_{f} \Delta_{t}}\right)=\frac{2}{N_{f} \Delta_{t}} \sum_{l} \exp \left(i 2 \pi m l / N_{t}\right) s\left(\frac{n+l}{N_{f} \Delta_{t}}\right) s^{\star}\left(\frac{n-l}{N_{f} \Delta_{t}}\right) \tag{A-12}
\end{equation*}
$$

for $0 \leq m \leq N_{t}-1$. We then adopt as our approximation to \hat{W}, which itself is an approximation to W , the quantity

$$
\begin{equation*}
\tilde{W}\left(\frac{m \Delta_{t}}{2} \frac{N_{f}}{N_{t}} \cdot \frac{n}{N_{f} \Delta_{t}}\right) \equiv \frac{2}{N_{f} \Delta_{t}} \sum_{l c L_{n}} \exp \left(i 2 \pi m \ell / N_{t}\right) \tilde{S}\left(\frac{n}{N_{f} \Delta_{t}}\right) \tilde{S}^{\star}\left(\frac{n-l}{N_{f} \Delta_{t}}\right) \tag{A-13}
\end{equation*}
$$

for $0 \leq m \leq N_{t}-1$, where

$$
\begin{equation*}
\ell \varepsilon l_{-n} \text { denotes }|n \pm \ell|<N_{f} / 2 \text {. } \tag{A-14}
\end{equation*}
$$

and we presume that $\tilde{S}(f)$ has been calculated for $|f|<\left(2 \Delta_{i}\right)^{-1}$; see figure A-1.

The quantity $N_{f} \Delta_{t}$ may have to be large, in order to sample $\tilde{S}(f)$ finely enough for an accurate WDF. Then since the spacing in t, applied to $W(t, f)$, is $\frac{N_{f} \Delta_{t}}{2 N_{t}}$, it may require a large value of N_{t} in order to keep track of the variations versus t. Also, n may not have to run through consecutive integer values, but may take on decimated values, so that $n /\left(N_{f} \Delta_{t}\right)$ tracks the f behavior adequately.

To-A193 965 WIONER DISTRIQUTION FUWCTION: RELATION TO SHORT-TENM SPECTRAL ESTIMATION.. (U) MAYAL UNDERUATER SYSTEMS CENTER MEN LONDON CT MEM LONDON LAB. . A H MUTTALL UMCLASSIFIED 16 FED 88 NUSC-TR-8225 F/O 12/3 M

MICROCOPY RESOLUTION IEST CHARI

APPENDIX B. OSCILLATING WDF FOR SEPARAIED PULSES

Consider the waveform $s(t)$ in figure $B-1$ consisting of two separated energy bursts of general shape. Let t_{1} and t_{2} represent the "center" of each pulse, and let T_{1} and T_{2} be some measure of their durations. Define

$$
\begin{equation*}
t_{c}=\frac{1}{2}\left(t_{1}+t_{2}\right) \tag{B-1}
\end{equation*}
$$

Let us investigate the WOF of $s(t)$ for t near t_{c}, that is, near the center of the two pulses. In particular, let time

$$
\begin{equation*}
t=t_{c}+\Delta \tag{8-2}
\end{equation*}
$$

where Δ is small. Then from (3),

$$
\begin{align*}
& \quad W\left(t_{c}+\Delta, f\right)=\int d \tau \exp (-12 \pi f \tau) s\left(t_{c}+\Delta+\frac{\tau}{2}\right) s^{\star}\left(t_{c}+\Delta-\frac{\tau}{2}\right)= \\
& =\exp \left(-i 2 \pi f\left(t_{1}-t_{2}\right)\right) \int d x \exp (-i 2 \pi f x) s\left(t_{2}+\Delta+\frac{x}{2}\right) s^{\star}\left(t_{1}+\Delta-\frac{x}{2}\right) . \tag{8-3}
\end{align*}
$$

Figure B-1. Waveform $s(t)$
where we let $\tau=t_{2}-t_{1}+x$.

It can be seen from the integral expression in (B-3) and figure B-1, that for small Δ, only small values of x will contribute to the value of the WDF. In fact.

$$
\begin{equation*}
|x|<\min \left(T_{1}, T_{2}\right) \tag{B-4}
\end{equation*}
$$

is the dominant range of contribution to the integral. Thus the variation with f of the integral component of $(B-3)$ is slow. By contrast, the leading exponential term in ($B-3$) varies much faster with f, since

$$
\begin{equation*}
t_{2}-t_{1}>\max \left(T_{1}, T_{2}\right)>\min \left(T_{1}, T_{2}\right) . \tag{8-5}
\end{equation*}
$$

Since these faster varying oscillations of the exponential term cannot be cancelled by the slower integral contribution of (B-3), the WDF will oscillate in f, for times t near $t_{c}=\left(t_{1}+t_{2}\right) / 2$. Thus separated time pulses will lead to oscillations (in f) of the WDF, near times midway between the pulses, regardess of their detailed shapes. An analogous argument can be presented for spectral components, based upon form (10) of the WDF.

Notice that as t_{2} approaches t_{1}, and the two pulses become one, the oscillating exponential term in ($B-3$) disappears, allowing for the possibility of a slowly varying (hopefully positive) lobe in the WDF.

APPENOIX C. AMBIGUIIY FUNCTION OF (79)

The complex ambiguity function of waveform $s(t)$ in (79) is obtained by substitution into (22) and use of (68):

$$
\begin{gather*}
x(\nu, \tau)=\sqrt{\pi} \sum_{k l} a_{k} a_{l}^{*} \tilde{\sigma}_{k l} \exp \left[-\frac{1}{4} \frac{T_{k l}^{2}}{\sigma_{k l}^{2}}-\frac{1}{4} \tilde{\sigma}_{k l}^{2} v_{k l}^{2}+\right. \\
\left.+i \frac{1}{2} \frac{\sigma_{l}^{2}-\sigma_{k}^{2}}{\sigma_{l}^{2}+\sigma_{k}^{2}} T_{k l} v_{k l}+i 2 \pi f_{k l} T_{k l}-i t_{k l} v_{k l}+i 2 \pi f_{k l}\left(t_{k}-t_{l}\right)\right], \tag{C-1}
\end{gather*}
$$

where

$$
\begin{array}{ll}
t_{k l}=\frac{1}{2}\left(t_{k}+t_{l}\right), & f_{k l}=\frac{1}{2}\left(f_{k}+f_{l}\right), \\
\bar{\sigma}_{k l}^{2}=\frac{1}{2}\left(\sigma_{k}^{2}+q_{l}^{2}\right), & \frac{1}{\sigma_{k l}^{2}}=\frac{1}{2}\left(\frac{1}{\sigma_{k}^{2}}+\frac{1}{\sigma_{l}^{2}}\right), \\
T_{k l}=\tau+t_{l}-t_{k}, & v_{k l}=2 \pi\left(v+f_{l}-f_{k}\right) . \tag{C-2}
\end{array}
$$

The diagonal terms of (C-1) are

$$
\begin{equation*}
\sum_{k} E_{k} \exp \left[-\frac{1}{4} \frac{\tau^{2}}{\sigma_{k}^{2}}-\frac{1}{4} \sigma_{k}^{2} 4 \pi^{2} v^{2}+i 2 \pi f_{k} \tau-i 2 \pi t_{k} v\right] \text {. } \tag{C-3}
\end{equation*}
$$

which are complex and oscillate with τ and v due to the imaginary terms. The contour at the $1 / e$ relative level, of the magnitude of the k-th term, is an ellipse with axes twice as large as those depicted in figure 4. In addition, the peak amplitude is decreased by a factor of 2 below that for
the WDF in (80). Thus the ambiguity function is a more smeared function of time-frequency than the WDF.

The ambiguity function has peaks of value

$$
\begin{equation*}
\sqrt{\pi} a_{k} a_{l}^{\star} \tilde{o}_{k l} \exp \left[i_{\pi}\left(f_{k}+f_{l}\right)\left(t_{k}-t_{l}\right)\right] \tag{C-4}
\end{equation*}
$$

centered at

$$
\begin{equation*}
(\tau, v)=\left(t_{k}-t_{l}, f_{k}-f_{l}\right) \tag{C-5}
\end{equation*}
$$

for all $k . l$. The phases of ($C-4$) are virtually random relative to each other. A slice in v, for fixed τ, varies (in addition to the Gaussian envelope) as

$$
\begin{equation*}
\exp \left[i 2 \pi v\left(\frac{1}{2} \frac{\sigma_{l}^{2}-\sigma_{k}^{2}}{\sigma_{l}^{2}+\sigma_{k}^{2}} \tau_{k l}-t_{k l}\right)\right] \text {, } \tag{C-6}
\end{equation*}
$$

which could be either a slow or fast variation, depending on the particular parameter values. All of these features make physical interpretation of the ambiguity function very difficult.

APPENDIX D. ROTATION OF AXES

Consider the general second-order curve described by

$$
\begin{equation*}
A x^{2}+B x y+C y^{2}+D x+E y+F=0 \tag{0-1}
\end{equation*}
$$

If we rotate the x, y coordinate axes according to figure $D-1$, we have

$$
x=x^{\prime} \cos (\beta)-y^{\prime} \sin (\beta) \text {. }
$$

$$
y=x^{\prime} \sin (\beta)+y^{\prime} \cos (\beta) .
$$

Substitution in (0-1) yields

$$
\begin{equation*}
A^{\prime} x^{\prime 2}+B^{\prime} x^{\prime} y^{\prime}+C^{\prime} y^{\prime} 2+D^{\prime} x^{\prime}+E^{\prime} y^{\prime}+F=0, \tag{D-3}
\end{equation*}
$$

where

Figure D-1. Rotated Coordinate Axes

$$
\begin{align*}
& A^{\prime}=\frac{1}{2}[A+C+(A-C) \cos (2 B)+B \sin (2 B)] \\
& B^{\prime}=B \cos (2 B)+(C-A) \sin (2 B) \\
& C^{\prime}=\frac{1}{2}[A+C-(A-C) \cos (2 B)-B \sin (2 B)] \\
& D^{\prime}=D \cos (B)+E \sin (B) \\
& E^{\prime}=-D \sin (B)+E \cos (B) . \tag{0-4}
\end{align*}
$$

If we want to eliminate the cross product term in ($D-3$), we must make $B^{\prime}=0$, that is, take

$$
\begin{equation*}
\tan (2 B)=\frac{B}{A-C} . \tag{D-5}
\end{equation*}
$$

We will also choose 2β in the principal value range:

$$
\begin{equation*}
2 B=\arctan \left(\frac{B}{A-C}\right) ; \tag{0-6}
\end{equation*}
$$

that is

$$
\begin{equation*}
-\frac{\pi}{2} \leq 2 \beta \leq \frac{\pi}{2}, \quad-\frac{\pi}{4} \leq \beta \leq \frac{\pi}{4} . \tag{0-7}
\end{equation*}
$$

All other solutions for 2β differ by $n \pi$; that is, B differs by $n_{\pi / 2}$. These are the major and minor axes of the curve described by (0).

If we now define

$$
R=\sqrt{(A-C)^{2}+B^{2}}, \quad P=\operatorname{sgn}(A-C) .
$$

where Γ denotes the positive square root, we find

$$
\cos (2 B)=\frac{|A-C|}{R}=\frac{A-C}{R} P \text {; }
$$

see figure $0-2$. And since $\sin (2 \beta)$ has the same polarity as $\tan (2 \beta)$ in the principal value range,

$$
\begin{equation*}
\sin (2 B)=\frac{|B|}{R} \operatorname{sgn}\left(\frac{B}{A-C}\right)=\frac{B}{R} P . \tag{D-10}
\end{equation*}
$$

Also, since

$$
\begin{equation*}
\cos ^{2}(\beta)=\frac{1}{2}(1+\cos (2 B))=\frac{1}{2}\left(1+\frac{|A-C|}{R}\right) . \tag{וו-0}
\end{equation*}
$$

then

$$
\begin{align*}
& \cos (B)=\sqrt{\frac{R+|A-C|}{2 R}}, \\
& \sin (B)=\sqrt{\frac{R-|A-C|}{2 R}} \operatorname{sgn}\left(\frac{B}{A-C}\right) . \tag{0-12}
\end{align*}
$$

It then follows that the coefficients in ($0-4$) simplify to

$$
\begin{align*}
& A^{\prime}=\frac{1}{2}(A+C+R P) \\
& B^{\prime}=0 \\
& C^{\prime}=\frac{1}{2}(A+C-R P) . \tag{0-13}
\end{align*}
$$

Figure 0-2. Triangle interpretation of (0-5)
from which there follows

$$
\begin{equation*}
A^{\prime} C^{\prime}=A C-\frac{1}{4} B^{2} \tag{D-14}
\end{equation*}
$$

Additionally, we have

$$
\begin{align*}
& \tan (B)=\frac{P R-(A-C)}{B}, \\
& \cot (B)=\frac{P R+(A-C)}{B} . \tag{0-15}
\end{align*}
$$

As a result of the above, the general equation in (D-3) can be written as

$$
\begin{equation*}
A^{\prime}\left(x^{\prime}+\frac{D^{\prime}}{2 A^{\prime}}\right)^{2}+C^{\prime}\left(y^{\prime}+\frac{E^{\prime}}{2 C^{\prime}}\right)^{2}=\frac{D^{\prime}}{4 A^{\prime}}+\frac{E^{\prime}}{4 C^{\prime}}-F . \tag{D-16}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{1}{2 A^{\prime}}=\frac{A+C-R P}{4 A C-B^{2}}, \quad \frac{1}{2 C^{\prime}}=\frac{A+C+R P}{4 A C-B^{2}} \tag{0-17}
\end{equation*}
$$

The simplest expressions for D^{\prime} and E^{\prime} appear to be those given in (0-4), in conjunction with ($D-12$). However, $D^{\prime 2}$ and $E^{\prime 2}$ can be simplified, resulting in expression

$$
\begin{equation*}
A^{\prime}\left(x^{\prime}+\frac{D^{\prime}}{2 A^{\prime}}\right)^{2}+C^{\prime}\left(y^{\prime}+\frac{E^{\prime}}{2 C^{\prime}}\right)^{2}=G \text {. } \tag{D-18}
\end{equation*}
$$

where

$$
\begin{equation*}
G=\frac{A E^{2}+C D^{2}-B D E}{4 A C-B^{2}}-F . \tag{D-19}
\end{equation*}
$$

Now suppose that A and C in ($D-1$) are positive and that $4 A C>B^{2}$. Then $A^{\prime}>0$ and $C^{\prime}>0$, meaning that $(0-18)$ is an ellipse if $G>0$.

Furthermore, if $A<C$, then $A^{\prime}<C^{\prime}$ and x^{\prime} is the major axis. On the other hand, if $A>C$, then $A^{\prime}>C^{\prime}$ and x^{\prime} is the minor axis. See figure D-3. The area of this ellipse is

$$
\begin{equation*}
\text { Area }=\frac{\pi G}{\sqrt{A^{\prime} C^{\prime}}}=\frac{2 \pi G}{\sqrt{4 A C-B^{2}}} \tag{D-20}
\end{equation*}
$$

by use of ($0-14$), where G is given by ($D-19$).

It follows directly from ($0-18$) that the curve is a circle if and only if $A^{\prime}=C^{\prime}$, that is, $R=0$ via ($0-13$), which in turn means $A=C$ and $B=0$ from ($0-8$).

Figure 0-3. Ellipse in Rotated Coordinates

EXAMPLE

Consider the ellipse in (91), for which

$$
\begin{equation*}
A=1+\theta_{0}^{2}, \quad B=-2 \theta_{0}, C=1 ; \theta_{0} \geq 0 \tag{0-21}
\end{equation*}
$$

Then ($0-5$) yields

$$
\begin{equation*}
\tan (2 \beta)=-2 / \theta_{0} . \tag{0-22}
\end{equation*}
$$

from which there follows

$$
\begin{align*}
& \tan \left(2 \beta+\frac{\pi}{2}\right)=-1 / \tan (2 \beta)=\theta_{0} / 2, \\
& \beta=\frac{1}{2} \arctan \left(\frac{\theta_{0}}{2}\right)-\frac{\pi}{4} . \tag{D-23}
\end{align*}
$$

As Θ_{0} varies from 0 to $+\infty$, B varies from $-\pi / 4$ to 0 ; thus β always lies in the principal value range, as required by $(D-7)$.

However, since $A>C$ in $(D-21)$, then β is the angle in the x, y plane of the minor axis of ellipse (91). The major axis angle in the x, y plane is

$$
\begin{equation*}
\psi=\beta+\frac{\pi}{2}, \tag{D-24}
\end{equation*}
$$

which varies from $\pi / 4$ to $\pi / 2$. There follows

$$
\begin{equation*}
\tan (2 \psi)=\tan (2 \beta+\pi)=\tan (2 \beta)=-2 / \theta_{0} \tag{D-25}
\end{equation*}
$$

from ($0-22$). Whereupon the slope of the major axis in the x, y plane can be obtained as

$$
\begin{equation*}
\tan \psi=\frac{1}{2}\left(\theta_{0}+\sqrt{\theta_{0}^{2}+4}\right) \tag{D-26}
\end{equation*}
$$

This slope varies from 1 to $+\infty$ as θ_{0} varies from 0 to $+\infty$. Conversely, given a measured slope, $\tan \boldsymbol{\psi}$, of the major axis of a WDF contour in the x, y plane, the corresponding amount of linear frequency modulation can be determined from ($0-25$) or ($0-26$) as

$$
\begin{equation*}
\theta_{0}=\tan \psi-1 / \tan \psi . \tag{D-27}
\end{equation*}
$$

The final determination of frequency modulation parameter α_{0} in (84) requires the additional knowledge of σ_{0} in (90).

In practice, where both σ_{0} and α_{0} are unknown apriori, the WDF will likely be plotted directly on the t, f plane. According to (78) and ($0-24$), the major axis will then lie on the line

$$
f=t \frac{\tan \psi}{2 \pi \sigma_{0}^{2}} .
$$

which can be observed and measured. But oo can be determined separately from a slice in f (at fixed t) of the WDF, since the variation in f in (91) is proportional to

$$
\exp \left[-\sigma_{0}^{2}\left(2 \pi f-\alpha_{0} t\right)^{2}\right] .
$$

Thus the distance, between frequency values that are down by $1 / e$ from the peak on this frequency slice, is $\left(\pi \sigma_{0}\right)^{-1}$, and can be used for direct calculation of σ_{0}. Then ($D-28$) and ($D-27$) yield $\tan \downarrow$ and θ_{0}. respectively.

0-7/0-8
Reverse Blank

The STSE is given by (102) and (103). A discrete approximation, by means of the Trapezoidal rule, is furnished by

$$
\begin{gather*}
\ell(t, f) \equiv\left|\Delta \sum_{k} \exp (-i 2 \pi f \Delta k) s(k \Delta) u^{*}(t-k \Delta)\right|^{2}= \\
=\Delta^{2} \sum_{k l} \exp (-i 2 \pi f \Delta(k-l)) s(k \Delta) s^{*}(l \Delta) u^{\star}(t-k \Delta) u(t-\ell \Delta)= \\
=\Delta^{2} \sum_{k l} \exp (-i 2 \pi f \Delta(k-\ell)) R_{s}\left(\frac{k+l}{2} \Delta, k \Delta-l \Delta\right) R_{u}\left(t-\frac{k+\ell}{2} \Delta, k \Delta-x \Delta\right) . \tag{E-1}
\end{gather*}
$$

where Δ is the sampling increment in time. Let

$$
\begin{equation*}
m=k-\ell, n=k+\ell \text {. } \tag{E-2}
\end{equation*}
$$

to get

$$
\begin{equation*}
f(t, f)=\Delta^{2} \sum_{\substack{m+n \\ \text { even }}} \exp (-i 2 \pi f \Delta m) R_{s}\left(\frac{n \Delta}{2}, m \Delta\right) R_{u}\left(t-\frac{n \Delta}{2}, m \Delta\right) . \tag{E-3}
\end{equation*}
$$

Define, for use below, the function

$$
\begin{align*}
& c\left(t_{1}, t, f\right)=w_{s}\left(t_{1}, f\right) \circledast w_{u}\left(t-t_{1}, f\right)= \\
& =\int d f f_{1} w_{s}\left(t_{1}, f_{1}\right) w_{u}\left(t-t_{1}, f-f_{1}\right) . \tag{E-4}
\end{align*}
$$

which is the convolution, on f, of WoOFs W_{S} and W_{U}. When the integral on t_{1} is effected, it yields the desired double convolution:

$$
\begin{equation*}
\int d t_{1} c(t, r, f)=w_{s}(t, f) \odot w_{u}(t, f) \tag{E-5}
\end{equation*}
$$

We now express R_{s} and R_{u} in ($E-3$) in terms of the inverse transforms of W_{s} and W_{u}, respectively, according to (24), interchange summations and integrations, and use the facts that [4, chapter 2]

$$
\begin{align*}
& \sum_{m \text { even }} \exp (-i 2 \pi \times m)=\frac{1}{2} \sum_{l} \delta\left(x-\frac{1}{2} l\right) \\
& \sum_{m \text { odd }} \exp (-12 \pi \times m)=\frac{1}{2} \sum_{l}(-1)^{l} \delta\left(x-\frac{1}{2} \ell\right) \tag{E-6}
\end{align*}
$$

to get approximation ($E-1$) in the form

$$
\begin{align*}
f(t, f) & =\frac{\Delta}{2} \sum_{l} \sum_{n \text { even }} c\left(\frac{n \Delta}{2}, t, f-\frac{l}{2 \Delta}\right)+ \\
& +\frac{\Delta}{2} \sum_{l}(-1)^{l} \sum_{n \text { odd }} c\left(\frac{n \Delta}{2}, t, f-\frac{l}{2 \Delta}\right) . \tag{E-7}
\end{align*}
$$

The $l=0$ terms together give, where the sum is now over all n,

$$
\begin{equation*}
\frac{\Delta}{2} \sum_{n} c\left(\frac{n \Delta}{2}, 1, f\right) \tag{E-8}
\end{equation*}
$$

which is a discrete approximation to desired quantity (E-5).
The $l=1$ terms in $(E-7)$ yield

$$
\frac{\Delta}{2} \sum_{n}(-1)^{n} c\left(\frac{n \Delta}{2}, t, f-\frac{1}{2 \Delta}\right)
$$

which is approximately zero. A similar result holds for $\ell=-1$.
The $l=2$ terms in $(E-7)$ are

$$
\begin{equation*}
\frac{\Delta}{2} \sum_{n} c\left(\frac{n \Delta}{2}, t, f-\frac{1}{\Delta}\right) \tag{E-10}
\end{equation*}
$$

which is a discrete approximation to convolution (E-5), but shifted by frequency $1 / \Delta$. For small sampling increment Δ in approximation ($E-1$), the quantity ($\mathrm{E}-10$) will be small in the fundamental region centered at $\mathrm{f}=0$, and can be neglected. Thus ($E-8$) is the dominant term, giving

$$
\begin{gather*}
\boldsymbol{Q}(t, f) \cong \frac{\Delta}{2} \sum_{n} c\left(\frac{n \Delta}{2}, t, f\right)= \\
\cong \int d t, c(t, t, f)=W_{s}(t, f)<W_{u}(t, f) . \tag{E-11}
\end{gather*}
$$

APPENDIX F. SOME SMOOTHING CONSIDERAIIONS

This discussion complements and extends that given in (148)-(152) regarding two-dimensional smoothing of the WDF. For easy reference, we repeat the diagram under (24) and furnish an additional one for the smoothing functions that will be employed here. An arrow denotes a Fourier transform.

WAVEFORM FUNCIIONS
$s\left(t+\frac{\tau}{2}\right) s^{*}\left(t-\frac{\tau}{2}\right)=R(t, \tau) \xrightarrow[f]{\tau} W(t, f)$

SMOOTHING FUNCTIONS

$$
\begin{aligned}
& v_{2}(t, \tau) \stackrel{\tau}{f} v_{2}(t, f) \\
& t \prod_{0} \quad t \psi_{0} \\
& \mathrm{a}_{2}(v, \tau) \xrightarrow[f]{\underset{~}{\tau}} \mathrm{Q}_{2}(v, f)
\end{aligned}
$$

By using the basic fourier transform relations above, we may readily show that two-dimensional smoothing of WDF W with general function V_{2} may be written in several alternative forms:

$$
\begin{gather*}
W(t, f) t v_{2}(t, f)= \\
=\iint d v d \tau \exp [i 2 \pi(v t-f \tau)] X(v, \tau) q_{2}(v, \tau)= \\
=\int d \tau \exp (-i 2 \pi f \tau)\left[R(t, \tau) v_{2}(t, \tau)\right]= \\
=\int d v \exp (i 2 \pi v t)\left[A(v, f) f Q_{2}(v, f)\right] . \tag{F-1}
\end{gather*}
$$

The second line says that the ambiguity function χ of waveform should be weighted by q_{2} and the product then double Fourier-transformed into the t, f plane. The third line indicates smoothing of R on t, followed by transformation of a weighted function of τ. The last line performs smoothing of A on f, followed by transformation of a weighted function of v. These relations extend those given in (150)-(152). The function V_{2} above need not be a legal WDF. The volume under the smoothed distribution (F-1) is the product of the volumes under W and V_{2}; if the latter volume is unity, the energy of waveform s results again, as is desired.

InADEqUACY OF TIME SMOOTHING ALONG

Consider the special case where smoothing function V_{2} is a delta function of f; then

$$
\begin{align*}
& v_{2}(t, f)=v_{1}(t) \delta(f) \\
& v_{2}(t, \tau)=v_{1}(t) \\
& q_{2}(v, \tau)=v_{1}(v) \\
& q_{2}(v, f)=v_{1}(v) \delta(f) . \tag{F-2}
\end{align*}
$$

Equation (F-1) then simplifies to an averaging of the WDF solely in time:

$$
\begin{gather*}
W(t, f) \notin v_{1}(t)= \\
=\iint_{\int} d v d \tau \exp [i 2 \pi(v t-f \tau)] X(v, \tau) v_{1}(v)= \\
=\int d \tau \exp (-i 2 \pi f \tau)\left[R(t, \tau) \stackrel{t}{\otimes} v_{1}(t)\right]= \\
=\int d v \exp (i 2 \pi v t) A(v, f) v_{1}(v) . \tag{F-3}
\end{gather*}
$$

which is an extension of (148)-(149).

The advantageous feature of locally averaging the instantaneous correlation R in time, indicated in line 3, is equivalent to weighting the "local spectrum"

$$
\begin{equation*}
A(v, f)=S\left(f+\frac{v}{2}\right) S^{\star}\left(f-\frac{v}{2}\right) \tag{F-4}
\end{equation*}
$$

in line 4 by function $V_{1}(v)$, prior to Fourier transforming back into the t domain. This weighting on v is sensible, since if WDF $W(t, f)$ or some modified version is to represent the spectrum at f, the transform on v in line 4 of ($F-3$) ought not to involve arbitrarily distant values of v; otherwise, waveform spectrum S in (F-4) will then be utilized at argument values very different from the frequency f of interest and would be nonrepresentative. However, there is no weighting on τ in line 3 of (f-3), thereby allowing arbitrarily distant argument values of signal s, from the
time instant t of interest, to be considered; this unrealistic feature of the $W D F$ is one of the reasons for its undesirable properties.

INADEQUACY OF FREQUENCY SMOOTHING ALONE

Now consider the alternative special case where V_{2} in $(F-1)$ is a delta function of t; then

$$
\begin{align*}
& v_{2}(t, f)=\delta(t) v_{1}(f) \\
& v_{2}(t, \tau)=\delta(t) v_{1}(\tau) \\
& q_{2}(v, \tau)=v_{1}(\tau) \\
& Q_{2}(v, f)=v_{1}(f) . \tag{F-5}
\end{align*}
$$

Equation ($F-1$) then simplifies to an averaging of the wof solely in frequency:

$$
\begin{gather*}
W(t, f){ }_{f}^{f}(f)= \\
=\iint d v d \tau \exp [i 2 \pi(v t-f \tau)] X(v, \tau) v_{1}(\tau)= \\
=\int d \tau \exp (-i 2 \pi f \tau) R(t, \tau) v_{1}(\tau)= \\
=\int d v \exp (i 2 \pi v t)\left[A(v, f) \stackrel{f}{\circ} v_{1}(f)\right] . \tag{F-6}
\end{gather*}
$$

The advantageous feature of averaging the "local spectrum" A in frequency, indicated in line 4 , is equivalent to weighting the instantaneous correlation $R(t, \tau)$ in line 3 by function $v_{1}(\tau)$, prior to Fourier transforming back into the f domain. This weighting on τ is sensible, since if WDF $W(t, f)$ or some modified version is to represent the time behavior at t, the transform on τ in line 3 of ($F-6$) ought not to involve arbitrarily distant values of τ; otherwise, waveform s will then be utilized at argument values very different from the time t of interest and would be nonrepresentative. However, there is no weighting on v in line 4 of (F-6), thereby allowing arbitrarily distant argument values of spectrum S, from the frequency f of interest, to be considered; this unrealistic feature of the WDF is an additional reason for its drawbacks.

SEPARABLE SMOOTHING

If smoothing function V_{2} is separable, then

$$
\begin{aligned}
& v_{2}(t, f)=v_{a}(t) v_{b}(f) \\
& v_{2}(t, \tau)=v_{a}(t) v_{b}(\tau) \\
& q_{2}(v, \tau)=v_{a}(v) v_{b}(\tau) \\
& q_{2}(v, f)=v_{a}(v) v_{b}(f) .
\end{aligned}
$$

Then (F-1) gives, for example,

$$
\begin{gathered}
w(t, f) \odot v_{a}(t) \circ v_{b}(f)= \\
=\int d \tau \exp (-i 2 \pi f \tau) v_{b}(\tau) \int d t^{\prime} R\left(t-t^{\prime}, \tau\right) v_{a}\left(t^{\prime}\right) .
\end{gathered}
$$

This has both the desirable features of locally averaging the correlation and suppressing large $-\tau$ contributions. However, it restricts the form of averaging in the t, f plane and specifically disallows tilted smoothing regions which are not parallel to the t or f axes.
general gaussian two-dimensional smoothing

The inadequacies of smoothing in time alone or frequency alone suggest consideration of the general two-dimensional result in ($F-1$):

$$
\begin{gather*}
\hat{W}(t, f) \equiv W(t, f) \stackrel{t f}{*} v_{2}(t, f)= \\
=\int d \tau \exp (-i 2 \pi f \tau) \int d t^{\prime} R\left(t-t^{\prime}, \tau\right) v_{2}\left(t^{\prime}, \tau\right)= \\
=\int d \tau \exp (-i 2 \pi f \tau) \int d t^{\prime} s\left(t-t^{\prime}+\frac{\tau}{2}\right) s^{\star}\left(t-t^{\prime}-\frac{\tau}{2}\right) v_{2}\left(t^{\prime}, \tau\right) . \tag{F-7}
\end{gather*}
$$

If we let $t_{1}=t^{\prime}+\frac{\tau}{2}, t_{2}=t^{\prime}-\frac{\tau}{2}$, this becomes

$$
\begin{equation*}
\hat{W}(t, f)=\iint d t_{1} d t_{2} \exp \left(-i 2 \pi f\left(t_{1}-t_{2}\right)\right) s\left(t-t_{2}\right) s^{*}\left(t-t_{1}\right) v_{2}\left(\frac{t_{1}+t_{2}}{2}, t_{1}-t_{2}\right) . \tag{F-8}
\end{equation*}
$$

Now let two-dimensional smoothing function V_{2} have the general Gaussian form

$$
\begin{equation*}
v_{2}(t, f)=2 \sqrt{0} \exp \left(-a^{2} t^{2}-4 \pi^{2} b^{2} f^{2}-4 \pi c t f\right) \text {. } \tag{F-9}
\end{equation*}
$$

where a, b, c are real constants and

$$
\begin{equation*}
Q=a^{2} b^{2}-c^{2} . \tag{F-10}
\end{equation*}
$$

The scale factor, $2 \sqrt{Q}$, is chosen so that the volume under V_{2} in the t, f plane is 1 ; this keeps the volume under the smoothed distribution in (F-1) or ($F-7$) at E, the energy of waveform s. In order that V_{2} tend to zero at infinity in the t, f plane, we must have $Q>0$. The area in the t, f plane of the contour ellipse of ($F-9$), at the $1 / e$ relative level, is (appendix D)

$$
\begin{equation*}
\text { Area }=\frac{1 / 2}{\sqrt{a^{2} b^{2}-c^{2}}}=\frac{1 / 2}{\sqrt{0}} . \tag{F-11}
\end{equation*}
$$

The transform on f of V_{2} in ($F-9$) is

$$
\begin{equation*}
v_{2}(t, \tau)=\frac{\sqrt{0 / \pi}}{b} \exp \left[-\frac{1}{b^{2}}\left\{0 t^{2}+\frac{\tau^{2}}{4}+i c t \tau\right\}\right] . \tag{F-12}
\end{equation*}
$$

For completeness, the two remaining smoothing functions in (F-1) are

$$
\begin{aligned}
& q_{2}(v, \tau)=\exp \left[-\frac{1}{40}\left(a^{2} \tau^{2}+4 \pi^{2} b^{2} v^{2}+4 \pi c \tau v\right)\right] . \\
& Q_{2}(v, f)=\frac{2}{a} \sqrt{Q \pi} \exp \left[-\frac{4 \pi^{2}}{a^{2}}\left(Q f^{2}+\frac{v^{2}}{4}-i c f v\right)\right] .
\end{aligned}
$$

We can now determine the quantity necessary for evaluation of ($F-8$), namely

$$
\begin{gather*}
v_{2}\left(\frac{t_{1}+t_{2}}{2}, t_{1}-t_{2}\right)=\frac{\sqrt{0 / \pi}}{b} \exp \left[-\frac{1}{4 b^{2}}\left\{(0+1+i 2 c) t_{1}^{2}+\right.\right. \\
\left.\left.+(0+1-i 2 c) t_{2}^{2}+2(0-1) t_{1} t_{2}\right\}\right] . \tag{F-13}
\end{gather*}
$$

By the discussion in (25) et seq.. this function in ($F-13$) is separable in t_{1} and t_{2} if and only if

$$
Q=1, \quad \text { that is, } a^{2} b^{2}-c^{2}=1
$$

Then V_{2} in ($F-9$) is a legal WDF and the area in ($F-11$) becomes 1/2. Also, smoothing V_{2} in ($F-9$) is then exactly equivalent to the Gaussian smoothing considered previously in (147).

We are interested here, however, in the more general case of V_{2} where Q is not necessarily 1 , and therefore V_{2} is not a legal WOF. If we substitute ($F-13$) in ($F-8$), the smoothed WDF becomes

$$
\begin{equation*}
\hat{w}(t, f)=\frac{\sqrt{Q / \pi}}{b} \iint d t_{1} d t_{2} x\left(t_{1}\right) x^{*}\left(t_{2}\right) \exp \left[-\frac{0-1}{2 b^{2}} t_{1} t_{2}\right] \text {. } \tag{f-15}
\end{equation*}
$$

where

$$
\begin{equation*}
x\left(t_{1}\right)=s^{\star}\left(t-t_{1}\right) \exp \left[-i 2 \pi f t_{1}-(0+1+i 2 c) \frac{t_{1}^{2}}{4 b^{2}}\right] . \tag{F-16}
\end{equation*}
$$

By expanding the exp in ($F-15$) in a power series, there follows

$$
\begin{equation*}
\hat{w}(t, f)=\frac{\sqrt{0 / \pi}}{b} \sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{1-Q}{2 b^{2}}\right)^{n}\left|\int d t_{1} x\left(t_{1}\right) t_{1}^{n}\right|^{2} . \tag{7-17}
\end{equation*}
$$

It is obvious from ($F-17$) that a sufficient condition for smoothed WDF \hat{W} to be non-negative is $0 \leq 1$, that is

$$
\begin{equation*}
a^{2} b^{2}-c^{2} \leq 1 \tag{F-18}
\end{equation*}
$$

(1he special case of $c=0$ was given in [11, (5)].) When this condition is used in ($F-11$), we see that the area of the concentration ellipse of ($F-9$) is

$$
\begin{equation*}
\text { Area } \geq 1 / 2 . \tag{F-19}
\end{equation*}
$$

Thus, smoothing with the Gaussian two-dimensional function \mathbf{V}_{2} in ($F-9$) always results in a non-negative distribution, provided that the area of the ellipse at the $1 / e$ relative level is greater than or equal to $1 / 2$. It is not necessary that V_{2} in ($F-9$) be a legal WDF; that is, the area of the ellipse need not be precisely $1 / 2$. However, the most concentrated V_{2} in ($F-9$), that guarantees nonnegative results, has area $1 / 2$. The only restrictions on parameters a, b, c are given by $0<0 \leq 1$, that is, $0<a^{2} b^{2}-c^{2} \leq 1$.

APPENOIX G. DERIVATION OF MINIMUM-SPREAD WUF

The short-term spectral estimate of waveform s, relative to weighting u, is given by the double convolution (106),

$$
\begin{equation*}
\left|S_{u}(t, f)\right|^{2}=W_{s}(t, f) \xlongequal{t f} w_{u}(t, f) \tag{G-1}
\end{equation*}
$$

of the WOFs of s and u. It is therefore important to use, for weighting u, a function which has as narrow a WDF as possible, so that the smearing implied by (G-1) is minimized. In particular, since we are interested in analyzing waveforms with linear frequency modulation, we are interested in minimizing the spread of $W D F W_{u}$, as measured by the quadratic quantity

$$
\begin{equation*}
I=\iint d t d f W_{u}(t, f)\left(f-\beta_{c} t\right)^{2} \tag{G-2}
\end{equation*}
$$

where β_{c} is a specified (observed) slope in the t, f plane.

By expanding the quadratic in (G-2), we obtain spread

$$
\begin{equation*}
I=I_{0}+I_{1}+I_{2} \tag{G-3}
\end{equation*}
$$

where

$$
\begin{align*}
& I_{0}=\iint d t d f f^{2} W_{u}(t, f) \\
& I_{1}=-2 \beta_{c} \iint d t d f t f W_{u}(t, f) \\
& I_{2}=\beta_{c}^{2} \iint d t d f t^{2} W_{u}(t, f) \tag{G-4}
\end{align*}
$$

Reference to (43), (28), and (12), respectively, allows the terms in (G-4) to be simplified and expressed solely in the time domain as

$$
\begin{align*}
& I_{0}=\frac{1}{4 \pi^{2}} \int d t\left|u^{\prime}(t)\right|^{2}, \\
& I_{1}=-\frac{B_{c}}{\pi} \int d t \operatorname{lm}\left\{u^{\prime}(t) u^{*}(t)\right\}, \\
& I_{2}=\beta_{c}^{2} \int d t t^{2}|u(t)|^{2} . \tag{G-5}
\end{align*}
$$

Adding these results together, the spread in (G-3) becomes

$$
\begin{equation*}
I=\frac{1}{4 \pi^{2}} \int d t\left|u^{\prime}(t)-i \alpha_{c} t u(t)\right|^{2} \tag{G-6}
\end{equation*}
$$

where we define

$$
\begin{equation*}
\alpha_{c}=2 \pi \beta_{c} . \tag{G-7}
\end{equation*}
$$

Observe that the spread I in (G-6) is nonnegative, for all weightings u.

The function that minimizes I in ($G-6$) is

$$
\begin{equation*}
u(t)=a_{0} \exp \left(i \frac{a_{c}}{2} t^{2}\right), \quad a_{0} \text { complex, } \tag{G-8}
\end{equation*}
$$

for which

$$
\begin{equation*}
I=0, \quad W_{u}(t, f)=\left|a_{o}\right|^{2} \delta\left(f-\beta_{c} t\right) . \tag{G-9}
\end{equation*}
$$

That is, the WOF is concentrated on the $f=\beta_{c} t$ line in the t, f plane. However, the energy of ($G-8$) is

$$
\begin{equation*}
E_{u}=\infty . \tag{G-10}
\end{equation*}
$$

which is unacceptable.

If we attempt to approximate ($G-8$) by unit energy weighting

$$
\begin{equation*}
u(t)=\left(\pi \sigma^{2}\right)^{-1 / 4} \exp \left(-\frac{t^{2}}{2 \sigma^{2}}+i \frac{\alpha}{2} t^{2}\right) \text {. } \tag{ו-1}
\end{equation*}
$$

the spread of u, as given by ($G-6$), turns out to be

$$
\begin{equation*}
l=\frac{1}{8 \pi^{2}}\left[\frac{1}{\sigma^{2}}+\sigma^{2}\left(\alpha-\alpha_{c}\right)^{2}\right] \tag{G-12}
\end{equation*}
$$

Now if $\alpha=\alpha_{c}$, that is, the linear frequency modulation parameter α in weighting u is exactly equal to given quantity α_{c} (from (G-7) and (G-2)), the spread is

$$
\begin{equation*}
I=\frac{1}{8 \pi^{2} \sigma^{2}}>0 . \tag{G-13}
\end{equation*}
$$

However, as duration of weighting (G-11) gets larger, the spread I tends to zero, even though the weighting has finite (unit) energy. Also, then (G-11) tends to a scaled version of (G8) at each fixed t.

In order to eliminate these undesirable features of the weighting, it will not be sufficient to minimize spread l, subject only to a constraint on the energy of u. Rather, it will also be necessary to constrict the time duration of the weighting u. Accordingly, we will minimize spread l in (G-2)-(G-6), under the two constraints that

$$
\begin{gather*}
\int d t|u(t)|^{2}=1=\iint d t d f W_{u}(t, f), \\
\int d t t^{2}|u(t)|^{2}=\frac{\sigma_{c}^{2}}{2}=\iint d t d f t^{2} W_{u}(t, f) ; \tag{G-14}
\end{gather*}
$$

see (14) d..: (12).

Thus consider

$$
\begin{equation*}
0=\int d t\left|u^{\prime}(t)-i a_{c} t u(t)\right|^{2}+\lambda \int d t|u(t)|^{2}+\mu \int d t t^{2}|u(t)|^{2} \tag{G-15}
\end{equation*}
$$

where λ and μ are real Lagrange multipliers. Replacing $u(t)$ by $u(t)+c n(t)$, where $n(t)$ is an allowed variation, we have

$$
0+\delta Q=\int d t\left[u^{\prime}(t)+c \eta^{\prime}(t)-i a_{c} t(u(t)+c n(t))\right]\left[u^{\prime *}(t)+c_{n}^{*} \prime^{*}(t)+\right.
$$

$$
\begin{equation*}
\left.+i \alpha_{c} t\left(u^{\star}(t)+\varepsilon^{\star} n^{*}(t)\right)\right]+\int d t[u(t)+c n(t)]\left[u^{\star}(t)+c^{\star} n^{*}(t)\right]\left(\lambda+\mu t^{2}\right) \tag{G-16}
\end{equation*}
$$

Since the coefficient of ϵ^{*} must be zero, in order for $u(t)$ to be the optimum [15], we require the following:

$$
\begin{gather*}
\int d t n^{\prime *}(t)\left[u^{\prime}(t)-i \alpha_{c} t u(t)\right]+\int d t n^{\star}(t)\left[u^{\prime}(t)-i \alpha_{c} t u(t)\right] i \alpha_{c} t+ \\
+\int d t n^{\star}(t) u(t)\left(\lambda+\mu t^{2}\right)=0 \text { for all } n(t) . \tag{G-17}
\end{gather*}
$$

We now integrate by parts on the first term of (G-17), and presume that n, u, u^{\prime} all decay to zero at $\pm \infty$. Since n is arbitrary, its coefficient under the integral must be zero; namely, we find that u must satisfy the following differential equation:
$-u^{\prime \prime}(t)+i 2 \alpha_{c} t u^{\prime}(t)+\left(i \alpha_{c}+\alpha_{c}^{2} t^{2}+\lambda+\mu t^{2}\right) u(t)=0$ for all t.

If we try solution

$$
\begin{equation*}
u(t)=a \exp \left(\frac{1}{2} c t^{2}\right), a, c \text { complex. } \tag{G-19}
\end{equation*}
$$

in (G-18), we find that

$$
\begin{equation*}
t^{2}\left(-c^{2}+i 2 a_{c} c+a_{c}^{2}+\mu\right)-c+i a_{c}+\lambda=0 \text { for all } t . \tag{G-20}
\end{equation*}
$$

Then a solution of the form ($G-19$) exists with the choices

$$
\begin{equation*}
c=i \alpha_{c} \pm \sqrt{\mu}, \quad \lambda= \pm \sqrt{\mu} . \tag{G-21}
\end{equation*}
$$

TR 8225

Io determine $u(t)$ explicitly, we substitute (G-21) into (G-19) to get

$$
\begin{equation*}
u(t)=a \exp \left(i \frac{1}{2} \alpha_{c} t^{2} \pm \frac{1}{2} \sqrt{\mu} t^{2}\right) . \tag{G-22}
\end{equation*}
$$

When the two constraints in (G-14) are satisfied, there follows, for the opt imum weighting,

$$
u(t)=\left(\pi \sigma_{c}^{2}\right)^{-1 / 4} \exp \left(-\frac{t^{2}}{2 \sigma_{c}^{2}}+i \frac{\alpha_{c}}{2} t^{2}\right) .
$$

This is linear frequency modulation with a Gaussian envelope.

The minimum value of the spread I in ($G-6$) for the optimum weighting (G-23) is

$$
\begin{equation*}
\text { minimum } 1=\frac{1}{8 \pi^{2} \sigma_{c}^{2}} \tag{G-24}
\end{equation*}
$$

and the corresponding WDF is

$$
\begin{align*}
& W_{u}(t, f)=2 \exp \left[-\frac{t^{2}}{\sigma_{c}^{2}}-4 \pi^{2} \sigma_{c}^{2}\left(f-\beta_{c} t\right)^{2}\right]= \\
& =2 \exp \left[-\frac{t^{2}}{\sigma_{c}^{2}}\left(1+\theta_{c}^{2}\right)+4 \pi f t \theta_{c}-4 \pi^{2} f^{2} \sigma_{c}^{2}\right], \tag{G-25}
\end{align*}
$$

where $\theta_{c}=\alpha_{c} \sigma_{c}^{2}$. The area of the contour ellipse at the $1 / e$ relative level is $1 / 2$ in the t, f plane.

The mean-square time extent of the optimum weighting u in (G-23) is $\sigma_{c}^{2} / 2$, as required by constraint ($G-14$). The mean-square frequency extent is obtained from voltage spectrum

$$
\begin{equation*}
U(f)=\pi^{1 / 4}\left(\frac{2 \sigma_{c}}{1-i \theta_{c}}\right)^{1 / 2} \exp \left(\frac{-2 \pi^{2} f^{2} \sigma_{c}^{2}}{1-i \theta_{c}}\right) \tag{G-26}
\end{equation*}
$$

as

$$
\begin{equation*}
\int d f f^{2}|U(f)|^{2}=\frac{1+\theta_{c}^{2}}{8 \pi^{2} \sigma_{c}^{2}} \tag{6-27}
\end{equation*}
$$

The processor of interest here is depicted in figure 7, while representative characteristics of the waveforms and devices are sketched in figure 8. The mean output is given by (173) and the variance is given by (188). We will use the definitions and results in (165)-(189) freely in the following.

INPUI INFORMAIION

The input signal waveform to figure 7 is Gaussian-modulated linear frequency modulation:

$$
\begin{equation*}
s_{0}(t)=a_{0} \exp \left[-\frac{t^{2}}{2 \sigma_{0}^{2}}+i \frac{a_{0}}{2} t^{2}\right], \quad E_{0}=\sqrt{\pi}\left|a_{0}\right|^{2} \sigma_{0} . \tag{H-1}
\end{equation*}
$$

where a_{0} can be complex. The instantaneous input signal power,

$$
\begin{equation*}
\left|s_{0}(t)\right|^{2}=\left|a_{0}\right|^{2} \exp \left(-t^{2} / \sigma_{0}^{2}\right) \tag{H-2}
\end{equation*}
$$

peaks at $t=0$ and has effective duration σ_{0}.

The corresponding signal voltage density spectrum is

$$
\begin{equation*}
S_{0}(f)=a_{0} \sigma_{0}\left(\frac{2 \pi}{1-i \theta_{0}}\right)^{1 / 2} \exp \left(-\frac{2 \pi^{2} \sigma_{0}^{2} f^{2}}{1-i \theta_{0}}\right), \quad \theta_{0}=a_{0} \sigma_{0}^{2} . \tag{H-3}
\end{equation*}
$$

The energy density spectrum is

$$
\begin{equation*}
\left|S_{0}(f)\right|^{2}=\frac{2 \pi\left|a_{0}\right|^{2} \sigma_{0}^{2}}{\sqrt{1+\theta_{0}^{2}}} \exp \left(-\frac{4 \pi_{0}^{2} \sigma_{0}^{2} f^{2}}{1+\theta_{0}^{2}}\right) \tag{H-4}
\end{equation*}
$$

which peaks at $f=0$. When

$$
\begin{equation*}
f= \pm f_{0}= \pm \frac{\sqrt{1+\theta_{0}^{2}}}{2 \pi \sigma_{0}} \tag{H-5}
\end{equation*}
$$

the energy density spectrum is reduced to $1 / e$ of its peak value; hence r_{0} is a measure of the bandwidth of the linear frequency modulation waveform.

The input noise n_{0} to figure 7 has a white spectrum

$$
\begin{equation*}
G_{n_{0}}(f)=N_{d} \text { for allf. } \tag{H-6}
\end{equation*}
$$

The filter transfer function is

$$
\begin{equation*}
H(f)=\exp \left(-\frac{f^{2}}{2 B^{2}}\right) \text {. } \tag{H-7}
\end{equation*}
$$

which peaks at $f=0$; this coincides with the signal spectrum peak, which means that we are considering the most fortuitous situation. The weighting in figure 7 is taken to be

$$
\begin{equation*}
v(t)=\exp \left(-\frac{t^{2}}{2 L^{2}}\right) \tag{H-8}
\end{equation*}
$$

which peaks at $t=0$; again, this coincides with the signal peak and is most favorable. The maximum values of H and v, being equal to 1 , are chosen for convenience, without loss of generality; absolute level does not influence the performarice of the processor in figure 7.

CALCULATIONS OF BASIC FUNCTIONS

We will make frequent use of (68)-(70) in evaluating the following quantities which are needed in (165)-(189): the choices for Gaussian functions for s_{0}, H, v, above, were made for analytic simplicity, since the various integrals can be conducted in closed form. More general cases would require numerical integrations.

The noise spectrum at the output of the filter is

$$
\begin{equation*}
G_{n}(f)=G_{n_{0}}(f)|H(f)|^{2}=N_{d} \exp \left(-f^{2} / B^{2}\right) \tag{H-9}
\end{equation*}
$$

The corresponding noise correlation is

$$
\begin{equation*}
C_{n}(\tau)=\int d f \exp (i 2 \pi f \tau) G_{n}(f)=R N_{d} B \exp \left(-\pi^{2} B^{2} \tau^{2}\right) . \tag{H-10}
\end{equation*}
$$

The auxiliary spectrum in (178) is

$$
\begin{equation*}
G_{n}^{(2)}(f)=\int d \tau \exp (-i 4 \pi f \tau) C_{n}^{2}(\tau)=\sqrt{\frac{\pi}{2} N_{d}^{2} B \exp \left(-2 f^{2} / B^{2}\right) ~ . ~} \tag{H-11}
\end{equation*}
$$

The instantaneous correlation of the weighting is

$$
\begin{equation*}
R_{v}(t, \tau)=v\left(t+\frac{\tau}{2}\right) v^{\star}\left(t-\frac{\tau}{2}\right)=\exp \left(-\frac{t^{2}}{L^{2}}--\frac{\tau^{2}}{4 L^{2}}\right), \tag{H-12}
\end{equation*}
$$

and its corresponding WDF is

$$
\begin{equation*}
W_{v}(t, f)=\int d \tau \exp (-i 2 \pi f \tau) R_{v}(t, \tau)=2 \sqrt{\pi} L \exp \left(-\frac{t^{2}}{L^{2}}-4 \pi^{2} L^{2} f^{2}\right) \tag{H-13}
\end{equation*}
$$

The filter impulse response is

$$
\begin{equation*}
h(\tau)=\int d f \exp (i 2 \pi f \tau) H(f)=\sqrt{2 \pi} B \exp \left(-2 \pi^{2} B^{2} \tau^{2}\right) . \tag{H-14}
\end{equation*}
$$

leading to filter output signal

$$
\begin{align*}
& s(t)=\int d \tau h(\tau) s_{0}(t-\tau)= \\
& =a_{0}\left(\frac{0}{1+D-i \theta_{0}}\right)^{1 / 2} \exp \left[-2 \pi^{2} B^{2} \frac{1-i \theta_{0}}{1+D-i \theta_{0}} t^{2}\right] . \tag{H-15}
\end{align*}
$$

where

$$
\begin{equation*}
\theta_{0}=\alpha_{0} \sigma_{0}^{2}, \quad 0=\left(2 \pi 8 \sigma_{0}\right)^{2} . \tag{H-16}
\end{equation*}
$$

This filter output signal is again a Gaussian modulated linear frequency modulation waveform.

In general, for signal

$$
\begin{equation*}
s(t)=c_{0} \exp \left(-c t^{2} / 2\right), \quad c_{0}, c \text { complex, } \quad E=\sqrt{\pi}\left|c_{0}\right|^{2} / \sqrt{c_{r}} \text {, } \tag{H-17}
\end{equation*}
$$

the WDF is

$$
\begin{equation*}
W_{s}(t, f)=2 \sqrt{\pi} \frac{\left|c_{0}\right|^{2}}{\sqrt{c_{r}}} \exp \left[-\frac{t^{2}|c|^{2}+4 \pi^{2} f^{2}+4 \pi f t c_{i}}{c_{r}}\right] . \tag{H-18}
\end{equation*}
$$

When applied to example ($\mathrm{H}-15$), we identify

$$
\begin{equation*}
c_{0}=a_{0}\left(\frac{0}{1+0-i \theta_{0}}\right)^{1 / 2}, c=4 \pi^{2} B^{2}-\frac{1-i \theta_{0}}{1+D-\frac{1 \theta_{0}}{}}, \tag{H-19}
\end{equation*}
$$

to obtain

$$
\begin{align*}
& \left|c_{0}\right|^{2}=\left|a_{0}\right|^{2} \frac{D}{\sqrt{D_{2}}},|c|^{2}=(2 \pi B)^{4} \frac{1+\theta_{0}^{2}}{D_{2}}, \\
& c_{r}=4 \pi^{2} B^{2} \frac{D_{1}}{D_{2}}, \quad c_{i}=-4 \pi^{2} B^{2} \frac{D \theta_{0}}{D_{2}}, \tag{H-20}
\end{align*}
$$

where

$$
\begin{equation*}
D_{1}=1+D+\theta_{0}^{2}, \quad D_{2}=(1+D)^{2}+\theta_{0}^{2} \tag{H-21}
\end{equation*}
$$

When substituted in $(\mathrm{H}-18)$, there follows, for the WDF of s in $(\mathrm{H}-15)$,

$$
\begin{equation*}
W_{S}(t, f)=2 E_{0}\left(\frac{D}{D_{1}}\right)^{1 / 2} \exp \left[-\frac{1}{D_{1}}\left\{\left(1+\theta_{0}^{2}\right)(2 \pi B t)^{2}+D_{2}\left(\frac{f}{B}\right)^{2}-20 \theta_{0}(2 \pi B t)\left(\frac{f}{B}\right)\right\}\right] . \tag{H-22}
\end{equation*}
$$

As bandwidth B of filter H in ($H-7$) tends to infinity, then $D \rightarrow \infty$, $D_{1} \rightarrow D, D_{2} \rightarrow D^{2}$, and ($H-2 ?$) yields

$$
\begin{equation*}
W_{s}(t, f) \rightarrow 2 E_{0} \exp \left[-\left(1+\theta_{0}^{2}\right) \frac{t^{2}}{\sigma_{0}^{2}}-\left(2 \pi \sigma_{0} f\right)^{2}+4 \pi \theta_{0} f t\right] \text { as } B \rightarrow \infty \tag{H-23}
\end{equation*}
$$

This agrees with (91) and (78). More generally, in order to keep the scale factor $\left(0 / D_{1}\right)^{1 / 2}$ in $(H-22)$ near 1 , we need

$$
\begin{equation*}
0>1+\theta_{0}^{2}, \quad \text { that } i s, B \geqslant \frac{\sqrt{1+\theta_{0}^{2}}}{2 \pi \sigma_{0}} . \tag{H-24}
\end{equation*}
$$

according to $(H-21)$ and ($H-16$). But inis latter quantity is just the bandwidth of signal s_{0} : see $(H-5)$. Thus condition ($\mathrm{H}-24$) yields the physically intuitive statement that the filter passband should be wider than the input signal bandwidth, in order not to decrease the peak value of the WDF of the filter output signal.

The area of the elliptical contour of the general WOF in (H-22), at the l/e relative level, is $1 / 2$ in the t, f plane, regardless of the values of any of the parameters of the input signal and filter; this follows by the direct use of ($0-1$), ($0-19$), and ($0-20$). It is also consistent with the general fact that this is true for any signal of the form of ($\mathrm{H}-17$), as may be seen by application of appendix D directly to $(\mathrm{H}-18)$, where c and c_{0} are arbitrary complex constants.

The peak height of the signal WDF in ($H-22$) is $2 E_{0} \sqrt{D / D_{j}}$; hence, the product of peak height and effective area is $E_{0} \sqrt{0 / \sigma_{1}}$, which is just the energy of s :

$$
\begin{equation*}
E=\int d t|s(t)|^{2}=E_{0} \sqrt{\frac{D}{0_{1}}}=\iint d t d f W_{s}(t, f) . \tag{H-25}
\end{equation*}
$$

This follows directly from $(\mathrm{H}-15)$ or $(\mathrm{H}-17)$.

The tilt of the major axis of the elliptical contours of ($\mathrm{H}-22$) is given by B radians in the $(2 \pi B t, f / B)$ plane, where

$$
\begin{equation*}
\tan (2 \beta)=\frac{\theta_{0}}{1+0 / 2} . \tag{H-26}
\end{equation*}
$$

according to ($\mathrm{O}-5$) and ($\mathrm{H}-21$).

MEAN SIGNAL OUTPUT

The mean signal output of the WDF processor in figure 7 is given by (171) as

$$
\begin{align*}
a & =\int d \tau \exp (-i 2 \pi f \tau) R_{v}(t, \tau) R_{s}(t, \tau)= \\
& =\int d \tau \exp (-i 2 \pi f \tau) R_{\hat{s}}(t, \tau)=W_{s}(t, f),
\end{align*}
$$

where

$$
\begin{equation*}
\tilde{s}(t)=v(t) s(t)=c_{0} \exp \left(-\tilde{c} t^{2} / 2\right) \tag{H-28}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{c}=c+\frac{1}{L^{2}} \tag{H-29}
\end{equation*}
$$

according to ($\mathrm{H}-8$) and $(\mathrm{H}-15)-(\mathrm{H}-19)$. By analogy to $(\mathrm{H}-18)$, we have

$$
\begin{align*}
a & =W_{s}(t, f)=2 \sqrt{\pi} \frac{\left|c_{0}\right|^{2}}{\sqrt{\tilde{C}_{r}}} \exp \left[-\frac{t^{2}|\tilde{c}|^{2}+4 \pi^{2} f^{2}+4 \pi f t \tilde{c}_{i}}{\tilde{c}_{r}}\right]= \\
& =2 E_{0}\left(\frac{D R}{H_{1}}\right)^{1 / 2} \exp \left[\frac{1}{H_{1}}\left\{H_{2} x^{2}+D_{2} y^{2}-2 R D \theta_{0} x y\right\}\right]
\end{align*}
$$

where we defined

$$
\begin{gather*}
R=(2 \pi B L)^{2}, x=t / L, y=2 \pi f L, \\
H_{1}=D_{2}+R D_{1}=(1+D)(1+D+R)+(1+R) \theta_{0}^{2}, \\
H_{2}=D_{2}+2 R D_{1}+R^{2}\left(1+\theta_{0}^{2}\right)=(1+0+R)^{2}+(1+R)^{2} \theta_{0}^{2}, \tag{H-31}
\end{gather*}
$$

and used

$$
\begin{equation*}
\tilde{c}_{r}=\frac{H_{1}}{L^{2} D_{2}}, \quad \tilde{c}_{i}=-\frac{R_{0}}{L^{2} D_{2}}, \quad|\hat{c}|^{2}=\frac{H_{2}}{L^{4} D_{2}} . \tag{H-32}
\end{equation*}
$$

The area of the concentration ellipse of $W_{\bar{s}}$ in $(H-30)$ at the $1 / e$ relative level is $1 / 2$ in the t, f plane, regardless of the sizes of D and R; so the signal WDF is not spread by the filtering and weighting operations in figure 7, at least for this example of (H-1) coupled with (H-7) and (H-8).

The peak height of WOF W_{ξ} is given by the leading factor in ($\mathrm{H}-30$). Since the effective area of this WDF is $1 / 2$, the product of peak height and effective area is $E_{0} \sqrt{D R / H_{1}}$, which is just the energy of \tilde{s} :

$$
\begin{equation*}
\tilde{E}=\int d t|\check{s}(t)|^{2}=E_{0}\left(\frac{D R}{(1+D)(1+D+R)+(1+R) \theta_{0}^{2}}\right)^{1 / 2} . \tag{H-33}
\end{equation*}
$$

The parameters $\Theta_{0}, 0, R$ are given in ($\mathrm{H}-16$) and $(\mathrm{H}-31)$.

We now define

$$
L_{b}=\frac{L}{\sqrt{1+R}}=\frac{L}{\sqrt{1+(2 \pi B L)^{2}}} ; \frac{1}{L_{b}^{2}}=\frac{1}{L^{2}}+(2 \pi B)^{2} .
$$

Then ($\mathrm{H}-30$) and ($\mathrm{H}-31$) become

$$
\begin{equation*}
W_{\tilde{s}}(t, f)=2 E_{0}\left(\frac{D R}{H_{1}}\right)^{1 / 2} \exp \left[-\frac{1}{H_{1}}\left\{\frac{H_{2}}{1+R}\left(\frac{t}{L_{b}}\right)^{2}+D_{2}(1+R)\left(2 \pi L_{b} f\right)^{2}-2 R D \theta_{0}\left(2 \pi L_{b} f\right)\left(\frac{t}{L_{b}}\right)\right\}\right] . \tag{H-35}
\end{equation*}
$$

The major axis of the elliptical contours is at angle radians in the $\left(t / L_{D}, 2 \pi L_{b} f\right)$ plane, where

$$
\begin{equation*}
\tan (2 \widetilde{\beta})=\frac{\theta_{0}(1+R)}{1+R+D+R D / 2} . \tag{H-36}
\end{equation*}
$$

Given measurements or observations \tilde{B} and σ_{0}, this can be immediately solved for Θ_{0}, where it is presumed that B and L are known since they are under our control.

As alternative fundamental parameter is more useful than the above; we introduce

$$
M=\left(L / \sigma_{0}\right)^{2} .
$$

which is the square of the ratio of weighting time to input signal duration. Then ($\mathrm{H}-31$) yields

$$
\begin{equation*}
R=D M \tag{H-38}
\end{equation*}
$$

where $D=\left(2 \pi \mathrm{Bo}_{0}\right)^{2}$ just as defined in $(\mathrm{H}-16)$. Eliminating R in favor of D and M, the peak height of W_{\Im} in $(H-30)$ becomes

$$
\begin{equation*}
\text { Peak }=2 E_{0}\left(\frac{D^{2} M}{(1+D)(1+D+D M)+(1+D M) \Theta_{0}^{2}}\right)^{1 / 2} \tag{H-39}
\end{equation*}
$$

As checks on this quantity, observe that as $0 \rightarrow \infty$, the factor of $2 E_{0}$ in $(H-39)$ approaches $(M /(M+1))^{1 / 2}$; in order to keep this latter quantity near 1 , we need $M>1$, that is, $L>\sigma_{0}$. This is consistent with physical reasoning on figure 7. Alternatively, as $M \rightarrow \infty$, the factor of $2 E_{0}$ in $(H-39)$ approaches $\left(0 /\left(1+0+\Theta_{0}^{2}\right)\right)^{1 / 2}$; in order to keep this near 1 , we need $(H-24)$ to be observed, just as before.

More generally, in order to keep the signal factor in ($H-39$) near unity, we need to choose the combination of D and M large enough. For example, to keep the factor at value F, that is, maintain

$$
\begin{equation*}
\left(\frac{D^{2} M}{(1+D)(1+D+D M)+(1+D M) \theta_{0}^{2}}\right)^{1 / 2}=F \quad(<1) \tag{H-40}
\end{equation*}
$$

we need to choose L in $(H-37)$ such that

$$
\begin{equation*}
M=\frac{F^{2}\left[(1+D)^{2}+\Theta_{0}^{2}\right]}{D\left[0-F^{2}\left(1+D+\theta_{0}^{2}\right)\right]} \tag{H-41}
\end{equation*}
$$

However, this relationship is useful only for

$$
\begin{equation*}
D>\frac{F^{2}}{1-F^{2}}\left(1+\theta_{0}^{2}\right) \tag{H-42}
\end{equation*}
$$

H-10

A representative sketch of ($\mathrm{H}-40$) is displayed in figure $\mathrm{H}-1$. Small values of parameters M or D are not realizable without the other parameter tending to infinity, in order to maintain the factor in ($\mathrm{H}-40$) at value F . Three numerical examples, for $\boldsymbol{\theta}_{0}=0,1,5$ are given in figures $\mathrm{H}-2, \mathrm{H}-3$, and $\mathrm{H}-4$, respectively. The larger F values can only be achieved through rather large D and/or M values.

There is, however, a minimum value of the product, MD, required to realize a specified value F for the factor in $(H-40)$, when θ_{0} is specified. In fact, we find from ($H-4 l$) that, for given F and θ_{0}, the product MD is minimized by the choices

$$
\begin{align*}
& 0_{o p t}=\frac{1+\theta_{0}^{2}}{1-F^{2}}\left[F^{2}+\sqrt{\frac{1+F^{4} \theta_{0}^{2}}{1+\theta_{0}^{2}}}\right] \\
& M_{o p t}=\frac{2 F^{2}}{1-F^{4}}\left[1+\sqrt{\frac{1+F^{4} \theta_{c}^{2}}{1+\theta_{0}^{2}}}\right] \tag{H-43}
\end{align*}
$$

The value $M_{o p t}$ is relatively insensitive to θ_{0}; in fact, it varies from $4 F^{2} /\left(1-F^{4}\right)$ to $2 F^{2}\left(1-F^{2}\right)$ as θ_{0} varies from 0 to 0 , which is less than a $2: 1$ variation.

The corresponding minimum product is

$$
\begin{equation*}
(M O)_{\min }=\frac{2 F^{2}}{\left(1-F^{2}\right)^{2}}\left[1+F^{2} \theta_{0}^{2}+\sqrt{\left(1+\theta_{0}^{2}\right)\left(1+F^{4} \theta_{0}^{2}\right)}\right] \tag{H-44}
\end{equation*}
$$

Figure H-1. Plot of (H-40) or ($\mathrm{H}-41$) for Fixed θ_{0}

Figure H -2. Plot for $\boldsymbol{\theta}_{\mathrm{a}}=0$

Figure $\mathrm{H}-3 . \mathrm{Plot}$ for $\boldsymbol{\theta}_{0}=1$

Figure H-4. Plot for $\boldsymbol{\theta}_{\mathbf{0}}=5$

In particular.

$$
\begin{equation*}
(M O)_{\min }-\frac{4 F^{2}}{\left(1-F^{2}\right)^{2}}\left(1+F^{2} \theta_{0}^{2}\right)+1 \text { as } \theta_{0} \rightarrow \infty \tag{H-45}
\end{equation*}
$$

in fact, this is a good approximation except near $\theta_{0}=0$. Thus, large amounts of linear frequency modulation, or values of F near $]$, require very large MD.

At the other extreme,

$$
\begin{equation*}
(M O)_{\min }=\frac{4 F^{2}}{\left(1-F^{2}\right)^{2}} \text { for } \theta_{0}=0 \tag{H-46}
\end{equation*}
$$

For example, if $F=1 / \sqrt{2}$, this product is 8 ; thus relatively large values of the product are required, even at the low end where there is no linear frequency modulation. A plot of $(H-44)$ is given in figure $H-5$, for various specified values of factor F.

As a particular numerical example, for $\Theta_{0}=0, F=1 / \sqrt{2}$, we find

$$
D_{o p i}=3, M_{o p t}=\frac{8}{3}, \quad(M D)_{\min }=8 .
$$

So both $D_{\text {opt }}$ and $M_{\text {opt }}$ are somewhat larger than unity, even for F equal to $1 / \sqrt{2}$. All these conclusions are drawn relative to the mean signal output alone; we now consider the noise output contributions.

MEAN NOISE OUTPUI

The mean noise output of the WDF processor in figure 7 is given by (172), (H-9), (H-13), and (H-31) as

$$
\begin{gather*}
\bar{b}=W_{v}(t, f) \oplus G_{n}(f)= \\
=N_{d}\left(\frac{R}{1+R}\right)^{1 / 2} \exp \left[-\frac{t^{2}}{L^{2}}-\frac{f^{2}}{B^{2}}-\frac{R}{1+R}\right] . \tag{H-48}
\end{gather*}
$$

(As $L \rightarrow \infty$, that is, no weighting, than $R \rightarrow \infty$, and $\bar{b} \rightarrow N_{d} \exp \left(-f^{2} / B^{2}\right)=G_{n}(f)$, as expected.)

The noise factor in ($\mathrm{H}-48$), namely

$$
\begin{equation*}
\left(\frac{R}{1+R}\right)^{1 / 2}=\left(\frac{D M}{1+D M}\right)^{1 / 2} \text {. } \tag{H-49}
\end{equation*}
$$

is virtually unity when the mean signal degradation is small, according to the results of figure $\mathrm{H}-5$. Thus the ratio of peak signal-to-noise means is approximately $2 E_{0} / N_{d}$, according to $(H-30)$ and $(H-48)$. These latter
quantities, E_{0} and N_{d}, are directly the input parameters to the WOF processor in figure 7: see ($\mathrm{H}-1$; and ($\mathrm{H}-6$).

VARIANCE OF NXN IERM

The variance of the $N x N$ term at the $W D F$ processor output is given by the third line of (188) as

$$
\begin{gather*}
V_{N N}=2 W_{V}^{2}(t, f) G_{n}^{(2)}(f)= \\
=N_{d}^{2} \frac{R}{\sqrt{1+R}} \exp \left[-\frac{2 t^{2}}{L^{2}}-\frac{2 f^{2}}{B^{2}} \frac{R}{1+R}\right] . \tag{H-50}
\end{gather*}
$$

Here, we also used $(H-11)$ and $(H-13)$. As $L \rightarrow \infty$, then $M \rightarrow \infty, R \rightarrow \infty$, and $V_{N N} \rightarrow \infty$. Alternatively, as $B \rightarrow \infty$, then $D \rightarrow \infty, R \rightarrow \infty$, and $V_{\text {NN }} \rightarrow \infty$.
These results for this particular example confirm the general observations in the sequel to (188).

The standard deviation of the $N X N$ term, namely $\sqrt{V_{N N}}$, is precisely equal to the noise mean output in ($H-48$) for all t, f, except for a constant factor $(1+R)^{1 / 4}=(1+O M)^{1 / 4}$. Also, the axes of the elliptical contours of $(H-48)$ and ($H-50$) are parallel to the t and f axes and are independent of θ_{0}, the amount of linear frequency modulation in the input signal.

The variance of the SXN terms at the WOF processor output is given by the last line of (188) or by double the results in (182). Upon substitution of ($\mathrm{H}-10$), ($\mathrm{H}-12$), and ($\mathrm{H}-15$) in (182) and an extreme amount of manipulations, there follows variance

$$
\begin{equation*}
v_{S N}=4 E_{0} N_{d} \frac{R \sqrt{D}}{\sqrt{H_{3}}} \exp [-\varepsilon(t, f)] \tag{H-51}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{3}=(1+D+R / 2)(1+D+R+D R / 2)+(1+R)(1+R / 2) \theta_{0}^{2} \tag{H-52}
\end{equation*}
$$

and $\varepsilon(t, f)$ is an elliptical function with minimum value at $t=f=0$. Name ly,

$$
\begin{equation*}
\varepsilon(t, f)=\frac{2 t^{2}}{L^{2}}+c_{r} t^{2}-\frac{a^{\star} \mu^{2}+a \mu^{\star 2}+2 r|\mu|^{2}}{2\left(|a|^{2}-r^{2}\right)}, \tag{H-53}
\end{equation*}
$$

where

$$
\begin{align*}
& C=4 \pi^{2} B^{2} \frac{1-i \theta_{0}}{1+D-i \theta_{0}}, \\
& a=\frac{1}{4}\left(c+\frac{2}{\left.L^{2}+2 \pi^{2} B^{2}\right),}\right. \\
& \mu=-\left(\frac{c}{2} t+i 2 \pi f\right), \\
& Y=\frac{1}{2} \pi^{2} B^{2} . \tag{H-54}
\end{align*}
$$

The quantity in the denominator of (H-53) can be simplified to

$$
\begin{equation*}
2\left(|a|^{2}-r^{2}\right)=\frac{H_{3}}{2 L^{4} D_{2}} ; \tag{H-5S}
\end{equation*}
$$

however, $E(t, f)$ has not been reduced $t o$ its most compact form,

$$
\begin{equation*}
b_{1} t^{2}+o_{2} f^{2}+2 b_{3} t f \tag{H-56}
\end{equation*}
$$

due to the excessive amount of labor required to simplify and obtain b_{1}, b_{2}, b_{3}.
quality measure of performance

We define a quality measure for the WOF processor output in figure 7 as

$$
\begin{equation*}
Q=\frac{\text { Difference of mean outputs }}{\text { Standard deviation of output }}=\frac{a}{\left(V_{S N}+V_{N N}\right)^{1 / 2}} . \tag{H-57}
\end{equation*}
$$

The relevant quantities are given by (171) and (188) generally. For the specific example in this appendix, the quality measure, at peak signal location $t=f=0$, is obtained by combining ($\mathrm{H}-30$),($\mathrm{H}-50$), and ($\mathrm{H}-51$):

$$
\begin{equation*}
0=\left(\frac{E_{0}}{N_{d}}\right)^{1 / 2}\left(\frac{\frac{4 E_{0}}{N_{d}} \frac{0 \sqrt{1+R}}{H_{1}}}{1+\frac{4 E_{0}}{N_{d}} \sqrt{\frac{D(I+R)}{H_{3}}}}\right)^{1 / 2} . \tag{H-58}
\end{equation*}
$$

For convenience, we repeat the parameter definitions here:

$$
\begin{gather*}
\theta_{0}=a_{0} \sigma_{0}^{2}, D=\left(2 \pi B \sigma_{0}\right)^{2}, M=\left(L / \sigma_{0}\right)^{2}, \\
R=D M . \\
H_{1}=(1+D)(1+D+R)+(1+R) \Theta_{0}^{2} . \\
H_{3}=(1+D+R / 2)(1+D+R+D R / 2)+(1+R)(1+R / 2) \theta_{0}^{2} . \tag{H-59}
\end{gather*}
$$

It has already been observed in ($\mathrm{H}-24$) and in the sequel to ($\mathrm{H}-39$) that $0>1+\theta_{0}^{2}$ and $M>1$ are desirabie. in so far as the mean signal output is concerned. However. if filter bandwidth $B(D)$ is made too large, then too much noise is allowed through; alternatively, if weighting duration $L(M)$ is made too large, a noise degradation also results. Thus, it is expected that the quality ratio 0 will peak for 0 in the neighborhood of $1+\theta_{0}^{2}$ and for M near 1.

It should be observed from (H-58) that even if input signal-to-noise measure E_{0} / N_{d} gets extremely large, the quality measure Q behaves according to $\sqrt{E_{0} / N_{d}}$, and not E_{o} / N_{d}. This is due to the saturation effects caused by the $\mathrm{S} \times \mathrm{N}$ term in the denominator of definition ($\mathrm{H}-57$); it can also be seen directly from the quantitative result in ($H-51$), where variance $V_{S N}$ is directly proportional to input signal energy E_{0} as well as the noise density level N_{d}.

The quality ratio 0 in $(H-58)$ is plotted versus M in figures $H-6, H$, H-8 for $\Theta_{0}=0,1,5$, respectively. The input ratio E_{0} / N_{d} is kept at value 20 in all cases; the only other fundamental parameter. 0 , is varied over a range wide enough to encompass the maximum of Q. However, for ease of plotting the results, the values of 0 which are less than the critical value, which leads to the peak 0 , are separated from those that are greater than the critical value. For example, in figure $H-6,0=1$ leads to the maximum value of Q that can be achieved for any value of M : thus, the upper part of figure $H-6$ contains results for $0 \leq 1$, while the lower part contains the remainder for $0 \geq 1$. The corresponding critical values of D are B and 80 in figures $H-7$ and $H-8$, when $\theta_{0}=1$ and 5 , respectively.

One important observation that is made apparent by these figures is that near the maximum, the quality ratio Q is not too sensitive to M and D; that is, the maximum is broad in the neighborhood of the best parameter pair M, D. It should also be observed that as θ_{0} increases, the peak value of 0 decreases, although the decrease is not very significant, at least over the range $\theta_{0}=0,1,5$ used here. Finally, the values of the peaks in these figures are slightly less than $\sqrt{E_{0} / N_{d}}$. as anticipated above.

Figure $H-6$. Quality Ratio for $\boldsymbol{\theta}_{0}=0, E_{0} / N_{d}=20$

Figure $H-7$. Quality Ratio for $\boldsymbol{\theta}_{0}=1, E_{0} / N_{d}=20$

Figure H-8. Quality Ratio for $\boldsymbol{\theta}_{0}=5, E_{0} / N_{d}=20$
H-23/H-24
Reverse Blank

APPENDIX I. SMOOTHED WDF FOR $s(t)=t \exp \left(-t^{2} / 2\right)$

For the waveform

$$
s(t)=t \exp \left(-t^{2} / 2\right) \text { for all } t \text {, }
$$

the WDF is
$W_{s}(t, f)=2 \sqrt{\pi} \exp \left(-t^{2}-4 \pi^{2} f^{2}\right)\left(t^{2}+4 \pi^{2} f^{2}-\frac{1}{2}\right)=2 \sqrt{\pi} \exp \left(-r^{2}\right)\left(r^{2}-\frac{1}{2}\right)$,
with energy

$$
\begin{equation*}
E=\int d t|s(t)|^{2}=\sqrt{\pi} / 2 \tag{I-3}
\end{equation*}
$$

Contour plots of the WDF in ($1-2$) are concentric circles in the ($t, 2 \pi f$) plane; in fact, (I-2) is a function only of $r^{2}=t^{2}+(2 \pi f)^{2}$. The origin value of W_{s} is $-2 E=-\sqrt{\pi}$, and the WDF is negative for $r<1 / \sqrt{2}$, while it is positive for $r>1 / \sqrt{2}$.

Let us smooth this WDF with the most compact WOF; namely, use the Gaussian weighting function in (G-23) with WDF (G-25) with $\theta_{c}=0, \sigma_{c}=1$:

$$
\begin{equation*}
W_{u}(t, f)=2 \exp \left(-t^{2}-4 \pi^{2} f^{2}\right)=2 \exp \left(-r^{2}\right) . \tag{I-4}
\end{equation*}
$$

The reason for these parameter choices of θ_{c} and σ_{c} is that the contours of (1.4) are also circles in the ($\mathrm{t}, 2 \pi \mathrm{f}$) plane and exactly match those of the waveform WDF in (1-2); this should lead to minimal spreading.

The result of smoothing (I-2) by (I -4) is

$$
\begin{gather*}
\left|s_{u}(t, f)\right|^{2}=w_{s}(t, f) \stackrel{t f}{\otimes} w_{u}(t, f)= \\
=\frac{1}{4} \sqrt{\pi}\left(t^{2}+4 \pi^{2} f^{2}\right) \exp \left(-\frac{1}{2}\left(t^{2}+4 \pi^{2} f^{2}\right)\right)=\frac{1}{4} \sqrt{\pi} r^{2} \exp \left(-r^{2} / 2\right), \tag{I-5}
\end{gather*}
$$

which has volume E as given by (I-3). Again, this is a function only of r^{2}, but it is never negative. This smoothed distribution is zero at $r=0$, and peaks at $r=\sqrt{2}$ with value .326. By contrast, the WDF in ($1-2$) is -1.77 at the origin, a large negative value. However, the waveform WDF in (I-2) does decay faster than the short-term spectral estimate in (1-5); this is an example of the tradeoffs that must be accepted when using short-term spectral estimation versus the WDF.

To lend credence to (I-5) as a better measure of the time-frequency content of $s(t)$, we observe that at $t=0$, the center of gravity of ($I-5$) is

$$
\begin{equation*}
\bar{f}_{0}=\frac{\int_{0}^{\infty} d f\left|S_{u}(0, f)\right|^{2} f}{\int_{0}^{\infty} d f\left|S_{u}(0, f)\right|^{2}}=\frac{1}{\pi} \sqrt{\frac{2}{\pi}} \tag{I-6}
\end{equation*}
$$

Then we expect that

$$
\begin{equation*}
A \sin \left(2 \pi \bar{f}_{0} t\right) \tag{1-7}
\end{equation*}
$$

ought to be a good fit to $s(t)$ of ($I-1$) for t near zero. In fact, plots of (I-1) and (I-7) for $A=\exp (-.5)$ overlap for $-1<t<1$.

If we attempt this same procedure for WDF W_{s} in (I-2), the denominator is

$$
\begin{equation*}
\int_{0}^{\infty} d f w_{s}(0, f)=0 . \tag{I-8}
\end{equation*}
$$

giving rise to $\bar{f}_{0}=\infty$, which is useless.

With respect to $t=1$ instead, we find center of gravity

$$
\begin{equation*}
\bar{f}_{1}=\frac{\int_{0}^{\infty} d f\left|S_{u}(l, f)\right|^{2} f}{\int_{0}^{\infty} d f\left|S_{u}(l, f)\right|^{2}}=\frac{1}{\pi} \sqrt{\frac{2}{\pi}} \frac{3}{4} . \tag{I-9}
\end{equation*}
$$

Since $s(t)$ in (I-1) peaks at $t=1$, we expect that

$$
\begin{equation*}
A \cos \left(2 \pi \bar{f}_{1}(t-1)\right) \tag{I-10}
\end{equation*}
$$

ought to be a good fit to $s(t)$ for t near 1. In fact, plots of (I-l) and ($\mathrm{I}-10$) for $\mathrm{A}=\exp (-.5)$ show very good agreement for $.8<\mathrm{t}<1.7$.

Thus, smoothing of the WDF W_{S} in (I-2) by means of WOF W_{u} in (I-4), for this example, results in a very meaningful distribution function.

APPENDIX J. DOUBLE CONVOLUTION OF TWO GAUSSIAN FUNCTIONS

By means of the double integral result

$$
\begin{array}{r}
\iint d x d y \exp \left[-\frac{1}{2} \alpha x^{2}-\frac{1}{2} \beta y^{2}+\gamma x y+\mu x+v y\right]= \\
=\frac{2 \pi}{\left(\alpha \beta-\gamma^{2}\right)^{1 / 2}} \exp \left[\frac{\beta \mu^{2}+\alpha v^{2}+2 \gamma \mu v}{2\left(\alpha \beta-\gamma^{2}\right)}\right] \tag{J-1}
\end{array}
$$

for $\alpha_{r}>0, \beta_{r}>0, \alpha_{r} \beta_{r}>\gamma_{r}^{2}$, it is readily shown that the double convolution of two general Gaussian functions is given by

$$
\begin{align*}
\exp \left[-\frac{1}{2} a x^{2}-\frac{1}{2} b y^{2}\right. & -\sqrt{a b} \rho x y] \exp \left[-\frac{1}{2} c x^{2}-\frac{1}{2} d y^{2}-\sqrt{c d} \lambda x y\right]= \tag{J-2}\\
& =\frac{2 \pi}{0^{1 / 2}} \exp \left[-\frac{N_{1} x^{2}+N_{2} y^{2}+2 N_{3} x y}{2 D}\right] \tag{J-3}
\end{align*}
$$

for $a, b, c, d>0,|\rho|<1,|\lambda|<1$, where

$$
\begin{align*}
& D=a b\left(1-\rho^{2}\right)+c d\left(1-\lambda^{2}\right)+a d+b c-2 \sqrt{a b c d} \rho \lambda \\
& N_{1}=a c\left[b\left(1-\rho^{2}\right)+d\left(1-\lambda^{2}\right)\right] \\
& N_{2}=b d\left[a\left(1-\rho^{2}\right)+c\left(1-\lambda^{2}\right)\right] \\
& N_{3}=\sqrt{a b c d}\left[\sqrt{a b} \lambda\left(1-\rho^{2}\right)+\sqrt{c d} \rho\left(1-\lambda^{2}\right)\right] . \tag{J-4}
\end{align*}
$$

TR 8225
Also, a useful auxiliary relation is

$$
\begin{equation*}
N_{1} N_{2}-N_{3}^{2}=0 \text { abcd }\left(1-\rho^{2}\right)\left(1-\lambda^{2}\right) \tag{J-5}
\end{equation*}
$$

Now let

$$
\begin{align*}
& \rho=\sin (\theta), \quad \text { where }-\frac{\pi}{2}<\theta<\frac{\pi}{2}, \\
& \lambda=\sin (\theta), \quad \text { where }-\frac{\pi}{2}<\theta<\frac{\pi}{2} . \tag{J-6}
\end{align*}
$$

Then the area of the contour ellipse at the $1 / e$ relative level of the first exp in (J-2) is

$$
\begin{equation*}
A_{1}=\frac{2 \pi}{\sqrt{a b} \cos (\theta)} \tag{J-7}
\end{equation*}
$$

in the x, y plane, where we used ($D-1),(D-19)$, and ($D-20)$. Similarly, the area of the second exp in (J-2) is

$$
A_{2}=\frac{2 \pi}{\sqrt{c d} \cos (\theta)}
$$

The sum of these two effective areas is

$$
\begin{equation*}
A_{1}+A_{2}=2 \pi \frac{\sqrt{a b} \cos (\theta)+\sqrt{c d} \cos (\theta)}{\sqrt{a b c d} \cos (\theta) \cos (\theta)} \tag{J-9}
\end{equation*}
$$

On the other hand, the area of the contour ellipse at the $1 / e$ relative level of the smoothed exp in (J-3) is

$$
A_{3}=2 \pi \frac{\sqrt{D}}{\sqrt{a b c d} \cos (\theta) \cos (\theta)}
$$

in the x, y plane, where we can express 0 from (J-4) as

$$
\begin{align*}
0 & =a b \cos ^{2}(\theta)+c d \cos ^{2}(\theta)+a d+b c-2 \sqrt{a b c d} \sin (\theta) \sin (\theta)= \\
& =[\sqrt{a b} \cos (\theta)+\sqrt{c d} \cos (\theta)]^{2}+|\sqrt{a d} \exp (i \theta)-\sqrt{b c} \exp (i \theta)|^{2} . \tag{J-11}
\end{align*}
$$

Comparison of the square root of (J-11) with the numerator of (J-9) reveals that

$$
\begin{equation*}
A_{3} \geq A_{1}+A_{2}, \tag{J-12}
\end{equation*}
$$

with equality occuring if and only if

$$
\begin{equation*}
\sqrt{a d}=\sqrt{b c} \quad \text { and } \quad \theta=0 \tag{J-13}
\end{equation*}
$$

That is, in order for $A_{3}=A_{1}+A_{2}$, we must have

$$
\begin{equation*}
\frac{d}{c}=\frac{b}{a} \quad \text { and } \quad \lambda=\rho \tag{J-14}
\end{equation*}
$$

Physically, this requirement states that the contour ellipses of the two exp terms in (J-2) must have the same ratio of major-to-minor axes and they must have the same tilt. If either condition is violated, then $A_{3}>A_{1}+A_{2}$. the exact amount depending on the second term in (J-ll).

EfFICIENT CALCULATION OF gAUSSIAN FUNCTION

If the general two-dimensional Gaussian function in (J-2) is sampled on an equi-spaced grid, for purposes of convolution, it will be necessary to compute the quantity

$$
Q_{2}(m, n)=\exp \left(-a m^{2}-b n^{2}-c m n\right)
$$

for integers $-M \leq m \leq M,-N \leq n \leq N$. The following efficient procedure is based upon the general method given in [12].

We observe first that

$$
\begin{equation*}
Q_{2}(-m,-n)=Q_{2}(m, n) . \tag{J-16}
\end{equation*}
$$

which cuts the effort by one-half. There also follows

$$
\begin{equation*}
a_{2}(m, n)=a_{2}(m, n-1) Q_{1}(m, n) \text {. } \tag{J-17}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{1}(m, n)=\exp [-b(2 n-1)-c m]=a_{1}(m, n-1) \exp (-2 b) . \tag{J-18}
\end{equation*}
$$

These recurrences can be started with

$$
\begin{gather*}
Q_{1}(m, 0)=\exp (b-c m) \\
Q_{2}(m, 0)=\exp \left(-m^{2}\right)=O_{2}(-m, 0) .
\end{gather*}
$$

Furthermore, these latter two quantities are available through the recurrence

$$
\left.\begin{array}{l}
0_{1}(m, 0)=0_{1}(m-1,0) \exp (-c) \tag{J-20}\\
0_{1}(m-1,0)=0_{1}(m, 0) \exp (+c)
\end{array}\right\} \quad \text { for } m \geq 1 \text {. }
$$

with

$$
\begin{equation*}
0_{1}(0,0)=\exp (b) . \tag{J-21}
\end{equation*}
$$

and the recurrence

$$
\left.\begin{array}{l}
0_{2}(m, 0)=0_{2}(m-1,0) E(m) \\
E(m)=E(m-1) \exp (-2 a)
\end{array}\right\} \quad \text { for } m \geq 1
$$

with

$$
\begin{equation*}
Q_{2}(0,0)=1, E(0)=\exp (a) \tag{J-23}
\end{equation*}
$$

The only case not covered by the above recurrences is for $m=0$; then

$$
\left.\begin{array}{l}
Q_{2}(0, n)=O_{2}(0, n-1) F(n) \tag{J-24}\\
F(n)=F(n-1) \exp (-2 b)
\end{array}\right\} \quad \text { for } n \geq 1 \text {. }
$$

with

$$
\begin{equation*}
f(0)=\exp (b) . \tag{J-25}
\end{equation*}
$$

A program for the evaluation of (J-15) is given below. Only three exponentials, in lines 90-110, need to be evaluated. Also, the only storage required is for the final quantity $\mathrm{O}_{2}(m, n)$ in lines $60-70$. The auxiliary variables $O_{1}(m, n), E(m), F(n)$ introduced above need never be stored. The check on accuracy in lines 390-470 would be discarded, of course, in any
practical application; it is appended as a check on any typographical errors in entering the program into another computer.

```
A=.037 ! exp(-A m"2-B n^2 - Cmm)
B=.051 ! for -M< =m<=M, -N<=n< =N
20 B=.051
30 C=.044
40 M=5
50 H=?
60 REDIM Q2(-M:M,-N:N)
70 DIM Q2(50,50)
80 DOUBLE M,N,Ms,Ns
Ea=EXP(A)
100 Eb=E`\P(B)
110 EC=EXP(C)
120 Q2(0,0)=1.
130 E=Eb
140 E2b=Eb*Eb
150 FOR Ns=1 TO N
160 E=E/E2b
170 O2(0,Ns)=Q2(0,Ns-1)*E
180 NEXT NS
190 E=Ea
200 E2a=Ea*Ea
210 Q1pO=Q1mO=Eb
220 FOR Ms=1 TO M
230 Q1p=Q1po=Q1po/Ec
240 Q1m=01mo=Q1mo*Ec
250 E=E/E2a
260 Q2(-Ms,0)=122(Ms,0)=12(Ms-1,0)*E
2Tg FDR Ns=1 TD N
230 Q1p=11p,EこO
270 Q1m=Q1m/Eこb
300 Q2(Mz,Ns)=02(Mz,Ns-1)*Q1p
310 QE(-Ms,Ns)=12%(-Mn,Ns-1)*Q1m
320 NE:IT N;
330 NE:iT Ms
340 FOR Ms=-M TO M
350 FOR Ns=1 TO N
360 Q2(-Ms,-Ns)=Q2(Ms,Ns)
370 NEXT Ns
380 NEXT Ms
390 Big=0.
    FOR Ms=-M TO M
    FOR N3=-N TO N
    E=E:<P(-R*Ms*Ms-B*Ns*Ms-C*M3*Ns)
    Error=E-Q2(Ms,Ns)
    Big=MAX(Big,ABS(Error))
    NE:ST NS
        NE:OT MS
        PRINT BIG
    END
```

REFERENCES

1. N. Yen, "Time and Frequency Representation of Acoustic Signals by Means of the Wigner Distribution Function: Implementation and Interpretation," Journal of Acoustical Society of America, vol. 81, no. 6. pp. 1841-1850, June 1987.
2. J. C. Andrieux et al. "Optimum Smoothing of the Wigner-Ville Distribution." IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-35, no. 6, pp. 764-768, June 1987.
3. Kai-Bor Yu and S. Cheng, "Signal Synthesis from Pseudo-Wigner Distribution and Applications," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-35, no. 9, pp. 1289-1301, September 1987.
4. P. M. Woodward, Probability and Information Theory, With Applications to Radar, Pergamon Press, New York, NY, 1957.
5. A. H. Nuttall. Accurate Efficient Evaluation of Cumulative or Exceedance Probability Distributions Directly From Characteristic Functions, NUSC Technical Report 2023, Naval Underwater Systems Center. New London, CT, 1 October 1983.
6. D. Gabor, "Theory of Communication," Journal of Institute of Electrical Engineers, vol. 93, part III, pp. 429-457, 1946.
7. L. Cohen, "On a Fundamental Property of the Wigner Distribution Function." IEEE Transactions on Acoustics. Speech, and Signal

Processing, vol. ASSP-35, no. 4. pp. 559-561. April 1987.
8. L. Cohen and C. A. Pickover. "A Comparison of Joint time-Frequency Distributions for Speech Signals," IEEE International Symposium on Circuits and Systems. DD. 42-45. August 1986.
9. L. Cohen and T. E. Posch, "Positive lime Frequency Distribution Functions." IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-33, no. 1, pp. 31-38, february 1985.
10. L. Cohen and T. E. Posch. "Generalized Ambigulty functions," IEEE International Conference on Acoustics. Speech, and Signal Processing. March 26-29. 1985.
11. N. D. Cartwright, "A Non-Negative Wigner-Type Distribution." Physics, vol. 83A, pp. 210-212, 1976.
12. A. H. Nuttall, Efficient Evaluation of Polynomials and Exponentials of Polynomials for Equi-Spaced Arguments, NUSC Technical Report 7995, Naval Underwater Systems Center, New London, CT, 1 April 1987. Also IEEE Iransactions on Acoustics, Speech, and Signal Processing, vol. ASSP-35, no. 10, pD. 1486-1487, October 1987.
13. C. W. Helstrom, Statistical Theory of Signal Detection. Second Edition, Pergamon Press, New York, NY, 1968.
14. R. B. Blackman and J. W. Tukey, The Measurement of Power Spectra, Dover Publications, New York, NY, 1959.
15. A. H. Nuttall, A Shortcut in Calculus of Variations for Complex Functions, NUSC Technical Memorandum 2020-179-70, Naval Underwater Systems Center. New London, CT. 21 September 1970.

R-2

INIITAL DISTRIBUTION LIST
admiralty research establishment, london, england (Dr. L. Lloyd)
APPILED PHYSICS LAB, JOHN HOPKINS 2
APPIIIED PHYSICS LAB, U. WASHINGTON (C. Eggan) Contract NOOO24-85-C-6264
APPI.IED RESEARCH LAB, PENN SIATE,(Dr. D. Ricker) Contract N00024-85-C-6041
APPLIED RESEARCH LAB, U. TEXAS (Dr. M. Frazer) Contract NOOO24-86-C-6134-4-2-3

```
A \& T, STONINGTON, CT (H. Jarvis)

APPI.IED SEISMIC GROUP. (R. Lacoss)
ASSI SEC NAV
ASTRON RESEARCH \& ENGR, SANTA MONICA, CA (Dr. A. PIersoi) 1
aUSTRALIAN NATIONAL UNIV. CANBERRA, AUSTRALIA (Prof. B. Anderson)
8BN, Arlington, Va. (Or. H. Cox)
BBN, Cambridge, MA (H. Gish)
BBN, New London, Ct. (Or. P. Cable)
bFil. Communications research, Morristown, nJ (J. Kaiser)
BENDAT, JULIUS DR., 833 Moraga Dr., LA, CA
DR. Norman Bleistein, Denver, CO 80222
CANBERRA COLLEGE OF ADV. EDUC, BELCONNEN, A.C.T. AUSTRAIIA (P. Morgan)
COAST GUARD ACADEMY, New London, CT (Prof. J. Wolcin) I
COAST GUARD R \& D, Groton. CT (Library)
COGENT SYSTEMS, INC, (J. Costas)
CONCORDIA UNIVERSITY H-915-3, MONTREAL, QUEBEC CANADA (Prof. Jeffrey Krolik)1

CNO (NOP24, NOP 224, NOP 353, NOP 951, NOP 981) 5
CNR-OCNR-00, 10, 11, 13, 10, ONT \(23 \& 231\) ) ?
DTNSRDC, BETHESDA
DAVIO W. TAYLOR RESEARCH CNTR, ANNAPOLIS, MD (P. Prendergast, Code 2744)

1
DARPA, ARIINGTON, VA (A. Ellinthorpe)1
DALHOUSIE UNIV., HAIIFAX, NOVA SCOTIA, CANADA (Dr. B. Ruddick) ..... 1

DEFENCE RF.SEARCH ESTAB. ATLANTIC, DARTMOUTH, NOVA SCOTIA (Library)
DEFENCE RESEARCH ESTAB. PACIFIC, VICTORIA, CANADA (Dr. D. Thomson)1
defence scientific establishment, ministry of defence. AUCKLAND, N Z. (Dr. L. Hall)1
DEFENSE SYSTEMS, INC, MC LEAN, VA (Dr. G. Sebestyen) ..... 1
DIA ..... 1
DTIC ..... 1
DTNSRDC1
DREXEL UNIV, (Prof. S. Kesler) ..... 1EDO CORP, College Point, NY (M. Blanchard)NICRAD 87-NUSC-029 of 23 July 19871

\section*{Addressee}

> No. of Copies
EG\&G, Manassas, VA (Dr. J. Hughen and D. Frohman) ..... 2
GENERAL FIECTRIC CO. PITTSFIELO. MA (Mr. R. Race) ..... 1
GENERAL ELECTRIC CO, SYRACUSE, NY (Mr. J. L. Rogers) ..... 1
GENERAL ELECTRIC CO, (D. Winfield) N00024-87-C-6087) ..... 1
HAHN, WM. Apt. 701, 500 23rd St. NW, Wash, DC 20037 ..... 1
HARRIS SCIENTIFIC SERVICES, Dobbs Ferry, NY (B. Harris) ..... 1
HUGHES AIRCRAFT, Fullerton, CA (S. Autrey) ..... 1
HUGHES AIRCRAFT, Buena Park, CA (T. Posch) ..... 1
IBM, Manassas, VA (G. Demuth) ..... 1
INDIAN INSTITUTE OF SCIENCE, BANGALSORE, INDIA (N. Srinivasa) ..... 1
JOHNS HOPKINS UNIV, LAUREL, MD (J. C. Stapleton) ..... 1
IINCOM CORP. NORTHBORO, MA 01532 (Dr. T. Schonhoff) ..... 1
MAGNAVOX GOV \& IND ELEC CO, Ft. Wayne, IN (R. Kenefic) ..... 1
MARINE BIOLOGICAL LAB, Woods Hole, MA ..... 1
MARINE PHYSICAL LABORATORY SCRIPPS ..... 1
MARTIN MARIETTA BALTIMORE AEROSPACE, Baltimore, MO
(S. L.awrence Marple) ..... 1
MASS. INSTITUTE OF TECHNOLOGY (Prof. A. Baggaroer) ..... 1
MBS SYSTEMS, NORWALK, CT (A. Winder) ..... 1
MIDDLETON, DAVID, 127 E. 91 st ST, NY, NY ..... 1
NADC (5041, M. Mele) ..... 1
NASC , NAIR-00,03 ..... 2
NATIONAL RADIO ASTRONOMY OBSERVATORY (F. Schwab) ..... 1
NATO SACLANT ASW RESEARCH CENTRE, APO NY, NY 09019 (Library R. E. Sullivan and G. Tacconi) ..... 3
NAVAIR (03, PMA 264) ..... 2
NPS, MONTEREY, CA (C. W. Therrien) ..... 1
NRL UND SOUND REF DET, ORLANDO, FL ..... 1
NAVAL SEA SYSTEMS COMMAND-SEA-00 ..... 1
NAVAL SYSTEMS DIV., SIMRAD SUBSEA A/S, NORWAY (E. B. Lunde) ..... 1
NAVSEA (630, 63Y, 63X, PMS 411C, PMS 409, PMS 417, PMS 418) ..... 7
NCEL ..... 1
NCSC ..... 1
NICHOLS RF.SEARCH CORP., Wakefield, MA (T. Marzetta) ..... 1
NORDA (Dr. B. Adams) ..... 1
NORTHEASTERN UNIV. (Prof. C. L. Nikias) ..... 1
NORWFGIAN DEFENCE RESEARCH EST, NORWAY (Dr J. Glattetre) ..... 1
NOSC, (C. Sturdevant; 73, J. Lockwood, F. Harris, 743. R. Smith; 62, R. Thuleen) ..... 5
NRL, Washington, DC (Dr. J. Buccaro, Or. E. Franchi, Dr. P. Abraham, Code 5132, A. A. Gerlach, W. Gabriel (Code 5370), and N. Yen (Code 5135) ..... 6
NRL, Arlington, VA (N. L. Gerr, Code 1111) ..... 1
NSWC ..... 1
NSWC DET FT. LAUOERDAI.E ..... 1
NSWC WHITE OAK LAB ..... 1
NUSC DET FT. LAUDERDAIE ..... 1

\section*{Addressee}

No. of Copies

NUSC DEI TUDOR HIIL
NUSC DEI WEST PALM BEACH (Dr. R. Kennedy Code 3802)
NWC
ORI CO, INC, New London, CT (G. Assard)
PENN STATE UNIV., State College, PA (F. Symons)
PROME THEUS, INC, Sharon, MA (Dr. J. Byrnes)
PSI MARINE SCIENCES, New London, Ct. (Dr. R. Mellen)
PRICE, Dr. Robert, 80 Hill St., Lexington, Ma 02173
RAISBECK, Dr. Gordon, P.O. Box 4311, Portland, ME 04101
RAN RESEARCH LAB, DARLINGHURST, AUSTRALIA
RAYTHEON CO, Portsmouth, RI (J. Bartram, R. Connor) and S. S. Reese) NICRAD 87-NUSC 013
ROCKWELL INTERNATIONAL CORP, Anaheim, CA (L. Einstein and Dr. D. Elliott)
ROYAL MII.ITARY COLIFGE OF CANADA, (Prof. Y. Chan)
RUTGERS UNIV., Piscataway, NJ (Prof. S. Orfanidis)
RCA CORP, Moorestown, NJ (H. Upkowitz)
SAIC, Falls Church, VA (Dr. P. Mikhalevsky)
SAIC, New London, CT (Or. F. Dinapoli)
SANDIA NATIONAL LABORATORY (J. Claasen)
SCRIPPS INSTITUTION OF OCEANOGRAPHY
SONAR \& SURVEILLANCE GROUP, DARLINGHURST, AUSTRALIA
SOUTHEASTERN MASS. UNIV (Prof. C. H. Chen)
SPERRY CORP, GREAT NECK, NY
SPWAR-00, PD 80, PMW 180
STATE UNIV. OF NY AT STONY BROOK (Prof. M. Barkat)
TEL-AVIV UNIV, TEL-AVIV, ISRAFL (Prof. E. Winstein)
TRACOR INC Austin, TX (Dr. T Lein and J. Wilkinson)
TRW FFDERAL SYSTEMS GROUP (R Prager)
UNDERSEA EI.ECTRONICS PROGRAMS DEPT, SYRACUSE, NY (J. Rogers)
UNIV. OF AIBERTA, EDMONTON, AI.BERTA, CANADA (K. Yeung)
UNIV OF CA, San Diego, CA (Prof. C. Helstrom)
UNIV. OF CT, Storrs, CT. (Library and Prof. C. Knapp)
UNIV OF FLA, GAINESVII.LE, FL (D. Childers)
UNIV OF MICHIGAN, Cooley Lab, Ann Arbor, MI (Prof T. Birdsall)
UNIV. OF MINN, Minneapolis, Mn (Prof. M. Kaveh)
UNIV. OF NEWCASTIE, NEWCASTLE, NSW, CANADA (Prof. A. Cantoni)
UNIV. OF RI, Kingston, RI (Library, Prof. S. Kay, Prof. L. Scharf, and Prof. D. Tufts)
UNIV. OF SOUTHERN CA., LA. (Or. A. Polydoros PHE 414)
UNIV. OF STRATHCLYDE, ROYAL COILFGE, Glasgow, Scotland (Prof. T. Durrani)
UNIV. OF TECHNOLOGY, Loughborough, Leicestershire, England (Prof. J. Griffiths)
UNIV. OF WASHINGTON, Seattle (Prof. D. Lytle)
URICK, ROBERT, Silver Springs, MD
VAN ASSFLT, HENRIK, USEA S.P.A., LA SPEZIA, ITALY
WERBNER, A., 60 Elm St., Medford, MA 021551
Addressee
No. of Copies
WESTINGHOUSE FLEC. CORP, WALTHAM, MA (D. Bennett) ..... 1
WESTINGHOUSE FIEC. CORP, OCEANIC DIV, ANNAPOLIS, MD (Dr. H. L. Price and H. Newman N00024-87-C-6024) ..... 2
WOODS HOIE OCEANOGRAPHIC INSTITUTION (Dr. R. Spindel and Dr. E. Weinstein) ..... 2
YALE UNIV. (Library, Prof. P. Schultheiss and Prof. F. Tuteur) ..... 2
\[
\begin{aligned}
& E N D \\
& \text { DACE } \\
& \text { FILMED } \\
& 8-88 \\
& \text { OTIC }
\end{aligned}
\]```

