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WIGNER DISTRIBUTION FUNCTION: RELATION TO SHORT-TERM

SPECTRAL ESTIMATION, SMOOTHING, AND PERFORMANCE IN NOISE

INTRODUCTION

The potential of the Wigner Distribution Function (WOF) for

characterizing the short-term local time and frequency content of a

transient waveform has been amply demonstrated in a series of papers; for

example, see the recent publications [1,2,3] and the extensive references

listed therein. In particular, [11 contains numerical examples of the WDF

for rectangularly gated linear frequency modulation and a version which has

been smoothed with a square window in the time-frequency plane, in order to

yield positive distribution values. Here, we will be concerned with

smoothing so as to minimally spread the WDF, but will not presume all the

information that is required for implementation via [2], nor do we limit

consideration to a constant-magnitude function. We will then use the close

connection between short-term spectral estimation and smoothed WDFs to

suggest a possible analysis procedure and philosophy to extract information

about a given waveform without an extensive search in waveform parameters.

Finally, the performance of a particular WDF estimator in the presence of

additive noise will be analyzed, both in terms of bias and variance.

This report summarizes and compiles many of the results in the

publications noted above in a unified framework and notation. Also,

n
numerous examples are presented in the various sections of this report to
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illustrate and bring out some of the fundamental concepts and limitations of

the WDF; these examples can be evaluated analytically in closed form,

allowing for close investigation of the behavior of the WDF, and as control

cases on any computer-written program for numerical evaluation of the WDF.

2
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BASIC PROPERTIES OF THE WOF

DEFINITIONS

A natural definition of the time-varying correlation of a nonstationary

complex stochastic process s(t) is

R(t,T) = s(t + i) s*(t - , (1)

where the overbar denotes an ensemble average. The "center" time in (1) is

t, while the "separation" time is T. However, if an ensemble is not

available, or if s(t) is a deterministic waveform, the obvious extension of

(1) is simply

R(t,T) = s(t + 6) s (t - ) (2)

This quantity is interpreted as the instantaneous correlation of waveform

s(t) at time t, for separation (or lag) t.

The associated "spectrum" at time t is then available, as usual, by

Fourier transforming (2) on separation variablet, to get at frequency f,

W(tf) dr exp(-i2vft) R(t,t)

S dr exp(-i2ift) s(t + ) - ) (3)

3
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(Integrals without limits are over the range of nonzero integrand. Also, it

is presumed that s(t) and its derivatives decay fast enough to zero at t= o

for all the integrals to converge.) This time-frequency function W(t,f) is

called the Wigner Distribution Function (WOF). It is a real function, even

when s(t) is complex, since

W *(t,f) =3dt exp(12wfr) s*(t + 'r s(t-

d fu exp(-12wfu) s*(t - u)st~~ =Wtf (4)

However, it is not necessarily positive, as the simple example of a

rectangularly gated pulse quickly shows: for

s ~ a for Iti < T/2

{0 other-wise

then

W~tf) 2Es inr2if(T - 21ti)l for Itt 2 l
W~~) E2vfT 2I l

and zero otherwise, where E is the waveform energy:

E fdt js(t)j 2 = jai 2 T .(5)

An even simpler example is furnished by waveforms with odd symm~etry,

s(-t) --s(t). Substitution in (3) immediately yields W(OO)

-JSdris(T/2 )12 . -2E. Thus the origin value of the WDF is always
negative for an odd waveform.
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More generally, when waveform s(t) is expressed in terms of its even and

odd parts according to

s(t) = e(t) +- o(t) ,(6)

then the origin value of the WOF is

W(0,0) = dr s(TC/2) s (-/2) = 2 f dt s(t) s (-t)=

2 2{dt Le(t) +- O(t]) [e*(t) -0*(t)] = HEe - 2E0  (7CA)

where

E e = Ie( t)12, E dt 1't't' (713)

are the energies of the even and odd parts respectively. For nonzero t,f,

it can readily be shown that the magnitude of the WOF is upper bounded by

2E = 2(E e+ E 0).

5
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PROPERTIES OF WOF

For s(t) real, it readily follows from the definition of the WDF in (3)

that

W(t,-f) = W(t,f) for s(t) real .(8)

In this special case, it is only necessary to evaluate W(t,f) for f > 0.

Define the voltage density spectrum of waveform s(t) as

5(f) f dt exp(-12wft) s(t) .(9)

Then an alternative form for the WDF in (3) is

W(t,f) =fdr exp(-i21rf) s(t + r) s*(t-

2

-3du, exp(i2irvt) S(f + 2) S*(f - ),(10)

in terms of S(f).

Integration on (10) immediately yields the marginals

fdt W(t,f) = IS(f)I 2 , (11)

and

f df W(t,f) = IS(t)12 , (12)

6
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where we used the result

S dx exp(i2wxy) = 6(y) (13)

'he quantity in (11) is the energy density function, while that in (12) is

the instantaneous power. If we complete the integrations on the remaining

variables in (11) and (12), they both yield

fdt df W(t,f) = E =

S dt Is(t) 2 =  fdf IS(f) 2 (14)

where E is the total waveform energy.

If waveform s(t) satisfies a time-limited restriction, namely

s(t) # 0 only for tI < t < t2 , (15)

then (3) reduces to

W(t,f) = dr exp(-i2nft) s(t + s (t - g) for tI < t < t2  , (16)

and zero otherwise, where

T = 2 min(t 2 - t, t - t1) for t1 < t < t. (17)

lhus the WDF is time-limited if waveform s(t) is time-limited; however, if

there are gaps in s(t), the behavior of the WDF is more complicated, as will

be demonstrated later.

7
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PRODUCT AND CONVOLUTION

If waveform s(t) is the product of two other waveforms,

s(t) = a(t) b(t) , (18)

then the WDF of s(t) is (inserting subscripts as needed)

W s(t, f) = Jdt exp(-i2-vrfC) R5(tMt)

f r exp(-12wfr) R a(t~)Rbtr

Jutv W a(t'v) W b(ttf - 11)

W a(t. 0W tf (19)

which is a convolution on frequency f, for fixed t.

In a similar fashion, if sMt is the convolution in time, of two other

waveforms,

tr
s(t) =a(t) QD b(t) f dt a(r-) b (t -),(20)

then the WOF of s(t) is

8
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t
Ws(t,f) = Wa(t,f) @ Wb(tf) = dt Wa(*r,f) Wb(t -tf) , (21)

which is a convolution on time t, for fixed f.

AMBIGUITY FUNCTION

The WDF is closely related to the complex ambiguity function of s(t),

which is defined here as [4; section 7.2]

(V = Jdt exp(-i2mvt) s(t + s (t -

- dt exp(-i2mut) R(t,-) =

df exp(12vfz) S(f + ) S*(f -) (22)

In fact, the two are double Fourier transforms of each other:

ffdt df exp(i2wTf - i2wvt) W(t.f) =

= jdt df exp(i2wtf - i2mut) JdT1 exp(-i2wfr l ) s(t + 2) s (t - =

- Idt drl exp(-i2wvt) s(t + -)s*(t--J) 26( - l)

- dt exp(-12wvt) S(t + S (t (23)

9
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Here we used (3), (13), and (22).

In a similar fashion, the following (single) Fourier transform

relationships on the WDF hold:

CT *

f df exp(i2wfl) W(t,f) = s(t +- 2) s (t - 2) R(t,T)

Jdt exp(-i21rut) W(t,f) =S(f + 2" S*(f 2 A(v~,f) .(24)

These properties are summarized in the following diagram, where an arrow

denotes a Fourier transform:

f

Not every function of tjf is a (legal) WDF; in fact, from (24) there

follows

fdf exp (i 21f(t 1 -t2) 2 2 )=s(t 1  S (t 2) RQ ;2  1

(25)

10
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Thus, in order for a candidate function W(t,f) to be a WDF, the function

resulting on the right-hand side of (25) must be separable in-the variables

t1 and t When and only when that separability occurs, the waveform s(t)

can be recovered from correlation R or W (within a constant unknown phasor)

as follows: let

S(to) = )s(to) exp(i@(to)) , R(to,O) = IS(to)J 2  (26)

where t is arbitrary, except that s(to ) 0 0. Then, from the right-hand

side of (25),

to t - R 0 t t
2 t2 o

S(t) s * (t 0) exp(ioe(to)) for all t (27)

s t) (t ,O

The special case of t = 0 was given in [3; (17)]. The fact that the

0

constant phase 9(t0 ) is irretrievably lost in R and W can easily be seen

by considering s(t) = c g(t), for which W s(t,f) = )cI2 W (t,f).

ihe box-like function rect(t/T) rect(f/F) = 1 for Itl < T/2 and

Ifl < F/2, zero otherwise, which was employed for smoothing in 1], is not a

WDF, since the transform on the left-hand side of (25) yields

F sinc(It 1 - Ft2 ) for it 1 t21 < 1, which is not separable in t1 and t2 '

Also, the Gaussian function exp(-t 2/a - b2 42 f 2 ) is a legal WDF if and only

if b = d, in which case s(t) = (4a )- /4 exp(-t 2/(2o 2)), with a arbitrary.

11
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FIRSI MOMENTS OF W

ihe marginal integrals of W were given in (11) and (12). The

(conditional) first moment of W, with respect to frequency, is

df f W(t,f) = df f dt exp(-i21fr) s(t + 1) s*(t -

f dT s(t + ) S(t - I) f df f exp(-i2 fr)

f dt s(t + 1) s (t - ) 6(t) = ImS '(t) s*(t (28)

Here we used the result

i2 rfdx x exp(i2wxy) = 61(y) , (29)

obtainable directly from (13) by taking a derivative with respect to y.

Therefore the "frequency center at time t" of waveform s(t) is defined as

df W(t,f) s(t)

upon use of (28) and (12). If we let complex waveform s(t) be represented

in terms of its amplitude and phase modulations according to

s(t) = M(t) exp[ie(t)] , (31)

12
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then (30) yields simply

Pf(t) - e'(t) (32)

2wr

which is independent of amplitude modulation M(t). (32) can also be

interpreted as the instantaneous frequency at time t of waveform s(t).

lhe "time center at frequency f" follows in an analogous fashion as

lit(f) fdt t W(t,f) 1 ImS'(f) S*(f(33)
fdt W(t,f) 21 IS(f)I 2

If we represent the voltage density spectrum S(f) in terms of its magnitude

and phase,

S(f) = A(f) exp[-iO(f)] (34)

then (33) reduces to

1
Pt(f) 2, 0' (f) (35)

which is independent of A(f). (35) can also be interpreted as the group

delay at frequency f of waveform s(t).

lhe unconditional first moments of W are frequency center

- I df f W(t,f) fd f fIS(f)l2 fdf f A2 (f)
a I| )1 2 -f (36)

if dt df W(t,f) Jdf ISfI2 Jdf A2()(6

131
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and time center

5Jdt df t W(tf) dt tjs(t)2 dt t M2 (t)t d f W t f t I~ - t M= (37)

(36) follows directly from (11) and (34), while (37) follows directly from

(12) and (31). Thus, f is independent of o(f), and T is independent of 8(t).

Alternative forms to (36) and (37), in the complementary domains, are

available:

, 1 5dt Imfs'(t) s*(t) fdt M2 (t) @'(t)
2w fdt Is(t) l 2  2w Jdt.M(> , (38)

and

1 fdf Im{S'(f)S*(f)l fdf A2 (f) 0'(f)
2 2= r 2 (39)2df IS(f))2 2, A (f)

lhe result in (38) follows from the use of (28) and (12) in definition (36);

a similar procedure yields (39). The frequency center 7 in (38) is an

average of the instantaneous frequency pf(t) in (32), weighted according

2
to the magnitude-squared waveform, M (t); similarly, time center t in (39)

is a weighted average of v t(f) in (35).

14
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SECOND MOMENTS OF W

By taking two partial derivatives with respect to r in (24), there

follows

2 [I. ~ 2_R
fdf fW(t,f) =r 2~s~t) Res"(t) s . (40)

When we then employ (12) and (31), the (conditional) second moment with

respect to f develops into the form

fdf f 2 W(t,f) 2fMAI) F(2 (1

Sdf W(t,f) 812 LM2 (t - M(t)J L2 J

Therefore the instantaneous "mean-square frequency spread" is

df [f - lif(t)] 2 W(t,f)
Of (t) a _

df W(t,f)

8 2 2 dt t)' (42)

where we employed (32) and (12). This result does not depend on phase

modulation 0(t). However, it should be observed that this quantity can be

negative; consider the example M(t) = exp(-t") for t > 0, with 0 < u < 1.

Thus (42) can not be interpreted as a true variance. This unfortunate

feature of the WDF is due to the fact that W(t,f) can go negative for some

values of t,f.

15
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ihe unconditional second moment with respect to f follows from (40) and

(11), respectively, as

Sdt df f 2 W(t,f) -~-T dt ls,(t)I 2 Sdf f21IS(f )1 2 (43)

Analogous relations for the second moments with respect to t can also be

derived via a similar approach.

MOMENIS OFW2

ihe marginal integral of the square of the WOF with respect to f is, via

* (3), (13), and (2),

2 2

=JtRt j 2 [I Jdr ) 2 [ (t) 1 2)(4

2 2

which is the convolution of Isl with itself, at argument 2t. The

complementary result, integrating with respect to t, is

5dt W 2(t,f) = dl JS(f + 2(f- 2

16
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If we complete the integrations in (44) and (45) on the remaining

variables, both yield the result

J5 dt df W2(tEf) = E2 • (46)

see (14). Also note, for comparison, that the double integral on W yielded

E-.

Although the results in (44) and (45) are not overly simple, continued

integration does yield a surprisingly simple result; multiplying (44) by t,

there follows

ff dt df t W 2(t,f) = dt t 2 f dx js(x)j 2 (2t _ ) 2

2 r2 r2 r2

dx Is(x)2 21 dt t Is(2t x)1 2  dx js(x) J dy js(y)I (y + x)/2

2 [tE + xE] i[t E +t E] E t (47)

Here we used (44), (31), and (14). lhus

_: dt df t W2(t,f) - dt t js(t)j 2

- = t ( 4 8 )
SSdt df W 2(t.f) j dt Is(t)! 2

from (47), (46). and (37). This result in (48) is the same as (37), but now

for W2 rather than W.

17
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Conditional first moments of W with respect to f and t are also

deriveable; for example,

df f W2(t,f) - dr(t,) a-R(t,t)

1 dt s(t + ) lm '(t -) s(t

l 1 dx Is(2t - x)j 2 Imfs'(x) s*(x =

- dx M2 (2t - x) M2(x) @'(x) (49)

Here we used (3), (29), (2), and (31). When normalized by the quantity in

(44), the result is considerably more complicated than the corresponding

result for W in (30) and (32); nevertheless, continued integrations simplify

tremendously. In particular, there follows, from (49), (14), (38), (46),

and (36),

5S~dt df f W 2(t,f) - df f IS(f)I (50

2 - = f -I=f) (50)

Edt df W (t,f) f df I~~

lhis is the dual relation to (48), but derived by means of a different

approach. Comparison of (50) with (36) reveals the same result for W as for

2
W.

18
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CROSS WIGNER DISJRIBUJ ION FUNCTION

ihe cross WDF of two complex waveforms a(t) and b(t) is a generalization

of (3) and (10) according to

W ab(tsf) fdr exp(-i2ifrf) R ab(t r)

= dt exp(-i2vwft) a(t + 1) b*(t 2-

fdu exp(i21rut) A(f + R) B*(f - ),(51)

which is generally complex. If a(t) and b(t) are nonzero only for

a1 < t < a2 and b I< t < b 2 P respectively, then the integral limits

on t in (51) are explicitly El' 'r2, where

TI = 2 max (aI- t, t - b 2t 2 min(2 tt-b)

if T1 > T 2, then W abis zero.

ihe following properties of the cross WDF result immwediately:

W a*b*(tsf) =Wab(tS-f)I

W ba(t~f) = W b(t'f)

f df W ab (ttf) = a(t) b*(t),

19
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dt W b (t~f) =A(f) B*(f

ffdt df W ab (t,f) = Jdt a(t) b (t) = fdf A(f) B (f)

2

isdt df l=btfi E aEb

rr c * 2 Ir 2
3 dt df W aa(tf) W bb (t,f) = Jldt a(t) b*(t)l IJJ dt df W ab(t'f)l

$jdt df W b (t,f) W d (t~f) = fdt a(t) c (t)* fdt b*(t) d(t) (52)

The last three relations follow upon substitution of (51), interchanging

integrals, and the use of (13). Again, the double Fourier transform of the

cross WDF yields the cross ambiguity function:

5dt df exp(-12wvut + i21rfr) W ab(tef)=

{d2 2'

= df exp(i2wrft) A(f + R) B*(f-

=Xab(U~r) = dt exp(-i21rvt) Rab(tp-t) (53)

20
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ihe magnitude-squared cross-WDF or waveforms a and b is also related to

the auto-WDFs by means of a double convolution:

1W ab(t -f )1 2 f jfdr 1 dr2 exp(-i2wf(t1 -T 2))

t, +-, 'r2 II -7 T2)
*aa( + 2) b (bt 4 ' 21

-~dr' dt exp( -i 2wfT' ) Raa (t + , ) Rbbt- ,i

cit d' exp( -i 2wf') Raa (t +~ 3fi exp(2rf' ~jwbbt .f

~dt df' W d ,) exp 1-2w(2f f' 2'

-jbb\ (t 2 2/ aa ( 2

-2 jjci df' Wb~ f) aa( + ,2f- f)

ifd d bb W (t '2 f Waa ; b(t 2 -(4

a(t1  2 bbtl

where we let T =( +' 2 )12, T' T . in the third line.

21
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NARROWBAND REAL WAVEFORM

When waveform s(t) is narrowband and real, it can be expressed in terms

of its low-pass complex envelope c(t) according to

s(t) = 2 Re{c(t) exp(i2wfot) 0

- c(t) exp(i2rf 0t) +. c*(t) exp(-i21f 0 t)

where f is the carrier or center frequency of s(t). The WD of s(t) is

then expressible as

Ws(t, f) J dt exp(-i21fT) s(t + T) s (t -

= Wcc (t,f - f0) + Wcc(t. f - ) 

+ 2 RefWcc*(t,f) exp(14wf0 t)) (55)

Here, we substituted for s(t), and used (51) and (52). Since complex

envelope c(t) is low-pass, a representative contour plot of (55) appears as

shown in figure 1. The wiggly lobe centered at f = 0 is subject to rapid

oscillations in t, whereas those lobes centered at ±f are slowly varying

with f and t. A small amount of averaging in time would wipe out the

undesired oscillating lobe, but maintain the desired components at f = f0

22
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0

Figure 1. WOF for Narrowband Real Waveform

SAMPLING PROPERT IES

By letting u = T./2 in (3), the WDF becomes

W(t,f) = 2 f du exp(-i4vfu) s(t + u) s*(t - u) ,(56)

where we again now allow general complex s(t). If this integral is to be

evaluated numerically on a computer. we will need to sample the integrand at

some increment aand apply some integration rule. In particular, if we

use the Trapezoidal rule and carry out the summnation over -oo, -aO, we have

approximation

S~~f 2 A 2 exp(-14mfka ) s(t +- kat) s (t - ka '(1

k

for all t,f. Since it is immnediately seen from (57) that

23
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2Af 4 i (t' f),(8

it follows that Z(t,f) has period (2At) in f, when waveform s(t) is

sampled at increment A . In fact, it can be shown that W is the aliased

version of W:

Wt,f) = W(t,f - %) (59)

n

Thus, W(t,f) need be evaluated only over one period, say (0,.5/A )

Since (57) cannot be evaluated for all continuous values of t and f,

we will limit its evaluation to

n
mat , f = t  (60)

2Nf At

where m, n, Nf are integers. Then (51) becomes (exactly)

fk

the right side of which is recognized as an Nf-point discrete Fourier

transform. If the number of nonzero samples in k is greater than Nf, we

simply collapse them mod Nf, without loss of accuracy, see [5; page 71.

Since the period of W(t,f) is (2At) in f, we only need consider
-1

0< n < Nf-1, that is, 0< f < (2At) Values of m must be considered

wherever the summand of (61) is nonzero.

A plot of two of the infinite number of lobes of W(tf) in (59) is

depicted in figure 2 for a representative bandpass analytic waveform s(t).

24
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The spreads of the desired WOF term W(t,f) are I and B in time and frequency,

respectively. In order to guarantee that aliasing is insignificant in

figure 2, we must choose

(2at) -l > B, that is, At < (2B)
-l  (6?)

For Nf equal to a power of 2 in (61), an FFl can be employed to evaluate W

and will give the vertical slice in f indicated in figure 2 between f r 0 and

-1
f =(At) , for the particular m value under consideration. Since the

spacing of frequency values in (61) is (2NfAt) , then in order to

keep track of the wiggles in W(t,f) as a function of f, we must choose

(Nfat)-I < T- , that is, Nf > T/At > 2B1. (63)

lhus the FFT size may have to be quite large for an extended WDF in t,f

space.

If s(t) is real, then (8) applies, meaning that W in (61) need only be

computed for

-1

0 < n < Nf/2, that is, 0 < f < (4A t ) . (64)

lhe pertinent approximate WOF ; is depicted in figure 3. In order to avoid

aliasing now, we must have

-l -l

(4At) > f H' that is, At < (4fH) , (65)

26

Mllimmwmiii- 
- ,' , . .



TR 8225

where fH is the highest frequency contained in s(t). This sampling rate

is twice as fast as the usual Nyquist rate for waveform s(t), and is due to

the unavoidable factors of 1/2 in definition (3).

ihe procedure described above, in (61) et seq., realizes a slice in f,

at fixed t, of the WDF; see figures 2 and 3. An alternative procedure for

obtaining slices of the WDF in t, at fixed f, is described in appendix A;

however, starting with time samples of s(t), it requires an additional

large-size FF1 to start the calculations.

21
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EXAMPLES OF WDF

In this section, we present several examples of the WOF for waveforms

that are likely to be encountered in practice, and that are amenable to

simple closed form solution. A significant shortcut in the presentation is

possible when it is observed from (3) that if

r(t) = s(t - t ) exp(i2f ot - io ) ' (66)

which corresponds to a time delay and frequency shift, then

W r(tf) = W s(t - t , f - f ) . (67)

Thus we can choose any convenient origin for the waveform s in time and

frequency, without loss of generality, and then merely shift the WD

according to (67), as appropriate.

We will place heavy emphasis here on combinations of Gaussian pulses,

both because of their analytic tractability and due to the fact that any

waveform can be expanded into elementary waveforms consisting of Gaussian

wavelets; see, for example, Gabor's original paper [6, part 1, section 5].

In the following, frequent use will be made of the following integral:

dx exp(- I ex2 + Bx) 2 2exp for ar >0 (68)
2 8 r
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where and 13 can be complex, with componentsI

OL 13 r+ ir + n (69)

Also, ais a special case, there follows

2 fr(13~2 - 32~.3

fdx expV-ja 2 =-2 exp C r B2+a Or0 (70)

(Q + C r 1
r 1

written out in terms of purely real quantities.

GAUSSIAN WAVEF-ORM

Let waveform

s(t) a0 exp( t2) a0 complex .(71)

(Parameters will be real unless indicated otherwise.) Use of (3) and

(b8) yields WDF

W(t,f) = 2E expfi t2  wf0a 1 (72)
L 0o

where E is the waveform energy:

E r' 012  0 (73)

heWOF consists of a single positive lobe in tjf space,centered at the

origin.
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Observe that W(O,O) is equal to 2E for this example; in fact, from (3),

W(O,O) f dr s(r/2) s (-/2) = 2E if s(-t) = s(t) (/4)

Thus waveforms s(t) with this even symmetry result in peak WDF values of 2E

at the origin. However, if s has odd symmetry about zero, s(-t) = -s(t),

then W(O,O) = -2E.

The contours of equal height of the WDF in (72) are ellipses. The

contour for the case where the levels are down to exp(-l) of their peak

value is the ellipse indicated in figure 4. The area of this particular

level ellipse is 1/2 in the t,f plane. When this area is multiplied by the

peak height of 2E, the product is E, which is just the volume under the WDF;

see (14). Thus the "effective extent" of the WDF in (72) is that given in

figure 4, for relative level I/e of the peak.

Figure 4. Contour of WDF (72) at I/e Relative Level
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GAUSSIAN-MODULAIED IONE

s(t) = b cos(2rfot s o) exp (75)

lhe energy of this waveform is

E 1 bV 2 a [1 4- cos(2 )exp(-y ) , (76)
2 0 0 0 0

and its WOF is

( 2'b o ao) W(t,f) =exp -x2 -(y - yo)2 + exp x2 -(y + yo)2 +

+ 2 cos(4f 0t + 2o0) exp[-x 2 - y] (77)

where dimensionless variables

X=tt/O , y = 2f f Yo =2wf 0 . (78)

There are two positive lobes centered at (t,f) = (O,f ) and (0,-f 0 ), each of

peak height approximately E (if y0 is large). The contours of each of these

lobes are circles in the x,y plane, or ellipses in the t,f plane, as indicated

in figure 4. There is also an oscillating lobe centered at the origin; this

is an example of the general situation depicted in figure 1.

It should also be observed from (77) that if a slice in frequency is taken

of the WDF, at fixed time t, that there is no fast oscillation in any of the

three lobes. Whatever value of the cos is encountered, that value is main-

tained, and the only variation with y (frequency) is the Gaussian dependence.

lhus if we 1ncally averaged the WDF with respect to frequency alone, that

would not eliminate the undesired oscillating lobe centered at (0,0).
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MUL11PLE MODULATED TONES

Consider complex waveform

s(t) = a exp [2ifk - (t21 [ak) complex (9

k k

This is a collection of tone bursts centered at (t ksf k) in the tjf

plane, with energy Ek f. 12k The corresponding WOF follows

from (3) and (68) as

4W(t,f) = 2 Ek exp[ kt 2  41 2( - fk] +-

L k

* R+a4f? exp2wf -. 2~) 4.2 (f - f k t(0

where

-2 ( 2 ~2) 1 1 (1 i (81
kA 2 k A-22
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Ihe first line of (80) represents the desired positive lobes centered at

(tk'fk), each scaled according to its energy. lhe remaining undesired

lobes are centered at

t + t f *f
k A k - for all k # , (82)

2 ' 2

and oscillate with t and/or f. These locations in (82) are halfway between

very possible pair of desired lobes; their amplitudes are proportional to

the geometric means of the corresponding interacting lobes, and therefore

constitute significant interference effects to interpretation of the

computed W0F. Furthermore, the locations in (82) can occur in time where

the waveform s(t) is zero, and/or in frequency where the spectrum S(f) is

zero. This most undesirable feature of the WOF has been reported previously

in [7,8]. The only saving feature, that should allow salvaging the WDF, is

that the undesired lobes, k <. in (80), oscillate positive-and-negative and

can be averaged out by smoothing the WDF. Of course, via this smoothing

procedure, the desired lobes will also be smeared somewhat, but this

trade-off appears to be required in order to make a meaningful, useful

interpretation of the WDF at all points of the t,f plane.

ihe envelope of the kj lobe in (80) is proportional to an exponential

of an elliptical function. When this exponential has decreased to l/e of

its peak value, the corresponding elliptical contour has area

l °k > (83)
4 + 23
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in the t,f plane, the latter value of 1/2 being the area of every desired

lobe. Thus the undesired oscillating lobes are smeared out more than the

desired positive lobes.

If we restrict (79) to two equal-duration bursts with the same time

center, but different center frequencies, the undesired lobe oscillates only

with t, not f. This is similar to example (15)-(11). On the other hand, if

(74) is restricted to two equal-duration bursts with different time centers,

but the same frequency center, the undesired lobe oscillates only with f,

not t.

More generally, for two equal-duration bursts with different time and

frequency centers, the undesired lobe has no fast oscillation along lines in

the t,f plane which are parallel to the line joining the centers of the two

positive lobes in the WDF. For two unequal-duration bursts, the situation

is more complicated, and there is generally oscillation along all straight

lines in the t,f plane.

What these simple examples demonstrate is that if we want to locally

smooth (average) the WDF, in an effort to wipe out the undesired oscillating

cross-terms, that smoothing must be applied in both t and f, not either one

alone. Of course, such smoothing will also tend to smear the desired

positive lobes; thus the minimum amount of smoothing to guarantee a

nonnegative WDF is of interest.
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Although these conclusions have been drawn from the particular example

of GauSsian-modulated tone bursts in (79) (for analytic simplicity), they

hold generally. Appendix B demonstrates the oscillating character of the

interacting cross-terms of the WDF for a waveform with two separated energy

bursts in time of general shape.

lhe ambiguity function of waveform s(t) in (75) is considered in

appendix C. It has some similar properties to the WDF and some significant

differences, which make it much less desirable as a descriptor of a signal's

concentration in time-frequency space.

LINEAR FREQUENCY MODULATION

Here, we consider waveform

r 2 a
s(t) = a exp 2- + i t2  > 0 , a complex (84)o L? 2 t ; o -

1 0

]he instantaneous frequency, according to (31) and (32), is a linear

function of time,

jf t) : 2 t ,(85)

while the envelope is Gaussian. When

t to= to/t ,12 (86)

the magnitude of the waveform s(t) is

Js(t0)j la0 3 exp(-*/4) .456Is(0) . (87)

- - S~pS ,
5
IS ~ S -. 35
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If we define the duration, At, of s(t) as the time between these

function values, then

At (88)

During this time interval, the instantaneous frequency in (85) sweeps

through a bandwidth

Af At = %O/p.;I. (89)

ihe time-bandwidth product of waveform s(t) is therefore

2
2At Af = C o 0 0 (> 0) (90)

when the time duration is defined as the interval between the function

values in (87). Ihis quantity, eo f is an important parameter of the

linear frequency modulation waveform (84).

lhe WOF of (84) follows, upon use of (3) and (68), as

W(t,f) 2E exp 2 o (2wf - Got)

2E exp[-x2 -(y )2]=

= 2E exp x2(1 + eo ) + 2xy 8° - y] , (91)

where we employed (78) and (90). This is an everywhere-positive lobe

centered at the origin of time-frequency space, with contours that are

tilted ellipses. The peak value, 2E, is independent of the amount of

frequency modulation.

-. . . . . . . ,
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for a given value of time t, the frequency f that maximizes the WDF in

(91) is

0

f t that is, y = xeo , (92)

which is just the instantaneous frequency in (85). However, this line,

(92), in the tf plane is not the major axis of the elliptical contours of

the WDF. A similar observation regarding the ambiguity function X(Vt),

(23), of the linear frequency modulation waveform, namely

E(v,) = 1 exp[ I (1 4 0 ') - 2x'y'eo +- y2] ' (93)

where

r
x 2u 0 (4

0

has been made in [4; page 1241.

What this means is that, if the WDF of a waveform is evaluated

numerically from a given data sequence (via (61) for example), then the tilt

of the major axis of the contours of the computed WDF is not directly the

amount of linear frequency modulation in the waveform. Rather, the major

axis of the ellipse in (91) lies along the line

y = x tan (95)

in the x,y plane, where

tan j 2 > e0  (96)
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(See appendix D for detailed derivations on the rotation of coordinate

axes.) Thus, the major axis (95) of the ellipse is more tilted than the

instantaneous frequency line (92). Equation (96) can be inverted and solved

for the linear frequency modulation parameter 0 0 according to

00 - tan* - 1/tan* , (91)

in terms of the measured or calculated major axis tilt, tan*, in the x,y

plane. ihe detailed procedure for solving for both a and 0 , in terms

of a computed WDF in the t,f plane, is discussed in the example in appendix

D. especially (D-28) and (D-29).

When the exponential in (91) is down to 1/e of its peak value, the

ellipse at that level has area w in the xy plane. This may be seen by use

2
of (0-1) and (D-20), with A 1 e, B = -2e, C : 1, D r E = 0, F = -1,

for which G 1 via (D-19). This corresponds to area 1/2 in the t,f plane,

as seen by (78). Therefore, the peak height, 2E, times the "effective" area

is again E, as it was for the simple Gaussian pulse of (71) and figure 4.

Thus, although the volume of the WDF in (91) has been redistributed in the

t,f plane, by virtue of linear frequency modulation, the effective area is

maintained, although now located as a tilted ellipse.

A plot of the ellipse of (91) at the 1/e level, namely

2 )2 x2( 2 2
x ( x 2 = x (1 0) 2xyeo  y = 1 , (98)

is given in figure 5, when 0 - 1.5. The instantaneous frequency line

(92) as well as the major axis (95) are delineated, and are clearly seen not

to overlie each other.
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l~stcyla#ne
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Figure 5. Contour of (91) for 00 1.5
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GATED LINEAR FREQUENCY MODULATION

h

All the previous examples in this srction had Gaussian envelopes. We

now consider a rectanguldrly gated waveform with linear frequency modulation:

s(t) = a exp -- t2 for ItL < ; a complex (99)
0 2 j

Equation (3) yields directly WOF

sint (2*f - a t)(T - 21tl)l T

W(t,f) = 2E ( wf - ot)T for Itl < -. all f , (100)

and zero otherwise. Along the instantaneous frequency line, (85), the WDl-

is 2E (I - 21tl/T) for Itl < 1/2, which is nonoscillatory and positive.

However, in other portions of the t,f plane, (100) does go negative, due to

the sin term.

For a given value of t, the quantity W in (100) is maximized by choosing

f =a 0t/(2s), but, again, this is not the major axis of the contours of the

2 2
WDF. In figure 6, these contours are plotted for a,0 = 1 and a0T = 10.

In fact, the contours are no longer ellipses, although they tend to resemble

ellipses near the origin, when frequency modulation parameter 0 12 is large;

see the bottom figure, where the instantaneous frequency line and the

mountain ridge (curve of slowest descent) have been sketched.
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Figure 6. Contours of WOF for Gated LFM
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]he ambiguity function of waveform (99) is

sinhi(2*v - a,0t-)( - jl ) I
LX~T -- 2 1 for jt]< I , all v(101)

1 (2wo - a-)

and zero otherwise. It is similar to the WDF in (100), but is spread out

more in the v,t- plane.
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SHORT-TERM SPECTRAL ESIMATION

Some advantageous features of the WDF have been brought out by earlier

examples, such as the concentrated positive lobes in the t,f plane about

locations corresponding to obvious bursts of energy. However, the WDF also

goes negative in surrounding regions, causing difficulty in interpretation;

see figure 1, (80), appendix B, or [7,8]. What is needed is some form of

smoothing of the WDF so as to eliminate or suppress the oscillating

components; however, this averaging must be two-dimensional, carried out in

both time and frequency, for the reasons presented in the sequel to (83).

We now present one method of smoothing the WDF, which guarantees a

non-negative distribution in time-frequency.

WEIGHTED SPECIRAL ESTIMATE

ihe voltage density spectrum S(f), corresponding to waveform s(t), was

defined in (9) as the Fourier transform over all time. In order to bring

out properties which are local in time, a weighting must be applied before

transformation. In particular, we generalize (9) to

f "
Su (t,f) = dtI exp(-i2wftl) s(tI) u (t - tl) =

I "
= exp(-i2wft) I df1 exp(i2rtfI ) S(fl) U (f f1 ) , (102)
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where weighting u will tend to be a narrow function centered about its

origin; thus the weighting in (102) will accent the behavior of waveform s

in the neighborhood of time t. The function U is the Fourier transform of

u. The short-term power spectral estimate (at time t and frequency f) of

waveform s, relative to weighting u, is then defined as

I Su(t,f)V2  (103)

See also [2, p. 768].

The following symmetry properties of definition (102) follow:

S u(t,f) = U s(t,f) exp(-i21rft)

ISu(t,f)1
2  = Us(t,f)1

2  (104)

where Us is the spectrum of waveform u relative to weighting s. That is,

Us is the dual of Su, Also, by use of (53), we can express

Su (t,f) = X.s(f,t) exp(-iwft) , (105)

in terms of the complex cross-ambiguity function of s and U, where Z is the

mirror image of u: U(t) = u(-t). Also, the same shifting property, given

in (66) and (67) for the WDF, holds as well for quantity (103).

RELATION TO WDFs

There is a very important relation between the short-term spectral

estimate (STSE), (103), and the WDFs of s and u; namely, by use of (102),

(2), and (3), we have
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Is u(t'f)t 2 =Jfdt, dt 2 exp(-i 2rf (t1 - A2 s(t I)s*(t2 )u*(t - t I)u(t - t 2)

- 5cr dt' exp( -i 2wft:) s~t + 1) s*(t' - 12) u (t - t' + 21) u*( - t' -2)

S dt' exp(-i2ft) Rs (t',C) Ru(t - t',) =

i dt' df' Ws (t',f') Wu(t - t',f - f') =

tf

= Ws (t,f) 8 Wu(t,f) (l06)

This relation states that the STSE is a double convolution, in both t and f,

of the WDFs of waveform s and weighting u. That is, the STSE ISu(t,f) 2

of waveform s, relative to weighting u, is a smoothed version of the WDF of

waveform s, where the smoothing function is the WOF of weighting u.

Furthermore, since the left-hand side of (106) can never be negative, and

since s and u are arbitrary, (106) shows that the double convolution of any

two WDFs is never negative for any values of t,f. This furnishes a

possibility of accomplishing smoothing of a computed WDF of waveform s, with

a guarantee of a nonnegative distribution resulting; of course, Wu must be

a legal WDF, as discussed in (25) et seq., in order to guarantee this

nonnegative property.

Since iSu 12 is a double convolution of WDFs Ws and Wu, it

follows that the double Fourier transform of the STSE is given by

45

- "~ -.... 1LV "r F ' MIXm .,.,e" ', ' ' I',f mr m ''""



TR 8225

S dt df exp(i2ft - i2ltv)ISu(tf)1
2 =;u(,T) Ys (vr) , (101)

whereu Xand ' are the complex ambiguity functions of u and s,

respectively; see (23). This leads to an alternative expression for the

STSE as

lSu(tf)I 2 
= Jdt[ du exp(-i2wfT * i2tv)u(Vt) Xs(Vt') (108)

Therefore, if the complex ambiguity function of s is computed, it can be

multiplied by the ambiguity function of an arbitrary weighting function u,

and followed by a two-dimensional Fourier transform. There is no need to

calculate the WDF W via this route; also several different weighting
s

functions could be utilized, each at the expense of a two-dimensional

Fourier transform. The end result for the STSE is always nonnegative. Of

course, the same result is obtainable directly by taking the magnitude-

square of definition (102).

MARGINALS OF SPECTRAL ESTIMATE

There follows, from (106) and (12), the marginal relation

f fISu(t~f)I 2 = _dt Jst) u t, t)1 2 = is (tI 2.t Iu~t), 2 (109)f jt'jsVl' ul

Thus, the time marginal of s is not directly Is(t)12, but is

smeared by the weighting, according to lu(t) 2 In a similar fashion,

from (106) and (11), the frequency marginal is
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rdt ISu(t,fj 2 = IS(f )1 2 0 JU( f 2 (110)

Agan, S~f12is smeared by window IU(f)I2

Finally, completing either of the integrations in (109) or (110), over

the remaining variable, yields

rr dtd 1uti) 2 = Es E

where E sand E uare the energies of s and u, respectively; see (14).

Since weighting u is arbitrary and under our control, we can easily choose

E uto be 1, without loss of generality; then the volume under the SISE

will be equal to the energy in waveform s being analyzed, just as for the

WOF in (14).

MOMEN1S OF SPECJRAL ESTIMAlE.

If we use (110) and (14), we find the following development:

dt df f lSu (t, f 2 ,fdf f d.IS(. 2 IU(f _ v)12

- du IS()IJ df (f-v + u)IU(f -v1

-fdu IS(v)I 2 1 df I f1 I(f1 ) 2 + %,E l

E~ fJdf I f 1 U(f )I2 '+ Eu fd. v IS(v)1 2 .(112)
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Combined with (111), there results

fjdt df fJSu(tf)12 _ df flU(f)12  fdf f IS( f)1 2

Edt d f jSu(t .f ) 2 SOf juuf) 2  S J fjS~f) 2(1)

That is, the first moment in f of the SISE is the sum of the frequency

centers of 1 2 and 1S12 . This should be compared with the

corresponding result in (36) for the WOK. where only the last term in (113)

is present. The presence of weighting u in definition (102) adds an

additional term to the frequency center unless Iu(f)I is even about f r0;

in this latter case, (113) reduces to (36).

In a similar fashion, the first moment in t of the SISE is found to be

f5dt df t ISu~~) 2 dt t Iu(t)l 2 Jdt t Js(t)l 2(14

is ~dt dflSu(t~f)12  I dt ju(t)12  . (114)t~j2

Again, a sum of time centers results; but if weighting Iumtl is even about

t = 0, then (114) reduces to the same result, (37), as for the WOF.
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CONUI LONAL MOME.NT

Just as in (28)-(35) for the WOF, conditional moments of the SISE can be

defined. For example, directly from (105), we have

d df FlS(t,f)l 2=fdf f %t~~) (115)

in terms of the cross-ambiguity function of s and 'G, where fl(t) =u(-t).

An alternative time-domain expression is possible for the frequency

moment in (115): define

Then from (102) and (29),

fdf fIS u(t, f) 2 df f S dt, d t2 exp (-i2,wf(t1 - t 2) g(t't1) g*(t,t 2)

- ~d1  t2 g~ 1) g (t't2) 2v 6' 1 - 2)

where

1 t1 I t
If we represent waveform s in terms of its magnitude and phase according to

(31), and do likewise for weighting u asI
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u(t) =E(t) exp[iP(t)I ]19

then substitution in (117) results in the simplified form

1df fISu(tf)12='IdO(, PI(t - 1)M2(t,) L2(t _ t') (120)

When this result is combined with (109), the normalized conditional

first moment is

fdf fISu(t,f)12  f Jdt j'(t 1) - (t - t11)jf
2(t1) E

2(t _-l 11

Jdf ISu(t~f)I 2 2w 5 dt M ( E 2(t - t 1)(1)

(This reduces to (38) when E(t) = 1, P(t) = 0, that is, u(t) 1, in which

case 5S (t,f) = S(f).) Generally, (121) is an average of @'(t) - P'(t - )

weighted according to the instantaneous powers of s and u.
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EXAMPLES OF SHORI-TERM SPLCIRAL ESIIMA1ION

Here we will reconsider many of the examples presented earlier for the

WDF investigation. The particular example of weighting u adopted here in

spectral definition (102) will be, for the time being,

u(t) (w 2) exp _) (122)

where duration measure a is under our control. The energy E of thisU

waveform is unity, in keeping with the discussion in (111) et seq., which

1Judrdntees that the volume under the SISE will be the energy E. = E of the

wdveform s being analyzed.

GAUSSIAN WAVEFORM

,he waveform s was given in (71); its transform S u(tf) is obtained by

substituting (1) and (122) in (102) and using (68):

: /2 t222

r(t,f) : exp[ -± - fa2  - + i ar(ao] (123)

I a a

where E is the energy of s and

2 1 2 , . 1 1 1Ia l _I°a =2 0 2 o 2 2° o 2 (2)

h \aa0Jh 0
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2 2 2
The quantity aa is the arithmetic average of a and ao. while

2 is the harmonic average. The STSE then follows immediately (or by

use of (70) directly) as

2 h 1/2 2\
ISu(tf) 2 - exp _ - 4 .2fah)] (

°a

The volume under SISE (125) is readily verified to be L, as it must be.

The half widths of the ellipse at the I/e relative level are V? aat y (2wah)-l,

respectively, in the t,f plane. The area of this ellipse in the t,f plane is

a 1 -0 1(126)
h  --

This area is at least twice as great as that for the corresponding WOF in

figure 4, and even then, only when the proper guess is used for the

weighting u, namely o = a . Since waveform duration a will likely be

unknown in practice, the mismatch factor in (126) will smear the

concentration of the SISE somewhat. For example, if a is off by a factor of

2 from a0 (either double or half), (126) is 1.25 instead of its minimum

value of 1.

ahe area enlargement factor aa/ah in (126) is also the same factor

by which the peak of the SISE in (125) is down from its best value of E.

Thus, the STSE has a decreased peak and enlarged effective area relative to

the WDF, the relative factor being at least 2, and being a/o 0+ a /a inA.0 0

general. Both distributions contain volume E, independent of a.
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[his example demonstrates the presence of "window effects" in the SISE

thdt are not seen in the WDF. That is, whereas the effective ellipse in

figure 4 depended only on waveform parameter ao, the ellipse here depends •

additionally on weighting parameter a, in such a fashion as to always smear

the concentration of energy in the t,f plane by at least a factor of 2. In

trade, we always have the guarantee that the SISE (103) will be nonnegative,

and that it will not contain the large interference phenomena inherent in

the WDF; see (80)-(81).

MULIIPLE MODULATED TONES

the waveform of interest is given in (79). ihe transform S u(t,f) is
U)

found by use of (122), (102), and (68):

S (tf) h k 12) exp - k) 2(f - f hk -

iW(f - fk) 2 + i arg(a k  (127)

where energy E k l'kk12 ak , and averages

2 /2 2)\ 1 1 1 (128)
ak 2( k y 2- 2 +2

hk k)
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The STSE is the magnitude squared value of (127); the resulting double

sum has diagonal terms

ahk exPV +k 4 2 (f - i]2(1 9
he 4 2(f - 2 hk (k ifk Oak

which are identical to (125), except for the indexing by k and the shift to

center tkVf k in the t,f plane, as expected. If one value of weighting

parameter o is used to evaluate the SISE for all t of interest, it cannot

simultaneously match all the different possible values of fok1 for the

various pulses. This will cause some of the components in (129) to be more

severely degraded than others, in terms of decreased peaks and spread

effective areas; the pertinent factor is again

"ak 
l o

0 hk 2  + (130)

for the k-th component lobe. If some apriori knowledge of the values of

tokj is available, this suggests using different values of a for those

values of t near the corresponding values of ftk), in an effort to

minimize the factors (130) for different k.

As for the off-diagonal terms of ISu(t,f)I 2 in (127), the kterm is

proportional to

(t tk)2 (t t) 2 2 -k2 2 -2 2 2

exp (ttkh - () o2f]. (131)

4 ak
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If t is not near one of the time centers ltkl, or if f is not near one of

the ffkl' this term will be very small, due to the exponential decay. In

particular, halfway between the dominant desired peaks of (129) at ftk,fk

the quantity (131) will be essentially zero. This is in distinction to the

WDF result in (80) et seq.

LINEAR FREQUENCY MODULATION

This waveform is specified in (84). Its STSE is, upon use of (70),

ISu(t~f) 12  .- 2e [xjp fx2l+r+r 2 +

where

a % 02 r - H= + 2 + r + r e2 
, (133)

0 o ao0 2 2 r 0

0

and where we define, here,

tt

x- y= 2wf7 (134)

By means of the results in appendix 0, the area of the contour ellipse

in (132), at the l/e relative level, is found to be

area = in the tf plane. (135)
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Thus, the product of the peak height of the STSE in (132) and the effective

area is again E, the volume under the STSE, regardless of the values of d,

ao, e . (For 0o = 0, (135) reduces to (126), as it must.)

lo minimize the effective area and to maximize the peak value of the

STSE, the common quantity H2 in (133) should be minimized. This is

accomplished by choosing the weighting parameter a in (122) as

O°Pt 0 2 174 r opt 2 '2A' (136)

(1 0eo) (1+ 0 )

which would require knowledge of both the duration o0 and the amount of

frequency modulation ° in waveform s. Even if that information were

available, the minimum area in (135) becomes

mininum area = ( 2 in the t,f plane , (137)

which still increases as e/2 for large 8o . Thus, even the best choice

of a for the weighting results in considerable spreading of the concentration

ellipse and in peak reduction of the STSE; searching in a is not overly

helpful because the simple weighting pulse (122) is a poor facsimile to the

linear frequency modulation waveform (84), especially for large amounts of

frequency modulation, as measured by parameter a .
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MORE GENERAL WEIGHTING

lhere is no need to restrict the weighting u in SISE (102) and (103) to

be the simple Gaussian pulse in (122). In this section, we generalize it to

allow for some linear frequency modulation:

2 14 - 2

u(t) = (W Cy) exp tJtEu - 1 (138)

2a

The waveform of interest here is again the linear frequency modulation

example

s(t) = a exp -- + i - t] , > 0 (139)02a2 2 0

0

as in (84).

lhe S follows from (102), (103), and (70), after a considerable

amount of manipulations, as

2 2E 1 f2( 2 22 2Su(tf ) 2=r exp (  + r + re + r q 0o)su (~ H3  H300

+ y2 (l + r)/r - 2xy(l + rq) o} (140)

where

2
q_ _ 1 2 2

r -2' q O H 3 r+ 2 + r +-r(q-1) 80 ,(141)

30r
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in addition to (134). The quantities r and q are mismatch factors,

reflecting the lack of knowledge of weighting (138) about the waveform (139).

lhe area of the contour ellipse of (140) at the l/e relative level is

(by means of appendix D)

area = in the t,f plane . (142)

This is also the same factor by which the peak of (140) is down from E.

Thus, a minimum value for H3 is desired. This can be achieved by choosing

r = 1, q = 1 in (141), for which the minimum H3  4 and the minimum area = 1;

however, this requires that we choose a = o and a = a, which is not a

likely situation in practice, without some apriori knowledge about the

waveform s. If this fortuitous situation of perfect match of the parameters

does occur, the STSE in (140) reduces to

lSu(tf)I 2 =- I 8x j2(1+02 2 0 +y21(143)

which is identical to the corresponding WDF in (91), except for a factor of

2 outside and inside the exponential. Thus, the effective area is doubled

and the peak is halved.

As special cases of weighting (138), if a = 0 (no frequency modulation

in the weighting), then H3 in (141) reduces to H2 in (133). Alternatively, if

- 0 (no frequency modulation in the waveform s), then 0 (q - 1) =

2 2
o % (L/o' -I)-- Cy and
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H ~+ 2 +-r4 2 4 afd+O\ a00 2 (144)
3 r0

ihis is minimized by choosing o, 0 and o = o 0, giving value 4

as usual. Finally, for given q, H 3 in (141) is minimized by

-2 2 -1/2
choosing r =(1 + (q -1) e 0) ,for which the minimum H 3 =

2 +- 2(1 +~(q 1) 2 8 ) 12; however, again, this increases as
0

2 jq - 0e as 80 i nc reases.
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SMOOTHING 1*HE WOF

It was demonstrated in (106) that the double convolution of any two WDFs

is always nonnegative, and is in fact equal to the SISE of one waveform

relative to the other:

tf
Ws(t~f ) V Wu~tf Iu~tf (145)

This suggests that one should choose a (legal) WDF for weighting u which is

as narrow as possible (least area or spread) in the t,f plane, in order to

minimize the inherent spreading that (145) implies. The simple examples in

the previous section demonstrated that, for the best choices of duration and

linear frequency modulation parameters in the Gaussian weighting, an

increase of .5 in the effective area in the t,f plane of the S1SE, relative

to the WDF, resulted.

PHILOSOPHY AND APPROACH

Since fine detail of the WDF Ws(t,f) will likely vary in different

portions of the t,f plane, this suggests the following possible procedure

for analysis: For a given waveform s(t), compute and plot the WDF Ws (t,f)

according to (3) or (61). Locate a t,f region of interest in the plane,

where large (perhaps oscillatory) values of W occur; denote the center ofs

the region as tc . Estimate the duration, ac' and linear frequency
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modulation index, c , of this particular region in the t,f plane. Perform

the SiSE of waveform s(t) according to (102)-(103), with weighting

t 1/4 _ t 2  ac 2 = 2 (146)
u(t) = ,o) exp -- + I - t 2 .c c 2 (16

c2a 2 2 C c

(for reasons to be given below), but only for locations t,f in the plane

near t t , f = f .c C

The WDF of weighting (146) is (with ac = 24 C)

W(t,f) = 2 exp 2- 412 a(f - Qct) =

=2 exp t
2 (1 + a + 4*fte c - 4w f a ' (147)

c c

which has a contour ellipse, at the I/e relative level, of area 1/2 in the

t,f plane, regardless of ac and c . This STSE procedure is equivalent

to smoothing the WDF W of waveform s with the WDF in (147), for values

near tclf c in the t,f plane. Thus we have two alternative procedures

for conducting the smoothing of a calculated WDF Ws , the first via direct

evaluation of double convolution (145) for values of t,f near regions of

interest, and the second via the STSE in (102) and (103). Which one to

adopt will likely depend on the number of points that must be closely

investigated in the t,f plane.
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For other regions of interest in the tf plane of the original WDI Ws,

different values of tc , fc' ac'. c must be extracted and the smoothing

procedure repeated. Although tedious, this procedure will minimally spread

the WDF Ws (by area .5) and it will guarantee a nonnegative distribution.

This procedure is similar to that given in [2]; however, the information

required to implement [2] is not easily available, and the current approach

is not limited to constant-magnitude waveforms. A fine-grained analysis of

a given general waveform s, for various t,f values and yielding nonnegative

distribution values, is not going to be achieved without the expenditure of

considerable effort and interaction between a user and preliminary analysis

results.

This two-stage procedure, of observing the raw WDF and then computing

different smoother versions in different regions, avoids the arbitrary

pre-selection of time duration and frequency modulation content of the

weighting in the SISE, which would overly smear the modified WDF for

improper matches of parameter values. It also guarantees nonnegative

estimates. In trade, there is approximately an increase of .5 in the

effective area of the distribution in the t,f plane that must be accepted,

in addition to a decreased peak value. For WDFs, Ws, with lobes which

already occupy portions of the t,f plane with areas significantly greater

than .5, this additional spreading (by area .5) is not very damaging,

provided that ac and ac are chosen correctly. Perhaps simultaneous

plots of WDF Ws (t,f) and STSE ISu(tf)l 2 would yield maximum

information about waveform s.
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In actual practice, where the integral definition in (102) is replaced

by a numerical summation of samples taken at increment a, the quantity (145)

is necessarily approximated. This problem is addressed in appendix E, where

it is shown that the dominant term in the numerical approach is

approximately the desired quantity (145). Furthermore, since the definition

in (E-l) involves a magnitude-square, the approximation is guaranteed to be

nonnegative. This need not be the case if the double convolution of WDFs

W and Wu in (145) is approximated by sampling directly in the t,f plane

and performing a double summation. However, for small enough increments in

both t and f, this nonnegative aspect should be small and probably

negligible; this latter approach was used in [1], although the smoothing

function was not a legal WDF.

ALTERNAILVE AVERAGING PROCEDURES

Instead of using R(t,T) = s(t + S (t - T) in (2) as the instantaneous

correlation at time t and separationT, one could use a local average, in

hopes of improving the correlation and distribution functions. That is,

consider correlation definition

t

R(t,T) = vl(t) 4 R(t,t) = dt' vl(t - t') s(t' + i) s*(t' - ) , (148)

where vI is a fairly sharp, even, real function centered at the origin.

The corresponding "locally averaged" WDF is
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W(t,f) Jdt exp(-i2.ft) R(t, )

,(dt' v,(t t') W(t',f) = vl(t)tW(t,f) (149)

This is a convolution, in time only, of the WDF of s with weighting vI.

Reference to the discussion following (83) reveals that this form of

averaging is inadequate, since it does not average additionally on

frequency. Also, (149) need not remain positive, as would be desired of a

smoothed WDF.

Furthermore, the Fourier transform in (149) (as well as (3)) is over all

T, thereby involving argument values of waveform s in (148) which are very

A
distant from the time point, t, of interest. If W(t,f) or W(t,f) is to be

considered as the "spectrum at time t," it is hard to justify why

arbitrarily distant time points from location t should enter into their

evaluations. Therefore, in addition to the local average in (148) for

stability purposes, there should be a weighting in t in (149) to better

confine the Fourier transform to local values of waveform s about time

instant t of interest.

To this aim, consider the more general form of average given by

A t
R(t,T) v2(tt)(R(tt) = Jdt' v2(t - t',t) R(t',T)

Jdt' v2(t - t'dT) Jdf' exp(i2vtf') W(t',f') ( (150)
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where weighting v2 depends additionally on T. Define its transform

V2 (t~f) = 5dt exp(-i21fr) v2(tT) (151)

A

Then the modified WD corresponding to R in (150) is

W(t,f) = S dt' df' W(t'.f') V2(t - t', f - f')

tf

= W(t,f) & V2 (t-f) , (152)

which is a double convolution of W with V2 , on both t and f. However,

since V2 need not be a WDF, W in (152) can become negative for some t,f

values. This form of smoothing was considered previously in [9; (1.5)] and

[10; (2.1)].

An additional justification of two-dimensional smoothing, from the

frequency domain alternative viewpoint, is given in appendix F. Also, a

generalization of the Gaussian WDF (141), with arbitrary area and linear

frequency modulation content and which guarantees a positive distribution W,

is given in ( - -( - );this result generalizes that in [11] for no

frequency modulation.

If we specialize weighting v2 in (150) to the form

v (t,T) u(t + T) u (t - ) , (153)

then (151) yields

V 2(t~f) = Wu(t~f) , (154)
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and the general result in (152) specializes to (106), which is guaranteed

positive. Thus the special case of weighting v 2 in (153) leads to the

SISE of s, relative to u.

EIFICIENT CALCULATION OF SHORT-TERM SPLCIRAL ESTIMAE.

If we employ the weighting u in (146) with linear frequency modulation

parameter act the spectrum in (10?) becomes

S t,f) {dt I exp(-i2wft) s(t 1) u (t - t1)

=exp(-i2wft) ,fdt 2 exp(-i2wft 2) S(t + t 2) u( t 2)

-1/ exp(-i2.fft) fdt2 exp(-i2wft ) s(t + t ) exp - - -i 

c 2 2 2 2a 2 2
C

(155)

The exp(-t 2 (2a 2)) term gates out the portion of s(t + t) near

the origin in t2  while the exp(-i a t/2?1) term cancels linear

frequency modulation in waveform s.

An approximation to (155) is obtained by sampling at increment a and

using the Trapezoidal rule:
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-1/4

Su(t,f) (, 2) -1-i2ft) exp(-i21fAk)*
k

* s(t + kA) exp 2 k2A2 + i , (156)

which has period I/A in f. In particular, the approximation to the STSE,

at selected points, is

[U(mA -
2  exp(-i21nk/N)*

* s(mA kA) exp k2A2( + i C 2 (157)

which is an N-point discrete Fourier transform; m, n, N are integers.

The procedure for analysis is as follows: for a region of interest

centered at t c,fC in the t,f plane, choose time values mA near tC '

Then for each m, sweep out n such that frequency n/(NA) is near f c; an FFT

will give all f values in (0,1/A). Plots of (157) give a fine-tuned STSE

near t c,fc for the particular choices of ac ac . Additional estimates

with different parameters will be required in other regions; there is no

globally optimum smoothing that will yield high-quality positive spectral

estimates for all t,f values.

67

F 2 0



TR 8225

ihe numerical evaluation of the exponential quantities

Q2(k) = exp 2 k A +(2 , i )] = Q2(-k) (158)

C

in (151) can be effected very efficiently by the methods given in [12].

They are given by recurrences (which need to be evaluated only once for each

c c

Q1 (k) QI(k - 1) exp(2c 2 )

Q2(k) = 02(k - 1) Q1(k) f

with starting values

0l(O) = exp(- c2 ) , 02(O) = 1

,~'I
c 2  2 a a 2  + i .(160)

1

Only two complex multiplications per stage are required in (159).

Furthermore, since

exp(- c2) exp , exp( ,) F E (C + iS) , (161)

and

exp(2c) C E2 - 2SC(162)
2E2(62

only one exp, cos, and sin must be evaluated to accomplish (159) for all k.
6
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WDF WITH MINIMUM SPREAD

The virtues of smoothing WOF Ws of waveform s with the WDF Wu p

(147), of weighting u, (146), were discussed earlier in this section. At

that time, the selection of form (146) for the weighting was seemingly

arbitrary. However, it is shown in appendix G that the weighting, u, which

has a minimally spread WDF, is precisely that given in (146). The measure

of spread is

1 dt df W u(t,f) (f - 3 Ct) 2  , (163)

where 1c is a specified (observed) slope of interest in the t,f plane, and

a = 2wOB . This measure of spread concentrates the WOF about the

specified slope; see (147). 1he actual minimum value of spread (163) is

given in (G-24) as

minimum I - 1 (164A)82 2

c

when weighting u is constrained to have mean square duration

2 2

dt t 2 ju(t) - c (164B)

in addition to unit energy. Without these two constraints, the minimization

of spread (163) is ill-posed; see appendix G.
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PERFORMANCE IN NOISE

In this section, we investigate the bias and stability of a WOF estimate

obtained from a noisy waveform. In particular, the given waveform x is

x(t) = s(t) + n(t) , (165)

where s is a deterministic signal of interest, and n is an additive

zero-mean stationary noise. In fact, we have

n(t) = 0 , n(tl)n (t2) = Cn(tI - t2)

Gn(f) fdr exp(-i2vfr) Cn(t) , (166)

where Cn and Gn are the noise covarlance and power density spectrum,

respectively.

WAVEFORM WEIGHTING

If the WOF of given waveform x in (165) were directly evaluated via

definition (3), the result would be infinite, since the NxN (noise--

cross-noise) terms do not decay for large arguments. Also, since the signal

s will be assumed to be transient and decay to zero for large arguments,

some gating or weighting of given waveform x is appropriate, in order to
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concentrate on the time regions where signal s is largest. Accordingly, we

consider the weighted waveform

y(t) = v(t) x(t) = v(t) [s(t) + n(t)] , (167)

where v(t) is a deterministic function under our control.

The WDF that will be calculated is therefore

Wy(t,f) = dt exp(-i2wfT) y(t + i) y (t - )=
yy22

a + b + c + d , (168)

where

a = jdt exp(-i2wfr) Rvv(t,T) s(t + 1) s*(t -

b = SdT exp(-i2wft) R (t,c) n(t + 1) n*(t -

c = fdT exp(-i21fT) R (t,r) s(t + 1) n*(t -

J)dns(t -')I

d = dT exp(-i2vfC) Rvv(t,t) n(t + ) - 169

and

Rvvt, :v~t+ * C

R) (t~) = v(t + v (t - ) (170)

The first two quantities in (168) are, respectively, SxS and NxN terms,

while the last two are SXN terms; here,S denotes signal, while N denotes

noise. The SxS term, a, in (169) is real and non-random, while NxN term, b,

is real and random. On the other hand, the SxN terms, c and d, are complex

random, with d = c.

71



TR 8225

MEAN VALUES

An alternative expression for the SxS term in (169) is

a = dt exp(-i2rft) Rvv(t ,c) Rss(t ,)

f

= W (tf)*W (t,f) , (171)vv 55

in terms of the WDFs of weighting v and signal s.

The mean of the NxN term is

= fdt exp(-i2wft) Rw,(t,t) Cn(r) =

f

= Wvv(t,f) OGn(f) , (172)

where we made use of (166). And since noise n has zero mean, there follows,

for the SxN terms, c= d 0. Collecting these results together, the mean

of WDF estimate (168) is

W yy(t,f) = Wvv (t,f) * [Wss(t,f) + G n(f)] (173)

No additional statistical properties on the noise n, such as a Gaussian

process, are needed for result (173); this holds for an arbitrary stationary

noise process. The difference in mean outputs, for signal present versus

signal absent, is just a, as given by (171).
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VARIANCL. OF WOF ESTIMATE

In order to determine the variance of estimate (168), we need to assume

that noise n is Gaussian. Furthermore, in addition to properties (166), we

will presume that

n(t1I) n(t 2) 0 ,(174)

as is true when n is an analytic process or a complex envelope [13, ch.2].

Then (168) yields

W 2 (tf) W jy(tef)J 2 = a 2 + b2+ IC12 +_ )d)2 +-

+2 ab +cd + cd ,(175)

the other terms being zero due to n being zero-mean Gaussian noise.

The second term on the right-hand side of (175) can be developed from

(169) as

-2 Jb2 a, J d -d, e x p(- i2 ir f C, T2)) R VV(titl)

Rvv (t7t2)[CnCErl) Cn(tC2) + C(~ 2 )(16

where we used (166) and (174). Referring to (172), we have
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b-2 2 + fdrI dT2 expi2mf(r -T2)) Rvv(t.tC)*

*R *(t.) C2 - . (177)
vv n 22l

At this point, it is convenient to define

G (2 )(f) = r ex(iw n (t) -(178)
n n x(i~f)C

Then

Gn 2) (f/2) dT exp(-i21fr) C2 (r) = Gn( Gn(f )  (179)

n~~f2 n Gn n)

and

C C~)= 5 df exp(i2irfT) G ()(f/ 2 )=

= 2 Jdu exp(i41ur) G(2) (u) (180)

When this result is substituted in (177), there follows

b = + 2 dv W2(tjf- V) Gn

2 2 ~f (2)(f
S- (t,f)0 G n (181)
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The third and fourth terms in (175) are

IdI 2  cd Jdt1 dt 2 exp(i21yf (C1 - 2 )) R vv(t t17)*

* v(t '-r2) st+ 7-) s* (t + T22) Cn(T L 2 )

Jdu G (V) I B(t. f - 12 (182)

where

f du exp(i2uwvt) Wvv (t,f -1 S(V,) (183)

(As special cases, if weighting v(t) 1 for all t, then R vv(t"t) 1

and

i 2 = 4 fdv G n(v) jS(2f -)I2 (184)

while, instead, if G n(f) -Ndfor all f, then C n (T) N Nd 6(r) and

=ci 2 N d Ijdt R vv(t,t) It+ (185)

If both conditions above hold, then
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Returning to the general case again, the fifth term in (175) is given by

combining (171) and (172), while the sixth term is

cd* = Vdl d 2 exp(-i2wf(T -t2 )) Rvv(t, t) *

•Rvv(tt 2) s s* - 2) - - 0

by use of (174).

Combining the above results, we have, for the variance of the WDF

estimate,

Var{Wyy(t.f)I - a2 + b 2 + 21cI 2 + 2ab- (a + -2 )

= b2 - b + 2 Ic2 =

2 f
2 W'(tf) 0 Gn2M(f) + (NxN)

+ 2 jd Gn(V) fB(t~f _ 2 (SxN) (188)

This result holds for arbitrary signal s, weighting v, and noise spectrum

Gn. The quantities G 2) and B are defined in (178) and (183),
n* n

respectively.
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If we do not weight waveform x(t), that is, choose v(t) = 1 for all t in

(161), then R vv(t,T) = 1, W vv(t,f) = 6(f), and the NxN term in (188)

becomes infinite; that is, the WDF estimate (168) has infinite variance if

we do not weight in time, regardless of what the actual noise spectrum,

Gn , is.

On the other hand, if the noise n is white, then Gn (f) = Nd for all f,

Cn(t) N 6(t), and G n in (178) is infinite, which makes the NxN term

in (188) infinite. Thus, if we do not filter out the noise which is out of

the band of the signal, the WDF estimate has infinite variance, regardless

of what time weighting v is employed.

WDF PROCESSOR

In view of the above observations, we now consider the general WDF

processor depicted in figure 7. The only new element here is the

H Mlu o

Figure 7. WDF Processor

time-invariant lirear filter with transfer function H. The input noise no

is presumed to be white over the band of the input signal so; mathematically,

this is handled by letting
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Gn(f) = Nd for all f , (189)

where Nd is the double-sided noise spectral density level in watts/Hz.

The linear filter H(f) approximately matches the bandwidth of the input

signal and passes S0 (f) essentially unaltered, while filtering out

undesired noise spectral components. The actual filter output signal s is

given by

s(t) = h(t) so(t) = fdf exp(12ift) H(f) S(f) (190)

The weighting v(t) approximately matches the duration of the signal and

passes s(t) essentially unaltered, while gating out undesired noise temporal

components. Representative plots of the various quantities in figure 7 are

given in figure 8.

A numerical example of the WDF processor in figure 7 is carried out in

complete detail in appendix H, including the mean and variance results given

earlier in this section. In'particular, the input signal so is a linear

frequency modulation waveform with Gaussian amplitude modulation.
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~~~~(f>_N I D _ _ _ _ _ _ _

AA A-)

Figure 8. Time and Frequency Characteristics of Figure 7
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SUMMARY

When a segment of a stationary random process is available, the method

of Blackman and Tukey [14J tells us that, to estimate the correlation

function at delayT, we should average the product of waveform values

separated in time by t seconds, and that we should carry out this averaging

over the total available data record, in order to reduce the effect of

random fluctuations. For a nonstationary process, the averaging interval is

further limited to that in which a significant change is statistics does not

occur.

After obtaining the estimated correlation, the Blackman-Tukey method

further directs us to weight the correlation values in the neighborhood of

-= 0 more heavily than those for larger t, and to Fourier transform the

weighted correlation estimate. The weighting should taper off to zero for

larger r, so as to suppress these more noisy estimates, and the taper should

be gradual so as not to create significant positive and negative sidelobes

in the frequency domain.

These two operations, averaging in time and weighting in delay, are both

totally absent in the WOF, as may be seen from (2) and (3). In fact, (2)

and (3) might be viewed as the ultimate in greediness of a spectral

estimate, since they include no averaging and no weighting. Viewed in this

light, it Is not surprising that the WOF has some very debilitating behavior

in terms of negative distribution values and large interference terms.

80



TR 8225

ihe inclusion of averaging and weighting in the spectral estimate, as

typified by (150)-(152) and (F-1), results in a modified distribution

function which is a double convolution with a smoothing function in the t,f

plane. Furthermore, the averaging and weighting in (F-1) takes place both in

the f and v domain (line 4) just as well as in the t andt domain (line 3).

Alternatively, line 2 indicates that the complex ambiguity function may be

weighted in two dimensions and doubly Fourier transformed. However, the

resultant modified WOF need not be positive.

The identity of this double convolution with a positive STSE, when the

smoothing function is a legal WOF, allows for an alternative approach that

is very attractive computationally and is easy to interpret. The preliminary

calculation of the WDF serves to point out regions of interest in the t,f

plane and to quantify the time and frequency extents, as well as the amount

of linear frequency modulation, to utilize in weighting u in the STSE. This

procedure is illustrated in appendix I for the waveform s(t) = t exp(-t 2/2)

and shown to yield a physically meaningful smoothed distribution function,

whereas the WDF is very difficult to justify and interpret on any physical

grounds.

It was pointed out earlier that double convolution of a given WDF with a

Gaussian WOF increases the spread of the smoothed function by area .5 in the

t,f plane, since the effective area of a Gaussian WOF is .5. Strictly

speaking, this is only true when the Gaussian WOF contour ellipse has the

same tilt and the same ratio of major-to-minor axes as the given WDF

(assumed Gaussian in the region of interest in the t,f plane). More

81



TR 8225

generally, if there is a mismatch in tilt or ratio of major-to-minor axes,

the effective area is increased by more than .5. thereby leading to

additional spreading in the t,f plane. The detailed derivations are

presented in appendix 3.

The performance of an estimator of the WDF of a signal in the presence

of noise depends on the amount of filtering and weighting employed to

suppress noise components in frequency and time. Exact relations for the

mean output, the bias, and the variance of the WOF estimate are given.

82



IR 8225

APPENDIX A. SLICLS IN TIME OF THE WDF

ihe voltage density spectrum of waveform s(t) was given in (9). If s(t)

is sampled at increment At. an approximation is afforded according to

S(f) = dt exp(-i2mft) s(t) =

At 2 exp(-i2mfkat) s(kAt) S(f) for all f. (A-1)

k

The summation on k runs over the range of nonzero summand. Since

S f 4 t- 
( f  (A-2)

then (f) has period 1/At in f. We limit the evaluation of S(f) to the

values

= At 2exp(-i2wnk/Nf) s(kAt) for 0 < n < Nf - 1 , (A-3)

k

where n and Nf are integers, and thereby cover a full period of S(f). A

representative plot of IS(f)jand its sampled values appears in figure A-1.

For the low-pass case of '(f) depicted in figure A-1, it is necessary to

choose

At < (2fH)
-I  (A-4)
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V-I

Figure A-i. Low-Pass Spectrum '(f)

in order to avoid aliasing. We will also need frequency spacing

(N1A < (21) -
, that is, Nf > 21/at (A-5)

in order to track the wiggles of S(f) in frequency, where I is the effective
-1I

time duration of s(t). In fact, we may need frequency spacing (NfAt)-1 to

be very small if we are to do further accurate integrations on S(f). Thus

we need

Nf > 4 f H T, (A-6)

and perhaps much larger for further manipulations.

The WDF can be written in terms of the spectrum S(f) according to (10):

W(t,f) = dv exp(i21vt) S(f + 1) S*(f :) =

= 2 du exp(i4mut) S(f + u) S (f - u) (A-7)
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If we sample S(f) at increment Af in frequency, the Trapezoidal

approximation to the WDF is

W(t,f) 2Af 2exp(i41t af) S(f + af) S*(f -JAf) (A-8)

for all t,f. Since

W 2 af W(t.f) , (A-9)

A -1
then W(t,f) has period (2Af) in t. Accordingly, we evaluate only

W 2NAf nA = 2Af exp( i2,rrd /Nt) S (n + )Af) S*(( n- Af) (A-10)

for 0 < m < N t  1, where m, n, Nt are integers. In this manner, we get
A

a slice of W(t,f) in time t (m) for fixed frequency f (n). The operation in

(A-10) can be efficiently realized as an Nt-point FF1 of collapsed samples

when Nt is a power of 2. tI

Now the only information on S(f) that we have available are the samples

of S(f) given in (A-3). If we choose, without loss of generality,

, ~Af =(NfAt)-I All
IN-

then (A-1O) becomes (exactly)

At Nf nt) N exp(i2wmA/Nt) S( ) n- 2n-

for 0 <in N t- 1. We then adopt as our approximation to W, which itself

is an approximation to W, the quantity

A-3
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N n exp(i2rnLQ/Nt)
NQt  N f At JcLn 

Ifat fi t

for 0 < m < N - 1, where
- t

I l-n denotes In t1 < Nf/? . (A-14)

and we presume that S(f) has been calculated for IfI < (2At) - ; see

figure A-i.

The quantity NfAt may have to be large, in order to sample S(f)

finely enough for an accurate WDF. Then since the spacing in t, applied to C

N a
i ft 4

W(t,f), is 2Nt , it may require a large value of Nt in order to keep track

of the variations versus t. Also, n may not have to run through consecutive

integer values, but may take on decimated values, so that n/(Nf A t)

tracks the f behavior adequately.

I

,I

M
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APPENDIX B. OSCILLATING WDF FOR SEPARAJID PULSES

Consider the waveform s(t) in figure B-1 consisting of two separated

energy bursts of general shape. Let t Iand t2represent the "center" of

each pulse, and let IIand T 2 be some measure of their durations. Define

21 2

Let us investigate the WDl- of s(t) for t near t c . that is. near the center

of the two pulses. In particular, let time

t = tc + a, (8-2)

where a is small. Then from (3),

W't +Af) f exp(-12mft) s(t + T) s* +A
c ,) ctc 2 tc4 2~)

exp(i 2wf (t1  t2))dx exp( -i21rfx) sst .A+)s(t + A - x 83

41 tt

Figure B-1. Waveform s(t)
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where we let Z= t2 - t 1 x.

It can be seen from the integral expression in (B-3) and figure B-1,

that for small a, only small values of x will contribute to the value of the

WDF. In fact.

lxi < min(llT,2 ) (B-4)

is the dominant range of contribution to the integral. Thus the variation

with f of the integral component of (B-3) is slow. By contrast, the leading

exponential term in (B-3) varies much faster with f, since

t2 - tI > max(TiT 2) > min(Ti,T 2) (B-5)

Since these faster varying oscillations of the exponential term cannot be

cancelled by the slower integral contribution of (B-3), the WDF will

oscillate in f, for times t near tc = (t1 + t2)/2. Thus separated

time pulses will leod to oscillations (in f) of the WDF, near times midway

between the pulses, regardless of their detailed shapes. An analogous

argument can be presented for spectral components, based upon form (10) of

the WDF.

Notice that as t2 approaches tl , and the two pulses become one, the

oscillating exponential term in (B-3) disappears, allowing for the

possibility of a slowly varying (hopefully positive) lobe in the WDF.
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APPLNOIX C. At4BIGU~lY FUNCTION OF (79)

The complex ambiguity function of waveform s(t) in (79) is obtained by

substitution into (22) and use of (68):

ri V laA o exp[ k1 2 v2

2 21

+ P kI V + i2wf T -it V +12wf (t -LI, (C-1)
2 2+0 2 Mi kA ki 10 Vp M k k

'~ I*k

where

= (t + t) f * + f)

-2 1(02 +2 1 11 \
0~ '0 k0A1-2 2-

It \k 05-)

T A t+ ' ~ v+ -fk C2

The diagonal terms of (C-i) are

E EexpE~ I k2Ia24wv 2+ 12 if T - i2wtk (C-3)

k 1 0k

which are complex and oscillate with T and v due to the imaginary terms.

The contour at the l/e relative level, of the magnitude of the k-th term, is

an ellipse with axes twice as large as those depicted in figure 4. In

addition, the peak amplitude is decreased by a factor of 2 below that for

C-1
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the WOF in (80). Thus the ambiguity function is a more smeared function of

time-frequency than the WDF.

The ambiguity function has peaks of value

aka Ok exp[r(f k + f)(tk - t (C-4)

centered at

(tMv) = (tk - t'fk - f (C-5)

for all kj.. lhe phases of (C-4) are virtually random relative to each

other. A slice in ,. for fixedt, varies (in addition to the Gaussian

envelope) as

exp 21rv -k T - (C-6)

which could be either a slow or fast variation, depending on the particular

parameter values. All of these features make physical interpretation of the

ambiguity function very difficult.
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APPENDIX D. ROTATION OF AXES

Consider the general second-order curve described by

Ax 2+ Bxy + Cy 2 + Dx + Ey + F = 0 (D-1)

If we rotate the x,y coordinate axes according to figure D-1, we have

x =x, cos(13) - y' sin(13)

(0-2)

Y = x, sin(p) + y' cos(13)

Substitution in (0-1) yields

A'x' 2 f- B'x y' I~ + l 2 + Dlxl + Ely' + F 0 ,(D-3)

where

Xe

01 -JB

Figure 0-1. Rotated Coordinate Axes
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A' 1 [ + C + (A - C) cos(28) + B sin(20)]

B' B cos(23) + (C - A) sin(28)

C' = iA + C - (A - C) cos(23) - B sin(213)]

0' 0 cos(13) + E sin(13)

E' = - 0 sin(B) + E cos(13)(0)

If we want to eliminate the cross-product term in (D-3), we must make

BI 0, that is, take

tan(23) A B C(D-5)

We will also choose 20 in the principal value range:

2B = arc tan (AB(0-6)

that is

< 2B << 0 <(D-7)
2 - -2' 4 - - 4

All other solutions for 28 differ by nw; that is, B differs by nwr/2. These

are the major and minor axes of the curve described by (0-1).

If we now define

R VA-C +B2 P =sgn(A -C Q 08

where f' denotes the positive square root, we find

0-2
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cos(23) = 1A - C = A -C P( 9

R R '(9

see figure 0-2. And since sin(23) has the same polarity as tan(23) in the

principal value range,

sin(20) ( B BBsg (0-10)
R sg) RP

Also, since

cos 2 (0 ~(1 + cos(211)) = + _[A _J ), (D-11)

then

cost) :AR C

R-IA -CI Bsin(13) 2R sgn (, C*(0-12)

It then follows that the coefficients in (D-4) simplify to

A' = (A +- C +- RP)

B' =0

C' ! (A + C - RP) ,(0-13)I2

IA-C
Figure 0-?. Triangle Interpretation of (0-5)

0- 13



iW UTAF WO~ PO %-r WJr M1r 16 An~ %F gjI 117 POU~ f J JN N JNJN I ".' NJ . N J L Y!'lW'MN FNJ KT 7 JNJN M ~Nh

IR 8225

from which there follows

A'C' AC - B 2(D-14)

Additionally, we have

tan(13) =PR - (A - Q
B

cot(13) =PR + BA - C) (0-15)

As a result of the above, the general equation in (D-3) can be written as

A') + ~ +- C = . + E--~ F ,(0-16)

2A' 4AC - B? 2 2C' 4AC - B2 D-7

The simplest expressions for D' and E' appear to be those given in (0-4), in

conjunction with (0-12). However, 0' 2and E' can be simplified,

resulting in expression

A' (x + ) +- C'Qs _7i G ,(D-18)

w e eG AE 2 CD 2-BDE -F .(0-19)

4AC - 8B2

Now suppose that A and C in (0-1) are positive and that 4AC > B2
TenA' > 0 and C' > 0, meaning that (0-18) is an ellipse if G > 0.

0 -4
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Furthermore, if A < C, then A' < C' and x' is the major axis. On the other

hand, if A > C, then A' > C' and x' is the minor axis. See figure D-3. The

area of this ellipse is

Area wG _ 2wrG V1(D-20)I

by use of (0-14), where G is given by (D-19).

It follows directly from (D-18) that the curve is a circle if and only

if A' =C', that is, R = 0 via (D-13), which in turn means A =C and B 0

from (0-8).

2C''

Figure 0-3. Ellipse in Rotated Coordinates

D-5
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EXAMPLE

Consider the ellipse in (91), for which

A = 1 + e2 , B = - 20 , C 1; o > 0 (0-21)
0 0 0

Then (0-5) yields

tan(23) = -
2/00 (0-22)

from which there follows

tan(21 + -l/tan(20) = 0/2 ,

1 arc tan (0-23)

As 00 varies from 0 to @&, 13 varies from -w/4 to O; thus 13 always lies in

the principal value range, as required by (0-7).

However, since A > C in (0-21), then 3 is the angle in the x,y plane of

the minor axis of ellipse (91). The major axis angle in the x,y plane is

= 3+ i, (0-24)

which varies from w/4 to w/2. There follows

tan(2* = tan(213 + w) = tan(20) = - 2/00 (D-25)

from (0-22), whereupon the slope of the major axis in the x,y plane can be

obtained as

0-6



1R 8225

tan 0++ 4) (D -26)

lhis slope varies from 1 to ob as 0o varies from 0 to +do. Conversely,

given a measured slope, tan*, of the major axis of a WOF contour in the x,y

plane, the corresponding amount of linear frequency modulation can be

determined from (D-25) or (D-26) as

o o = tan*/ - 1/tant . (D-27)

The final determination of frequency modulation parameter a in (84)

requires the additional knowledge of a in (90).

In practice, where both ao and 6o are unknown apriori, the WDF

will likely be plotted directly on the t,f plane. According to (78) and

(D-24), the major axis will then lie on the line

f =t ta , (D-28)

which can be observed and measured. But a can be determined separately

from a slice in f (at fixed t) of the WDF, since the variation in f in (91)

is proportional to

ex 32(1f- 2](D-29)

Thus the distance, between frequency values that are down by l/e from the

, peak on this frequency slice, is (woo)-1, and can be used for direct

calculation of a. Then (D-28) and (D-27) yield tan* and ao f

respectively.

D-7/D-8
Reverse Blank
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APPENDIX E. DISCRETE APPROXIMATION TO SHORT-TERM SPECTRAL ESTIMAlE

lhe STSE is given by (102) and (103). A discrete approximation, by

means of the Trapezoidal rule, is furnished by

t(t,f) a u exp(-i27fAk) s(kA) u*(t - kA) 2

k

A2 exp(-i2f A(k-A)) s(kA) s*(ja) u*(t - kA) u(t -2A)

.'J
A2~- )) i2. ~ Rs( A, ,k6A ) R t -k A,- kA-.

k A) (E-l)

where A is the sampling increment in time. Let

m = k -, n = k +R , (E-2)

to get

(t,f) a 2  exp(-i2wfam) Rs-A mA) Ru(t - -A, ma) (E-3)

m+n
even

Define, for use below, the function

f

C(tl t,f) = Ws(tif) 6Wu(t - tif) -

- fdf1 Ws(t 1,f) WU(t - tif - f1 ) , (E-4)

E-1
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which is the convolution, on f, of WOs W and W When the integral ons u

t1 is effected, it yields the desired double convolution:

tf
Jdt1 C(tl t,f) = Ws(tf) P Wu(ttf) ([-5)

We now express R and R in (E-3) in terms of the inverse transformss u

of W and Wu. respectively, according to (24), interchange summations

and integrations, and use the facts that (4, chapter 2]

exp(-1ir:KM) 2 6(x- )

m even

exp(-12wxm) !(-1?6(x - ) ,6)

m odd

to get approximation (E-1) in the form

J(t ,f) A2 2 C(nA tf +

I n even

+ '2 -, 2 C nt-jtf a E

n odd

The A= 0 terms together give, where the sum is now over all n,

I-2



1R 8?25

CO-"t~f)(E-8)

n

which is a discrete approximation to desired quantity (E-5).

The R~1 terms in (E-7) yield

(_) C~nflAt 1 (E-9)

which is approximately zero. A similar result holds for -1.

ihe .1- 2 terms in (E-7) are

A C -'j- 1) (E-10)

n

which is a discrete approximation to convolution (E-5), but shifted by

frequency I/a. For small sampling increment a in approximation (El-1), the

quantity (E-10) will be small in the fundamental region centered at f 0,

and can be neglected. Thus (E-8) is the dominant term, giving

j(tf)% 4 2CR-'t,f)

n

r tf
N fJdt 1 C(t1 o,f) W S(t,f) 0 W u(t,f) .(-l

E-3/E -4
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APPENDIX F. SOME SMOOTHING CONSIDERAIIONS

This discussion complements and extends that given in (148)-(152)

regarding two-dimensional smoothing of the WDF. For easy reference, we

repeat the diagram under (24) and furnish an additional one for the

smoothing functions that will be employed here. An arrow denotes a Fourier

transform.

WAVEFORM FUNC1IONS

s (t -* (t R(t,'c) me f W(t,f)

tj tf

f.ur go A(Uf) =S S* ( -

SMOOIHING FUNCIIONS

v2(tt) V2(t,f)

t jt

q 2(I f O2(Vl f)

By using the basic Fourier transform relations above, we may readily

show that two-dimensional smoothing of WDF W with general function V2 may

be written in several alternative forms:

F-l



TR 8225

tf

W(t,f) 6 V2(t,f)

= Sfdu dr exp[i2w(ut - fr) X(u,) q2(VT) =

if. t

J dtexp(-i2*ft) [R(t,t) 9 v2(tT)] =

= d exp(i2wtt) [A(v,f) 0 Q2lv,f)] (F-1)

The second line says that the ambiguity function X of waveform s should be

weighted by q2 and the product then double Fourier-transformed into the

t,f plane. The third line indicates smoothing of R on t, followed by

transformation of a weighted function of t. The last line performs

smoothing of A on f, followed by transformation of a weighted function of u.

lhese relations extend those given in (150)-(152). The function V2 above

need not be a legal WDF. The volume under the smoothed distribution (F-1)

is the product of the volumes under W and V2; if the latter volume is

unity, the energy of waveform s results again, as is desired.

INADEQUACY OF TIME SMOOTHING ALONG

Consider the special case where smoothing function V2 is a delta

function of f; then

V2(t,f) = vl(t) 6(f)

v2 (t, ) = vl(t)

q 2(V, ) = Vl()

Q2 (u,f) = Vl(V) 6(f) . (F-2)

F-2
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Equation (F-I) then simplifies to an averaging of the WDF solely in time:

t

W(t.f) @ vl(t) =

Lfd. dt exp[12w(.t - ft)] (v,t) V1 (V) -

t

d-r exp(-i2wft) [R(t,t) 0 v,(t)] =

f dv exp(i2wvt) A(v,f) Vl(V) , (F-3)

which is an extension of (148)-(149).

The advantageous feature of locally averaging the instantaneous

correlation R in time, indicated in line 3, is equivalent to weighting the

"local spectrum"

A(,f) s(f + *s (f - v) (F-4)

in line 4 by function V1(u), prior to Fourier transforming back into the t

domain. This weighting on v is sensible, since if WDF W(t,f) or some

modified version is to represent the spectrum at f, the transform on v in

line 4 of (F-3) ought not to involve arbitrarily distant values of v;

otherwise, waveform spectrum S in (F-4) will then be utilized at argument

values very different from the frequency f of interest and would be

nonrepresentative. However, there is no weighting onT in line 3 of (F-3),

thereby allowing arbitrarily distant argument values of signal s, from the

F-3
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time instant t of interest, to be considered; this unrealistic feature of

the WDF is one of the reasons for its undesirable properties.

INADEQUACY OF FREQUENCY SMOOIHLNG ALONE

Now consider the alternative special case where V 2 in (F-i) is a delta

function of t; then

V 2(t,f) = 6(t) V (f)

v 2(t~t) = 6(t) v1(t)

02(u,f) =V 1(f) (F -5)

Equation (F-i) then simplifies to an averaging of the WOF solely in

frequency:

f

W(t,f)0V 1 (f)

=fdu~ dr exp[ i 2w(vt - f Y) I (v,r) v, (r)

S 5dt exp( -i 2rf t) R(t,,r) v, (r)

f
- dv exp(i2wdt) [A(v,f)O0V1 (f)] (F -6)

F -4
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The advantageous feature of averaging the "local spectrum" A in

frequency, indicated in line 4, is equivalent to weighting the instantaneous

correlation R(t,t) in line 3 by function v1(r), prior to Fourier

transforming back into the f domain. This weighting on t is sensible, since

if WDF W(t,f) or some modified version is to represent the time behavior at

t, the transform onT in line 3 of (F-6) ought not to involve arbitrarily

distant values ofT; otherwise, waveform s will then be utilized at argument

values very different from the time t of interest and would be non-

representative. However, there is no weighting on v in line 4 of (F-6),

thereby allowing arbitrarily distant argument values of spectrum S, from the

frequency f of interest, to be considered; this unrealistic feature of the

WOF is an additional reason for its drawbacks.

SEPARABLE SMOOTHING

If smoothing function V2 is separable, then

V2(t,f) = va (t) Vb(f)

v2(t,T) = Va(t) Vb(I)

q2(u, ) = Va(u) Vb(T)

Q2(uf) = Va(v) Vb(f)

Then (F-l) gives, for example,

F-5
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t f
W(t,f) 0 Va(t) SVb(f) =

d-C exp(-i2wfT) vb(r) Sdt' R(t - t',C) va(t')

This has both the desirable features of lOcdlly averaging the correlation

and suppressing large-T contributions. However, it restricts the form of

averaging in the t,f plane and specifically disallows tilted smoothing

regions which are not parallel to the t or f axes.

GENERAL GAUSSIAN TWO-DIMENSIONAL SMOOTHING

The inadequacies of smoothing in time alone or frequency alone suggest

consideration of the general two-dimensional result in (F-l):

A tf

W(t,f)w W(t,f) *0 V2(tf) =

= fdl exp(-i2wfT) f dt' R(t - t',T) v2(t',T) =

dT exp(-i2wft) fdt' s(t- t' + ) s*(t- t' - ) v2(t',T) (F-7)

If we let t1 = t+ t2 = t' - - this becomes
2 '

W(t'f) =fjdt dt 2 exp(-i21f(tl t2)) s(t - t2) s*(t tl) v21l I t -

2

(F-8)

F-6
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Now let two-dimensional smoothing function V2 have the general I
Gaussian form

V2(tf) = 2M exp(-a2 t - 42 b 2f - 4ctf) , (F-9)

where a,b,c are real constants and I
Q = ab2  - c 2  (F-1O)

The scale factor, 2V', is chosen so that the volume under V2 in the t,f

plane is 1; this keeps the volume under the smoothed distribution in (F-i)

or (F--7) at E, the energy of waveform s. In order that V2 tend to zero at

infinity in the t,f plane, we must have Q > 0. The area in the t,f plane of

the contour ellipse of (F-9), at the l/e relative level, is (appendix D)

Area = 1/2 1/2 (F-li)

The transform on f of V2 in (F-9) is

v =(tj) exj- t2 + e + ictll. (F-12)

For completeness, the two remaining smoothing functions in (F-i) are

q2(v,) = exp[ _Q(a2t2 + 412 b2 v2 + 41rcT)]

Q2(uf)= f' exp [ 4.2( 2 k-cfj

We can now determine the quantity necessary for evaluation of (F-8), namely

F-7
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v2  t - = Z ex {(Q + 1 i2c) t2
2 b 4b 2

+ (Q + 1 - i2c) t2 + 2(Q - 1) tlt 2)] (F -13)

By the discussion in (25) et seq., this function in (F-13) is separable in

tI and t2 if and only if

Q = 1, that is, a
2b2 - . (F-14)

lhen V2 in (F-9) is a legal WDF and the area in (F-l) becomes 1/2. Also,

smoothing V2 in (F-9) is then exactly equivalent to the Gaussian smoothing

considered previously in (147).

We are interested here, however, in the more general case of V2 where

Q is not necessarily 1, and therefore V2 is not a legal WDF. If we

substitute (F-13) in (F-8), the smoothed WDF becomes

W~t ,f 'JJt 1 d 2 x 1) x (t2) exp [-2b
2  112 (1-15)

where

rt21
x(tl) s*(t - t,) exp -i2ft1 - (Q + I + i2c) 1 2 (F-16)

By expanding the exp in (F-15) in a power series, there follows

I?

b n=O n 2b2 t

F -8
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It is obvious from (F-17) that a sufficient condition for smoothed WDF W

to be non-negative is Q < 1, that is

a2b2 - c2 < I (F-i 8)

(lhe special case of c 0 was given in [11, (5)].) When this condition is

used in (F-1l), we see that the area of the concentration ellipse of (F-9) is

Area k 1/2 . (F-19)

Thus, smoothing with the Gaussian two-dimensional function V2 in (F-9) always

results in a non-negative distribution, provided that the area of the ellipse

at the l/e relative level is greater than or equal to 1/2. It is not

necessary that V2 in (F-9) be a legal WDF; that is, the area of the ellipse

need not be precisely 1/2. However, the most concentrated V2 in (F-9), that

guarantees nonnegative results, has area 1/2. The only restrictions on

parameters a,b,c are given by 0 < Q < , that is, 0 < a2 b2 - c 2 < 1.

F-9/F -10
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APPENDIX G. DERIVAILON OF MINIMUM-SPREAD WDF

The short-term spectral estimate of waveform s, relative to weighting u,

is given by the double convolution (l06),

tf

=Su(t,f Ws(t,f) Wu (t,f) , (G-1)

of the WDFs of s and u. It is therefore important to use, for weighting u,

a function which has as narrow a WDF as possible, so that the smearing

implied by (G-1) is minimized. In particular, since we are interested in

analyzing waveforms with linear frequency modulation, we are interested in

minimizing the spread of WDF Wu, as measured by the quadratic quantity

I dt If Wu(tf) (f - Bct) 2 , (G-2)

where 13 is a specified (observed) slope in the t,f plane.c

By expanding the quadratic in (G-2), we obtain spread

0 I I 12 , (G-3)

where

10 = Sidt df f2 Wu (tf) ,

iI =-2Q c If dt df t f Wu(t,f)

12 = 6 2 5fdt df t2 Wu(tf) (G-4)

G-1
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Reference to (43), (28), and (12), respectively, allows the terms in (G-4)

to be simplified and expressed solely in the time domain as

10= 1 2 dt Iu,(t)j
41

I =E - fdt t lu'(t) u((t-

2 ' c (G-5)

Adding these results together, the spread in (G-3) becomes

I -i Jdt Iu'(t) ict u(t)j 2  (G-6)

where we define

= 2wB C  (G-7)

Observe that the spread I in (G-6) is nonnegative, for all weightings u.

Ihe function that minimizes I in (G-6) is

u(t) = a exp , a complex, (G-8)

for which

G-2
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I = 0 , Wu(t,f) = a01 6(f-B ct) (G-9)

lhat is, the WDF is concentrated on the f 3c t line in the tf plane.

However, the energy of (G-8) is

Eu 0 6, (G-10)

which is unacceptable.

If we attempt to approximate (6-8) by unit energy weighting

-1/4 ( t 2  
2

u(t) = (il2 ) exp i1 (G-11)
22 2/

the spread of u, as given by (G-6), turns out to be

I = 1 1 o2(Q - ac) 2 (G-12)

Now if =c that is, the linear frequency modulation parameter a in _.

weighting u is exactly equal to given quantity a (from (G-7) and (6-2)),

the spread is

I - l > 0 (G-13)

However, as duration a of weighting (G-11) gets larger, the spread I tends

to zero, even though the weighting has finite (unit) energy. Also, then

(G-li) tends to a scaled version of (G 8) at each fixed t. V

G-3
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In order to eliminate these undesirable features of the weighting, it

will not be sufficient to minimize spread 1, subject only to a constraint on

the energy of u. Rather, it will also be necessary to constrict the time

duration of the weighting u. Accordingly, we will minimize spread I in

(G-2)-(G-6), under the two constraints that

{dt Iu(t)I 2 =1 = if dt df W u(t,f)

r 2 ut12 2 t
dt ttt) c = ff dt df tW W(t,f) ;(G-14)

see (14) ai.A, (12).

Thus consider

= I dt ju'(t) - i c t u(t)I 2 + x J dt Iu(t)I 2 + f fdt t 2 Iu(t)I 2 (G-15)

where x and p are real Lagrange multipliers. Replacing u(t) by

u(t) + cn(t)a where q(t) is an allowed variation, we have

0 + SQ = dt [u'(t) + cti'(t) - ic t (UMt +- Cn"t) [u, (t) + C q,' (t) +

+- l.,ct (U*(t) + JC"()]+fdt [u(t) +- c"(t)] [u*(t) +- cr t) q * Ml(X+ t 2

(G-16)

G -4
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Since the coefficient of c* must be zero, in order for u(t) to be the

optimum [15], we require the following:

fdt '*(t) [ul(t) - tc t) 4-I + dt n*(t) [u'(t) - iax ct IJ(t)J iQC t 4-

+ J dt n*(t) u(t) +X P- t2) 0 for all ri(t) (G-17)

We now integrate by parts on the first term of (G-l1), and presume that

n,u,ul all decay to zero at tab. Since n is arbitrary, its coefficient

under the integral must be zero; namely, we find that u must satisfy the

following differential equation:

-U1 (t) + i 2a t u'I(t) +- ( im 4- C t 2 + X +- Ut ) u(t) = 0 for all t (G-18)c c c

If we try solution

u(t) - a exp(i ct 2) . a,c complex ,(G-19)

in (G-18), we find that

t2(c2+ i2a c + a2 + v - c + ict 0 for all t (G-20)c c c

lhen a solution of the form (G-19) exists with the choices

c = CL C tf' r~l t ± V'V. (G-21)

G-5I
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lo determine u(t) explicitly, we substitute (6-21) into (G-19) to get

u(t) a exp 2 c t 2 t (G-22)

When the two constraints in (G-14) are satisfied, there follows, for the

optimum weighting,

u(t) = rc exp ( + i 2 t (G-23)

This is linear frequency modulation with a Gaussian envelope.

The minimum value of the spread I in (6-6) for the optimum weighting

minimum I 1 (6-24)22'
8ir 2

and the corresponding WDF is

Wu(t,f) 2 ex - - 4 2 a 2 (f - ct) =

= 2 exp _ , e ) + 4wftec - 42f202 (G-25)

Lc
2

where c = a 2" The area of the contour ellipse at the l/e relative

level is 1/2 in the t,f plane.

1he mean-square time extent of the optimum weighting u in (G-23) is

a22, as required by constraint (G-14). The mean-square
afrequency

extent is obtained from voltage spectrum

G-6



I 112 /-2 2f2 a?2

U(f) 11/ w oic exp 1 1  )cc(-6
as

1 + -

fdf f 2 JU(f )12 = ,r2 (G-27)
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APPENDIX H. EXAMPLE OF WDF PROCESSOR

The processor of interest here is depicted in figure 7, while

representative characteristics of the waveforms and devices are sketched in

figure 8. The mean output is given by (173) and the variance is given by

(188). We will use the definitions and results in (165)-(189) freely in the

following.

INPUT INFORMAIION

The input signal waveform to figure 7 is Gaussian-modulated linear

frequency modulation:

so(t) = ao exp 2a 2 i - t , E0  V7 ja01 2o , (H-l)
2 0

where a can be complex. The instantaneous input signal power,

Iso0(t) 2 = laol12= 2 exp(-t 2/0) 2 (H-2)

peaks at t = 0 and has effective duration ao.

The corresponding signal voltage density spectrum is

/ 2 2

2o )112 2w oof
S0 -(f) = a0a( ie/ exp 1 - e 2 o (H-3)

H-1
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The energy density spectrum is

2v aoI2 0 4w2a2 f 2
0 0

which peaks at f = 0. When

f = - fo - 2,w 0(H-5)
0

the energy density spectrum is reduced to lie of its peak value; hence f0

is a measure of the bandwidth of the linear frequency modulation waveform.

The input noise n0 to figure 7 has a white spectrum

Gn (f) =Nd for all f (H-6)

The filter transfer function is

H(f) = exp 2B2  (H-7)

which peaks at f = 0; this coincides with the signal spectrum peakwhich

means that we are considering the most fortuitous situation. The weighting

in figure 7 is taken to be

v(t) = exp , (H-8)

H-2
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which peaks at t = 0; again, this coincides with the signal peak and is most

favorable. The maximum values of H and vbeing equal to lare chosen for

convenience, without loss of generality; absolute level does not influence

the performance of the processor in figure 7.

CALCULATIONS OF BASIC FUNCTIONS

We will make frequent use of (68)-(70) in evaluating the following

quantities which are needed in (165)-(189); the choices for Gaussian

functions for soH,v, above, were made for analytic simplicity, since the

various integrals can be conducted in closed form. More general cases would

require numerical integrations.

The noise spectrum at the output of the filter is

Gn (f) = Gn (f) IH(f)I 2 Nd exp(- f2/B2) (H-9)
0

The corresponding noise correlation is

j Jdf exp(i21fr) Gn(f) V? Nd B exp(-2 ) (H-TO)

The auxiliary spectrum in (178) is

(~2~) 2 -- N 2Bep-2f 2/B 2(-1G n(f) dT exp(-14ifr) C (t) = ed

ihe instantaneous correlation of the weighting is

H-3
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% and its corresponding WOF is

WV (t,f) fdTexp(-i21ft) R v(t,t) 2 'L exp( 2 _ 4w L2f ) (H-13)

The filter impulse response is

h("t) = df exp(i2%fT) H(f) V2*wB exp(-2vr28B2T2) (H-14)

leading to filter output signal

sMt dir h (T) s 0(t -T)

a D - 1? ex 122'0 .t2]jH 5o (I D~ j 0 x - wB2  - ie~ (H0

where

02 2 2 (-6
0 0 =(wc 0)(-6

This filter output signal is again a Gaussian-modulated linear frequency

modulation waveform.

In general, for signal

s(t) =c 0 exp(-ct2/12) c c0 c complex , E 7 'coI 2/yrF7. (H-l7)

H-4
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the WDF is

W(t,f) = 2V1' 10 e [t21c,2+4v2f 2 Cr 4vftciJ (H-18)

When applied to example (H-15), we identify

0 2 2 0
Co ~)1 4v0- B +D-(H-)

to obtain

(CoI Vr0 
2  

' ICI 2 2irB )4  0

2D1 2 20Do
c vBB ci 4rB 0 (H-20)

where

D. 9 D+2 .0 (1 +. 0)2 ~ 2 (H-21)

00* 2 02

When substituted in (H-18). there follows, for the WIDh of s in (H-15),

W(t,f) = 2E ( 12 exp [ _If{(, 42) 9 (2vBt)2 + D2(f)2 - 2DE%(21rBt)(}] .f

(H-22)

As bandwidth B of filter H in (H-7) tends to infinity, then 0D*~

- D 0, 02 -# 0 2, and (H-22) yields

W S (t.f) -4 2E 0 exp 1  (0 +. 00) 2~ _ (21r 0f) 2 + 4ve 0 f tjas 8 (H-23)

0

H4-5
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This agrees with (91) and (78). More generally, in order to keep the scale

factor (D/D1 )1/2 in (H-22) near 1, we need

D > I + 2  that is, [ > 2 " (H-24)

according to (H-21) and (H-16). But this latter quantity is just the

bandwidth of signal s ; see (H-5). Thus condition (H-24) yields the

physically intuitive statement that the filter passband should be wider than

the input signal bandwidth, in order not to decrease the peak value of the

WDF of the filter output signal.

lhe area of the elliptical contour of the general WDF in (H-22), at the

l/e relative level, is 1/2 in the t,f plane, regardless of the values of any

of the parameters of the input signal and filter; this follows by the direct

use of (D-1), (0-19), and (D-20). It is also consistent with the general

fact that this is true for any signal of the form of (H-l), as may be seen

by application of appendix D directly to (H-18), where c and c areo

arbitrary complex constants.

The peak height of the signal WDF in (H-22) is 2EoTDD/Dl,; hence, the

product of peak height and effective area is EoU/, which is just the

energy of s:

E fdt jstj2=E~j Jdt df W (t,f) .(H-25)

This follows directly from (H-15) or (H-17).

H-6
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Ietilt of the major axis of the elliptical contours of (H-22) is given

by 13 radians in the (2*8t,f/B) plane, where

0

tan(23) - 0 / (H-26)

according to (D-5) and (H-21).

MEAN SIGNAL OUTPUT

The mean signal output of the WDF processor in figure 7 is given by

(7)as

a f dt exp( -l 2mft) R v(t ,T) R5 (t ~ =

= dt exp(-i2vft) R,(t ,T) = WI(t~f) ,(H-27)

where

' (t) =v(t) s(t) c 0 exp(--Z t2/12) (H-28)

and

1 (H-29)

according to (H-8) and (H-15)--(H-19). By analogy to (11-18), we have

H-7
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1col tJJ 4w+- 4 ii

a = W (tf) 2R r  exp 1r

= 2E 0 (-) 12exp[ jH 2 x
2 f D2 y

2 
- RDOc, xy3] .(H-30)

where we defined

2
R (2wBL) , x t/L , y = 2wfL

2
H1  D 2  RD1 = (1 + D)(1 + D + R) 4- (1 + R) 80

H2  D2 +2RD1 4- R )+- (1 D - R) + (1 + R) 02 (H-31)

and used

H R e 2 H2

-C -.2 2 4 (H-32)
L2D 2  L2D 2  L4D 2

The area of the concentration ellipse of W. in (H-30) at the l/e

, relative level is 1/2 in the t,f plane, regardless of the sizes of 0 and R;

so the signal WD is not spread by the filtering and weighting operations in

figure 7, at least for this example of (H-i) coupled with (H-7) and (H-8).

The peak height of WDF W is given by the leading factor in (H-30).

Since the effective area of this WDF is 1/2, the product of peak height and

effective area is Eo DR-/H, which is just the energy of s:

t ( 2 =0)(i D+ R) + (1 #- R) e2 (H-33)

H-8
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Ihe parameters oD.R are given in (H-16) and (H-31). 8

We now define

Lb L = _ L . 1 12

______- = - (2irB) (H-)
b 2 b

Then (H-30) and (H-31) become

W (tf) 2E()exp 1 jH 2- R (- + D2(l+R)(2lLbf) - 2RDOo(2rLbf) .

(H-35)

lhe major axis of the elliptical contours is at angle 1 radians in the

(t/Lbp,2wLbf) plane, where

eo(1 + R)

tan(2A) 1 (H36
1 R + D + RD/2 " (H-36)

Given measurements or observations t and ao' this can be immediately

solved for 0, where it is presumed that B and L are known since they are

under our control.

As alternative fundamental parameter is more useful than the above; we

introduce

M = (L/bo) 2 , (H-37)

which is the square of the ratio of weighting time to input signal duration.

ihen (H-31) yields

R = M , (H-38)

H-9
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where D 0 (2vBoo)2 Just as defined in (H-16). Eliminating R in favor of

D and M, the peak height of W in (H-30) becomes

Peak r 2E0 D 2M )002) (H-39)

p D)(l + D DM) + (1 + DM

p As checks on this quantity, observe that as D -**, the factor of ?E0

in (H-39) approaches (M/(M + 1))I/1; in order to keep this latter quantity

near 1, we need M > 1, that is, L > 0. This is consistent with physical

reasoning on figure 7. Alternatively, as M -c, the factor of 2E in
0

(H-39) approaches (0/(l f D e )) 12; in order to keep this near 1, we
0

need (H-24) to be observed, just as before.

More generally, in order to keep the signal factor in (H-39) near unity,

we need to choose the combination of D and M large enough. For example, to

keep the factor at value F, that is, maintain

2 1/2DZM =F (< 1) ,(H-40)

(1 +D)(I + D + OM) + (1 + M)e6)

we need to choose L in (H-37) such that

F 2 [(l +- D)22 1
M = F2  0 2 (H-41)

D[D - F2(I + 0 + e )]

However, this relationship is useful only for

D > 2 (1 e . (H-42)

1-Fl0

H-10
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A representative sketch of (H--40) is displayed in figure H-1. Small values

of parameters M or D are not realizable without the other parameter tending

to infinity, in order to maintain the factor in (H-40) at value F. Three

numerical examples, for 00 = 0,1,5 are given in figures H-2, H-3, and H-4,

respectively. The larger F values can only be achieved through rather large

D and/or M values.

lhere is, however, a minimum value of the product, MD, required to

realize a specified value F for the factor in (H-40), when o is

specified. In fact, we find from (H-41) that, for given F and eo, the

product MD is minimized by the choices

1 0

opt 2 +l 0 2

M ~2F2 r - C(-3
opt 1 - F 4L14 +H-432

lhe value Mopt is relatively insensitive to 0o; in fact, it varies from

4F21(1 - F 4 ) to 2F2 (1 F 2 ) as 0o varies from 0 tot, which is

less than a 2:1 variation.

The corresponding minimum product is

(MD)ml 2F 2 [_ + F2e2 +- (1 + ae2)(1 ~42; (H-44)
min - (_ 2) 0 0 0H

H-11
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In particular,

(MD) mm+ 2 02 +- 1 as a8 - b H-5

(min  (1 F 0 0 (H-45)

in fact, this is a good approximation except near 0 0. Thus, large

amounts of linear frequency modulation, or values of F near 1, require very

large MD.

At the other extreme,

F2

(MD) min 4F 2 2  for So = 0 (H-46)

For example, if F = I/J-, this product is 8; thus relatively large values of

the product are required, even at the low end where there is no linear

frequency modulation. A plot of (H-44) is given in figure H-5, for various

specified values of factor F.

IZo

+°
0I

+ 1 I 20

Figure H-5. Minimum MD Product

H-14
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As a particular numerical example, for o 0, F /VT, we find

8*

opt opt 3 (MD)m n = 8 (H-4I)

So both Dop t and Mop t are somewhat larger than unity, even for F I z

1/a'. All these conclusions are drawn relative to the mean signal output

alone; we now consider the noise output contributions.

MEAN NOISE OUTPUl

The mean noise output of the WDF processor in figure 7 is given by

(172), (H-9), (H-13), and (H-31) as

f
b Wv(tf) G Gn(f) =

Rd( )1/2 t 2  f2 Rx[ - (H-48)
= d  Lx L2 B 2 1 + "R

(As L 400, that is, no weighting, then R *ce, and b - Nd exp(-f 2/B2) G n(f),

as expected.)

The noise factor in (H-48), namely

+ M1/2 (iD (H-49)

is virtually unity when the mean signal degradation is small, according to

the results of figure H-5. Thus the ratio of peak signal-to-noise means is

approximtely 2EoN d' according to (H-30) and (H-48). These latter

H-15
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quantities, E0 and Ndo are directly the input parameters to the WOF

processor in figure 7; see (H-i) and (H-6).

VARIANCE OF NxN TERM

The variance of the NxN term at the WDF processor output is given by the

third line of (188) as

f

VNN = 2 W'(t,f) 6 G 2 (f)n

N 2  R 2t 2 
_ 2f 2  R] (H-50)

d _ exp L2 B2 1 + R

Here, we also used (H-11) and (H-13). As L ob, then M co, R -, and

VNN -o. Alternatively, as B 4,o. then 0 -o. R -a, and VNN *.

These results for this particular example confirm the general observations

in the sequel to (188).

ihe standard deviation of the NxN term, namely VNN, is precisely equal

to the noise mean output in (H-48) for all t,f, except for a constant factor

1/4 1/4
(1 + R) = (1 + ON) 1

. Also, the axes of the elliptical contours of

(H-48) and (H-50) are parallel to the t and f axes and are independent of

00, the amount of linear frequency modulation in the input signal.

H-16
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VARIANCE OF SxN TERM

The variance of the SxN terms at the WDF processor output is given by

the last line of (188) or by double the results in (182). Upon substitution

of (H-10), (H-12), and (H-15) in (182) and an extreme amount of

manipulations, there follows variance

V SN = 4E N exp[-F(tf)] , (H-S1)

where

H= (1 + D + R/2)(l + D + R + DR/2) + (1 + R)(l + R/2) e0 2 (H-52)

and e(tf) is an elliptical function with minimum value at t = f 0.

Namely,

t*2  2 2 *2 2

F(tf) - + Ct. - **j 2 42 (H-53)2(1sI1 _ 2)

where

c = 4v2B2 1 -ie0
C~ ~ +w 1 D9- ie

1=1D i 2

CA = (c # -Z +~ 2 ir2 82 )
4 L2

- ( t + i2wf)

122

1 2 B 2 (H-54)
-

H-17
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The quantity in the denominator of (H-53) can be simplified to

2(a2_ 2 ) = H32L4D 2*y) ; (H55)

2L 40 2

however, E(t,f) has not been reduced to its most compact form,

blt 2 + b2f 2 + 2b3 tf . (H-56)

due to the excessive amount of labor required to simplify and obtain

blb 2, b3 '

QUALITY MEASURE OF PERFORMANCE

We define a quality measure for the WOF processor output in figure 7 as

Difference of mean outputs a (H-57)
Standard deviation of output - SN ' VNN) '/1

lhe relevant quantities are given by (171) and (188) generally. For the

specific example in this appendix, the quality measure, at peak signal

location t = f = 0, is obtained by combining (H-30),(H-50), and (H-51):

( / 4E oi 11

= (Nd) ! 4 0  0 * R3 (H-58)d + R"

For convenience, we repeat the parameter definitions here:

H-18
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2 2 2
eo a o o , 0 (2Boo) , M = (L/o 0 )

R = ON,

H (I + D)(I + D + R) +- (1 + R)@ 2
1 0

H3 = (I + 0 + R/2)(1 + 0 + R + DR/2) + (1 + R)(I + R/2)e0  (H-59)

It has already been observed in (H-24) and in the sequel to (H-39) that

D > 1 +- 82 and N > 1 are desirable, in so far as the mean signal output is
0

concerned. However, if filter bandwidth B (D) is made too large, then too

much noise is allowed through; alternatively, if weighting duration L (M) is

made too large, a noise degradation also results. Thus, it is expected that

e2an

the quality ratio 0 will peak for 0 in the neighborhood of 1 + and

for N near 1.

It should be observed from (H-58) that even if input signal-to-noise

measure Eo/Nd gets extremely large, the quality measure Q behaves

according to If7/2, and not E INd . This is due to the saturation
0od' o d*

effects caused by the SxN term in the denominator of definition (H-57); it

can also be seen directly from the quantitative result in (H-51), where

variance VSN is directly proportional to input signal energy E as well

as the noise density level Nd.

H-19
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ihe quality ratio Q in (H-58) is plotted versus N in figures H-6, H 1,

H-8 for 00 = 0,1,5, respectively. The input ratio E oN d is kept at

value 20 in all cases; the only other fundamental parameter, 0, is varied

over a range wide enough to encompass the maximum of Q. However, for ease

of plotting the results, the values of D which are less than the critical

value, which leads to the peak Q, are separated from those that are greater

than the critical value. For example, in figure H-6, D = I leads to the

maximum value of Q that can be achieved for any value of M; thus, the upper

part of figure H-6 contains results for D < 1, while the lower part contains

the remainder for D > 1. The corresponding critical values of D are 8 and

80 in figures H-7 and H-8, when 0 = 1 and 5, respectively.0

One important observation that is made apparent by these figures is that

near the maximum, the quality ratio Q is not too sensitive to M and D; that

is, the maximum is broad in the neighborhood of the best parameter pair

M,D. It should also be observed that as 0 increases, the peak value of Q

decreases, although the decrease is not very significant, at least over the

range 0 = 0,1,5 used here. Finally, the values of the peaks in these
o

figures are slightly less than oE0/N-f, as anticipated above.

H-20
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Figure H-6. Quality Ratio for 00 0, ,EO/d 20
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Figure H-7. Quality Ratio for S9, =1, EO/Nd 20
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APPENDIX I. SMOOTHED WDF FOR s(t) = t exp(-t 2/2)

For the waveform

2
s(t) = t exp(-t /2) for all t , (I-l)

the WDF is

2 22 2 22 1 2 2 1
Ws (t,f) = 2yI'exp(-t - 4 w f )(t + 4,rf - ) = 21? exp( )( - ) (-2)

with energy

= fdt Is(t),2 = f- /2 (1-3)

Contour plots of the WDF in (1-2) are concentric circles in the (t,2wf)

plane; in fact, (1-2) is a function only of r2  t2 + (2f)2 . The

origin value of W is -2E = -fw, and the WDF is negative for r < I/VT ,
s

while it is positive for r > /V.

Let us smooth this WDF with the most compact WDF; namely, use the

Gaussian weighting function in (G-23) with WDF (G-25) with 0c = 0, c = :

Wu (t,f) = 2 exp(-t 2 - 42 f 2 ) = 2 exp(-r 2 ) . (1-4)

The reason for these parameter choices of 0 and a is that the contours

c c

of (1-4) are also circles in the (t,2,f) plane and exactly match those of

the waveform WDF in (1-2); this should lead to minimal spreading.

11! I '. 14 1 111 1111
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lhe result of smoothing (1-2) by (1-4) is

2  tf
Su(t,f12 = Ws(t,f) 4P Wu(t,f)=

1 )F (t2 + 42f 2 ) exp (t2 + 4, 2f2 r2 exp(-/2) (1-5)

which has volume E as given by (1-3). Again, this is a function only of

r but it is never negative. This smoothed distribution is zero at r = 0,

and peaks at r = Yr2 with value .326. By contrast, the WDF in (1-2) is -1.77

at the origin, a large negative value. However, the waveform WDF in (1-2)

does decay faster than the short-term spectral estimate in (1-5); this is an

example of the tradeoffs that must be accepted when using short-term

spectral estimation versus the WDF.

To lend credence to (1-5) as a better measure of the time-frequency

content of s(t), we observe that at t = 0, the center of gravity of (1-5) is

dfISu(Of)1 2 f Ib

- fd jSu(0.f)j 2 'r ®r

0

Then we expect that

A sin(2wf0 t) (1-7)

ought to be a good fit to s(t) of (1-1) for t near zero. In fact, plots of

(1-1) and (1-7) for A = exp(-.5) overlap for -1 < t < 1.

1-
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If we attempt this same procedure for WOF Ws in (1-2), the denominator

is

f df Ws(Of) = 0 , 
(1-8)

giving rise to T = 40, which is useless.

With respect to t = 1 instead, we find center of gravity

If 5
U- 'f) I .~- (1-9)

Since s(t) in (I-1) peaks at t = 1, we expect that

A cos(21rTl(t - 1)) (1-10)

ought to be a good fit to s(t) for t near 1. In fact, plots of (I-1) and

(1-10) for A = exp(-.5) show very good agreement for .8 < t < 1.7.

Thus, smoothing of the WOF Ws in (1-2) by means of WOF Wu in (1-4),

for this example, results in a very meaningful distribution function.

1-3/1-4
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APPENDIX J. DOUBLE CONVOLUTION OF TWO GAUSSIAN FUNCTIONS

By means of the double integral result

ffdx dy exp[- 1 - I B1Y2 + YXY+UX + uy]

_ 2w exp au2 + ev2 + 2yuji (J-1)

-M Y L)11 2(43O - y 2

for aL > 0,13 > 0, r 0 > Yrit is readily shown that the

double convolution of two general Gaussian functions is given by

1 2..1 2 YfE pxy] xy 1 2 1 2exp[- 2ax -2by *xy exp[- - cx 2 dy2 - yR? kxy] (J-2)

2 2 2 2

2w ex N 1 x + N 2y 2 N J3
1l/2 20D N~Y

for a,b,c.,d > 0, Ipj < 1, 1kl < 1, where

0 = ab(1 - p 2) cd(l - k 2) + ad + bc - 2fabcT p k.

N 1 = ac[b(l p p
2
) + d(l -k2

N 2 = bd[a(l p p
2
) +. c(l -k2

N3 = Tabd '1~ X f- + YE o- k (J-4)

J -1
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Also, a useful auxiliary relation is

12N - N2 =Dabcd (1 p2)(1 - X. 2 (J-5)

Now let

p=sin(e), where - < e <
2 2'

X= sin(o), where - < 0 < 1 (J-6)

Then the area of the contour ellipse at the lie relative level of the first

exp in (J-2) is

A=Vab' cos(e)(J)

in th'e x,y plane, where we used (D-1). (D-19), and (D-20). Similarly, the

area of the second exp in (J-2) is

A 2 = 2vWos ) (J-8)

The sum of these two effective areas is

A1+ A 2= 2%v TaFcos(e) + VTT cos(o) (J-9)
2Va-bcd cos(o) COSS0)

On the other hand, the area of the contour ellipse at the l/e relative

level of the smoothed exp in (J-3) is

0 A 3 2w IEdcos(e) cos(o)

p J-2
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in the x,y plane, where we can express 0 from (3-4) as

0 = ab cos 2(e) + cd cos 2(0) + ad + bc - 2abc-d sin(O)sin(o)

= [VIIVh cos(e) + "c cos(0)j2 + [y-? exp(ie) - VTF exp(io)) 2 (J-11)

Comparison of the square root of (J-11) with the numerator of (J-9) reveals

that

A3 > Al + A2 * (J-12)

with equality occuring if and only if

R = V and e=. (J-13)

That is, in order for A3 = AI + A we must have

d . b and =p . (J-14)
c a

Physically, this requirement states that the contour ellipses of the two exp

terms in (J-2) must have the same ratio of major-to-minor axes and they must

have the same tilt. If either condition is violated, then A3 > A + A2 @

the exact amount depending on the second term in (J-11).

EFFICIENT CALCULATION OF GAUSSIAN FUNCTION

If the general two-dimensional Gaussian function in (3-2) is sampled on

an equi-spaced grid, for purposes of convolution, it will be necessary to

compute the quantity

Q2(m,n) = exp(-am
2 - bn2 - cim) (3-15)

J1-3
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for integers -M < m < M., -N <n < N. The following efficient procedure is

based upon the general method given in [12).

We observe first that

Q2(-m.-n) = Q2 (m~n) *(-6

* which cuts the effort by one-half. There also follows

S2 (m~n) Q Q2(m,n -1) Q I(m,n) ,(-7

where

Q1(m,n) = exp[-b(2n - )-cm] 01(m.n - 1) exp(-2b) .(J-18)

These recurrences can be started with

S1 (m.0) = exp(b -cm)

Q2 (m,O) -exp(-am 2 Q2(-inO) . (3-19)

Furthermore, these latter two quantities are available through the

recurrence

Q1(mO) = 1(m- 1,0) exp(-c)

1(m - 1.0) = Q (m,) exp(c) J for mi > I (J-20)



TR 8225

with

QI(O,O) = exp(b) , (J-21)

and the recurrence

02(m.0) = Q2 (M - 1,0) E(m)

for m > 1 , (3-22)

E(m) = E(m -
1) exp(-2a)

with

Q2 (0,O) = 1, E(O) = exp(a) (J-23)

The only case not covered by the above recurrences is for m = 0; then

Q2(On) = Q2(O.n - 1) F(n)

F(n) = F(n - 1) exp(-2b) I for n 1 (J-24)

with

F(O) = exp(b) (J-25)

A program for the evaluation of (J-15) is given below. Only three

exponentials, in lines 90-110, need to be evaluated. Also, the only storage

required is for the final quantity Q2(m,n) in lines 60-70. The auxiliary

variables Q1(m,n), E(m), F(n) introduced above need never be stored. The

check on accuracy in lines 390-470 would be discarded, of course, in any

J-5
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practical application; it is appended as a check on any typographical errors

in entering the program into another computer.

10 R -. 027 o xp(-R m-'2 - B n-'2 - C m n)
20 B-.051 ! for -M<-mKUM, -N<-n<=N

38 C.044
40 M=5
50 N=7

60 REDIM Q2(-M:M,-N:N)

70 DIM 02(50,50)
80 DOUBLE M,N,Ms,Ns I INTEGERS
90 Ea=EXP(A)

108 EbwEXP(B)
11e Ec-EXP(C)

120 02(0,9)-l.
130 E=Eb
140 E2b=Eb*Eb
150 FOR Ns$l TO N
160 E-E/E2b
170 Q2(O,Ns)=Q2(O,Ns-I)*E
180 NEXT Ns
190 E=Ea

200 E2a=Ea*Ea
210 QIpoaQIo=Eb

220 FOR M=I1 TO M

238 QIp*QIpo=Qtpo/Ec
240 Qls=Qlmo=Qlmo*Ec

250 E=EE2a

260 02(-Ms, )02(Ms, )=n2(Ms-I, )*E
270 FOR Ns=I TO N
230 Qlp=QlpE-b
290 Q1m-Q1mE~b

310 Q2(-M,N$.=02<-MsN$-I)*QIM
340 NE:<T Ns
330 NE:4T Ms
340 FOR Ms=-M TO M

350 FOR Ns=l TO N
360 Q2(-Ms,-Ns)=Q2NsMNs)
370 NEXT Ns
380 NEXT Ms

390 Big-O. ! MAXIMUM ERROR CHECK
400 FOR Ms--M TO M
410 FOR Ns=-N TO N
4 20 E=E:<P(-A*MMs- B*Ns*Ns-C*Ms*Hs)
430 ErrorE-Q2(Ms,Hs)
440 Big=MX(Bg,BS(Error))
450 NEXT Ns
4 6 NE:,T Ms
470 PRINT Bi.g

480 END
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