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1 Introduction

Modelling of electronic transport in mesoscopic systems
requires a theory that describes open, quantum-statistical
systems driven far from thermodynamic equilibrium.
Several formulations of quantum transport have been
employed practically, such as those based on the density
matrix, non-equilibrium Green’s functions and the Wigner
function.

A quantum-mechanical phase-space distribution was
introduced by Eugene Wigner in 1932. The purpose
was the formulation of a quantum correction for the
thermodynamic equilibrium of a many-body system by
means of a quasiprobability function. In more recent
times, the definition of the Wigner function has been
generalised as a Fourier transform of a many-body Green’s
function (Mahan, 1983).

The Wigner function is a real-valued but not necessarily
positive definite quasidistribution and represents a quantum
generalisation of Boltzmann’s N-particle distribution. The
Wigner function formalism is attractive as it allows
the expression of quantum dynamics in a phase-space
formulation, directly comparable with the classical analogue.
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A phase-space approach may appear more intuitive compared
with the more abstract density matrix and Green’s
function approaches. The method of quasidistributions
has proved especially useful in providing reductions
to classical physics and kinetic regimes under suitable
conditions.

To discuss the physical interpretation of a quasidistribution,
let us consider the simple case of a one-particle distribution.
Starting with the classical case, the distribution f(p, r, t)
is proportional to the probability density of finding
a particle of momentum p and position r in the
phase-space volume d3pd3r. This is a purely classical
interpretation, directly conflicting with the uncertainty
principle. The quantum mechanical quasidistribution
fw(p, r, t), however, is not positive definite and has to be
interpreted as a joint density of p and r (Tatarskii, 1983).
Only the marginal distributions are positive definite, that
is, integrating f(p, r, ) over momentum space gives the
probability density in r-space and vice versa.

An  excellent review of quantum-mechanical
phase-space distributions in scattering theory has been
given by Carruthers and Zachariasen (1983). This work deals
with potential scattering, the two-body problem and the
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N-body problem. A coupled hierarchy for reduced
distribution functions and its truncation to the
Boltzmann-Vlasov equation is presented. Tatarskii (1983)
concentrates on quantum-mechanical systems in a pure state
and investigates the representation of quantum mechanics
by phase-space distributions. He points out that not every
function that solves the Wigner equation describes a
pure state. Therefore, initial conditions for the Wigner
equation have to be subjected to a supplementary restriction.
Today, phase-space quantisation is considered to be a
third autonomous and logically complete formulation of
quantum mechanics beyond the conventional ones based
on operators in Hilbert space or path integrals (Cutright
and Zachos, 2001; Zachos, 2002). This formulation is free
of operators and wave functions. Observables and matrix
elements are computed through phase-space integrals of
c-number functions weighted by a Wigner function.

Important quantum mechanical properties of electronic
transport in semi-conductor structures are often those
associated not with the degeneracy of the Fermi system but
rather with quantum interference effects (Rammer, 1991).
A wide variety of electronic quantum transport problems
of interest are essentially one-particle in nature. In such
cases, a full many-body description of the problem is not
necessary and a description of electronic transport that makes
use of the one-particle approximation can be used from
the very outset. However, even when the electron—electron
interaction effects are of interest, certain approximations
do exist, allowing their description on a one-particle level
(Rammer, 1991). Therefore, we shall consider in the
following only electronic systems with one-particle degrees
of freedom.

1.1 History and state of the art review

Reports on finite-difference solutions of the one-particle
Wigner equation for device applications are due to Ravaioli
et al. (1985), Kluksdahl et al. (1987) and date back to
the mid 1980s. Frensley (1986a,b, 1987) was the first
who introduced boundary conditions on the Wigner function
to model open quantum systems. Later, self-consistency
was added to the Wigner equation solvers (Frensley, 1989;
Kluksdahl et al., 1989). Main and Haddad included a reduced
Boltzmann scattering operator in transient Wigner function-
based simulations (Mains and Haddad, 1988). Research on
finite-difference solution methods for the Wigner equation
culminated in 1990 when the review papers of Frensley
(1990) and Buot and Jensen (1990) appeared.

The 1990s have seen further extensions and
applications of the finite-difference Wigner function method.
High-frequency operation of resonant tunnelling diodes
has been studied by Jensen and Buot (1990, 1991),
and the transient response by Gullapalli et al. (1994) and
Biegel and Plummer (1997) and later by Woolard et al.
(2002). A new finite-difference discretisation scheme has
been proposed by Mains and Haddad (1994).

In 2002, implementations of Monte Carlo methods
for solving the Wigner device equation were reported
(Nedjalkov et al., 2002; Shifren and Ferry, 2002). Although
with the finite-difference method, scattering was restricted
to the relaxation time approximation and the momentum
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space to one dimension, the Monte Carlo method allows
scattering processes to be included on a more detailed
level, assuming a three-dimensional momentum-space
(Kosina et al., 2003a,b; Shifren et al., 2003). Issues such as
choosing proper up-winding schemes, restrictions on matrix
size and momentum space resolution are largely relaxed
or do not exist when using the Monte Carlo method.
Construction of new Monte Carlo algorithms is complicated
by the fact that the kernel of the integral equation to
solve is not positive semidefinite. As a consequence, the
commonly applied Markov chain Monte Carlo method shows
a variance exponentially increasing with time, prohibiting
its application to realistic structures or larger evolution times
(Nedjalkov et al., 1996, 2002; Rossi et al., 1994). Because
of this so-called negative sign problem, the concept of
Wigner paths alone (Bordone et al., 2003; Pascoli et al.,
1998) is not sufficient to construct a stable Monte Carlo
algorithm. Instead, additional measures have to be introduced
that prevent a runaway of the particle weights and hence of
the variance (Kosina et al., 2003a,b; Shifren et al., 2003).
Note that in Shifren et al. (2003), the statistical weights are
termed affinities.

Large basic research efforts on the Monte Carlo modelling
of electron—phonon interaction based on the Wigner
function formalism have been reported Rossi et al. (1994)
Bordone et al. (2003) Bertoni et al. (1999), Bordone et al.
(1999) and Jacoboni et al. (2001).

The effect of a spatially varying effective mass in
Wigner device simulations has been demonstrated by
Tsuchiyaetal. (1991) and Shih et al. (1994). A non-parabolic
version of the Wigner equation has been derived by Bufler
and Schlosser (1994). Multiband models have been reported
by Miller and Neikirk (1991), Demaio et al. (2002) and
Unlu et al. (2004).

A Wigner equation including a magnetic field has
been solved by Wu and Wu (1992). The gauge-invariant
formulation of the Wigner equation has been given by
Levinson (1970) and a discussion can be found in
various works (Carruthers and Zachariasen, 1983; Ferry
and Goodnick, 2001; Holland and Kypriandis, 1986;
Levanda and Fleurov, 2001; Sonego, 1991). Two-time and
frequency-dependent Wigner functions are considered by
Mahan (1983), Levanda and Fleurov (2001), Héansch (1991)
and Brunetti et al. (2000).

In various types of field-effect transistors carrier transport
takes place in inversion layers, quantum wells or thin
semi-conductor films. To model such devices, the effect of
quantum confinement needs to be included in the transport
model. An expansion of the three-dimensional wave function
in the basis set of transverse wave functions is employed
in the mode space approach (Venugopal et al., 2002).
The problem is significantly simplified if coupling of the
modes or subbands, can be neglected. In this case a set of
decoupled Wigner equations, one for each subband, can be
used (Croitoru et al., 2003, 2004). If the cross section of
the semiconductor film changes rapidly, intermode coupling
becomes important (Venugopal et al., 2004). Inclusion of
intermode coupling in the Wigner function formalism for
confined systems is an open issue.

Finally, we note that the Wigner function formalism
is often used to derive reduced transport models, such as
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the quantum hydrodynamic model (Degond and Ringhofer,
2003; Gardner, 1994; Gardner and Ringhofer, 1996; Zhou
and Ferry, 1992) or to find quantum corrections to classical
models, such as the ensemble Monte Carlo method (Tsuchiya
and Ravaioli, 2001) or the spherical harmonics expansion
method (Goldsman et al., 2000; Han et al., 2000).

2 The Wigner function formalism

In the Schrodinger picture, a physical system is
quantum-mechanically described by a state vector |V (¢)) as
function of time ¢. Often, the precise quantum-mechanical
state of a system is not known, but rather some statistical
information about the probabilities for the system being
in one of a set of states. Suppose that there is a set of
orthonormal states {|\W) , |¥,) , ...} and that the probabilities
that the system is in one of these states are {pi, pa,...}.
Then, the expectation value of operator A associated with
the observable A is given by

(A) =) pi (W]AY) ()

which is a quantum and statistical average. Introducing the
density operator p as

p= pi W) (Wil @)

the expectation value becomes
(A) = Tr(pA) = Tr(A)) 3)

Equations (1) and (3) require the operator Atobe self-adjoint.
Equation (3) can be easily verified by expressing the trace of
some operator X in the basis {|W;)}.

Tr(X) = Y (W X |W;) “)

i

The fact that the probabilities sum up to unity, Y, p; = 1,
is expressed by the fact that the trace of the density operator
is also unity, Tr(p) = 1. If the system is in a pure state
|W;) it holds p; = 1 and p; = 0V j # i and the density
operator is idem-potent, > = 5. Otherwise, the systemisina
mixed state and p does not obey the idem-potency condition.
From the Schrodinger equation for the state vector and the
definition of p, we immediately obtain the Liouville-von
Neumann equation for the evolution of the density operator.

ih— = [H, f] 5)

Introducing the one-particle approximation (Rammer, 1991)
implies that the electron system is modelled as consisting
of many, non-interacting electrons. In the next step, one
chooses the coordinate representation, where the set of basis
vectors is given by the electron position eigenstates |r).
The eigenstates of the system are then represented by the
wavefunctions W; (r, r) = (r|W;(t)) and the density operator

by the density matrix p(ry, Iz, ).

p(ry, 1o, ) =(r1| p(t) I} =) pi Wilr1, 1) W} (r2,1)  (6)

The Liouville-von Neumann equation in coordinate
representation is found as

dp(ry, 12, 1)
o = (Hyy — Hey)p(ry.12.1) (M)

2.1 The Wigner function

The Wigner function is obtained from the density
matrix by means of the Wigner—Weyl transformation.
This transformation consists of a change of independent
coordinates to diagonal and cross-diagonal coordinates

1

r=§(r1+rz), S=r —I ®)

followed by a Fourier transformation with respect to s
(Frensley, 1990). The variables r; and r, may be expressed
in terms of the new ones.

s
rp=r— E (9)
Then, the elementary definition of the Wigner distribution is
given by the following transformation of the density matrix.

S
l'l=l'+§,

s s .
fwk, r 1) = /p (r + > r— > t) e ks gs (10)

The Wigner function (10) is real-valued, but not positive
semidefinite. In terms of the wave functions, the definition
(10) becomes

Folk T, 1) = Zp,»/qr,- (r+ %t)

wr (x=2.0) e ds
2

Y

The normalisation of the Wigner function results from the
normalisation of the wave functions.

(2;)3 /dr/ dk fu(k,r, 1) =1 (12)
Here, the k-integration can be performed first, giving
[ e~™™dk = (27)38(s). The normalisation (12) ensures that
the quantity N f,,, where N is the number of electrons in the
system, will approach the classical distribution function f
in the classical limit (Jacoboni et al., 2001).

Sometimes it is convenient to use the inverse Fourier
transform of (10).

(r—i-sr St)— !
PUIT T 51)T 2ny

Changing variables gives a transformation that inverts the
Wigner-Weyl transformation.

_ 1 ry+nr
p(rl’r2’t)_(2n)3ffw (k’ 2 ’t) (14)

elkri-12) g

/fW(k3 r, t) eiks dk (13)

An important feature of the phase-space approach is the
possibility of expressing quantum-mechanical expectation
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values in the same way as it is done in classical statistical
mechanics, employing integration over the phase-space. The
expectation values of operators of the form A(f) and B(ﬁ),
where k = p/h, are given as follows.

(A(T)) = an )3 /fw(k r,1)A(r)dkdr
as)
=Y [ A® @ o ar
N 1
(B(k)) = m/fw(k, r,t)B(k)dkdr
(16)

=Zp,-/3<k>|<b,-<k, DI dk

If the classical observable C(k,r) is a function of both
momentum and position, the definition of a corresponding
Hermitian operator C is not unique. In this case, the Weyl
quantisation can be applied. Thereby, the function C is
expressed through its Fourier transform c.

Ck,r) = f c(a, b) e/®*) da db (17)

The operator C is defined by the following rule of
correspondence.

C= / c(a, b) ¢! ®a+ih) 4a qp (18)

Then, the expectation value of Cis given by the phase-space
integral.

Tr(Cp) = /C(k, r) fw(k, r,t)dkdr (19)
To proceed with (18), one may employ the
Baker-Campbell-Hausdorff formula,

eA+1§ —e eB e—[A B1/2 (20)

which is generally Vahd when [A [A B]] = [B [A B]] =0,
or in particular when [A B] is a c-number.

2.2 Marginal distributions

The Wigner function (10) can assume negative values.
Only the marginal distributions of f (K, r, ) are positive
semi-definite and have the meaning of probability
distributions in real space and momentum space, respectively.

1
n(r) = mffwas r,1)dk = Xijp,- (e, 0> (21)
P = [ Ao X piiedeol @

Here, ®;(k, r) denotes the momentum representation of the
state vector |\;). The integration in (22) can easily be carried
out after changing variables, using (8).
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/dr/ds v, (r—[— E,t) wr (r— E,t) e~ iks
2 2
_ / dr, f dry W (ry, £)WF (ry, e k- (23)

= 7)1 P (k, )|

The marginal distributions (21) and (22) can also be expressed
as the diagonal elements of the density matrix.

Qn )3 / fok,r,t)dk = (r| p|r) = p(r, 1) (24)

2n );/fw(k r,)dr = (k| p |k) = o (k, k) (25)
Here, |k) denotes the electron momentum eigenstate with
eigenvalue 7k and o the density matrix in momentum
representation. Note that the latter can be used for a
dual definition of the Wigner function (Rossi et al., 1994;
Fannjiang et al., 2002).

1 1 ‘
fw(k,r,t)2/0<k+§,k_§,t> elrl dl (26)

This definition follows, for example, from (11), when the ¥;
are replaced by

W, (r, 1) = 2m)? / @, (K, t)e'® " dK’ 27)

Other marginal distributions than the elementary ones,
(21) and (22), have to be constructed with care. Only
Hermitian operators give real marginal distributions. For
the current density, this operator would be (kp + pk)/2.
Expressing o in terms of the wave functions, we get the
elementary current definition from wave mechanics.

h
J(®) = o—(r| kp + pk Ir)

Zpi(mfc i) (Wi )+ W) (WK ) g

2m*
1

> i ¥V () - W () V()]

© 2im*
Choosing the momentum representation of p,

. h - R

i) = I dk; [ dk; ((rlk k) (ki [ks) (ka|r)

+ (r/k;) (Ki] 4 [k2) (ka| K |r))

we get the current density expressed in terms of the Wigner
function.

h :
i) =F/dkl /dkz o (ki, ko) (k; + ky) e/ ®17k2r
m

1
T Qn)p

B (29)
f K fu(k, 1, 1)dk

Here, the Wigner function has been introduced using
(26). The current density is given by the first-order moment
of the Wigner function, in full analogy with the classical
phase-space definition.
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For the definition of the energy density we discuss several
options. Starting from the trace operation for the statistical
average, one would consider the symmetrised operator
(k2/ + pk?)/2 and derive the marginal distribution.

2

wi() = (| K*5 ) + (r| pk* Ir))
h2
= 1= 2 PV OV @) + W) VA )]
=Y pilEi = VIO ) (30)

The last expression in (30) is obtained with the help of the
stationary Schrodinger equation. Apparently, w; describes
the kinetic energy density, as the potential energy term
V(r)n(r) is subtracted from the total energy term. This
energy density can become negative in tunnelling regions,
where for one or more states E; < V (r) holds. In a derivation
similar to (29), one finds the Wigner representation of wj.

h? _
wi(r) = m/dklfdkz o ki, ko) (ki +k3) e'®17kor
(3D

1 h? 1
= 2n) / m* <|k|2 2 rz) Sfw(k, r, 1) dk

To ensure positiveness of the energy density, in (Kosik,
2004) the Hermitian operator k ok is considered. Its marginal
distribution can be shown to be positive semi-definite.

[P ? .
wa() = o (| kpk ) = —— Z pil (e[ kW) > (32)
hZ
= 5= D PIVU®E=0 (33)

The Wigner representation of w, is obtained as

n? )
wa(r) = —/dklfdkz o(ky, kp) (k%_kg) el Ki—ko)r
4m*
(34)

1 h2 , 1,
- (2n)3/2m* K| t7Vr fuk, 1, 1) dk

Conditions for obtaining non-negative marginal distributions
are theoretically discussed by Wlodarz (1999). The Weyl
correspondence (18) gives the definition of the energy density
as the second-order moment of the Wigner function.

1 o,
ws(t) = s [ K 1) (35)

It can be seen that (35) is just the arithmetic mean of
(31) and (34), w3 = (w; 4+ w;)/2. Therefore, (35) represents
the marginal distribution of the symmetrised operator
(k25 + 2kpk + pk2) /4.

All three definitions of the energy density give the same
statistical average (€) = Tr(e (R) ,6) The differences among
the definitions are in the V2 term, which vanishes after the
r-integration. However, only the density w; seems to have a
clear physical interpretation as the kinetic energy density.

2.3 The Wigner equation

In this section, we consider a system consisting of one
electron interacting with a potential distribution Vi (r). This
potential is assumed to be a superposition of some potential
V(r) and a uniform electric field: Vi (r) = V(r) — AF r,
with hF = —eE. Although the existence of a field term
is not physically motivated at this point, it is introduced
here to demonstrate its treatment in the Wigner function
formalism. The potential V (r) comprises the electrostatic
potential and the band-edge profile of the semi-conductor.
A uniform effective mass m* is assumed. In the usual
coordinate representation, the Hamiltonian of the system is
then given by

H = Hy + V(r) — hFr (36)
with
o,
Hy=— \Y 37
0 T VT (37)

Electron—phonon interaction is neglected here. The evolution
equation for the Wigner function is found by taking the
time derivative of the defining Equation (10) and substituting
the Liouville-von Neumann equation (7) on the right-hand
side.

ol
_Wk’ 7t
o fwk. T 1)

= %/(Hrl — H,,)p (r+ % r— ; t) e s ds
In the following, the three parts of the Hamiltonian (36)
will be separately transformed. Unlike in Section 2.2, where
calculations were done in momentum representation, we
choose below the configuration representation to carry out
the transformations (Bertoni et al., 1999).

The free-electron Hamiltonian is given by Hy. To calculate
the Wigner transform of Hy, we have to transform the
gradients first. Differentiating the density matrix with respect
to the new variables r and s

S S

Vip (r+§,r—§,t)=Vr1p+Vr2p (38)
S S 1 1

Vsp (r+§,r—§,t) =§Vr1p—§Vrzp (39

gives the relations
Ve, + Ve, = V¢
Ve, — Vi, =2V
Vi = Vi =2V,

Now the free-electron term transforms to a diffusion term. For
the sake of brevity, we write p, s = p(r + s/2,r —s/2,1)
in the following.

: i 2 2 —iks
in] T 2mx (Vl”l - Vrz)pr.se ds
d —iks
== im* Vi (Vspr,s) € ds
l (40)
= hk V, —iks d
- _% r [ PrsC S
Rk

= _;Vrfw(ks r,1)
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Next, we transform the potential term.

O [ T P

(41
= / Vok =K, 1) fy(K,r,1)dK

This transformation is readily found by replacing o, s on the
left-hand side by the inverse Fourier transformation (13). The
remaining integral over s is denoted by V,, and referred to as
the Wigner potential.

Vo(q, 1) = ﬁ/[v <r+ ;)

-V (r — %)] e % ds

Using the simple relation —(Fr; — Fr;) = —Fs, the
constant-field term transforms as

(42)

1 . 1
7 /(—hFS)pr,se_lkS ds = _ﬁkafw(k’ r,n (43
l

Collecting the above results gives the Wigner equation for
the system Hamiltonian (36).

d hk
_+_*Vr+FVk fuk,r, 1)
at  m

(44)

= / Vu(k — K, 1) fo(K, 1, 1) dK’

The terms are arranged so to form the classical Liouville
operator on the left-hand side. The interaction of the
electron with the potential distribution V (r) is described
by the potential operator on the right-hand side. As can be
seen, the Wigner function in k and r depends in a non-local
manner on the Wigner function in all other momentum points
k" and through V,, also on the potential at all other locations
r £+ s/2.

2.4 Electron—phonon interaction

The Wigner equation has frequently been solved using
the finite-difference method (Biegel and Plummer, 1996;
Frensley, 1990), assuming the phenomenological relaxation
time approximation for dissipative transport. Recently
developed Monte Carlo methods allowed phonon scattering
to be included semi-classically in quantum device
simulations (Kosina et al., 2003a,b; Shifren and Ferry, 2002).
Use of a Boltzmann scattering operator acting on the Wigner
distribution was originally suggested by Frensley (1990).
A rigorous treatment of electron—phonon interaction in the
Wigner formalism based on a one-electron, many-phonon
Hamiltonian was reported by Rossi et al. (1994), Bertoni
et al. (1999) and Bordone et al. (1999). However, for the
purpose of numerical simulation of mesoscopic devices this
formalism turned out to be rather complex. Introducing the
weak scattering limit and assuming the phonon system to be
in thermodynamic equilibrium, an equation for the reduced
Wigner function is obtained (Brunetti et al., 1989; Nedjalkov
et al., 2002; Rossi et al., 1994). Since this equation takes
into account the finiteness of the interaction time, it is time

105

reversible and includes effects such as collisional broadening,
collisional retardation and the intracollisional field effect
(Gurov et al., 2002; Nedjalkov et al., 2001). For a uniform
electric field, the equation reduces to the Levinson equation
(1970). Introducing the classical limit, the scattering operator
of the equation for the reduced Wigner function reduces to
the Boltzmann scattering operator. This limit implies that the
system is considered on a timescale much larger than the
timescale of the lattice vibrations (Ringhofer et al., 2004).
The resulting Wigner equation is of the form

d hk
(8_ L v,) fu = Oulful + QL] (45)
t m

where ®,, denotes the potential operator,

Owlfwlk, r, 1) =/Vw(k—k’, r) fu®,r, 1)dk’ (46)

and Q the Boltzmann scattering operator,
o1t r.) = [[5c.K) £,

— S, k) fy(K)]dK’

The scattering rates is given by Fermi’s golden rule, with M
denoting the interaction matrix element and hw, the phonon
energy.

\% 27 1 v
SK.K) = —— 2T (N ___)
k-5 = Gy V;ﬂ M@ Net35 =5 48)

x8[e(kK") — (k) + vhwg]

Consequences of the classical limit are that scattering
events are instantaneous in time, energy is conserved exactly
as expressed by the §-function in (48) and the equation is
time-irreversible.

(47)

2.5 Classical force

For a one-dimensional device, the definition of the Wigner
potential (??) reduces to
o0
1 )
Valg. 0 = 5— [ [V (x+3)

27nhfoo 2 (49)

-V (x — %)] e ' ds

This potential is assumed to be constant outside the
simulation domain. When a voltage is applied to the
device, the integrand of (??) becomes constant for large s:
V(x+s5/2) = V(x —5/2) = (—e)Vypp. Since the integrand
does not vanish for s — oo the Fourier integral will diverge
at ¢ = 0, giving rise to a singularity in Vi, (g, x). Therefore,
one should exclude the interval |g| < ¢./2 from the
domain of integration, where ¢, is some small wave number
(Gehring and Kosina, 2004). The potential operator (46) is
rewritten as

o0

Oulfultk. x. 1) = f Valq. ) fulk —q.x. 1) dg (50)

—00
In the the integral over the small wave numbers the term

fwlk —q) >~ —q 0 fw(k) can be linearised, yielding a local
classical force term.
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10V, afw(k, x,
Oul f1k, x, 1) = - 8lx(x) / (8kx 1)

qc
I S
Va(x) = — fV(q)e"’xdq (52)
T

—qc

(51

In this equation, ‘7(q) is the Fourier transform of the
potential. Equation (52) motivates the following spectral
decomposition of the potential profile into a slowly varying,
classical component (52) and a rapidly varying, quantum
mechanical component.

Vi(x) = Vax) 4+ Vgm (x) (53)

An example for this decomposition is shown in Figure 1.
A double gate MOSFET with 10 nm gate length is considered
and the potential energy of the electrons is taken to be the first
subband in the device.This decomposition yields a Wigner
equation including both, a local classical force term with
Fy = —0,V, and a non-local potential operator.

Fq 0

78]{) Julk, x, 1)

0 + 0 +
— UX —
Jt dx
= / V(g x) fwlk — q, x, t)dg + O[fw1(k) (54)
Figure 1 Potential decomposition of the subband potential into

a classical part V,;(x) and a quantum-mechanical part
Vgm (x) for the 10 nm gate length device
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Scattering is taken into account through the Boltzmann
scattering operator Q. The Wigner potential is calculated
from the quantum mechanical potential component, V.
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Realistic devices often consist of a quantum region embedded
in an extended classical region. The discrete Fourier
transform requires a uniform discretisation of the quantum
region with some step size Ax. To obtain a good resolution
of the Wigner potential, a fairly large value for N, the

number of points for the discrete Fourier transform, has to
be chosen. Typical values are in the range 10> — 103. In this
case the domain of the Fourier transform, Lgr = N;Ax, can
become much larger than the simulation domain. For
the purpose of the Fourier transform, the potential outside the
device region is extrapolated by a constant. In the discrete
system, the classical potential component defined by (52)
becomes:

Vax;) = M N <] < Nie (55)
o Zl wji ’ )
sin((j — DgeAx)
R S 56
Wil T S Dgeax 0

The cutoff wavenumber ¢. is conveniently specified by a
cutoff wave length as

21
= — 57
qc Y (57)
It can be seen from (56) that A, = 2Ax would give

Ve (x;) = V(x;) and hence the quantum component would
vanish. This choice of XA, gives the classical limit of the
discrete system. For a quantum transport calculation one has
to choose A, > 2Ax.

2.6 Integral form of the Wigner equation

From the integro-differential form of the Wigner equation, a
path-integral formulation can be derived. The equation to be
transformed reads

(% +v(k)V, + F(I’)Vk> fwk,r, 1)
- /[S(k, K)+ Vok — K, 1) +ak, 1) sk —Kk)] O

x fuK,r,t)dk’ — [A(K, 1) + a(k, 0)] fwk, 1, 1)

where A denotes the total scattering rate,
A(k) = [ S, k)dK and a fictious scattering mechanism
of the form ad(k — K’) is introduced, referred to as
self-scattering (Jacoboni and Reggiani, 1983). Because of
the §-function, this mechanism does not change the state of
the electron and hence does not affect the solution of the
equation. For the sake of brevity, we define an integral kernel
" and the symbols  and U.

wk, r)=Ark,r) +ak, 1)
_ Sk,k)+ Vou(k —K,r) +ak, r)§(k — k')
B k', 1)

UKk,r,1) =/F(k, K,r)uk,r) fo, r,t)dk’

Ik, K,r)

The Liouville operator in (58) is treated by the method of
characteristics. One introduces path variables K(7) and R(?)
and takes the total time derivative of f.

d
g7 v K@), R@), 1)

(8 K@) dR (1)
_(8z+ dr Vic dr Vr) fu
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The right-hand side equals the Liouville operator if the path
variables satisfy the following equations of motion.

d d
KO =FR®) —R() =v(K©) (59)

Now we assume some phase-space point k, r and some time ¢
to be given. A phase-space trajectory with the initial condition
K@ =1t) = k and R(t' =) = r is obtained by formal
integration.

/ /

t

K({) =k +/F(R(y))dy, R(t) =r +/V(K(y))dy

t t

t

Note that k, r, ¢ are treated as constants in the following
derivation, only ¢’ is a variable. Introducing the functions

fut) = fu(K(),R(t), 1)
A’y = wK@), R@"))
Ut =UK(E),R(E), 1)

allows (58) to be rewritten as an ordinary differential equation
of first order.

d - ~ -
wa(t,) + ) fu) = U@ (60)

When multiplied by an integrating factor of the form
exp [ fot a(y)d y] , the equation can easily be integrated in time.

t t
%GXP[Ofﬂ(y)dy]fw(t/) = eXP[{ﬁ(y)dy}U(t/) (61)
The choice of the upper and lower bounds of time integration
depends on whether the problem under consideration is
time-dependent or stationary.

The ordinary differential equation Equation (61), which is
the result of treating the Liouville operator by the method of
characteristics, has the same structure as the corresponding
differential equation for the Boltzmann equation. Therefore,
we can refer to the work on the Boltzmann equation regarding
the details of the time integration of (61) (Kosina and
Nedjalkov, 2003; Kosina et al., 2000).

2.6.1 The time-dependent equation

The upper bound of the time integration should be ' = ¢
to obtain fw(t) = fw(k, 1, 1), the value of the unknown
at the given phase-space point. At ' = 0, an initial
distribution fi(k, r) is assumed to be given. In analogy with
the Boltzmann equation (Kosina and Nedjalkov, 2003), the
integral form of the Wigner equation is obtained.

fuk,r, t)=/ dt’/dk/ CXP{—/ M[K(y),R(y)]dy}
0

x PIK(@#), K, R(#)] n[K',R(] fulK,RE), 1T (62)

+ GXP{—/ n[K(y), R()’)]dY}fi[K(O)v R(0)]
0

This equation states that the Wigner function at time t depends
on the Wigner function at some previous time ¢'. Using (62)
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in an iterative procedure, with each iteration the time variable
would move to smaller values. Therefore, another equation
is desirable that describes the evolution of the system in
forward time direction. Such an equation is given by the
adjoint equation of (62).

gwX X', t) = /dt/dk gwlK (1), R(7), 7]

; (63)
X exp{—f n[K(y), R(y)]dy}F(k, K, r) p,r)

t/
+ go(K', ', 1)

The derivation of the adjoint equation (63) is discussed in
detail by Kosina et al. (2000) and Kosina and Nedjalkov
(2003).

2.6.2 The stationary equation

In a stationary system, the potential and all material
parameters are independent of time. A phase-space trajectory
is invariant under time translations. This property can be
conveniently used to adjust the time reference of each
trajectory (Kosina et al., 2003a,b; Nedjalkov et al., 2003).
In the stationary case we assume the phase-space point k,
r to be given at ¢/ = 0. So the initial condition for the
phase-space trajectory is K(0) = k and R(0) = r. For
the upper bound of time integration of (61), we choose now
t’ = 0 to obtain fW(O) = fw(k, r). The lower time bound
has to be chosen such that the functions K(z) and R(z) take
on values at which the Wigner function is known. In the
steady-state, this function is known only at the domain
boundary. An appropriate lower time bound is therefore
the time when the trajectory enters the simulation domain.
This time is denoted by 7, and depends on the point k, r
under consideration. The case that the real space trajectory
R(?) never intersects the domain boundary can occur for a
classically bound state. Then the trajectory forms a closed
loop and the appropriate choice is #,, = —oo. Integration
of (61) in the time bounds discussed above results in the
integral form of the stationary Wigner equation (cf. Kosina
et al., 2003a,b).

fk 1) = fo(k,r)

0 0
+ f dr’ / dk’ exp{— / M[K(y),R(y)]dy} (64)

1 (k,r) ¢

x PIK@), K, R(t)] n(K', 1) fulk',R(#)]

fok,r) = fo{KIz, (k, 1)], Rz, (k, 0)]}

0
65
X eXP{—/ AK(y), R(y)]dY} ©

1 (k,r)
Here, f, denotes the boundary distribution. The integral

form (64) represents a backward equation. The corresponding
forward equation is given by the adjoint equation.
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iy (K.r)

gw(k, 1) = go(k, 1) + /df/ dk'gy[K(7), R(7)]
0

c (66)
X exp {—//L[K(y), R(y)]dy}

t

L&, Kk, r)uk,r)Op(r)

®p denotes the indicator function of the simulation domain
D. The initial condition for the phase-space trajectory is
K() =K and R(r) =r.

3 The Monte Carlo method

Monte Carlo is a numerical method that can be applied to
solve integral equations. Applying this method to the various
integral formulations of the Wigner equation gives rise to
a variety of Monte Carlo algorithms, as discussed in the
following.

3.1 The general scheme

This section introduces the general scheme of the Monte
Carlo method and outlines its application to the solution of
integrals and integral equations. To calculate some unknown
value m by the Monte Carlo method, one has to find a
random variable & whose expectation value equals
E {£} = m. The variance of £ is designated o2, with o being
the standard deviation.

Now consider N independent random variables
&,&,...,&v with distributions identical to that of £.
Consequently, their expectation values and their variance
are equal.

E{&} =m,

Expectation value and variance of the sum of all these random
variables are given by

E{&§i+&+ - +é6v =E{&i} +--- + E{5y}

Var{§) =02, i=1,2,....,N (67)

= Nm (68)
Var{§; +& + -+ &y} = Var (&} +--- + Var &y}
= No? (69)

Using the properties E{c§} = cE{&} and Var{c&} =
c?Var {£}, one obtains from (68) and (69)

1
E{N(§1+§z+-~-+§N)}=m (0)
Var | 4 _o 71
ar{ﬁ(&*‘&"’"""&ﬂ}—ﬁ (71)

Therefore, the random variable

_ 1 Y
szﬁ;‘a (72)

has the same expectation value as £ and an N times reduced
variance. A Monte Carlo simulation of the unknown m

consists of drawing one random number § Indeed, this is
equivalent to drawing N values of the random variable & and
evaluating the sample mean (72).

The Monte Carlo method gives an estimate of both
the result and the error. According to the central limit
theorem, the sum py = & + &, + - - - + &y of a large number
of identical random variables is approximately normal.
For this reason, the following three-sigma rule holds only
approximately

P{lox — Nm| < 3v/No2} ~ 0.997 (73)

In this equation, the expectation value and the variance of
oy are given by (68) and (69), respectively. Dividing the
inequality by N and using £ = py/N we arrive at an
equivalent inequality and the probability will not change:

VN

This formula indicates that the sample mean £ will be
approximately equal to m. The error of this approximation
will most probably not exceed the value 30//+/N. This error
evidently approaches zero as N increases (Sobol, 1984).

P{|§—m|<3 }~0.997 (74)

3.1.1 Monte Carlo integration

We apply the Monte Carlo method to the evaluation of an
integral.

b
m= /d)(x) dx (75)

For this purpose, the integrand has to be decomposed into
a product ¢ = p 1, where p is a density function, which
means that p is non-negative and satisfies fab p(x)dx = 1.
Integral (75) becomes

b

m =/p(X)1ﬂ(X)dx (76)
and denotes the expectation value m = E{¥} of some
random variable ¥ = ¥ (X). Now the general scheme

described in the previous section can be applied. First, a
sample xy, ..., xy is generated from the density p. Then the
sample ¥/, . .., ¥y is obtained by evaluating the function :
Y; = ¥ (x;). The sample mean

_ 1 g
m:w=ﬁ2% (77)
i=1

approximates the expectation value. To employ the error
estimation (74), the variance of W can be approximately
evaluated by the sample variance

R _
ol ~5?= ﬁ Z(lﬂz - Iﬁ)z (78)
i=1

Because the factorisation of the integrand is not unique,
different random variables can be introduced depending on
the choice of the density p. All of them have the same
expectation value but different variance.
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3.1.2 Integral equations

The kinetic equations considered in this work can be
formulated as integral equations of the form

Fx) = f Koo x) f() dx + folx) (79)

where the kernel K and the source term fj are given functions.
Equations of this form are known as Fredholm integral
equations of the second kind. In the particular cases of the
Boltzmann equation and the Wigner equation the unknown
function f represents the phase-space distribution function.
The multidimensional variable x stands for (k, r, ) in the
transient case and for (k, r) in the steady-state.

Substituting (79) recursively into itself gives the Neumann
series, which, if convergent, is a formal solution to the
integral equation (Byron and Fuller, 1992).

f= f(o) +f(1) +f(2) 4+ .. (80)

The iteration terms are defined recursively beginning with

FOw = fowx).
FAARIEY) =/K(x,x’)f<”>(x’)dx’,n =0,1,2,... (8

The series (80) yields the function value in some given point
x. However, in many cases one is interested in mean values of
f rather than in a point-wise evaluation. Such a mean value
represents a linear functional and can be expressed as an inner
product.

(f, 4) =/f(x)A(X)dx (82)

It is to note that (79) is a backward equation. The
corresponding forward equation is given by the adjoint
equation,

g(x) = f KT (', x)g(x) dx + A(x)) (83)

where the kernel is defined by K'(x',x) = K(x,x).
Multiplying (79) by g(x) and (83) by f(x'), and integrating
over x and x’, respectively, results in the equality

(f; A) = (g fo) (84)

By means of (84), one can calculate a statistical mean value
not only from f, but also from g, the solution of the adjoint
equation. The given function A has to be used as the source
term of the adjoint equation. The link with the numerical
Monte Carlo method is established by evaluating the terms
of the Neumann series by Monte Carlo integration, as pointed
out in the previous section.

Note that usage of (84) precludes a point-wise evaluation
of the distribution function using a forward algorithm,
because A(x) = §(x) cannot be treated by the Monte Carlo
method. The probability for a continuous random variable
x" to assume a given value x is zero. Only the probability
of finding x’ within a small but finite volume around x is
non-zero.
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3.2 Particle models

Each term of the Neumann series of the adjoint equation
describes a sequence of alternating free flight and scattering
events. A transition consisting of a free flight with initial state
k; at time #; and a scattering process to the final state k; at
time f; is described by the following expression. For the sake
of brevity, the r-dependence of I' and w is omitted in the
following.

Pk, 1, ki, 1) = T'[ke, Ki ()] w[Ki(#)]
ff (85)
X exp{—/ M[Ki(‘t)]d‘r}

In a Monte Carlo simulation, the time of the next scattering
event, #;, is generated from an exponential distribution, given
by the terms pexp() in (85). Then, a transition from the
trajectory end point K (#;) to the final state K¢ is realised using
the kernel I". In contrast to the classical case, where P would
represent a transition probability, such an interpretation is
not possible in the case of the Wigner equation because P
is not positive semi-definite. The problem originates from
the Wigner potential, which assumes positive and negative
values. However, because of its antisymmetry with respect
to q, the Wigner potential can be reformulated in terms of
one positive function V\j (Kosina et al., 2003a,b).

V.h(q, 1) = max(0, Vy(q, 1)) (86)
Va(q,r) = Vi(g,r) — V(—q,1) (87)

Then, the kernel I' is rewritten as a sum of transition
probabilities.

A )\' ! (24 !
Mk, k) == sk, k) + — 8K —Kk)
I I

(88)
+ Yk K) — w* k. K)]
I
The transition probabilities are given by
S, k)

k, k) = 89
stk k) = = (89)

n_ Y&k -Kk)
wk, k') = ——= (90)
w*(k,K) = wk', k) 1)

The normalisation factor associated with the Wigner potential
is defined as

y(r) = / Vi (q. 1) dg 92)

In the following, different variants of generating the final
state k¢ from the kernel I will be discussed.

3.2.1 The Markov chain method

In analogy to the simple integral (76), we have now to
decompose the kernel P into a transition probability p and the
remaining function P/p. More details on the Markov chain
method can be found by Ermakow (1975) and Hammersley
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and Handscomb (1964). With respect to (85), one could use
the absolute value of I" as a transition probability. Practically,
it is more convenient to use the absolute values of the
components of I, giving the following transition probability.

/ )\' / o /
P(kf,k)=;S(kf,k)+;5(kf—k)
|4 N, Yo /
+ 5 wke k) 4+ = w' ke, k) 93)

The normalisation factor is v = A + « + 2y. The free-flight
time is generated from the exponential distribution appearing
in (89).

i
pi(te, 6, Ky) = M[Ki(lf)]exp{—/ wlKi(1)] df} (94)

For the sake of brevity, the state at the end of the free
flight is labelled k' = K;(#) in the following. To generate
the final state k¢, one of the four terms in (93) is selected
with the associated probabilities A /v, o/v, y /v, and y /v,
respectively. Apparently, these probabilities sum up to one.
If classical scattering is selected, ki is generated from s.
If self-scattering is selected, the state does not change and
ki = K’ holds. If the third or fourth term is selected,
the particle state is changed by scattering from the Wigner
potential and k¢ is selected from w or w*, respectively. The
particle weight has to be multiplied by the ratio

r 2
—=:I:(l+ Y ) (95)
p Ata

where the minus sign applies if k¢ has been generated from
w*. For instance, for a quantum mechanical system, where
the classical scattering rate A is less than the Wigner scattering
rate y, the self-scattering rate « can be chosen in such a way
that A + « = y. Then, the multiplier (95) evaluates to £3.
An ensemble of particles would evolve as shown
schematically in Figure 2. As the multiplier (95) is always
greater than one, the absolute value of the particle weight
will inevitably grow with the number of transitions on the
trajectory. To solve the problem of growing particle weights,
one can split particles. In this way, an increase in particle
weight is transformed to an increase in particle number.

Figure 2 With the Markov chain method, the number of
numerical particles is conserved. The magnitude of
the particle weight increases with each event, and the
sign of the weight changes randomly according to a
given probability distribution
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3.2.2  Pair generation method

The basic idea of splitting is refined so to avoid fractional
weights. Different interpretations of the kernel are presented

that conserve the magnitude of the particle weight. Choosing
the initial weight to be +1, all generated particles will
have weight 4+1 or —1. This is achieved by interpreting the
potential operator in (45) as a generation term of positive and
negative particles. We consider the kernel (88).

ke, K) =2 stke, K)+2 (ke — K)
Y , % ,
2 [, ) = 07, 1)

If the Wigner scattering rate y is larger than the classical
scattering rate A, the self-scattering rate « has to be chosen
large enough to satisfy the inequality y/u < 1. Typical
choices are £ = Max(A,y) or w = XA + y. These
expressions also hold for the less interesting case y < A,
where quantum interference effects are less important than
classical scattering effects. In the following, we discuss the
case y > X, where quantum effects are dominant. We choose
the self-scattering rate equal to « = y and regroup the
kernel as

! )\' ! )\' !
C(ks, k') = —S(kf,k)-i-(l——) [S(kf—k)
2 H 97)

+ w(kf’ k/) - w*(kﬁ k/)]

Asin the classical Monte Carlo method, the distribution of the
free-flight duration is given by the exponential distribution
(94). At the end of a free flight, classical scattering is
selected with probability ps = A /. With the complementary
probability, 1 — pg, a self-scattering event and a pair
generation event occur. The weight of the state generated
from w* is multiplied by —1. The weights of the states
generated from w and from self-scattering do not change.
Therefore, the magnitude of the initial particle weight is
conserved, as shown in Figure 3.

Figure 3 With the pair generation method the magnitude of the
particle weight is conserved, but one initial particle
generates a cascade of numerical particles. At all
times mass is exactly conserved

© e
SR g: I
w=1 Tw=l Xw=1

In this algorithm, classical scattering and pair generation
cannot occur at the same time, as shown in Figure 4.

In the pair-generation method described, the weight of
the generated particles is 1, because the generation rate
used equals 2y. If a generation rate larger than 2y or a
fixed time-step less than 1/2y were used, the magnitude
of the generated weight would be less than one. This
approach has been followed by Shifren et al. (2002), where
the resulting fractional weights are termed affinities. On the
other hand, a generation rate less than 2y would result in an
under-sampling of the physical process. Then, the magnitude
of the generated weights would be generally greater than one.
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Figure 4 Trajectory of a sample particle resulting from the
pair-generation method

+ w=Ar+y

3.3 The negative sign problem

In the following, we analyse the growth rates of particle
weights and particle numbers associated with the different
Monte Carlo algorithms. In the Markov chain method
discussed in Section 3.2.1, the weight increases at each
scattering event by the multiplier (95). The growth rate of the
weight can be estimated for the case of constant coefficients
y and w. Because free-flight times are generated with rate i,
the mean free-flight time will be 1/u. During a given time
intervalz, on averagen = ut scattering events will occur. The
total weight is then estimated asymptotically for 7 > 1/u.

2y\" 2yt\"
|W(t)|:<1+7) :(HT) ~expyt)  (98)

This expression shows that the growth rate is determined by
the Wigner scattering rate y independently of the classical
and the self-scattering rates. The growth rate 2y is equal to
the L; norm of the Wigner potential.

In the pair generation method, the potential operator

Oul[fwlk) = f Vi@ fwk —q) — fu(k+@ldg (99

is interpreted as a generation term. It describes the creation
of two new states, k — q and k + q. The pair generation
rate is equal to y. When generating the second state, the
sign of the statistical weight is changed. It should be
noted that the Wigner equation strictly conserves mass, as
can be seen by taking the zeroth-order moment of (45):
on/ dt + div J = 0. Looking at the number of particles
regardless of their statistical weights, that is, counting each
particle as positive, would correspond to using the following
potential operator.

O, [ fwlk) = / Vo @[ fw(k —q) + fu(k +q)1dq (100)

Using (100), a continuity equation for numerical particles
is obtained as dn*/dt + div J* = 2y (r)n*. Assuming a
constant y, the generation rate in this equation will give
rise to an exponential increase in the number of numerical
particles N*.

N*(t) = N*(0) exp(2yt) (101)

This discussion shows that the appearance of an exponential
growth rate is independent of the details of the particular
Monte Carlo algorithm and must be considered to be a
fundamental consequence of the non-positive kernel.

3.4 Particle annihilation

The discussed particle models are instable, because either the
particle weight or the particle number grows exponentially
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in time. Using the Markov chain method, it has been
demonstrated that tunnelling can be treated numerically by
means of a particle model (Nedjalkov et al., 2002). However,
because of the exponentially increasing particle weight at the
very short timescale (2y)~!, application of this algorithm
turned out to be restricted to single-barrier tunnelling and
small barrier heights only. This method can be useful for
devices where quantum effects are weak and the potential
operator is a small correction to the otherwise classical
transport equation.

A stable Monte Carlo algorithm can be obtained by
combining one of the particle generation methods with a
method to control the particle number. One can assume
that two particles of opposite weight and a sufficiently small
distance in phase-space annihilate each other. The reason
is that the motions of both particles are governed by the
same equation. Therefore, when they come close to
each other at some time instant, the two particles have
approximately the same initial condition and thus a common
probabilistic future. In an ensemble Monte Carlo method,
a particle removal step should be performed at given time
steps. During the time step, the ensemble is allowed to grow
to a certain limit, then particles are removed and the initial
size of the ensemble is restored. In this work, the problem
has been solved for the stationary transport problem. In
the algorithm, the trajectory of only one sample particle is
followed, whereas other numerical particles are temporarily
stored on a phase-space grid. Due to the opposite sign,
particle weights annihilate to a large extent in the cells of
the grid. The total residual weight in each cell has to be
minimised, as it represents a measure for the numerical error
of the method (Kosina et al., 2003a,b).

4 Simulation results

The Monte Carlo method for solving the Wigner equation
has been applied to different nanoelectronic devices. Since
quantum ballistic transport can be described by both the
collision-less Wigner equation and the Schrodinger equation,
this case can be used for a consistent comparison. The
equivalence of both approaches is demonstrated for the case
of a double gate MOSFET. Effects of scattering are then
discussed for resonant tunnelling structures.

4.1 Comparison of Wigner and Schrodinger
equation-based results

To demonstrate the validity of the numerical method
presented, quantum ballistic transport in a double gate
MOSFET is studied. The test device has a gate length of
10nm and a silicon film thicknesses of 3 nm. Metal gates
with mid-gap work function are assumed. To obtain potential
profiles for the quantum transport study a classical simulation
using Minimos-NT (Institut fiir Mikroelektronik) is
performed. To account for the effect of transverse
confinement due to the small silicon film thickness, the
first longitudinal subband (m; = 0.91my) is calculated in a
post-processing step by solving the Schrodinger equation.
Due to the computational requirements of the quantum
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Monte Carlo simulation, the potential is not determined
self-consistently with the quantum mechanical problem in
this study. Figure 5 shows the resulting subband edges along
the channel of the MOSFET at a drain voltage of 0.4 V and
gate voltages of 0.2 and 0.4V. Assuming a cutoff length
of A, = 60nm, the spectral decomposition described in
Section 2.5 is applied to obtain the classical and the quantum
mechanical potential profiles.

Figure 6 compares carrier concentrations for different
gate voltages resulting from the quantum Monte Carlo and
a classical ballistic Monte Carlo method. In the channel
the quantum mechanical concentration is significantly higher
than the classical concentration. The additional concentration
originates from electrons able to tunnel through the energy
barrier.

Figure 5 Potential profiles used in the ballistic simulations
represent the lowest subband edges of a double-gate
MOSFET of 10 nm gate length
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Figure 6 Carrier concentrations from classical ballistic and the
quantum Monte Carlo simulations for the potential
profiles shown in Figure 5
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Mean energies are calculated as the second moments of
the Wigner function and the classical ballistic distribution
function, respectively (Figure 7). In the source region both
the quantum mechanical and classical mean energies are very
close to the equilibrium value of 3k7 /2. The difference
in mean energy is most pronounced in the region of the
potential barrier. Since tunnelling electrons formally possess

a negative energy, it can be expected that in a tunnelling
region the quantum mechanical mean energy will be lower
than the classical one. In the drain region the average energy
profiles decay to the same value, which is higher than the
equilibrium value. Because both the classical and quantum
transport models under consideration are ballistic, electrons
reaching the drain region either by surmounting the potential
barrier or tunnelling, acquire considerable kinetic energy
due to the applied drain-source voltage. Since scattering is
neglected, the high momenta of these electrons are preserved,
which leads to a significant contribution to the mean energy
throughout the drain area. The opposite effect, although much
weaker, can be observed in the source region. Because of a
lacking back flow of electrons above the energy barrier, the
negative, high-momentum tail of the Maxwellian distribution
is truncated, resulting in a mean energy slightly below the
equilibrium value (Figure 7).

Figure 7 Mean electron energy at Vg = 0.4V, computed as
the second moment of the Wigner function and the
classical ballistic distribution function
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The ballistic current-voltage characteristics, as calculated by
the Wigner and the classical Monte Carlo methods, are shown
in Figure 8. Current is normalised with respect to the classical
on-current. For all bias points, the quantum mechanical
current is significantly higher than the classical thermionic
current. The current increase is caused by carriers tunnelling
through the potential barrier. To justify the correctness of
the Wigner Monte Carlo simulations, the current is also
determined from a solution of the Schrodinger equation with
open boundary conditions for the same potential profile.
Results of the Wigner Monte Carlo simulations are in good
agreement with the solutions of the Schrodinger equation, as
shown in Figure 8.

For a quantum ballistic transport problem, the numerical
solution of the Schrodinger equation will always be
computationally more efficient than the solution of the
Wigner equation. The important advantage of the Wigner
function-based method, however, is that dissipative processes
due to scattering can be included.

4.2 The effect of scattering

Virtually all published results of Wigner function—based
device modelling focus on resonant tunneling diodes (Sun
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et al., 1998; Mizuta and Tanoue, 1995). In this section, two
different devices are discussed. Their parameter values are
collected in Table 1, where RTD1 (Shifren and Ferry, 2002)
is a device from the literature. The semi-classical scattering
model includes polar optical, acoustic deformation potential
and ionised-impurity scattering. Parameter values for GaAs
have been assumed.

Figure 8 Classical ballistic and quantum ballistic current, both
obtained by Monte Carlo simulations (open symbols).
Currents are normalised to the classical on-current at
Ve = 0.4V. Solid lines show the analytically
calculated thermionic emission current and
the current from a numerical solution of
the open boundary Schrodinger equation,

respectively
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Table 1  Parameter values of the simulated resonant
tunnelling diodes. The lattice constant of GaAs is
ap = 0.565 nm
Device Barrier Barrier Well Device Contact
name height width width length doping
(eV) (nm) (nm) (nm) (cm™)
RTDI1 0.3 3.0 5.0 200.0 10'6
RTD2 0.47 3.0 4.0 270.0 108

In RTDI, the potential changes linearly in a region of
40nm length, starting 10nm before the emitter barrier
and extending 19 nm after the collector barrier, as shown
in Figure 9. The Wigner potential is discretised using
Ny = 640 equidistant k, points and Ax = 0.5 nm spacing
in x-direction. Assuming a cutoff length of L, = 80 nm, one
would require at least Ny = L./Ax = 160. This minium
value is often used in finite-difference simulations for the
Wigner equation, but in the Monte Carlo simulation we use
the considerably larger value stated above in order to get
a better resolution of the energy domain. The annihilation
mesh is three-dimensional. In x-direction, the grid covers
the region where the Wigner potential is non-zero. Because
of the cylindrical symmetry of the Wigner function, only
two momentum coordinates have to be considered. The
mesh extends to an energy of 6eV in both axial and radial
k-direction.
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Figure 9 Conduction band edge of RTD1 for different
voltages. A linear voltage drop is assumed
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Figure 10 shows the electron concentration in RTD1 at
voltages below the resonance voltage. Classical behaviour
is observed before and after the double barrier, whereas
in the quantum well the behaviour of the solution is
non-classical. In front of the barrier an accumulation layer
forms, with its maximum concentration increasing with
the band bending. In the quantum well, the concentration
increases as the resonance is approached. After the barrier
a depletion layer forms, which grows with applied voltage.
In this region, the concentration at 0.15V varies
exponentially in response to the linear potential
(see Figure 9), which is again a classical property.

Figure 10 Electron concentration in RTD1 for voltages less
than the resonance voltage
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For voltages above the resonance voltage, the concentration
in the well drops, whereas the depletion layer continues to
grow (Figure 11 ). The mean kinetic energy of the electrons is
depicted in Figure 12. The energy density has been calculated
from the second-order moment of the Wigner function (35)
and divided by the electron density to get the mean energy
per electron. In the zero-field regions, an energy close to the
equilibrium energy is obtained, which demonstrates that the
energy conservation property of the Wigner potential operator



114 H. Kosina

is also satisfied by the numerical Monte Carlo procedure. One
has to keep in mind that the Wigner potential can produce a
rather large momentum transfer. For the chosen value for Ax,
the related energy transfer can reach values as large as 5eV,
which shows that a large degree of cancellation occurs in the
estimator for the mean energy. Electrons injected from the
second barrier into the collector space charge region show
initially a high kinetic energy.

Figure 11 Electron concentration in RTD1 for voltages
greater than the resonance voltage
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Figure 12 Mean kinetic energy in RTD1 for two
different voltages
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Phonon scattering strongly affects the current—voltage
characteristic of RTD1 (Figure 13). As compared to the
coherent case, phonon scattering leads to an increase in
the valley current and a resonance voltage shift. The
large difference in the valley current can be explained by
the electron concentration in off-resonance condition
(Figure 14). With phonon scattering included, a significantly
higher concentration forms in the emitter notch and injection
in the double barrier is increased. This indicates that a quasi
bound state forms in the emitter notch. The population of
this state increases when scattering is switched on. On the
other hand, in resonance condition where the applied voltage

is lower, such a bound state does not form and very similar
electron concentrations are observed for the coherent and
noncoherent case (Figure 15).

Figure 13 Influence of phonon scattering on the current—voltage
characteristics of the RTD1
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Figure 14  Electron concentration in RTD1 in off-resonance
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4.3 Inclusion of extended contact regions

Since the Wigner equation simplifies to the Boltzmann
equation when the potential variation is sufficiently smooth,
the proposed quantum Monte Carlo method turns into the
semiclassical Monte Carlo method for vanishing Wigner
potential. Therefore, one can simulate a quantum region
embedded in an extended classical region with the interface
between the regions correctly treated in an implicit way.
By means of the Wigner generation rate y, the simulation
domain can be decomposed into quantum regions (y > 0)
and classical regions (y =~ 0). In Figure 16, these regions
within RTD1 are marked. The electron concentration and the
mean energy are smooth in the extended contact regions and
not affected by the strong onset of the Wigner generation rate.

In the simulation of RTD2, the Wigner potential V\j (ky, x)
is discretised using Ny = 1200 equidistant k, points
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and Ax = 0.5nm spacing in the x-direction. A cutoff
length of L. = 60nm is assumed. The annihilation
mesh consists of 480 points in the longitudinal and 120
points in the perpendicular momentum direction and the
real space coordinate is discretised using Ax = 0.5nm.
The electrostatic potential has been computed using the
self-consistent Schrodinger-Poisson solver NANOTCAD-
1D (Iannaccone et al., 2001). Figure 17 shows the electron
concentration profile in the device. At the resonance voltage
of 1.2V, the concentration in the quantum well is considerably
higher than in the off-resonance condition at 1.6V. The
concentration in the depletion region left of the barrier
depends on the injected current and is thus correlated with
the concentration in the well.

Figure 15 Electron concentration in RTD1 in resonance
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Figure 16 Electron concentration and mean electron
energy in RTD1 at 7 = 300K and 0.1V
applied voltage
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Figure 17 Electron concentration profiles in RTD2

T e e e e B s e e e s e e e i

— 12v ]
— 16V

. 3
electron concentration (cm )

(') IS T T ST T T T AT ST T T N ST ST T [N T T ST T A
50 100 150 200 250
distance (nm)

115

5 Conclusion

The examples presented in Section 4 demonstrate that
a numerical solver for the Wigner equation can provide
quantitatively correct results. One requirement is that
the cutoff length is chosen sufficiently large. The
completeness relation of the discrete Fourier transform
reflecting Heisenberg’s uncertainty principle, Ak, = w /L.,
shows that a small L. will result in a coarse grid in
momentum space, and resonance peaks in the transmission
coefficient might not be resolved properly. In the past,
the Wigner equation has been solved most frequently
by finite-difference methods. Due to the non-locality of
the potential operator, all points in momentum space
are coupled, resulting in a very poor sparsity pattern of
the matrix. Therefore, increasing the number of grid points
in k-space, related to the cutoff length by N, = L./Ax,
is limited by prohibitive memory and computation time
requirements. This might be one reason why quantitatively
correct solutions were difficult to obtain in the past.
We believe that the frequently reported accuracy problems
with finite-difference Wigner function-based device
simulations result from a too coarse k-space discretisation.
As this problem occurs already for one-dimensional
geometries, higher dimensional simulations using the
finite-difference method are probably out of reach. It
is interesting to note that Frensley, who pioneered the
finite-difference method for the Wigner equation (Frensley,
1990), later abandoned this method and developed the
quantum-transmitting boundary method to describe coherent
transport in open systems (Frensley, 1992).

The Monte Carlo method allows the number of
k-points to be increased. In this work, the Wigner
potential has been discretised using N; of the order 10°.
However, high-performance resonant tunnelling diodes
with very high peak-to-valley current ratio pose still a
problem for the Monte Carlo method. In such a device,
the density can vary over several orders of magnitude,
which often cannot be resolved by the Monte Carlo
method. This problem is also well-known from the
classical Monte Carlo method. As a solution, one could
apply statistical enhancement techniques in such cases.
At present, an equidistant k-grid is used for the
discretisation of the Wigner potential. Because the
transmission coefficient of double-barrier structures may
show very narrow resonance peaks, using an equidistant
k-grid may not be the optimal choice. However, because
of the discrete Fourier transform of the potential involved
in the computation of the Wigner potential, the use of a
non-equidistant k-grid appears to be problematic.

In a Wigner function-based simulation of one-dimensional
heterostructures, fundamental simulation parameters such
as the cutoff length are closely linked to physical device
parameters such as the spacing from the contacts. This
property stems from the choice of plane-wave basis sets
in a quantum mechanical regime of broken translational
symmetry. Although analytically appealing, this basis set
can cause numerical difficulties. Other approaches such
as the non-equilibrium Green’s function formalism may
have the advantage that other basis sets can be used more
straightforwardly.
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These considerations indicate that from a numerical
point of view, the Wigner function formalism might not
be the optimal choice for resonant tunnelling simulation.
However, because the formalism describes quantum effects
and scattering effects with equal accuracy, it appears well
suited especially when a quasi-ballistic transport condition
without energetically sharp resonances is present. One
strength of the Wigner function approach is the treatment of
contact regions. Non-equilibrium transport can be simulated
in the whole device formed by a central quantum region
embedded in extended classical regions. The presented
Wigner Monte Carlo method can bridge the gap between
classical device simulation and pure quantum ballistic
simulations.

Development of Monte Carlo methods for the solution
of the Wigner equation is still in the beginning. Research
efforts are needed especially with respect to the negative
sign problem. The particle generation-annihilation algorithm
developed by the authors is just one solution to that problem.
Improved variants of this algorithm or even new solution
strategies are yet to be devised. Extension of the Monte Carlo
methods to higher dimensional device geometries, however,
is straightforward.
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