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WIGNER-YANASE SKEW INFORMATION
VS. QUANTUM FISHER INFORMATION
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(Communicated by David R. Larson)

Abstract. Among concepts describing the information contents of quantum
mechanical density operators, both the Wigner-Yanase skew information and
the quantum Fisher information defined via symmetric logarithmic derivatives
are natural generalizations of the classical Fisher information. We will establish
a relationship between these two fundamental quantities and show that they
are comparable.

1. Introduction

In the study of information contents of distributions (quantum mechanical den-
sity operators), Wigner and Yanase [10] introduced the quantity IW (ρ,H) =
1
2 tr(DHρ

1/2)2, which they called skew information, to measure the information
content of the density operator ρ with respect to the fixed self-adjoint operator H
(which may be interpreted as a Hamiltonian, a momentum, or other conserved
quantity). Here DH is the inner differentiation with respect to H defined as
DHx = i[x,H ] = i(xH − Hx). Alternatively, IW (ρ,H) may be interpreted as
a measure of non-commutativity between ρ and H [3]. Wigner and Yanase argued
and proved that this quantity satisfied all the desirable intuitive requirements of
an information measure [10], [11]. This notion of skew information was further
generalized by Connes and Stormer [3] in a general von Neumann algebra setting.
It played a crucial role when they proved the homogeneity of state spaces of III1

von Neumann algebras.
In fact, the notion of skew information is very similar to the well-known notion

of Fisher information originated from statistical inference [5], [6]. Recall that the
Fisher information of a parameterized family of probability densities {pθ : θ ∈ R}
on R is defined as

IF (pθ) =
∫
R

( ∂
∂θ
p

1/2
θ (x)

)2

dx(1)

=
1
4

∫
R

( ∂
∂θ

log pθ(x)
)2

pθ(x)dx.(2)
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In particular, when pθ(x) = p(x− θ), by the translation invariance of the Lebesgue
integral, we have

IF (pθ) =
∫
R

( ∂
∂x
p1/2(x)

)2

dx(3)

=
1
4

∫
R

( ∂

∂x
log p(x)

)2

p(x)dx.(4)

Thus, in this circumstance, IF (pθ) is independent of θ, and we can denote IF (pθ)
simply by IF (p). It is the Fisher information of p with respect to the location
parameter. The notion of Fisher information plays a crucial role in the geometrical
approach to statistics [1], and it is enjoying increasing popularity in the informa-
tional approach to physics [7].

While it is remarkable that Chentsov [2] characterized the metric induced by
the Fisher information as the unique (up to a constant factor) monotone Riemann
metric (that is, metric contracts under any stochastic mapping) on the class of prob-
ability densities (classical or commutative case), it is equally remarkable that Petz
[9] determined all monotone Riemann metrics on density matrices (quantum or non-
commutative case). In particular, in an operator setting (quantum case), the notion
of Fisher information has many natural generalizations due to non-commutativity,
in sharp contrast to the uniqueness in the commutative case. Among the vari-
ous generalizations, there are two distinguished ones. The first arises when one

formally generalizes the expression IF (pθ) =
∫
R

(
∂
∂θp

1/2
θ (x)

)2

defined by Eq. (1).
Replacing the integration by trace, the parameterized probabilities pθ by a param-
eterized density operator ρθ on some Hilbert space, and the ordinary differential
∂
∂θ by the quantum (inner) differential DH in non-commutative geometry (H is a
fixed self-adjoint operator)[4], we can heuristically define

IW (ρθ) = tr(DHρ
1/2
θ )2.(5)

In particular, when ρθ = e−iθHρeiθH , IW (ρθ) is independent of the parameter θ as
will be shown in Section 2. In this circumstance, IW (ρθ) is precisely the Wigner-
Yanase skew information IW (ρ,H) = 1

2 tr(DHρ
1/2)2, which corresponds to the

generalization of Eq. (3).
The second natural generalization of the classical Fisher information arises when

one formally generalizes the expression IF (pθ) = 1
4

∫
R

(
∂
∂θ log pθ(x)

)2

pθ(x)dx de-
fined by Eq. (2). This was actually first done in a quantum estimation setting [8].
To see how this happens, note that in a symmetric form,

∂

∂θ
pθ =

1
2

( ∂
∂θ

log pθ · pθ + pθ ·
∂

∂θ
log pθ

)
.

In Eq. (2), replacing the integration by trace, pθ by ρθ, and the logarithmic deriv-
ative ∂

∂θ log pθ by the symmetric logarithmic derivative Lθ determined by

∂

∂θ
ρθ =

1
2

(Lθρθ + ρθLθ), θ ∈ R,(6)

we come to the quantum Fisher information (derived via the symmetric logarithmic
derivative)

IF (ρθ) = 1
4 tr(L2

θρθ).
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This generalization plays an important role in quantum estimation [8]. In partic-
ular, when ρθ = e−iθHρeiθH , IF (ρθ) is independent of the parameter θ as will be
shown in Section 2, and in this circumstance, IF (ρθ) coincides with IF (ρ,H) =
1
4 tr(ρL2), which corresponds to the generalization of Eq. (4). Here L is a quantum
analogue of the symmetric logarithmic derivative determined by

DHρ = 1
2 (Lρ+ ρL).

Of course, one can also write ∂
∂θpθ = pθ · ∂∂θ log pθ, and consider a version of quantum

Fisher information defined via the right logarithmic derivative. We do not pursue
this case here.

Now a natural question arises: How are these two generalizations of the classical
Fisher information, IW (ρ,H) and IF (ρ,H), related? We shall show that

IW (ρ,H) ≤ IF (ρ,H) ≤ 2IW (ρ,H).

In fact, using resolution of identity and a representation diagonalizing the den-
sity operator ρ, we are able to compute explicitly both IW (ρ,H) and IF (ρ,H),
from which the comparing result follows. The proof is facilitated by the formal
manipulation of the associativity of Dirac’c bras, kets and operators.

2. Skew information vs. quantum Fisher information

Let H be a fixed observable (Hermitian operator) on some Hilbert space H
of quantum states representing a certain conserved quantity. Let ρ be a density
operator on H. Let ρθ = e−iθHρeiθH be the evolution of ρ generated by H . Here
θ ∈ R is a (temporal or spatial) parameter, and H may be interpreted as the
generator of the temporal shift or the spatial displacement. Clearly, ρθ satisfies the
von Neumann-Landau equation

i
∂ρθ
∂θ

= Hρθ − ρθH, θ ∈ R.(7)

Theorem 1. Under the above assumptions, we have
(1) IW (ρθ) = IW (ρ,H), ∀ θ ∈ R. That is, IW (ρθ) is independent of the param-

eter θ, and coincides with the Wigner-Yanase skew information IW (ρ,H).
(2) IF (ρθ) = IF (ρ,H), ∀ θ ∈ R. That is, IF (ρθ) is independent of the parameter

θ, and coincides with IF (ρ,H).

Proof. (1) The conclusion follows from the cycle property of trace and

DHρ
1/2
θ = e−iθH

(
DHρ

1/2
)
eiθH .

(2) By Eqs. (6) and (7), we have

i(ρθH −Hρθ) = 1
2 (Lθρθ + ρθLθ),

which implies

i(ρH −Hρ) = 1
2 (Lρ+ ρL).(8)

Here L = eiθHLθe
−iθH . Clearly, L is independent of the parameter θ since it is the

unique solution of Eq. (8) when H and ρ (which are independent of θ) are fixed.
By the cyclic property of trace, we have

IF (ρθ) = 1
4 tr(ρθL2

θ) = 1
4 tr(e−iθHρeiθHL2

θ) = 1
4 tr(ρeiθHL2

θe
−iθH) = 1

4 tr(ρL2). �

Theorem 2. IW (ρ,H) ≤ IF (ρ,H) ≤ 2IW (ρ,H).
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Proof. We need only to treat the case when ρ is non-degenerate. When ρ is de-
generate, simple modification of the following argument yields the same conclusion.
Thus suppose ρ has the orthogonal spectral representation

ρ =
∑
m

λm|ψm〉〈ψm|.(9)

Here {λm} are the different (positive) eigenvalues of ρ, and {|ψm〉} constitute an
orthonormal base. We have used Dirac’s notation, |ψm〉〈ψm| stands for the projec-
tion on the ket vector |ψm〉. For any operator A, 〈ψm|A|ψn〉 stands for 〈ψm, Aψn〉.
The inner product is linear in the second variable. The advantage of using Dirac’s
notation will be clear in the subsequent proof. By virtue of the orthonormal base
{|ψm〉}, we have the resolution of identity

1 =
∑
m

|ψm〉〈ψm|.(10)

Here 1 stands for the identity operator on H.
Now we compute the skew information IW (ρ,H). Since

tr(ρH2) =
∑
m

〈ψm|ρH2|ψm〉

=
∑
m

λm〈ψm|H2|ψm〉 (by Eq. (9))

=
∑
m

λm

〈
ψm

∣∣∣H∑
n

∣∣∣ψn〉〈ψn∣∣∣H∣∣∣ψm〉 (by Eq. (10))

=
∑
m,n

λm〈ψm|H |ψn〉〈ψn|H |ψm〉

=
∑
m,n

λm|〈ψm|H |ψn〉|2.(11)

Symmetrically, we also have

tr(ρH2) =
∑
m,n

λn|〈ψm|H |ψn〉|2.

Consequently,

tr(ρH2) =
∑
m,n

λm + λn
2

|〈ψm|H |ψn〉|2.(12)

On the other hand,

tr(Hρ1/2Hρ1/2) =
∑
m

〈ψm|Hρ1/2Hρ1/2|ψm〉

=
∑
m

λ1/2
m 〈ψm|Hρ1/2H |ψm〉

=
∑
m,n

λ1/2
m 〈ψm|Hρ1/2|ψn〉〈ψn|H |ψm〉

=
∑
m,n

λ1/2
m λ1/2

n 〈ψm|H |ψn〉〈ψn|H |ψm〉

=
∑
m,n

λ1/2
m λ1/2

n |〈ψm|H |ψn〉|2.(13)
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Combining Eqs. (12) and (13), we have

IW (ρ,H) = tr(ρH2)− tr(Hρ1/2Hρ1/2)

=
1
2

∑
m,n

(λ1/2
m − λ1/2

n )2|〈ψm|H |ψn〉|2.(14)

Next, we evaluate the quantum Fisher information IF (ρ,H). Since

i(ρH −Hρ) =
1
2

(Lρ+ ρL),

we have

〈ψm|iρH − iHρ|ψn〉 =
1
2
〈ψm|Lρ+ ρL|ψn〉.

From this we have, for all m and n,

i(λm − λn)〈ψm|H |ψn〉 =
λm + λn

2
〈ψm|L|ψn〉.(15)

Now,

IF (ρ,H) =
1
4

tr(ρL2)

=
1
4

∑
m

〈ψm|ρL2|ψm〉

=
1
4

∑
m,n

λm〈ψm|L|ψn〉〈ψn|L|ψm〉

=
1
4

∑
m,n

λm|〈ψm|L|ψn〉|2.

Symmetrically,

IF (ρ,H) =
1
4

∑
m,n

λn|〈ψm|L|ψn〉|2.

Consequently,

IF (ρ,H) =
1
8

∑
m,n

(λm + λn)|〈ψm|L|ψn〉|2

=
4
8

∑
m,n

(λm + λn)
(λm − λn)2

(λm + λn)2
|〈ψm|H |ψn〉|2 (by Eq. (15))

=
1
2

∑
m,n

1
λm + λn

(λm − λn)2|〈ψm|H |ψn 〉|2

=
1
2

∑
m,n

(
1 +

2λ1/2
m λ

1/2
n

λm + λn

)
(λ1/2
m − λ1/2

n )2|〈ψm|H |ψn 〉|2.(16)

The conclusion of the theorem follows since

0 ≤ 2λ1/2
m λ

1/2
n

λm + λn
≤ 1, ∀ m,n.

Remark. If ρ commutes with H , then

IW (ρ,H) = IF (ρ,H) = 0.
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Example. Let us consider a two-level quantum system. The quantum state Hilbert
space is C2. A general density operator ρ on C2 is of the form

ρ =
1
2

(
1 + r3 r1 − ir2
r1 + ir2 1− r3

)
for some r = (r1, r2, r3) ∈ R3, |r| ≡

√
r2
1 + r2

2 + r2
3 ≤ 1. The eigenvalues of ρ are

λ1 = 1−|r|
2 and λ2 = 1+|r|

2 . Let the corresponding eigenvectors be |ψ1〉 and |ψ2〉,
then

ρ = λ1|ψ1〉〈ψ1|+ λ2|ψ2〉〈ψ2|.
Consequently, by Eqs. (14) and (16),

IW (ρ,H) =
1
2

(
1−

√
1− |r|2

)
|〈ψ1|H |ψ2〉|2, IF (ρ,H) =

|r|2
2
|〈ψ1|H |ψ2〉|2

and
IF (ρ,H) =

(
1 +

√
1− |r|2

)
IW (ρ,H).

Thus IF (ρ,H) may vary continuously from IW (ρ,H) to 2IW (ρ,H). Moreover, in
this case, if 〈ψ1|H |ψ2〉 6= 0 and H does not commute with ρ, then IW (ρ,H) =
IF (ρ,H) if and only if |r| = 1, that is, ρ is a pure state.
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