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Wild bootstrap for quantile regression
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SUMMARY

The existing theory of the wild bootstrap has focused on linear estimators. In this note, we broaden its
validity by providing a class of weight distributions that is asymptotically valid for quantile regression
estimators. As most weight distributions in the literature lead to biased variance estimates for nonlinear
estimators of linear regression, we propose a modification of the wild bootstrap that admits a broader class
of weight distributions for quantile regression. A simulation study on median regression is carried out to
compare various bootstrap methods. With a simple finite-sample correction, the wild bootstrap is shown
to account for general forms of heteroscedasticity in a regression model with fixed design points.
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1. INTRODUCTION

The bootstrap is a well-established method of inference in regression models. Common bootstrap meth-
ods, such as the residual bootstrap and the paired bootstrap, are described in Efron & Tibshirani (1994),
and their asymptotic properties can be found in Shao & Tu (1995) and Mammen (1991) among others.
For bootstrapping M estimators, Lahiri (1992) considered a modified version of the residual bootstrap,
Rao & Zhao (1992) proposed a resampling method using random weights on the loss functions, and Knight
(1999) established the validity of the paired bootstrap method. To account for heteroscedasticity, Wu
(1986) and Liu (1988) proposed the wild bootstrap, randomly weighting the residuals. Other researchers
(Davidson & Flachaire, 2008; Mammen, 1993) have considered the properties of the wild bootstrap, but
the existing theory has focused on linear estimators.

In this note, we consider the wild bootstrap for quantile regression estimators (Koenker & Bassett,
1978). We find that many classical choices of the weight distribution in the wild bootstrap are invalid
for these estimators with nonlinear score functions. We suggest a simple modification of the wild boot-
strap to suit asymmetric loss functions in quantile estimation, and identify a class of weight distributions
under which our method is asymptotically valid. We also report a simulation study on median regression
to demonstrate the relevance of our results in finite-sample problems.
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2. THEORETICAL DEVELOPMENT

Consider a linear model

yi = xT
i β0 + ei (i = 1, . . . , n), (1)

where yi is the i th observation, xi is the i th nonstochastic design point in R
m and ei is an independent

error variable with probability density fi . For identifiability, we assume that, for a quantile level τ ∈ (0, 1)
of interest, the conditional τ th quantile of ei given xi is zero. The quantile regression estimator of β0

minimizes the objective function

n∑
i=1

ρτ (yi − xT
i β),

where ρτ (u)= u{τ − I (u < 0)} is the quantile loss function, and ψτ (u)= τ − I (u < 0) is the score func-
tion. We use the wild bootstrap, as described in the following steps:

Step 1. Fit (1) to the data, and denote the estimate of the parameter vector by β̂ and use êi (i = 1, . . . , n)
to represent the residuals.

Step 2. Generate the weights wi from an appropriate distribution satisfying the conditions stated later,
and let e∗

i =wi |êi |.
Step 3. Calculate the bootstrapped sample as y∗

i = xT
i β̂ + e∗

i .

Step 4. Refit (1) to the bootstrapped sample and denote the bootstrap estimate by β̂∗.

Step 5. Repeat Steps 2–4 B times, and estimate the variance of β̂ by the sample variance of the B
copies of β̂∗.

The proposed wild bootstrap is based on Liu (1988), but the important differences lie in the choice of
the weight distribution and the generation of the residuals in Step 2. The original wild bootstrap method
uses the residuals êi in Step 2, but we use the absolute residuals, because it is easier to find valid weight
distributions for asymmetric loss function ρτ whenever τ |= 0·5.

We shall use | · | to indicate the supremum norm of a vector. With the proposed bootstrap method, we
have the following result for any fixed τ ∈ (0, 1). The proof can be found in the Supplementary Material.

THEOREM 1. Assume model (1), with weights wi independently drawn from a distribution with a
bounded probability density function g. Let β̂ be the quantile estimator of β0. If Conditions 1–6 hold, then
for almost all samples {(xT

i , yi ) : i = 1, . . . , n}, then the conditional distribution of n1/2(β̂∗ − β̂) given the
data converges to N {0, τ (1 − τ)M−1 QM−1} in distribution under resampling, as n → ∞, where Q and
M are specified below in Condition 6.

Condition 1. The conditional densities fi are bounded with fi (0) > 0, and fi (y)− fi (0)= O(|y|1/2)
uniformly in i as y → 0.

Condition 2. For xi ∈ R
m ,

∑n
i=1 |xi |3 = O(n) and max1�i�n |xi | = O(n1/4).

Condition 3. For some positive constants c1 and c2, sup{w ∈ G : w� 0} = −c1 and inf{w ∈ G : w�
0} = c2, where G is the support of the weight distribution.

Condition 4. The weight distribution G satisfies
∫ +∞

0 w−1dG(w)= − ∫ 0
−∞w

−1dG(w)= 1/2, and
EW (|w|) <∞, where the expectation EW is taken under G.

Condition 5. The τ th quantile of the weight w is zero, that is, G(0)= τ .

Condition 6. The limits Q = limn→∞ n−1
∑n

i=1 xi xT
i , M = limn→∞ n−1

∑n
i=1 fi (0)xi xT

i > 0 exist.
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Conditions similar to 1, 2 and 6 are routinely used in the Bahadur representation of the quantile regres-
sion estimators. In fact, they imply that (Koenker, 2005, p. 122)

β̂ − β0 = (nM)−1
n∑

i=1

xiψτ (ei )+ op(n
−1/2). (2)

Conditions 3 and 4 are used to remove complications arising from using weights near zero. Condition
5 ensures that the conditional τ th quantile of the bootstrapped residuals is zero. A simple weight distri-
bution that satisfies those conditions is the two-point mass distribution with probabilities 1 − τ and τ at
w= 2(1 − τ) and −2τ , respectively.

Comparing the result in Theorem 1 and the asymptotic sampling distribution of β̂ from (2), we have
shown that the wild bootstrap distribution can provide asymptotically valid inference. For example, the
wild bootstrap method consistently estimates the variance of β̂.

In the special case of median regression with τ = 0·5, the loss function is symmetric. In that case, one
can use residuals instead of absolute residuals in Step 2, and Condition 4 can be relaxed to EW (|w|−1)= 1.

3. SIMULATION STUDY

A small-scale simulation study with fixed design points is reported here to demonstrate applicability
of the proposed wild bootstrap in finite-sample problems. The data are generated from

yi = β0 + β1x1i + β2x2i + 3−1/2[2 + {1 + (x1i − 8)2 + x2i }/10]εi (i = 1, . . . , n),

where (β0, β1, β2)= (1, 1, 1), εi are drawn from the t distribution with 3 degrees of freedom and x1i are
generated from the standard log-normal distribution with fixed seed in R (R Development Core Team,
2011). We choose x2i to be 1 for the first 80% of the observations and 0 for the rest, and consider the
median regression with sample sizes ranging from n = 20 to 5000.

In addition to the point-mass distribution mentioned in § 2, we use the following weight distribution,
which satisfies the conditions of Theorem 1 for 1/8< τ < 7/8:

g(w)= G ′(w)=
{−w (−2τ − 1/4 �w� −2τ + 1/4),

w (2(1 − τ)− 1/4 �w� 2(1 − τ)+ 1/4).
(3)

We use the function rq of the R package quantreg to fit the median regression model, and compare the
performance of the wild bootstrap method using the distribution given in (3) or the Bernoulli distribution
with equal probabilities at −1 and 1, the wild bootstrap method with the weightsw drawn from the standard
normal distribution, the paired bootstrap method, the residual bootstrap method by resampling the residuals
and the random weight method of Rao & Zhao (1992) with the weights w drawn from the exponential
distribution exp(1) or the Poisson distribution with λ= 1.

A finite-sample correction factor is generally recommended for the wild bootstrap to reflect the fact that
the residuals are slightly less dispersed than the model errors. We note from the Bahadur representation of
the estimator in the independent and identically distributed error case that

êi = ei − { f (0)}−1hiψτ (ei )+ op(n
−1/2),

where hi = xT
i (

∑
k xk xT

k )
−1xi . This suggests that we replace the residual êi in the wild bootstrap by

êi + { f̂ (0)}−1hiψτ (êi ), where f̂ (0) is estimated from the residuals. Specifically, we obtain f̂ (0) via imple-
menting the akj function in the R package quantreg, which is a univariate adaptive kernel density estimation
method as used in Portnoy & Koenker (1989). Despite the fact that it is motivated by the independent and
identically distributed error models, the proposed finite-sample correction is also useful in general error
models.

To distinguish the methods, we first use 100 Monte Carlo samples with size n. Under each bootstrap
method, 999 bootstrapped samples are used to estimate the standard errors of the parameter estimates for
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Table 1. Comparison of nominal 90% confidence intervals at n = 50. The bootstrap-t inter-
vals are used for the following bootstrap-based methods

β0 β1 β2

Coverage (%) Length (SE) Coverage (%) Length (SE) Coverage (%) Length (SE)

CG 87·8 5·5 (0·02) 91·5 1·5 (0·01) 90·4 5·7 (0·02)
BN 87·1 5·5 (0·02) 91·1 1·5 (0·01) 89·2 5·7 (0·02)
PB 93·6 7·0 (0·03) 94·6 1·7 (0·01) 95·1 7·4 (0·02)
RW 93·6 7·0 (0·03) 94·2 1·6 (0·01) 95·3 7·6 (0·03)
ND 90·7 6·4 (0·02) 87·7 1·4 (0·01) 92·1 6·8 (0·02)
RK 87·7 5·9 (0·02) 90·0 1·7 (0·01) 90·8 ∞
CG and BN refer to the proposed wild bootstrap methods using weights generated from (3) and the
Bernoulli distribution with equal probabilities at −1 and 1, respectively; PB denotes the paired boot-
strap; RW is the random weight bootstrap with weights generated from the exponential distribution
with mean 1. Two other methods in the comparison are ND and RK as implemented in the R package
quantreg, where ND refers to the normal approximation-based intervals allowing nonidentically dis-
tributed errors, and RK refers to the rank score method. Coverage is the estimated coverage probability
of confidence intervals; Length (SE) gives the average lengths and their standard errors. Some intervals
from RK are of infinite length.

each sample. Moreover, we use 5000 Monte Carlo samples to estimate the standard errors of the param-
eter estimates as the benchmark for comparison. Figure 1 in the Supplementary Material shows the clear
biases of the wild bootstrap with weights drawn from the standard normal distribution and the regular resid-
ual bootstrap. The proposed method shows better performance over the paired bootstrap and the random
weight bootstrap of Rao & Zhao (1992) in small samples, because the latter methods effectively introduce
sampling variability to the design points.

We further compare the performance of confidence intervals for the parameters β0, β1 and β2 among
several competitive methods as shown in Table 1, using 10 000 Monte Carlo samples. For various resam-
pling methods, we use confidence interval constructions based on the bootstrap-t method and the naive per-
centile method; we refer to Efron & Tibshirani (1994, § 12.5, § 13.2–13.3) and Davison & Hinkley (1997,
Ch. 5) for details. We report only the results from the bootstrap-t method at n = 50 here, but additional
results from different methods, different sample sizes and different confidence levels can be found in the
Supplementary Material.

In addition to resampling methods, Table 1 also includes two commonly used inference methods in
quantile regression, one based on large-sample approximation under nonidentically distributed errors, the
other based on inversion of quantile regression rank score tests. We refer to Koenker (2005, Ch. 3) for
details of these methods. Because the bootstrap method of Rao & Zhao (1992) with weights drawn from
the Poisson distribution with mean 1 gives similar performance to the paired bootstrap, we do not give
results from the former. In Table 1 and the Supplementary Material, the standard errors of the coverage
estimates are no larger than 0·4%. The proposed wild bootstrap methods perform better overall than other
methods, especially for the slope parameters β1 and β2. In particular, other resampling methods tend to be
overly conservative.

If these bootstrap methods are used to test the hypothesis βk = 0 (k = 0, 1, 2) against the alternative
hypothesis βk |= 0 based on the Wald test, we find that, by generating the data with n = 50 from the same
model except that βk is set to 0, our proposed wild bootstrap leads to Type I errors between 0·04 and 0·06,
but the paired bootstrap method leads to Type I errors around 0·02, and the random weight method with
weights drawn from exp(1) results in Type I errors as high as 0·08. The better performance of the wild
bootstrap is evident.

4. DISCUSSION

In evaluating the relative performances of the wild bootstrap against other resampling methods, a differ-
entiating factor is how much variability of the design points is to be considered. Both the wild bootstrap and
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the resampling methods of Rao & Zhao (1992), Chatterjee & Bose (2005), and Hu & Zidek (1995) use the
original design points xi in the bootstrapped samples. However, the resampling methods of Rao & Zhao
(1992) and Chatterjee & Bose (2005) apply weights to all points, effectively introducing variability in the
design space. Alternatively, the paired bootstrap resamples xi , so the difference between conditional and
unconditional inference tends to appear more clearly in small sample cases. The wild bootstrap is most
appropriate for conditional inference with fixed design points, especially in the presence of leverage points.
We also find that simple finite-sample corrections derived from independent and identically distributed
error models are often helpful for heteroscedastic error models. Further work is needed to adapt the method
to data with dependent errors.

The asymptotic validity of the wide bootstrap given in the present paper is limited to first-order accu-
racy. Due to lack of sufficient smoothness in the quantile objective function, second-order accuracy is
not expected from a resampling method. To achieve higher order accuracy, Hall et al. (1989) considered
smoothing the quantile objective function.
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