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Wild residual bootstrap inference for penalized

quantile regression with heteroscedastic errors

Lan Wang ∗ Ingrid Van Keilegom † Adam Maidman ‡

May 7, 2019

Abstract

We consider a heteroscedastic regression model in which some of the regression

coefficients are zero but it is not known which ones. Penalized quantile regression

is a useful approach for analyzing such data. By allowing different covariates to be

relevant for modeling conditional quantile functions at different quantile levels, it pro-

vides a more complete picture of the conditional distribution of a response variable

than mean regression. Existing work on penalized quantile regression has been mostly

focused on point estimation. Although bootstrap procedures have recently been shown

to be effective for inference for penalized mean regression, they are not directly ap-

plicable to penalized quantile regression with heteroscedastic errors. We prove that

a wild residual bootstrap procedure for unpenalized quantile regression is asymptoti-

cally valid for approximating the distribution of a penalized quantile regression esti-

mator with an adaptive L1 penalty and that a modified version can be used to approxi-

mate the distribution of L1-penalized quantile regression estimator. The new methods

do not need to estimate the unknown error density function. We establish consistency,

demonstrate finite sample performance, and illustrate the applications on a real data

example.

Keywords: Adaptive lasso; Confidence interval; Lasso; Penalized quantile regression;

Wild bootstrap.

1 Introduction

We consider the quantile regression model Yi = xTi β0 + ǫi (i = 1, . . . , n), where xi =
(xi0, xi1, . . . , xip)

T with xi0 = 1 is the ith nonstochastic design point in Rp, and ǫi is a

random error with probability density fi and the τ th quantile equal to zero. The unknown
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regression coefficient β0 = (β00, β01, . . . , β0p)
T may depend on τ , but we omit such depen-

dence in notation for simplicity. Quantile regression was proposed by Koenker & Bassett

(1978) and has become a popular alternative to least squares regression. Conditional quan-

tiles are of interest in a variety of applications, such as the conditional median of medical

expenditure or a low conditional quantile of birth weight. Comparing such quantiles for a

range of τ values enables researchers to obtain a more complete picture of the conditional

distribution than mean regression and is particularly useful for analyzing heterogeneous

data. See Koenker (2005) and Koenker et al. (2017).

We suppose that some of the covariates are irrelevant for modeling the τ th conditional

quantile but we have no prior information on which. In such a setting, penalized quantile

regression has been proven to avoid over-fitting by shrinking the estimated coefficients of

irrelevant covariates toward zero. Here, we focus on the asymptotic regime where the num-

ber of predictors p is fixed while the sample size n goes to infinity. Asymptotic theory for

penalized quantile regression in this setup was recently studied by Zou & Yuan (2008)

for independent and identically distributed random errors, and Wu & Liu (2009), who

established the asymptotic distribution of penalized quantile regression estimator for the

adaptive L1 penalty (Zou, 2006) and considered an extension to the general heteroscedastic

error setting. However, these works have not considered estimation of the standard error

of the estimated penalized quantile regression coefficients. The asymptotic distribution of

L1-penalized quantile regression has a positive probability mass at zero for the compo-

nent for which the true regression parameter has a zero value. Inference based directly

on asymptotic theory is not convenient. On the other hand, the adaptively L1-penalized

quantile regression estimator enjoys the oracle property under regularity conditions: the

zero coefficients are estimated as exactly zero with probability approaching unity and the

nonzero coefficients have the asymptotic normal distribution we would obtain if we knew

in advance which coefficients are zero. However, convergence to the oracle distribution is

often slow and results in inaccurate confidence intervals (Chatterjee & Lahiri, 2013).

In practice, a two-step procedure is commonly used to construct confidence intervals.

First, penalized quantile regression is applied to select variables. Then the model is refit-

ted with selected variables only to construct confidence intervals. Such a procedure does

not account for uncertainties involved in variable selection and generally tends to produce

wider confidence intervals, as demonstrated in our simulation study.

These challenges motivate us to develop a wild residual bootstrap-based inference ap-

proach for penalized quantile regression with L1 or adaptive L1 penalty. Our work is mostly

related to Chatterjee & Lahiri (2010, 2011, 2013) and Camponovo (2015) on bootstrap-

ping penalized estimators in the least squares regression setting. An alternative perturba-

tion method for inference on regularized regression estimates was studied in Minnier et al.

(2011). Chatterjee & Lahiri (2010) proved that standard bootstrap is inconsistent for es-

timating the distribution of the L1 penalized least squares estimator when one or more of

the components of the regression parameter vector are zero; the failure of the naive paired

bootstrap was proved in Camponovo (2015). Modified residual and paired bootstraps were

proposed in Chatterjee & Lahiri (2011) and Camponovo (2015), respectively. Chatterjee

& Lahiri (2013) demonstrated that although the adaptively penalized least squares estima-

tor enjoys the oracle property, inference based directly on the oracle distribution is often

inaccurate and more accurate inference can be obtained via a residual bootstrap. However,
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these bootstrap methods do not directly apply to the quantile regression setting due to the

nonsmoothness of the quantile loss function and the heteroscedastic error distribution. We

prove that a wild residual bootstrap procedure proposed by Feng et al. (2011) for unpenal-

ized quantile regression is asymptotically valid for approximating the distribution of the

quantile regression estimator with adaptive L1 penalty. Furthermore, a modified version

of this wild residual bootstrap procedure can be used to approximate the distribution of L1

penalized quantile regression. Our derivation of the bootstrap consistency theory for pe-

nalized quantile regression uses techniques substantially different from that of Feng et al.

(2011).

2 Inference for adaptive L1-penalized quantile regression

2.1 Quantile regression with adaptive L1 penalty

The unpenalized quantile regression estimator for β0 is β = (β0, . . . , βp)
T , where

β = argmin
β

n∑

i=1

ρτ (Yi − xTi β) (1)

and ρτ (u) = u {τ − I(u < 0)} is the quantile loss function. Under general regularity

conditions, β is asymptotically normal. The asymptotic covariance matrix of β depends on

the unknown conditional density function of ǫi (Koenker, 2005).

Often not all covariates collected are relevant for modeling the τ th conditional quantile,

that is, some of the components of β0 are zero. Let A = {1 ≤ j ≤ p : β0j 6= 0} be the

index set of the nonzero coefficients. Let |A| = q be the cardinality of the set A. Without

loss of generality, we assume that the last p− q components of β0 are zero; that is, we can

write β0 = (βT
01, 0

T
p−q)

T , where 0p−q denotes a (p − q)- dimensional vector of zeros, and

A = {1, . . . , q}. Let X = (x1, . . . , xn)
T be the n × (p + 1) matrix of covariates, where

xT1 , . . . , x
T
n are the rows of X . We also write X = (1, X1, . . . , Xp), where 1, X1, . . . , Xp

are the columns of X and 1 represents an n-vector of ones. Define XA to be the submatrix

of X that consists of its first q + 1 columns; and define XAc to be the submatrix of X that

consists of its last p− q columns. Similarly, let xiA be the subvector that contains the first

q + 1 entries of xi.
The quantile regression estimator with the adaptive L1 penalty performs simultaneous

estimation and variable selection by minimizing a penalized quantile loss function, i.e.,

β̃ = argmin
β

{ n∑

i=1

ρτ (Yi − xTi β) + λn

p∑

j=1

wj|βj|
}
, (2)

where λn > 0 is a tuning parameter, and wj = |βj|
−γ are the adaptive weights (γ > 0).

Write β̃ = (β̃0, . . . , β̃p)
T and Ã = {1 ≤ j ≤ p : β̃j 6= 0}. Let β̃1 be the subvector

that contains the first (q + 1) elements of β̃. Let D0 = limn→∞ n−1
∑n

i=1 xiAx
T
iA and

D1 = limn→∞ n−1
∑n

i=1 fi(0)xiAx
T
iA, where fi(0) is the density function of ǫi evaluated at

zero. The following properties of β̃ were established in Wu & Liu (2009).
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Lemma 2.1 Assume Condition 2 of Section 2.2 is satisfied. If n−1/2λn → 0 and n(γ−1)/2λn →
∞, then the adaptive L1-penalized quantile regression estimator β̃ enjoys the oracle prop-

erty. That is,

(i) pr(Ã = A) → 1 as n→ ∞;

(ii) n1/2(β̃1 − β01) → N{0q+1, τ(1− τ)D−1
1 D0D

−1
1 } in distribution as n→ ∞.

The result in Lemma 1 is referred to as the oracle property: with probability approaching

one the zero coefficients of β0 are identified as zero and the nonzero coefficients are iden-

tified as nonzero; and we can estimate the nonzero subvector of β0 as efficiently as if we

know the true model in advance. The proof of Lemma 2.1 is given in the Supplementary

Material.

2.2 A wild residual bootstrap procedure and its consistency

We use a wild residual bootstrap procedure to approximate the asymptotic distribution of

β̃. Our procedure is motivated by the work of Feng et al. (2011) for unpenalized quantile

regression. To obtain the wild bootstrap sample, we follow the steps below.

1. We first calculate the residuals from the adaptively penalized quantile regression:

ǫ̂i = Yi − xTi β̃ (i = 1, . . . , n) and obtain β̃ by (2).

2. Let ǫ∗i = ri|ǫ̂i|, where ri (i = 1, . . . , n) are generated as a random sample from

a distribution with a cumulative distribution function G satisfying Conditions 3-5

below.

3. We generate the bootstrap sample as Y ∗
i = xTi β̃ + ǫ∗i (i = 1, . . . , n).

Using the bootstrap sample, we recalculate the adaptively penalized quantile regression

estimator as

β̃
∗
= argmin

β

{ n∑

i=1

ρτ (Y
∗
i − xTi β) + λn

p∑

j=1

w∗
j |βj|

}
, (3)

where w∗
j = |β

∗

j |
−γ , β

∗
= (β

∗

0, . . . , β
∗

p)
T is the ordinary quantile regression estimator

recomputed on the bootstrap sample. For j = 1, . . . , p and 0 < α < 1, let d
∗(α/2)
j

and d
∗(1−α/2)
j be the (α/2)-th and (1 − α/2)-th quantiles of the bootstrap distribution of

n1/2(β̃
∗

j − β̃j), respectively. We can estimate d
∗(α/2)
j and d

∗(1−α/2)
j from a large number

of bootstrap samples. An asymptotic 100(1 − α)% bootstrap confidence interval for β0j ,

j = 1, . . . , p, is given by
[
β̃j −n−1/2d

∗(1−α/2)
j , β̃j −n−1/2d

∗(α/2)
j

]
. As in Feng et al. (2011),

we work under the following technical conditions:

Condition 1. The true value β0 is an interior point of a compact set in Rp. The density

of ǫi, denoted by fi(·), is Lipschitz continuous and is bounded away from 0 and ∞ in a

neighborhood around 0 for all i;
Condition 2. limn→∞ n−1

∑n
i=1 xix

T
i → B0 and limn→∞ n−1

∑n
i=1 fi(0)xix

T
i → B1

for some positive definite matrices B0 and B1. Furthermore,
∑n

i=1 ||xi||
3 = O(n) and
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max1≤i≤n ||xi|| = O(n1/4), where || · || is the Euclidean norm;

Condition 3. for some strictly positive constants c1 and c2, sup{r ∈ G : r ≤ 0} = −c1 and

inf{r ∈ G : r ≥ 0} = c2, where G is the support of the weight distribution G;

Condition 4. the weight distribution G satisfies
∫ +∞

0
r−1dG(r) = −

∫ 0

−∞
r−1dG(r) = 1/2

and EG(|r|) <∞ , where the expectation is taken under G;

Condition 5. the τ th quantile of the distribution G is zero.

Theorem 2.2 shows that the conditional distribution of n1/2(β̃
∗
− β̃) provides an asymp-

totically valid approximation of that of n1/2(β̃ − β). Let Ã∗ = {j = 1, . . . , p : β̃∗
j 6= 0},

and let β̃
∗

1 be the subvector that contains the first q+1 elements of β̃
∗
. Let r = {r1, . . . , rn}

be the random bootstrap weights and z = {z1, . . . , zn} be the random sample. By the

wild bootstrap mechanism, the distribution of r is independent of that of z. Let prz denote

the probability under the joint distribution of z, and let prr|z denote the probability of r
conditional on z.

Theorem 2.2 If Conditions 1–5 and the assumptions of Lemma 2.1 are satisfied, then

prr|z(Ã
∗ = A) = 1 + oprz

(1). Furthermore,

sup
t

∣∣prr|z{n
1/2(β̃

∗

1 − β̃1) ≤ t} − prz{n
1/2(β̃1 − β01) ≤ t}

∣∣ = oprz
(1).

Remark 2.3 Conditions 1 and 2 are slightly weaker than the corresponding conditions in

Feng et al. (2011). Under Condition 5, conditional on the data, ǫ∗i has the τ th quantile

equal to zero. Conditions 3 and 4 ensure that the asymptotic distribution of the bootstrap

estimator, conditional on the data, matches the unconditional asymptotic distribution of the

original adaptively penalized quantile regression estimator, which depends on the unknown

error density function. A simple weight distribution that satisfies Conditions 3–5 is the two-

point distribution with probabilities 1 − τ and τ at r = 2(1 − τ) and −2τ , respectively.

Another example given in Feng et al. (2011) is the distribution which for 1/8 < τ < 7/8,

g(r) = G′(r) = −rI(−2τ − 1/4 ≤ r ≤ −2τ + 1/4) + rI{2(1 − τ) − 1/4 ≤ r ≤
2(1− τ) + 1/4}. We propose several other distributions that satisfy these conditions in the

Supplementary Material.

Remark 2.4 By definition n1/2(β̃
∗
− β̃) minimizes Q∗

n(δ), where Q∗
n(δ) =

∑n
i=1

{
ρτ (ǫ

∗
i −

n−1/2xTi δ)−ρτ (ǫ
∗
i )
}
+λn

∑p
j=1w

∗
j

(
β̃j+n

−1/2δj|−|β̃j|
)
, The crux of the proof of Theorem

2.2 is to show that conditional on the data,

Q∗
n(δ) → Q∗(δ) =

{
−δTH + δTB1δ/2, δj = 0 for j > q,

+∞, otherwise,

in probability, whereH ∼ N{0, τ(1−τ)B0}. Then the results follow from epi-convergence

theory, see the unpublished technical reports of Geyer (On the asymptotics of convex

stochastic optimization, technical report, 1996) and Knight (Epi-convergence in distribu-

tion and stochastic equi-semicontinuity, technical report, 1999).
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Remark 2.5 As pointed out by a referee, Leeb & Pötscher (2008) and Pötscher & Schnei-

der (2009) revealed that the distribution of adaptive lasso and other shrinkage-type es-

timators cannot be estimated uniformly in a shrinking neighborhood of the underlying

parameter values. In the setting we consider, the number of covariates is fixed. We as-

sume the smallest nonzero signal is not diminishing to zero when the sample size increases.

Furthermore, as in Chatterjee & Lahiri (2011), we do not claim the bootstrap based esti-

mator of the distribution of adaptive lasso to be uniformly consistent over any diminishing

neighborhood of underlying parameter values. See also Remark 3 of Chatterjee & Lahiri

(2011).

Remark 2.6 For the adaptive lasso, the coverage probability of the confidence interval ap-

proaches unity, because the wild residual bootstrap distribution approximates the adaptive

lasso estimator distribution, which identifies zero coefficients as exactly zero with proba-

bility approaching unity.

3 Modified wild residual bootstrap for L1 penalized quan-

tile regression

We also consider the L1 or lasso penalized quantile regression estimator

qβ = argmin
β

{ n∑

i=1

ρτ (Yi − xTi β) + λn

p∑

j=1

|βj|
}
, (4)

where λn > 0 is a tuning parameter. The asymptotic distribution of qβ follows that of the

minimizer of a random process, which is specified in the following lemma.

Lemma 3.1 Under Condition 2 and if n−1/2λn → λ0 ≥ 0,

n1/2(qβ − β0) → argmin
δ

[
− δTH + δTB1δ/2 + λ0

p∑

j=1

{
|δj|I(β0j = 0)

+δjsign(β0j)I(β0j 6= 0)
}]
,

in distribution as n→ ∞, where H is defined in remark 2.

The proof is given in the Supplementary Material. For L1-penalized mean regression, Chat-

terjee & Lahiri (2010) proved that the asymptotic distribution of the naive residual boot-

strapped lasso estimator is a random measure on Rp and that the bootstrap is inconsistent

whenever the regression parameter vector contains one or more zeros. An explanation of

this phenomenon is that the lasso estimates the sign of nonzero coefficients correctly with

high probability, but estimates the zero coefficients to be positive or negative with positive

probabilities. The naive residual bootstrap fails to reproduce the sign of zero coefficients

with high probability. To remedy this, Chatterjee & Lahiri (2010) proposed a thresholding

procedure, which we adapt.
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Our procedure proceeds as follows. Let {an} be a sequence of numbers such that

an + (n−1/2 log n)a−1
n → 0 as n → ∞. For example, an = cn−δ, for some c > 0, 0 < δ <

1/2. For β defined in (1), we consider the thresholded estimator qβ
∗
= (qβ∗

0 , . . . ,
qβ∗
p)

T , where

qβ∗
0 = β0 and qβ∗

j = qβjI(|qβj| > an) for j = 1 . . . , p. Let qǫi = Yi − xTi
qβ
∗

(i = 1, . . . , n).

Let ǫ∗∗i = ri|qǫi| (i = 1, . . . , n), where the bootstrap weights ri satisfy Conditions 3–5. We

choose to threshold the ordinary quantile regression estimator directly. Alternatively, we

may threshold the lasso estimator qβ, which will yield the same asymptotic results for the

bootstrapped estimator but requires an additional tuning parameter for the lasso.

The bootstrap sample is generated by Y ∗∗
i = xTi

qβ
∗
+ ǫ∗∗i (i = 1, . . . , n). We then

recalculate the L1 penalized quantile regression estimator using the bootstrap sample:

qβ
∗∗

= argmin
β

{ n∑

i=1

ρτ (Y
∗∗
i − xTi β) + λn

p∑

j=1

|βj|
}
. (5)

Theorem 3.2 below shows that the conditional distribution of n1/2(qβ
∗∗

− qβ
∗
) provides an

asymptotically valid approximation of that of n1/2(qβ − β0).

Theorem 3.2 If Conditions 1–5 and the assumptions of Lemma 3.1 are satisfied, then

sup
t

∣∣prr|z{n
1/2(qβ

∗∗
− qβ

∗
) ≤ t} − prz{n

1/2(qβ − β0) ≤ t}
∣∣ = oprz

(1).

4 Numerical results

4.1 Monte Carlo studies

We study the accuracy of 95% confidence intervals constructed by our bootstrap proce-

dures. For the adaptive L1 penalty, we select the tuning parameter λn by minimizing a

Bayesian information criterion (Lee et al., 2014) and consider γ = 1, 2. For the L1 penalty,

we select λn by cross-validation and consider two choices of an. One choice adopts a data-

driven approach that minimizes the estimated mean squared error E∗(||qβ
∗∗
− qβ

∗
||2), where

E∗ is the average over bootstrap samples; see Section 5.2 of Chatterjee & Lahiri (2011)

and Remark 2 of Camponovo (2015). The other choice is the empirical choice an = n−1/3,

which is motivated by the rate required by the asymptotic theory. The bootstrap random

weights ri are generated from the two-point distribution described in Feng et al. (2011);

see Remark 1. We also tried alternative weight distributions and found the results similar.

We compare the new methods with the confidence intervals from the oracle model, from

the full model, and from the two-step procedure described in Section 1 with adaptive lasso

or lasso applied in the first step. The oracle procedure is not implementable in real data

analysis. For these competing methods, we consider confidence intervals obtained by the

rank score method and by the wild bootstrap method in the R package quantreg (Koenker,

2016).

Let Y =0·25X3+0·5X5 + X7 + 2X2 + X1ξ, where ξ ∼ N(0, 1) denotes the random

error. Let X̃ = (X̃1, . . . , X̃10)
T ∼ N10(0, Ip). We setX1 = Φ(X̃1), where Φ is the standard
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Empirical coverage probabilities (×100) and average interval

lengths (in parentheses) for nominal 95% confidence intervals

β1 = Φ−1(τ) β3 =0·25 β5 =0·5 β7 = 1 β9 = 2 Zeros TP FP

τ =0·5 n = 100

New AL1 92·0 (0·33) 94·6 (0·15) 93·2 (0·17) 95·3 (0·13) 92·7 (0·14) 97·4 (0·06) 4 0·3
New AL2 90·6 (0·42) 95·0 (0·15) 93·6 (0·17) 95·1 (0·13) 92·5 (0·14) 98·3 (0·06) 4 0·3
New L1 90·7 (0·28) 92·9 (0·15) 92·4 (0·18) 94·9 (0·15) 91·2 (0·16) 93·5 (0·11) 4 3·3
New L2 92·2 (0·29) 93·7 (0·16) 93·6 (0·19) 96·1 (0·16) 94·5 (0·17) 95·5 (0·12) 4 3·3
Full RS 94·8 (0·59) 95·9 (0·21) 96·7 (0·24) 96·2 (0·21) 96·1 (0·22) 95·9 (0·21) 4 6

Full WB 91·0 (0·54) 97·4 (0·18) 95·9 (0·22) 97·6 (0·18) 94·6 (0·20) 96·1 (0·19) 4 6

TS AL RS 94·8 (0·51) 96·6 (0·21) 96·3 (0·27) 97·1 (0·23) 95·6 (0·23) 98·2 (0·26) 4 0·3
TS AL WB 91·5 (0·47) 95·5 (0·16) 94·2 (0·21) 96·0 (0·17) 92·4 (0·19) 97·7 (0·21) 4 0·3
TS L RS 94·1 (0·52) 96·2 (0·22) 95·6 (0·27) 96·0 (0·23) 95·4 (0·24) 96·3 (0·26) 4 3·3
TS L WB 92·1 (0·49) 94·7 (0·18) 94·3 (0·22) 95·9 (0·19) 93·3 (0·20) 95·8 (0·21) 4 3·3
Oracle RS - 97·1 (0·21) 97·9 (0·26) 97·0 (0·20) 97·2 (0·18) - 4 0

Oracle WB - 97·7 (0·15) 95·9 (0·19) 98·2 (0·15) 97·2 (0·16) - 4 0

τ =0·7 n = 250

New AL1 89·6 (0·35) 94·8 (0·10) 92·2 (0·09) 94·9 (0·08) 93·6 (0·09) 98·7 (0·04) 5 0·1
New AL2 89·8 (0·34) 94·1 (0·09) 91·7 (0·09) 95·0 (0·08) 93·1 (0·09) 99·0 (0·04) 5 0·1
New L1 90·1 (0·34) 94·4 (0·10) 94·2 (0·10) 95·4 (0·08) 95·1 (0·09) 95·4 (0·06) 5 2·6
New L2 90·7 (0·35) 94·9 (0·10) 94·2 (0·10) 95·4 (0·08) 95·1 (0·09) 95·9 (0·06) 5 2·6
Full RS 94·9 (0·39) 96·8 (0·12) 95·3 (0·12) 95·8 (0·10) 96·4 (0·11) 95·9 (0·11) 5 5

Full WB 90·6 (0·37) 96·3 (0·11) 95·5 (0·11) 97·3 (0·09) 96·1 (0·11) 96·2 (0·10) 5 5

TS AL RS 93·8 (0·37) 95·4 (0·12) 96·1 (0·10) 95·9 (0·11) 96·4 (0·12) 98·8 (0·11) 5 0·1
TS AL WB 91·7 (0·35) 95·2 (0·11) 95·7 (0·09) 95·8 (0·10) 96·5 (0·11) 98·9 (0·11) 5 0·1
TS L RS 93·8 (0·37) 95·0 (0·12) 95·3 (0·11) 96·2 (0·11) 95·5 (0·12) 96·1 (0·11) 5 2·6
TS L WB 91·2 (0·35) 94·8 (0·12) 95·2 (0·10) 95·7 (0·11) 96·8 (0·12) 96·0 (0·10) 5 2·6
Oracle RS 94·0 (0·38) 96·8 (0·11) 95·3 (0·11) 95·9 (0·09) 96·4 (0·10) - 5 0

Oracle WB 90·8 (0·36) 95·7 (0·10) 94·9 (0·10) 96·6 (0·08) 96·4 (0·10) - 5 0

New AL1: proposed method with adaptive L1 penalty (γ = 1); New AL2: proposed method with

adaptive L1 penalty (γ = 2); New L1: proposed method with L1 penalty (data-driven choice of an);

New L2: proposed method with L1 penalty (an = n−1/3); Full RS: full model with rank-score method;

Full WB: full model with wild residual bootstrap; TS AL RS: two-step procedure, adaptive L1 (γ = 1)

followed by rank-score method; TS AL WB: two-step procedure, adaptive L1 (γ = 1) followed by

wild residual bootstrap; TS L RS: two-step procedure, lasso followed by rank-score method; TS L WB:

two-step procedure, lasso followed by wild residual bootstrap; Oracle RS: oracle model with rank-score

method; Oracle WB: oracle model with wild residual bootstrap; Zeros: the reported average coverage

probability (length) is the average for all zero coefficients; TP: average number of true positives; FP:

average number of false positives.
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normal cumulative distribution function, and Xi = X̃i for i = 2, . . . , 10. We consider

estimating the conditional median and the 0·7 conditional quantile of Y . Note that the

variable X1 is inactive for estimating the conditional median and is active for estimating

the 0·7 conditional quantile. Let β = (β1, . . . , β10)
T be the vector of quantile regression

coefficients. We have β3 =0·25, β5 =0·5, β7 = 1, β9 = 2, β2 = β4 = β6 = β8 = β10 = 0
for both quantiles, β1 = 0 for the conditional median and β1 = Φ−1(0·7) for the 0·7
conditional quantile.

We perform 1000 simulations with 400 bootstrapped samples for each. We report sam-

ple size n = 100 for estimating the conditional median and size 250 for estimating the

0·7 conditional quantile, as it is known to be more challenging to estimate a higher quantile

than to estimate the median. Table 1 summarizes the simulation results. The standard errors

of the coverage probabilities are below 0.01 and the standard errors of the confidence in-

terval lengths are below 0.005 for all cases. We also report the average number of nonzero

coefficients correctly identified to be nonzero and the average number of zero coefficients

incorrectly identified to be nonzero. For the two-step procedure, we only report results for

γ = 1 if adaptive lasso is applied in Step 1 as the results for γ = 2 are similar. Additional

simulation results are given in the Supplementary Material.

The wild residual bootstrap procedures achieve the specified coverage probability. For

theL1 penalty, the two choices of an yield similar results. The adaptiveL1 penalty produces

sparser models than the L1 penalty does. The resulting confidence intervals are generally

shorter than those based on the full model or the two-step procedure. For the adaptive lasso,

the coverage probability of the confidence interval for zero coefficients is close to one, see

Remark 4. Similar numerical findings for adaptive lasso penalized least square regression

were reported in Minnier et al. (2011) and Camponovo (2015).

4.2 A real data example

We analyze data on the effects of ozone on school children’s lung growth (Ihorst et al.,

2004). The study was carried out from February 1996 to October 1999 in South West-

ern Germany on school children initially in first and second primary school classes. The

data we analyze contain a subset of 496 children with complete data at three examinations

(Buchholz et al., 2008).

The response variable is the forced vital capacity of the lung. We consider the ten

explanatory variables with the largest inclusion probabilities using the bootstrap procedure

from De Bin et al. (2015): gender, x1; height at pulmonary function testing, x2; weight

at pulmonary function testing, x3; maximal nitrogen oxide value of last 24 hours before

pulmonary function testing, x4; wheezing or whistling in the chest, x5; shortness of breath,

x6; whether patient lives in a village with high ozone values, x7; sensitization to pollens,

x8; sensitization to dust mite allergens, x9; and age at March 1, 1996, x10.

Table 1 reports 95% confidence intervals for each covariate from bootstrapping penal-

ized quantile regression with the adaptive L1 and L1 penalties for estimating the conditional

median and the conditional 0.7 quantile. For both methods, the variables x1, x2 and x3 are

identified as significant at both quantiles.
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Table 1: Analysis of ozone data: wild residual-based 95% bootstrapped confidence inter-

vals for the 0.5 and 0.7 conditional quantiles

τ =0·5 τ =0·7
New AL1 New AL2 New L New AL1 New AL2 New L

Intercept (2·26, 2·31) (2·26, 2·30) (2·26, 2·31) (2·37, 2·41) (2·37, 2·41) (2·37, 2·42)

x1 (−0·13, −0·08) (−0·12, −0·09) (−0·10, −0·10) (−0·12, −0·08) (−0·12, −0·08) (−0·10, −0·10)

x2 (0·15, 0·22) (0·14, 0·20) (0·18, 0·24) (0·16, 0·22) (0·16, 0·22) (0·21, 0·26)

x3 (0·04, 0·12) (0·05, 0·12) (0·07, 0·08) (0·06, 0·15) (0·06, 0·15) (0·08, 0·09)

x4 (0, 0) (−0·01, 0·01) (0, 0) (−0·01, 0) (−0·01, 0) (0, 0)

x5 (0, 0) (0·01, 0·03) (0·02, 0·02) (−0·01, 0) (−0·01, 0) (0, 0)

x6 (0, 0) (0, 0) (0, 0) (0·01, 0·05) (0·01, 0·05) (0·03, 0·03)

x7 (0, 0) (−0·01, 0·01) (0, 0) (0, 0·01) (−0·01, 0·01) (0, 0)

x8 (0, 0) (−0·01, 0·01) (0, 0) (−0·03, −0·01) (−0·03, 0) (−0·02, −0·02)

x9 (0, 0) (−0·01, 0·01) (0, 0) (0, 0·02) (0, 0·02) (0, 0)

x10 (0, 0) (0, 0·04) (0·01, 0·02) (0, 0·01) (0, 0·01) (−0·01, 0)

New AL1: proposed method with adaptive L1 penalty (γ = 1); New AL2: proposed method with

adaptive L1 penalty (γ = 2); and New L: proposed method with L1 penalty (data-driven choice of an).

Appendix: Proofs of Theorems 2.2 and 3.2

We use E∗ and var∗ to denote expectation and variance conditional on the sample z. Let

Er,z and varr,z be the expectation and variance with respect to the joint distribution of r
and z. Let pr denote the probability under the joint distribution; and let prr|z denote the

probability of r conditional on z. A random variable Rn is said to be o∗pr(1) if for any

ǫ, δ > 0, prz{prr|z(|Rn| > ǫ) > δ} → 0, as n → ∞, and opr
r,z
(1) is the regular notion

with respect to the joint distribution of r and z. Lemma 3 from Cheng & Huang (2010)

will be used repeatedly to allow for the transition of various stochastic orders in different

probability spaces.

Let V ∗
n (δ) =

∑n
i=1

{
ρτ (ǫ

∗
i − n−1/2xTi δ) − ρτ (ǫ

∗
i )
}
. Let ψτ (u) = τ − I(u < 0). It

follows from Knight (1998) and Koenker (2005) that

V ∗
n (δ) = −n−1/2

n∑

i=1

xTi δψτ (ǫ
∗
i ) +

n∑

i=1

∫ n−1/2xT
i δ

0

{
I(ǫ∗i ≤ s)− I(ǫ∗i ≤ 0)

}
ds

= V ∗
1n(δ) + V ∗

2n(δ).

Lemma .1 Under the conditions of Theorem 2.2,

sup
t

∣∣prr|z{V
∗
1n(δ) ≤ t} − prz{−δ

TH ≤ t}
∣∣ = oprz

(1). (6)

The proof of Lemma A1 is given in the Supplementary Material.

Lemma .2 Under the conditions of Theorem 2.2,

V ∗
2n(δ) = δTB1δ/2 + o∗pr(1). (7)
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Proof. Recall ǫ∗i = ri|ǫ̂i| and ǫ̂i = ǫi − xTi (β̃ − β0). We will show that

sup
b∈B

|V ∗
2n(δ, b)− δTB1δ/2| = o∗pr(1),

where V ∗
2n(δ, b) =

∑n
i=1

∫ n−1/2xT
i δ

0

{
I(ri|ǫi − n−1/2+ηxTi b| ≤ s) − I(ri ≤ 0)

}
ds, with B

a compact set and η > 0. Since prz{n
1/2−η(β̃ − β0) ∈ B} → 1, the result of the lemma

follows. By Lemma 3 of Cheng & Huang (2010), it suffices to show that

sup
b∈B

|V ∗
2n(δ, b)− δTB1δ/2| = opr,z(1).

We will use Theorem 2.11.9 in van der Vaart & Wellner (1996). For a fixed ε >
0, divide the set B in O(ε−2p) cubes of the form Ck =

∏p
j=1[bj,kj−1, bj,kj) with k =

(k1, . . . , kp)
T , kj = 1, . . . , O(ε−2) for j = 1, . . . , p, and bj,kj − bj,kj−1 ≤ ε2. Then, writing

V ∗
2n(δ, b) =

∑n
i=1 vib, we will show that

n∑

i=1

Er,z

(
sup

b,b′∈Ck

|vib − vib′ |
2
)
≤ ε2. (8)

Indeed, for fixed i and for b, b′ ∈ Ck, |vib − vib′ |
2 is bounded above by

∣∣∣
∫ n−1/2xT

i δ

0

{
I(ri|ǫi − n−1/2+ηxTi b| ≤ s)− I(ri|ǫi − n−1/2+ηxTi b

′| ≤ s)
}
ds
∣∣∣
2

≤ I(xTi δ > 0)n−1/2xTi δ

∫ n−1/2xT
i δ

0

∣∣I(ri|ǫi − n−1/2+ηxTi b| ≤ s)− I(ri|ǫi − n−1/2+ηxTi b
′| ≤ s)

∣∣ds

+I(xTi δ ≤ 0)n−1/2|xTi δ|

∫ n−1/2|xT
i δ|

0

∣∣I(ri|ǫi − n−1/2+ηxTi b| ≤ −s)

−I(ri|ǫi − n−1/2+ηxTi b
′| ≤ −s)

∣∣ds.

Let us focus on the first term above, as the second term is similar. The first term equals

I(xTi δ > 0, ri > 0)n−1/2xTi δ

∫ n−1/2xT
i δ

0

∣∣I(−s/ri + n−1/2+ηxTi b ≤ ǫi ≤ s/ri + n−1/2+ηxTi b)

−I(−s/ri + n−1/2+ηxTi b
′ ≤ ǫi ≤ s/ri + n−1/2+ηxTi b

′)
∣∣ds

≤ I(xTi δ > 0, ri > 0)n−1/2xTi δ

∫ n−1/2xT
i δ

0

{∣∣I(ǫi ≤ s/ri + n−1/2+ηxTi b)

−I(ǫi ≤ s/ri + n−1/2+ηxTi b
′)
∣∣

+
∣∣I(ǫi ≤ −s/ri + n−1/2+ηxTi b)− I(ǫi ≤ −s/ri + n−1/2+ηxTi b

′)
∣∣
}
ds

≤ I(xTi δ > 0, ri > 0)n−1/2xTi δ

∫ n−1/2xT
i δ

0

[{
I(ǫi ≤ s/ri + n−1/2+ηxTi bk)

−I(ǫi ≤ s/ri + n−1/2+ηxTi bk−1)
}

+
{
I(ǫi ≤ −s/ri + n−1/2+ηxTi bk)− I(ǫi ≤ −s/ri + n−1/2+ηxTi bk−1)

}]
ds,
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where for notational simplicity we assume that all components of xi are positive. Hence,

n∑

i=1

Er,z

(
sup

b,b′∈Ck

|vib − vib′ |
2
)

≤ n−1/2

n∑

i=1

|xTi δ|

∫ ∫ n−1/2|xT
i δ|

0

[{
Fi(s/r + n−1/2+ηxTi bk)− Fi(s/r + n−1/2+ηxTi bk−1)

}

+
{
Fi(−s/r + n−1/2+ηxTi bk)− Fi(−s/r + n−1/2+ηxTi bk−1)

}]
ds dG(r)

≤ 2n−1

n∑

i=1

|xTi δ|
2n−1/2+ηxTi |bk − bk−1| sup

t∈Ni

fi(t) ≤ cε2,

for some 0 < c <∞, for η ≤ 1/2, where Ni is a neighborhood of 0 such that supt∈Ni
fi(t) <

∞; see Condition 1. This verifies (8).

Let N[ ](ε, B, L
n
2 ) be the bracketing number of B, i.e., the minimal number of sets

Nε in a partition B = ∪Nε
j=1Bεj such that

∑n
i=1Er,z

{
supb,b′∈Bεj

(vib − vib′)
2
}

≤ ε2 for

j = 1, . . . , Nε. For any δn ↓ 0,
∫ δn

0

{logN[ ](ε, B, L
n
2 )}

1/2 dε ≤ c

∫ δn

0

{log(ε−2p)}1/2dε→ 0.

Since the partition ofB does not depend on n and since supb∈B |vib| → 0 for all i, it follows

from Theorem 2.11.9 in van der Vaart & Wellner (1996) that V ∗
2n(δ, b) − Er,z{V

∗
2n(δ, b)}

converges weakly in ℓ∞(B) provided it converges marginally, where ℓ∞(B) is the space of

bounded functions from B to R equipped with the supremum norm.

To check convergence of V ∗
2n(δ, b) for fixed b ∈ B, it suffices to show that Er,z{V

∗
2n(δ, b)} →

δTB1δ/2 and varr,z{V
∗
2n(δ, b)} → 0. Note that

Er,z{V
∗
2n(δ, b)}

= Er

(
Ez|r

[ n∑

i=1

∫ n−1/2xT
i δ

0

{
I(ri|ǫi − n−1/2+ηxTi b| ≤ s)− I(ri ≤ 0)

}
ds
])

=

∫ ∞

0

n∑

i=1

∫ n−1/2xT
i δ

0

{
Fi(s/r + n−1/2+ηxTi b)− Fi(−s/r + n−1/2+ηxTi b)

}
I(xTi δ > 0)dsdG(r)

+

∫ 0

−∞

n∑

i=1

∫ n−1/2xT
i δ

0

{
1− Fi(s/r + n−1/2+ηxTi b) + Fi(−s/r + n−1/2+ηxTi b)− 1

}

×I(xTi δ < 0)dsdG(r)

= W1 +W2,

say, where Fi denotes the distribution of ǫi. Then,

W1 =

∫ ∞

0

n∑

i=1

∫ n−1/2xT
i δ

0

{
fi(0)2s/r

}
I(xTi δ > 0)dsdG(r)

+

∫ ∞

0

n∑

i=1

∫ n−1/2xT
i δ

0

{
fi(t

∗/r)− fi(0)
}
2s/rI(xTi δ > 0)dsdG(r) = W11 +W12,
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say, where t∗ is between −n−1/2xTi δ+ n−1/2+ηxTi b and n−1/2xTi δ+ n−1/2+ηxTi b. Note that

W11 =

∫ ∞

0

r−1dG(r)
n∑

i=1

fi(0)
(
n−1/2xTi δ

)2
I(xTi δ > 0) =

1

2
δT

{
n−1

n∑

i=1

fi(0)xix
T
i I(x

T
i δ > 0)

}
δ.

By Condition 1, there exists a positive constant c such that

|W12| ≤ c

∫ ∞

0

n∑

i=1

∫ n−1/2xT
i δ

0

(
n−1/2xTi δ/r + n−1/2+η|xTi b|

)
2s/rI(xTi δ > 0)dsdG(r)

≤ c
{∫ ∞

0

r−2dG(r)
}(
n−1/2||δ|| max

1≤i≤n
||xi||

)[
δT

{
n−1

n∑

i=1

xix
T
i I(x

T
i δ > 0)

}
δ
]

+c
{∫ ∞

0

r−1dG(r)
}(
n−1/2+η||b|| max

1≤i≤n
||xi||

)[
δT

{
n−1

n∑

i=1

xix
T
i I(x

T
i δ > 0)

}
δ
]
→ 0,

as Conditions 3 and 4 imply that
∫∞

0
r−2dG(r) is bounded, and by Condition 2 we have

n−1/2+η max1≤i≤n ||xi|| → 0 for η small enough. Similarly, we can show

W2 =
1

2
δT

{
n−1

n∑

i=1

fi(0)xix
T
i I(x

T
i δ < 0)

}
δ + o(1).

Hence, Er,z{V
∗
2n(δ, b)} → δTB1δ/2 as n→ ∞. To show varr,z{V

∗
2n(δ, b)} → 0, we have

varr,z{V
∗
2n(δ, b)} =

n∑

i=1

varr,z

[ ∫ n−1/2xT
i δ

0

{
I(ri|ǫi − n−1/2+ηxTi b| ≤ s)− I(ri ≤ 0)

}
ds
]

≤
n∑

i=1

Er,z

[ ∫ n−1/2xT
i δ

0

{
I(ri|ǫi − n−1/2+ηxTi b| ≤ s)− I(ri ≤ 0)

}
ds
]2

=
(
n−1/2||δ|| max

1≤i≤n
||xi||

)
Er,z{V

∗
2n(δ, b)},

where the last equality follows because
∫ n−1/2xT

i δ
0

{
I(ri|ǫi − n−1/2+ηxTi b| ≤ s) − I(ri ≤

0)
}
ds is always nonnegative. Since n−1/2 max1≤n ||xi|| → 0 and Er,z{V

∗
2n(δ, b)} →

δTB1δ/2, we have varr,z{V
∗
2n(δ, b)} → 0 as n→ ∞. This finishes the proof. �

Proof of Theorem 2.2. Recall that Q∗
n(δ) =

∑n
i=1

{
ρτ (ǫ

∗
i − n−1/2xTi δ) − ρτ (ǫ

∗
i )
}
+

λn
∑p

j=1w
∗
j

(
|β̃j + n1/2δj| − |β̃j|

)
, where w∗

j = |β
∗

j |
−γ , β

∗
= (β

∗

0, β
∗

1, . . . , β
∗

p)
T is the

ordinary quantile regression estimator computed from the bootstrap sample, γ > 0. We

have n1/2(β̃
∗
− β̃) = argminδ Q

∗
n(δ). Let An denote the event that the adaptive lasso es-

timator β̃ correctly estimated all the zero components of β, i.e., An is the set of all ω ∈ Ω
such that {j : 1 ≤ j ≤ p, β̃j(ω) = 0} = {q + 1, . . . , p}. Then it follows from Lemma 2.1

that pr(An) → 1 as n → ∞. There exists a subsequence {nk} such that pr(Ac
nk
i.o.) = 0.

Let Ωc
0 be the union of lim supk A

c
nk

and the event on which (6) or (7) fails to hold, then
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pr(Ω0) = 1. For any fixed w ∈ Ω0, there exists nw ≥ 1 such that for all n ≥ nw,

{j : 1 ≤ j ≤ p, β̃nj(ω) = 0} = {q + 1, . . . , p}. Hence on Ω0, as n→ ∞,

Q∗
n(δ) → Q∗(δ) =

{
−δTH + δTB1δ/2, δq+1 = · · · = δp = 0,

+∞, otherwise,

in probability. Following the same argument as in Lemma 2.1 and applying epi-convergence

theory see the unpublished technical reports of Geyer (On the asymptotics of convex stochas-

tic optimization, technical report, 1996) and Knight (Epi-convergence in distribution and

stochastic equi-semicontinuity, technical report, 1999), the result is established by the

equivalent representation of bootstrap consistency in (23.2) of van der Vaart (1998). �

Proof of Theorem 3.2. Let An = {||qβ
∗
− β0|| ≤ cn−1/2 log(n)} for some given positive

constant c. Since β is n1/2-consistent, we have pr(An) → 1. Let Q∗∗
n (δ) =

∑n
i=1

{
ρτ (ǫ

∗∗
i −

n−1/2xTi δ)− ρτ (ǫ
∗∗
i )

}
+ λn

∑p
j=1

(
|qβ∗

j + n−1/2δj| − |qβ∗
j |
)
, then n1/2(qβ

∗∗
− qβ

∗
) minimizes

Q∗∗
n (δ). Let V ∗∗

n (δ) =
∑n

i=1

{
ρτ (ǫ

∗∗
i − xTi δ/n

1/2)− ρτ (ǫ
∗∗
i )

}
. We can write

V ∗∗
n (δ) = −n−1/2

n∑

i=1

xTi δψτ (ǫ
∗∗
i ) +

n∑

i=1

∫ n−1/2xT
i δ

0

{
I(ǫ∗∗i ≤ s)− I(ǫ∗∗i ≤ 0)

}
ds

= V ∗∗
1n (δ) + V ∗∗

2n (δ).

Similarly as in the proof of Lemma A1,

sup
t

∣∣prr|z{V
∗∗
1n (δ) ≤ t} − prz{−δ

TH ≤ t}
∣∣ = oprz

(1).

Similarly as in the proof of Lemma A2, V ∗∗
2n (δ) = δTB1δ/2 + o∗pr(1). For n sufficiently

large, on the event An, sign(qβ∗
j ) = sign(β0j) and qβ∗

j = β0j for j = 1, . . . , q; and qβ∗
j =

0 for j = q + 1, . . . , p. Conditional on the data, λn
∑p

j=1

{
|qβ∗

j + δj/n
1/2| − |qβ∗

j |
}

→

λ0
∑p

j=1

{
|δj|I(qβ∗

j = 0) + δjsign(β0j)I(qβ∗
j 6= 0)}. For any 1 ≤ j ≤ p,

pr
{
|δj|I(qβ∗

j = 0) + δjsign(β0j)I(qβ∗
j 6= 0) = |δj|I(β0j = 0) + δjsign(β0j)I(β0j 6= 0)

}

≥ pr
{
|δj|I(qβ∗

j = 0) + δjsign(β0j)I(qβ∗
j 6= 0) = |δj|I(β0j = 0) + δjsign(β0j)I(β0j 6= 0), An

}
→ 1,

as n→ ∞. Therefore, conditional on the data, as n→ ∞,

Q∗∗
n (δ) → −δTH + δTB1δ/2 + λ0

p∑

j=1

{
|δj|I(β0j = 0) + δjsign(β0j)I(β0j 6= 0)

}
,

in distribution. Following the same argument as in Lemma 3.1 and applying epi-convergence

theory, see the unpublished technical reports of Geyer (On the asymptotics of convex stochas-

tic optimization, technical report, 1996) and Knight (Epi-convergence in distribution and

stochastic equi-semicontinuity, technical report, 1999), the result is established by the

equivalent representation of bootstrap consistency in (23.2) of van der Vaart (1998). �
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