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Abstract—Deriving the extent of areas affected by wildfires is
critical to fire management, protection of the population, damage
assessment, and better understanding of the consequences of
fires. In the last two decades, several algorithms utilizing data
from Earth observation satellites have been developed to detect
fire-affected areas. However, most of these methods require
the establishment of complex functional relationships between
numerous remote sensing data parameters. In contrast, more
recently, deep learning has found its way into the application,
having the advantage of being able to detect patterns in complex
data by learning from examples automatically. In this paper,
a workflow for the detection of fire-affected areas from satellite
imagery acquired in the visible, infrared and microwave domains
is described. Using this workflow, the fire detection potentials
of four sources of freely available satellite imagery were inves-
tigated: The C-SAR instrument on board Sentinel-1, the MSI
instrument on board Sentinel-2, the SLSTR instrument on board
Sentinel-3 and the MODIS instrument on board Terra and Aqua.
For each of them, a single-input convolutional neural network
based on the well-known U-Net architecture was trained on a
newly created dataset. The performance of the resulting four
single-instrument models was evaluated in presence of clouds
and in clear conditions.

In addition, the potential of combining predictions from pairs
of single-instrument models was investigated. The results show
that fusion of Sentinel-2 and Sentinel-3 data provides the best
detection rate in clear conditions, whereas the fusion of Sentinel-1
and Sentinel-2 data shows a significant benefit in cloudy weather.

Index Terms—Wildfire Detection, Deep Learning, Data Fusion,
Remote Sensing.

I. INTRODUCTION

W ILDFIRES are a natural component of the Earth sys-

tem. They are important for vegetation growth, release

of nutrients on the forest floor and help in maintaining a

balanced forest ecosystem. However, wildfires are also one

of the most devastating natural hazards in the world. They

contribute to global warming [1], destroy property, lead to

tremendous economical losses and ultimately to loss of human

and animal life and destruction of communities. In 2016, the

annualized economic burden of wildfires in the US alone was

estimated to between $71.1 billion to $347.8 billion [2].

In many cases, wildfires occur in remote locations which

makes their early detection by means of in-situ observations

difficult. Thus, remote sensing has become a go-to solution
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for wildfire detection with satellite data [3], [4], [5]. How-

ever, wildfires are complex physical processes that involve

different interrelated factors including weather, topography,

soil moisture, type of fuel, and the location and type of the

source. In addition, wildfires are dynamic and can occur in

different spatial and temporal scales. Thus, accurate detection

and segmentation of wildfires using traditional remote sensing

algorithms is often difficult as it requires modeling of com-

plex functional relationships between numerous data. Cloud

coverage and smoke, generated during the burning process,

furthermore restrict the ability to detect fires from space [6].

All this makes wildfires a challenging phenomenon to map,

which is a crucial element in an effective response of the

responsible authorities and understanding the consequences

of fires [7]. Luckily, the increasing abundance of remote-

sensing data together with the dramatic improvement in com-

putational capabilities that occurred in recent years, have led

to an improved possibility to exploit data-centric approaches

for wildfire detection and mapping [8], which make use of

machine learning and multi-sensor data fusion. The ability

of ML algorithms to automatically uncover complex, spatio-

temporal patterns in the data, with less need for hand-crafted

expert descriptors makes them a favorable candidate for the

task [9].

The main challenges in segmentation of wildfires can be

summarized as follows:

1) Wildfires are a complex phenomenon varying in time

and space that involve numerous interrelated factors

difficult to model by classical, non machine learning

models.

2) Because of the dynamic nature of wildfires, following

acquisitions over the same area observe the wildfire at

different states, which makes fusion of multiple acqui-

sitions, labeling and validation of results difficult [10].

3) Often, thick smoke and clouds obscure the fire signal

observed by optical instruments.

4) In most cases, fire segmentation is an imbalanced clas-

sification problem where the number of pixels affected

by fire is significantly smaller than the number of pixels

which are not [11].

With this work, we investigate the use of modern deep

learning techniques to detect wildfires in both cloudless and

cloudy conditions using four sources of satellite imagery with

different spatial and spectral resolutions in a combined man-

ner: the C-SAR instrument on board Sentinel-1A/B, the MSI

instrument on board Sentinel-2A/B, the SLSTR instrument on

board Sentinel-3A/B, and the MODIS instrument on board
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Terra and Aqua.Specifically, we aim to exploit multi-sensor

data to improve results in cloudy conditions and deep seg-

mentation to overcome the necessity of physically modeling

wildfires. In summary, the main contributions of our work are:

1) We demonstrate the generation of an annotated wildfire

dataset combining openly available satellite imagery and

information from a public wildfire database.

2) In this context, we provide information about possi-

bilities and limitations to combine data from multiple

sensors for a single wildfire given different resolutions

and repeat cycles.

3) We investigate the predictive potential of the individ-

ual satellite data sources using a fairly standard deep

semantic segmentation architecture.

4) We investigate the use of decision fusion to combine

the individual single-sensor predictions and quantify its

benefit, in particular having the problem of cloud cover

in mind.

II. RELATED WORK

Active fire detection and burned area segmentation using

remote sensing techniques were the focus of many researches

since as early as the seventies with the launch of Landsat-1

in 1972. To better understand fire detection from space, it is

important first to distinguish between two types of products

that are the goal of most researches in the field. The definitions

used here are based on [4]:

• Active Fire (AF) products describe geographic locations

which are actively burning as a result of a fire. AF prod-

ucts are usually detected by thermal sensors as thermal

anomalies, however the detection is only possible if the

satellite overpasses the area that is actively burning.

• Burned Area (BA) products describe geographic locations

where fire led to the burning of biomass which resulted

in deposit of char and ash on the ground. The resulting

patterns are sometimes also referred to as “burn scars”,

and they are typically more persistent in time than the

thermal anomalies caused by ongoing fires.

Throughout this work, the term fire affected pixel is used to

describe pixels who are either actively burning or are burnt as

a result of a fire. Additionally, the terms instrument and sensor

are used interchangeably.

In recent years, several algorithms that attempt to combine

sensors from multiple spectral domains were suggested. These

methods have several potential advantages: First, they allow

to exploit the cloud-penetrating capabilities of microwave

sensors in combination with the ability of sensors in the

visible light and infrared domains to detect thermal anomalies.

Secondly, combining multiple sensors improves the satellite

overpass frequency over a burning area. Lastly, an improved

temporal and spatial resolution BA and AF products can

potentially be achieved by combining images from high spatial

resolution sensors such as Sentinel-2 with high temporal

resolution sensors such as Sentinel-3 or sensors on board

geostationary satellites. [12] were one of the first to suggest

combining time series of SAR C-band images from Sentinel-

1 with multispectral imagery from Sentinel-2 to improve BA

estimation in cloudy conditions. Burned areas were detected

in Sentinel-2 images using thresholding of spectral indices,

and significant changes in the backscattering coefficient of

Sentinel-1 images were used as a gapfilling detector. [13] ap-

plied Bayes’ Theorem approach [14] to combine potential BA

detections from Landsat-8 OLI, Sentinel-2 MSI and MODIS

instruments to delineate the BA and monitor the progress of

the 2017 Elephant Hill fire in California. One of the most

recent studies by [15], combined Sentinel-1 SAR imagery

with a monthly averaged MODIS BA product to reduce the

burn date uncertainty of the MODIS BA product caused

by observations obscured by clouds. Significant decrease in

backscatter between two SAR images was used to detect BA

affected pixels in SAR images which allowed to decrease the

burning date uncertainty.

One can also approach the problem of wildfire detection as

an anomaly or target detection problem. In essence, wildfires

can be considered as spatial and thermal anomalies that can

be detected. Classic anomaly detection algorithms that are

applied to wildfire detection can usually be described as a

combination of one or more of the following approaches: (1)

Global thresholding algorithms that identify global anomalies

by applying absolute, global thresholds to spectral indices that

are derived from the spectral data recorded by the satellite [16],

[17], (2) Contextual algorithms that identify local anomalies

by applying dynamic thresholds that are calculated based on

the spectral data in the pixel’s neighborhood, [18], [19], (3)

Time-series algorithms that detect significant changes in one

or more of the measured properties between two acquisitions

taken at different times [20], [21]. In recent years, several deep

learning methods were used to identify anomalies with Spatio-

temporal networks (STN) attempting to combine learning spa-

tial features using convolutional neural networks and learning

temporal features using long short-term memory networks

(LSTM’s) [22]. These methods, however, are usually aimed at

detecting outliers with a limited spatial signature which is not

the case for large wildfires. Additionally, STN’s usually require

time-series data which is not available for most short-burning

wildfires. Finally, performance of CNN-based methods for

anomaly detection, which lie in the core of most STN’s, is

still an active and relatively young area of research [23].

This application-oriented work aims to explore the potential

of applying simple deep learning-based image segmentation

for the detection of wildfires using single-temporal data from

instruments measuring in the visible light, infrared and mi-

crowave spectral regions. In this context, we aim to investigate

if combining data from more than one instrument can improve

the detection results. While there are several state-of-the-art

approaches for multi-modal learning methodology that allow

to fuse multi-instrument images on the data level [24], [25],

[26], [27], our goal is not a proposal for a new multi-modal

learning approach but rather to show that fusion of openly

available multi-sensor satellite data can improve the detection

of wildfires, and how it can be achieved by using standard

deep convolutional semantic segmentation networks.
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III. SATELLITE INSTRUMENTS AND REFERENCE DATA

In the presented study, we have employed the visible,

infrared and microwave instruments onboard the Sentinel-

1, Sentinel-2, Sentinel-3, Terra and Aqua satellites. Key

properties of the instruments used are described in the next

subsections.

A. Sentinel-1 Mission and C-SAR Instrument

The Sentinel-1 (S-1) mission is based on a constellation of

two twin satellites. Both satellites operate in a near-polar sun-

synchronous orbit with 12-day repeat cycle and are equipped

with a C-band SAR instrument [28]. For the study area used

in this work (California, USA), the coverage frequency of the

constellation, without considering repetitive or relative orbits

is 2-4 days. The revisit frequency, with an ensured same,

repetitive orbit is 12 days. The C-SAR instrument operates

in the 5.405 GHz frequency C-Band, which corresponds to a

5.54 cm wavelength. The instrument operates in one of four

exclusive imaging modes, of which the so-called interferomet-

ric wide swath (IW) mode is employed in this work. The IW

mode is the default operation mode of the mission. In this

mode, wide swaths composed of 3 sub-swaths are acquired

by electronically steering of the antenna. A single look full

resolution IW image is 5 m ground range resolution and 20

m azimuth resolution. In the IW mode, the C-SAR instrument

is able to acquire data in either single co-polarization (HH or

VV) or dual polarization (HH+HV or VV+VH). For the pur-

pose of this work, medium resolution IW imagery with 40×40

m2groundresolutionandVV +VHpolarization[29] was cho-

sen for establishing the Sentinel-1 dataset.

B. Sentinel-2 Mission and MSI Instrument

The Sentinel-2 (S-2) mission is based on a constellation of

two twin satellites, flying in a sun-synchronous orbit with an

average altitude of 786 km, phased at 180◦, and a descending

node at 10:30 local time. The revisit frequency of the constel-

lation is 5 days at the equator [30]. Both satellites are equipped

with a Multispectral Instrument (MSI). MSI measures the

reflected radiance from Earth in 13 spectral bands from VIS

to SWIR, with spatial resolution varying from 10 m to 60

m, depending on the spectral band. The instrument acquires

images with a swath of 290 km. Sentinel-2 products are a

compilation of elementary granules of fixed size (100 × 100

km2) orthorectified in UTM/WGS84 projection. The products

are available in two levels of processing, Level-1C and level-

2A. Level-1C product contains measurements of the Top-

Of-Atmosphere (TOA) reflectance along with the parameters

to transform them into radiances, with sub-pixel multispec-

tral registration. Level-2A provides orthorectified Bottom-Of-

Atmosphere (BOA) reflectance, with sub-pixel multispectral

registration. In addition to the reflectance measurements both

products contain cloud masks [31]. For the purpose of this

work, Level-1C TOA data were used.

C. Sentinel-3 Mission and SLSTR Instrument

The Sentinel-3 (S-3) mission is based on a constellation of

two multi-instrument satellites aimed at measuring sea-surface

topography, sea- and land-surface temperature, ocean color and

land color. Both satellites operate in a sun-synchronous orbit

at an average altitude of 814.5 km, and a descending node of

10:00 local time. The orbit of Sentinel-3B is identical to the

orbit of Sentinel-3A but with a phase difference of 140◦. From

the four main instruments onboard Sentinel-3, we have used

the Sea and Land Surface Temperature Instrument (SLSTR),

capable of acquiring images in 11 spectral bands ranging from

0.55 µm to 10.95 µm for the purpose of this work. The SLSTR

instrument is a conical scanning imaging radiometer with a

dual (oblique and nadir) view technique, employed in the along

track direction. The orbit of the constellation allows a revisit

time of less than a day. The Level-1B observation product of

the instrument contains TOA radiances in the VIS and SWIR

spectral regions, and TOA brightness temperatures in the TIR

spectral regions (bands 7-9 and F1, F2). As data basis for the

presented study, geolocated, calibrated radiances, acquired in

a nadir swath and recorded in Level-1B observation product

were used.

D. Terra and Aqua Satellites and MODIS Instrument

The two MODIS instruments on board the Terra and Aqua

satellites provide data in 36 spectral bands in wavelengths

ranging from 0.4 µm to 14.4 µm, with ground resolution

ranging from 250 m to 1000 m. Both satellites orbit the Earth

in a sun-synchronous, near polar, circular orbit at an average

altitude of 705 km, with descending nodes of 10:30 and 13:30

for Terra and Aqua respectively [32]. The Terra satellite passes

from north to south over the equator at approximately 10:30

local time and Aqua passes from south to north over the

equator at 13:30. The swath of both satellites is 2330 km

cross track by 10 km along track at nadir, and in constellation

they provide a revisit time of between one and two days. This

work makes use of the Level-1B MODIS -1 km products from

both Terra (MOD021KM) and Aqua (MYD021KM) satellites.

The products contain calibrated and geolocated radiances

resampled to 1 km ground resolution at nadir for all 36

bands and reflectances for the reflective solar bands (bands

1-19 and 26). It is important to mention here, that due to

its observation geometry, the nominal 1 km ground resolution

pixel size expands to about 4 km because of the change in

the observation angle moving from nadir towards the edge of

the swath [33]. Table I summarizes the ground resolution and

swath of the different types of satellite data used in this work.

E. CAL FIRE Database

To provide a ground reference, this work makes use of the

California Fire Perimeter Database (CAL FIRE1), provided

by the Fire and Resource Assessment Program (FRAP). The

database includes records of perimeters of wildfires that oc-

curred in the sate of California between the years 1950 and

2019 (inclusive). An important note on the timestamps of the

data records is that the fire perimeters were collected after the

fire had been contained. Consequently, geographic coordinates

1CAL FIRE https://frap.fire.ca.gov/frap-projects/fire-perimeters/ (Accessed
on 23.07.2020)
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TABLE I: Nadir ground resolution and swath of the satellite data used in this work.

Instrument Satellites Spectral regions Ground Resolution [m] Swath [km]

MODIS Terra, Aqua VIS, SWIR, MWIR, LWIR 1000 2230
SLSTR Sentinel-3B, Sentinel-3A SWIR, MWIR, LWIR 1000 1400
MSI Sentinel-2B, Sentinel-2A VIS, SWIR 20 290
C-SAR Sentinel-1B, Sentinel-1A Microwave C-Band 40 250

of fire perimeter are not available for any date between the

alarm and containment dates.

IV. WORKFLOW

The general workflow of this work is as follows: In the pre-

processing and data preparation stage, imagery and metadata

from each of the four instruments are downloaded based

on alarm and containment dates extracted from the CAL

FIRE wildfire perimeter database. Both imagery and reference

perimeter data are then cleaned to reduce data uncertainty

and potential errors. Next, training, validation and test datasets

are generated from the imagery and reference data which are

later used to train four instrument-specific U-Net segmentation

networks. Pseudo-probabilities rasters are then predicted using

the instrument-specific U-Nets. Finally, fusion of pairs of

pseudo-probability rasters is performed using simple weighted

averaging.

A. Pre-Processing and Data Preparation

The steps for the preparation of a dataset capable of training

and evaluating deep learning models for wildfire detection

from the observations provided by the satellite instruments

described in the previous section are illustrated in Fig. 1.

The actual process starts from fire perimeter data extracted

from the CAL FIRE database. Specifically, fire perimeters

from 01.01.2017 to 31.12.2019 were used. A total of 1324

records of fire perimeters were recorded within the specified

time period, with a median fire perimeter area of 0.12 km2

(cf. Fig. 2).

Based on alarm and containment dates for those fires,

imagery and metadata from each of the four instruments are

utilized after records with missing alarm or containment date

were excluded. Additionally, records with a fire perimeter area

smaller than 0.01 km2 were excluded as well. To further

reduce the uncertainty in the reference data, only data that

were collected using GPS measurements, hand drawn or man-

ually interpreted were used. Fire perimeters obtained through

analysis of infrared data were excluded to avoid the possibility

of the reference data being created using the same imagery as

the input data. Additionally, fires represented by more than

one overlapping perimeters (usually as a result of collection

of the same fire by two different agencies) were treated by

giving preference to the perimeter belonging to the record with

more complete metadata. Finally, fire perimeters that were not

observed by any of the four instruments were also excluded.

After applying the above mentioned filtering methods, 961 fire

perimeters remained.

For each of the 961 fire perimeters, data were downloaded

starting from one day prior to the fire alarm date and ending

one day after the date the fire was contained. The two day

buffer was selected to allow generation of negative examples

where no fire was present. Next, data from each instrument

were preprocessed and saved into a database. For Sentinel-3

and MODIS instruments a cloud mask was generated from the

imagery. At this stage, the preprocessed database contains all

necessary imagery, metadata and cloud masks georeferenced

and projected to a WGS84 geographic coordinate system in

the original ground resolution. Each Sentinel-2 image contains

TOA reflectance values for all bands together with a provided

cloud mask, Sentinel-3 and MODIS images contain TOA

reflectance and TOA brightness temperature values for all

bands together with the calculated cloud masks. Sentinel-1

imagery contains backscatter coefficient values in two polar-

ization modes (VV and VH). As Fig. 3 illustrates, for each fire,

all images are interpolated to the same grid with a pixel size

on the ground of 110 x 130 m, and specific spectral bands

are subsampled from each image. These data, together with

data from the CAL FIRE database are then used to generate

the base datasets for each instrument. Figure 4 presents

the number of time windows with different combinations of

instruments observing the same fire.

B. Selection of Spectral Bands

For the three optical instruments, selection of the relevant

spectral bands, that were used to construct the training exam-

ples, was decided based on empirical test of the performance

of models trained with different combinations of bands. To

determine the final combination of the spectral bands for each

instrument dataset, a vanilla U-Net network [34] was trained

and evaluated on a subset of 2000 examples from the vali-

dation dataset. The combination of bands that led to the best

segmentation result were selected. Evaluation of the results

was done using Cohen’s Kappa coefficient, precision, recall

and overall accuracy metrics. Two additional considerations

in the process of deciding on the combination of bands were

taken into account:

1) Memory and inference time limitations. The maximum

allowed number of spectral bands in a training example

was limited to six, to allow completion of the training

processes of each instrument within reasonable time and

with the available hardware resources.

2) For SLSTR and MODIS instruments, preference was

given to combinations with bands that were available

in both daytime and nighttime illumination conditions.

Table II summarizes the performance achieved by applying

a vanilla U-Net trained with different band combinations.

We observe from Table II that the assessed performance of

combination MSI 1 is noticeably better than combinations
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Fig. 1: Workflow of the dataset generation process. The upper part describes the necessary pre-processing steps for each of

the satellite data sources. The lower part describes the necessary steps for creating the final dataset completed with reference

fire annotations.

TABLE II: Assessment of performance of a vanilla U-Net model trained on different combinations of spectral bands. For each

optical instrument performance of three combinations were evaluated. The final combinations chosen for training are in bold.

Instrument Combination Name Bands Day/Night Kappa Precision Recall Overall Acc.

MSI

MSI 1 2, 3, 4, 8, 11, 12

Day

0.61 0.74 0.63 0.89
MSI 2 2, 3, 4 0.54 0.66 0.70 0.84
MSI 3 3, 8, 12 0.58 0.69 0.74 0.88

SLSTR

SLSTR 1 S7, S8, S9, F1, F2 Day+Night 0.54 0.60 0.62 0.87
SLSTR 2 S1, S2, S3, S5, S6, F1 Day 0.55 0.61 0.64 0.89
SLSTR 3 S9, F1, F2 Day+Night 0.54 0.59 0.62 0.87

MODIS

MOD 1 1, 2, 3, 21, 31, 32 Day 0.52 0.54 0.63 0.85
MOD 2 1, 2, 3, 4, 6, 7 Day 0.50 0.56 0.60 0.84
MOD 3 21, 31, 32 Day+Night 0.52 0.52 0.59 0.84

MSI 2 and MSI 3. Since Sentinel-2 does not operate during

nighttime, MSI 1 can be used without excluding any images

in the training process. The assessed performance of SLSTR

and MODIS varies only slightly between the combinations,

therefore combinations with minimum number of bands that

allow inclusion of nighttime imagery were selected. For the

SLSTR instrument, ’fire’ bands F1 and F2 were preferred

to bands S7 and S8 respectively because of their increased

dynamic range, which prevents them from saturating over

strong fires. An additional benefit of using the F1 and F2

bands is their far more limited growth in pixel area in off-

nadir scan angles [35]. For the C-SAR instrument on board

Sentinel-1, VV and VH polarization bands were used.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3093625, IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. VV, NO. NN, MMMM YYYY 6

Fig. 2: Perimeters of fires in CAL FIRE between 01.01.2017

and 31.12.2019. Fire perimeters are delineated in red.

C. Data Splits

For the training of single-instrument models, only images

where the fire perimeter was not covered by clouds and with

percentage of corrupted pixels lower than 20% were used.

Corrupted pixels were identified using metadata provided for

each image by each instrument.

Since different fires are observed by different instruments

at different times, and due to the relatively limited amount of

data, establishment of the datasets used in this work was not

trivial. Usually, when comparing between models, the model

is evaluated using the same test dataset. Here, however, this

was impossible. Moreover, different images of the same fire

can not be shared between the training, validation and test

datasets because of the ability of deep segmentation networks

to incorporate spatial information in their predictions, which

may lead to the network “remembering” spatial correlations in

training examples from the same fire. Finally, assessment of

results of combining two individual models into a multi-sensor

output must be done using images that were not involved in

the training process of both models, and were acquired in the

same scene within a time window of less than twelve hours.

To deal with the complexities described above, the datasets

were established based on the following guiding principles:

1) Designation of at least 80% of the available data to be

used for training.

2) Images of the same fire must be present in either the

training, validation or test dataset.

3) The same fires and the same number of images from

each fire was used to establish the test dataset for each

instrument. However, not all images of the same fire

were acquired at the same time.

4) The validation and test datasets for each model must

contain short-lasting (less than 5 days), average-lasting

(between 5 days and 30 days) and long-lasting (longer

than 30 days) fires.

5) The validation and test datasets for each model must

contain small (less than 5 km2), average (between 5

km2 and 40 km2) and large (over 40 km2) fires.

6) Images of the same fire in the test set that were acquired

by different instruments, should be taken within a time

period of 12 hours.

For the test dataset, 60 images that were acquired by all

four instruments, each within the same time window of 12

hours were used. Table III summarizes the established datasets.

Figure 4 presents the different combinations of instruments

that observed the same fire.

TABLE III: Number of images in the training, validation and

test datasets for single-instrument models

Instrument
Training Dataset Validation Dataset Test Dataset
# Fires # Images # Fires # Images # Fires # Images

C-SAR 686 2231 34 328 32 60
MSI 354 1639 34 193 32 60
SLSTR 730 13852 34 1602 32 60
MODIS 853 16851 34 1961 32 60

V. DEEP LEARNING FOR MULTI-SENSOR WILDFIRE

DETECTION

Four instrument specific convolutional neural networks are

created for the detection of wildfires by semantic segmenta-

tion. In a second step, the individual predictions are combined

to evaluate whether multi-sensor fusion supports the detection

process.

A. Wildfire Detection by Deep Semantic Segmentation

We use a standard U-Net architecture [34] as the deep

semantic segmentation network in this study. However, several

modifications to the original U-Net architecture were made to

adjust it to the goals of this work:

1) The dimensions of the input layer were changed from

572× 572 to 256× 256 to fit the input data.

2) Batch normalization was introduced after each convolu-

tion operation to reduce the problem of updating weights

and biases across many layers.

3) A dropout of 10% was introduced in the bottleneck stage

for regularization purposes.

4) The increase in number of channels in the downsampling

path was made more gradual by first convolving the

input data with 32 filters.

5) To reduce the number of total parameters, the bottleneck

was introduced at a depth of 512 channels.

6) The outputs of the network were fed to a sigmoid

function to achieve a mask of probability values between

0.0 and 1.0.

The structure of the modified U-Net architecture used in this

work can be seen in Fig.5.

Since in most training examples, the number of fire affected

pixels comprises only a small portion of all the pixels in the

scene, there is a risk that the learning process converges to

a local minimum of the loss function, leading to predictions

which are favorable towards the background, i.e. to pixels

not affected by fire. To overcome this problem this work

exploits a combination of two loss functions: Binary Cross

Entropy (BCE) loss and Dice loss. The Dice loss originates

from the Dice coefficient (also known as F1 score), and is

especially suitable for segmentation problems with uneven
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Fig. 3: Generation of a training examples. a) Label generation - on the left in yellow, the perimeter of a fire from the CAL

FIRE database that is used to generate the binary reference mask on the right. b) Selected bands from the four instruments

are resampled to a grid based on the perimeter of the fire.

Fig. 4: Number of time windows with different combinations

of instruments observing the same fire. The duration of every

fire is split into twelve-hour-long time windows. The chart

shows the number of time windows that were observed by

different combinations of instruments. The horizontal axis

represents the number of time windows and the vertical axis

represents the possible combinations of instruments.

class distributions [36]. This renders the final loss function

as follows:

LBCE = −
1

m

m∑

i=1

1

n

n∑

j=1

(yij × log ŷij)+(1−yij)× (1− log ŷij) (1)

Ldice = 1−
1

m

m∑

i=1

2×

n∑
j=1

(yij × ŷij) + ǫ

n∑
j=1

yij +
n∑

j=1

ŷij + ǫ

(2)

Lfinal = WBCE ×BCE Loss+WDL ×Dice Loss (3)

Where y is the reference pixels, ŷ are the pixels network

predictions, indices i and j denote the current mini-batch

and example respectively, m is the number of mini-batches,

n is the number of examples per mini-batch and ǫ is a

small value added to the dice loss to avoid division by zero.

The final loss is a linear combination of the BCE and Dice

losses with wBCE and wDL being the weights adjusting

the influence of each component of the loss function. They

are treated as hyperparameters and are adjusted accordingly.

Final classification of pixels to the classes fire-affected or

background is decided by applying a threshold τ to the output

of the sigmoid layer. If the value of the sigmoid function at

the pixel exceeds τ , the pixel is classified as fire-affected. The

value of τ is tuned as an additional hyperparameter using the

validation dataset.

B. Fusion of Single-Instrument Predictions

The output of each model trained on a single instrument

is a 2-D raster where the values of each pixel represent the

probability that a pixel is affected by fire. Given outputs from

two models that were trained individually on data from a single

instrument, the combined probability raster is calculated based

on the following rationale:

1) In case a pixel is covered by clouds in one of the outputs,

the probability of the pixel being affected by fire is
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Fig. 5: Modified U-Net architecture used in this work. Each blue box corresponds to a multi-channel feature layer. Dark gray

box represents the input image with N channels (2 for Sentinel-1, 3 for all other instruments). The number of channels is

denoted on top of the box. The spatial dimensions of the feature are provided at the lower left edge of the box. Pale blue

boxes represent copied feature information. The arrows denote the convolution, pooling and concatenating operations. The final

output is a probability raster with values between 0.0 and 1.0 (Modified from [34]).

determined by the model where the pixel is not covered

by clouds.

2) For Sentinel-1 individual output, all pixels are consid-

ered to be not covered by clouds because of the cloud

penetrating capabilities of the C-SAR instrument.

3) In case the pixel is either covered or not covered by

clouds in both single instrument prediction rasters, the

value of the pixel in the combined raster is calculated

as a weighted average of the individual outputs.

4) The weight of each individual output in the weighted

average is determined by the average F1 score achieved

by the model when evaluated on the validation dataset,

with the sum of the weights is normalized to 1.0.

5) A ’fusion’ threshold τf is applied to the result of the

linear combination of two prediction rasters. Pixels with

a value above the threshold are considered to be affected

by fire.

6) The value of the threshold is adjusted using a grid

search, with the optimum value selected as the one

leading to the best Kappa coefficient.

Figure 6 describes the methodology for combining outputs of

two models.

C. Model Training

To adjust the parameters of each of the four single-

instrument models, training on augmented datasets were per-

formed. Due to the relatively limited total number of train-

ing examples and observed fires, each example was aug-

mented by applying four translations (north, south, east and

west) and four rotations around a randomly selected axis

point. Translation in each direction was applied in the range

[0.1; 0.5] of the image dimensions, and rotation varied between

[−180◦; +180◦]. In an attempt to increase the variability of

fire perimeters area in the training database, scaling of fires

smaller than 5 km2 by a random factor between 1.5 and 3.0

and scaling of fires larger than 40 km2 by a random factor

between 0.33 and 0.66 was applied. The weights wBCE and

wDL of the final loss function defined in Equation 3 were

tuned during the hyperparameters tuning phase to 0.6 and 0.4

respectively.

The adaptive moment estimation (Adam) optimization al-

gorithm [37] was used with default parameters β1 = 0.9 and

β1 = 0.999. The initial learning rate was set to 0.001 and a

learning rate decay by a factor of 0.5 was implemented after

every 5 epochs. Training examples were fed to the network in

mini-batches of size 8. To calculate the validation loss, average

validation F1 score and Cohen’s kappa coefficient, examples

from the validation dataset were fed to the network during the

training process. Training was stopped if the validation loss

did not improve after 10 epochs. At the end of the training

process, the model which achieved the highest F1 score on the

validation set was selected as the final model. The process was

implemented using Keras2 with TensorFlow backend as the

deep learning framework, on a PC desktop with Intel Core i-

5-8600K CPU @ 3.60 GHz, 6 cores 16 GB RAM and NVIDIA

GeForce GTX 1060 6GB graphic card. Table IV summarizes

2Keras https://keras.io/ (Accessed 14.11.2020)
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Fig. 6: Methodology for combining predictions of two single-

instrument models. 2-D probability rasters are predicted by

two single-instrument models, each trained on data from a

different instrument. Pixels which are covered by clouds are

identified and removed from each output. A combined 2-D

probability raster is calculated as weighted average of the two

single-instrument probability rasters. The weights used in the

combination are derived from the average F1 score achieved

during training of the single-instrument models. A threshold

τf , is applied to the combined raster and is iteratively tuned on

the validation dataset. Finally, pixels with values exceeding the

tuned τf are predicted as being affected by fire. In magenta:

products of single-instrument training. Dashed lines represent

usage of products of single-instrument training, solid lines

represent the processing order.

the average training duration of each single-instrument model.

Fusion of two single-instrument prediction rasters with size

256× 266× 1 takes less than 5.5% of the average prediction

time of a single-instrument model.

VI. EXPERIMENTAL RESULTS

A. Single-Instrument Detection Results

To assess the performance of each model, the model was

evaluated using the examples from the test dataset. Pixels

affected by fire were selected by applying a threshold τ to

the output of the final sigmoid layer. Results were obtained

by varying τ from 0.05 to 0.95 in increments of 0.05. The

resulting binary prediction was then compared to the refer-

ence mask and evaluated using standard evaluation metrics.

TABLE IV: Average training and prediction time of the

four single-instrument U-Net models. Prediction time refers

to applying a trained single-instrument model to a single

256 × 256 × n input, with n being the number of channels

(2 for C-SAR, 6 for MSI, and 3 for MODIS and SLSTR

Input instrument Average training time
per 1000 examples [m]

Average
prediction time [s]

C-SAR 10.9 0.014 ± 0.002
MSI 12.2 0.018 ± 0.006
SLSTR 11.1 0.018 ± 0.006
MODIS 11.2 0.017 ± 0.005

Figure 7 exemplifies how changing the threshold affects the

final segmentation mask in the form of Precision-Recall curves

(PRC), where the precision achieved by the model is plotted

against the achieved recall, as the threshold τ is varied. This

form of presentation was chosen because it is more suitable

for imbalanced problems, due to the fact that pixels that were

classified as true negatives, and occupy the majority of the

scene, are not taken into account. Thus, every point on the PRC

represents the precision and recall score obtained by applying a

single-instrument model to the test dataset. Generally it can be

said that the closer a PRC to the upper right corner, the better

the performance of a a model is. A summary of the quantitative

assessment of the results of each model is summarized in

Table V.

Examining Fig. 7 and Table V, one can observe a clear

separation in the ability of the developed models to correctly

identify fire affected pixels. In clear conditions, the worst

results were obtained using the S1 model with an achieved

F1 score of 0.46% and 26% of detected fires, whereas the

S2 model led to the best results with F1 score of 0.83 and

92% of the fire perimeters detected. Model S3 with F1 score

of 0.71 and 68% of perimeters detected, exhibited slightly

better performance than the MOD model with F1 score of

0.67 and detection of 58% of the perimeters. Examination of

the PRC shapes suggests that the S2 model is less sensitive

to small changes in τ , whereas results obtained using models

S1 and MOD are highly dependent on the chosen value of

τ , with S1 displaying almost a linear association between

precision and recall. Another clear distinction can be made

between the performance of S2, S3 and MOD models in

cloudy and clear conditions. For each model, the influence of

clouds on the segmentation performance can be approximately

estimated by examining the distance between two points: the

upper right-most point in the PRC of the clear conditions

and its equivalent in the PRC of the cloudy conditions. The

larger the distance between the points, the larger the difference

between the performance in cloudy and clear conditions is.

All models performed worse in cloudy conditions with model

S2 exhibiting the largest deterioration of performance with τ

influencing the results by approx. 5%. Performance of both S3

and MOD models seem to be less affected in cloudy conditions

and depend more on the chosen value of τ .
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Fig. 7: Precision-Recall curves of trained single-instrument models. Each point on the curve represents a single pair of recall-

precision values obtained by applying a threshold τ to the output of the sigmoid layer in a single-instrument model and

calculating the recall and precision scores on the test dataset in both clear and cloudy conditions. For each single-instrument

model τ was varied between 0.05 and 0.95 with increments of 0.05. Generally it can be said that the closer a PRC to the upper

right corner, the better the performance of a model is. The following abbreviations representing a model trained on specific

satellite/instrument data are used: S1 - Sentinel-1/C-SAR, S2 - Sentinel-2/MSI, S3 - Sentinel-3/SLSTR, MODIS - Terra and

Aqua/MODIS.

TABLE V: Assessed performance of single-instrument models. Reported values are obtained with τ that led to the highest F1

score. S1, S2 and S3 refer to the models trained on Sentinel-1A/B, Sentinel-2A/B and Sentinel-3A/B data accordingly. MOD

refers to the model trained on MODIS data.

Conditions Instrument (Model) # Images τ Precision Recall F1 Score K IOU Detection [%]

Clear

C-SAR (S1) 60 0.20 0.39 0.57 0.46 0.38 0.39 0.26
MSI (S2) 39 0.05 0.83 0.84 0.83 0.67 0.71 0.92
SLSTR (S3) 44 0.10 0.67 0.76 0.71 0.57 0.57 0.68
MODIS (MOD) 41 0.10 0.57 0.80 0.67 0.48 0.50 0.58

Cloudy

MSI (S2) 21 0.05 0.60 0.71 0.65 0.51 0.45 0.50
SLSTR (S3) 16 0.10 0.60 0.76 0.67 0.54 0.47 0.48
MODIS (MOD) 19 0.10 0.54 0.81 0.65 0.48 0.44 0.45
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B. Multi-Instrument Detection Results

To combine the results of a pair of two single instrument-

models, a dataset consisting of pairs of images was created

for every combination of instruments. Images of the same fire

that were acquired within the same, twelve-hour-long, time

window were identified and used to create an image pair. As

with the assessment of single-instrument models, a distinction

was made between images acquired in clear and cloudy

conditions. All image pairs were constructed from images that

did not participate in the training and hyperparameters tuning

stages. In total, four combinations of bi-instrument models

were generated:

1) C-SAR and MSI

2) C-SAR and SLSTR

3) MSI and SLSTR

4) SLSTR and MODIS

Combinations (1) and (2) were generated to analyze how

combining VIS, SWIR and microwave spectral bands affects

the segmentation results. Combination (3) aims at investigating

how combining VIS, SWIR, MIR and TIR spectral bands

with varying ground resolutions affects the results. Finally,

combination (4) was created in an attempt to explore how

combining MIR and TIR spectral bands with similar ground

resolution affects the results. Similarly to the single instru-

ment models, for every combination a threshold value τ was

applied to the combined probability mask. The value of τ

was tuned using a grid search method. Segmentation results

were generated with τ ranging from 0.1 to 0.9. Again, results

are presented in form of a PRC with distinction between

cloudy and clear conditions. To compare between results of

bi-instrument and single-instrument models, PRCs of results

obtained using bi-instrument models were plotted together

with the best precision and recall values obtained by the

relevant single-instrument models. The combined plots are

presented in Figure 8, and the accompanying values of the

achieved evaluation metrics are summarized in Table VI.

Figure 8a shows that combining S1 and S2 models generally

leads to improved segmentation results in cloudy conditions

comparing to results obtained using the S2 model only.

Combining models S1 and S2, improves precision by 25%

while causing a reduction of 9% in recall, leading to an

increase of 9% in the IOU and 6% in detection percentage.

In clear conditions, however, combination S1-S2 does not

seem to improve upon the results obtained with S2. The

combined result causes a deterioration of 17% in precision

while increasing the recall by 8%, leading to a 2% decrease in

the number of detected fires. It can be sen in Figure 8b that the

combined S1-S3 model does not significantly affect the overall

segmentation results when compared to results obtained using

the S3 model only. Comparing to the S3 model, in clear

conditions, the bi-instrument model achieves 11% higher recall

and 10% lower precision with a resulting increase of 1% in

the average IOU. In cloudy conditions, S1-S3 achieves the

same average IOU, number of detected perimeters and F1

score as S3 with an increase of 5% in precision and decrease

of 8% in recall. Figure 8c shows that the combined S2-S3

model performs better than both S2 and S3 models in clear

conditions. Table 14 shows an increase of 4% and 3% in

precision and recall respectively, and 4% increased IOU and

detection percentage. In cloudy conditions, it appears that

combining models S2 and S3 does not improve the results.

The PRC plotted in Figure 8d shows that combining the

outputs of S3 and MOD models does not lead to a significant

improvement in clear conditions. In cloudy conditions the S3-

MOD combination performed worse than single-instrument S3

and MOD models. Figure 9 exemplifies segmentation results

of the Detwiler fire (2017) obtained using single-instrument

and bi-instrument models.

Figure 9a, presents an example where most of the fire

perimeter is covered by clouds which hinders the results of S2.

Combining the results with prediction of S1 model, improves

the overall segmentation result. The result is still inaccurate

with significant number of commission errors introduced by

S1, however the overall IOU is improved. Figure 9b, shows an

example of combining Sentinel-2 and Sentinel-3 predictions

leads to a more continuous segmentation with an improved

IOU. In Figure 9c combining the predictions from Sentinel-

1 and Sentinel-3 led to worsening of the final segmentation

due to introduction of new commission errors. In Figure 9d,

combining predictions of Sentinel-3 and MODIS improved

the segmentation, here however it is not clear whether the

reference mask represents accurately the extent of fire affected

pixels at the time of the acquisition.

VII. DISCUSSION

A. Performance of the Individual Image Sources

The results obtained in Section VI have shown that super-

vised deep learning methods, applied to satellite imagery in

the visible light and infrared domain, can be used to detect

fire affected areas and perform segmentation to classify fire

affected pixels. The degree of the achieved success varied

between the models, depending on the instrument. The model

trained on Sentinel-2 data achieved the best results, followed

by Sentinel-3 and MODIS. An attempt to perform similar tasks

using a model trained on Sentinel-1 C-SAR data did not lead

to satisfying results.

Several possible explanations for the difference in per-

formance between Sentinel-2 MSI, Sentinel-3 SLSTR and

MODIS models are possible. MSI produces pixels with signif-

icantly smaller spatial resolution on the ground compared to

SLSTR and MODIS instruments. For the same spatial extent

and a single band, Sentinel-2 produces up to 2500 times

more information than both SLSTR and MODIS. Thus, the

number of observations contained in each training example

is significantly larger which allows the network to train on

more data. Another influence of the ground resolution is

the ability of the network to correctly identify the border

between fire-affected pixels and background. With smaller

ground resolution, the border between fire-affected pixels and

background can be identified with higher level of detail.

Secondly, six spectral bands of MSI were used to predict

the final segmentation map, while only three spectral bands

of SLSTR and MODIS were used for the same task. The

decision to use SLSTR and MODIS bands available both in
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(a) S1 - S2 (b) S1 - S3

(c) S2 - S3 (d) S3 - MOD

Fig. 8: Precision-Recall curves of bi-instrument segmentation results. Best precision-recall results obtained with single

instrument models are plotted in comparison.

TABLE VI: Assessed performance of bi-instrument models. Reported values are obtained with τf that led to the highest F1

score. W1 and W2 refer to the weights used in the linear combination of single instrument models. Specified average IOU

value represents the average intersection over union ratio across all images in the tested dataset.

Conditions Combination # Images W1 W2 τf Precision Recall F1 score K IOU Detection
[%]

Clear

S1-S2 39 0.34 0.66 0.65 0.66 0.92 0.77 0.65 0.70 0.92
S1-S3 44 0.39 0.61 0.60 0.57 0.87 0.71 0.58 0.58 0.68
S2-S3 39 0.55 0.45 0.55 0.87 0.87 0.87 0.76 0.78 0.96
S3-MOD 41 0.50 0.50 0.70 0.62 0.87 0.72 0.59 0.58 0.70

Cloudy

S1-S2 21 0.34 0.66 0.45 0.62 0.85 0.72 0.59 0.54 0.56
S1-S3 16 0.39 0.61 0.45 0.65 0.68 0.67 0.54 0.47 0.48
S2-S3 21 0.55 0.45 0.40 0.51 0.83 0.63 0.53 0.46 0.48
S3-MOD 19 0.50 0.50 0.45 0.45 0.85 0.59 0.51 0.44 0.42
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(a) S1 - S2 (b) S2 - S3

(c) S1 - S3 (d) S3 - MOD

Fig. 9: Examples of segmentation results of the Detwiler fire obtained using single-instrument and bi-instrument models.

Order of displayed results from top to bottom: The first two rows display results of single-instrument segmentation and the

last row displays the combined segmentation process. The final result in the lower right most corner is highlighted in red.

Order of displayed results from left to right: Single-instrument results: input image, reference mask from CAL FIRE, cloud

mask, prediction of the last sigmoid layer of the trained model. Combined results: prediction from the first single instrument

model after filtering of cloud-covered pixels, prediction from the second single instrument model after filtering of cloud-covered

pixels, combined prediction prior to applying threshold τf , final combined segmentation result after thresholding with τf .

daytime and nighttime was made to increase the total number

of available imagery, and three bands only were used based on

the results summarized in Tab. II, which showed that contrary

to the authors’ expectations, adding additional bands to SLSTR

and MODIS does not improve the results significantly. This

finding might be explained by the fact that the spectral signal

of active fires and burned areas occurs mostly in the three

bands selected, or in reflective bands in the NIR and SWIR

regions which are available during daytime only [38].

The marginally better performance of the SLSTR model

compared to the MODIS model could possibly be explained by

expansion of the ground resolution of MODIS pixels towards

the edge of the swath, which can reach 4 km, and further

reduce the amount of information measured in each scene [33].

The second possible explanation is that SLSTR has a lower

minimum detection limit for actively burning pixels with lower

FPR. In their recent work, [35] have found SLSTR to detect

44% more AF pixels than MODIS.

With respect to the comparably bad results achieved with

Sentinel-1 SAR imagery, there are several possible explana-

tions for this outcome. The first is that unlike many researches

in the field [12], [39], [6], this work attempted to detect fire

affected pixels in C-band SAR images without comparing

them to previous imagery of the scene that was acquired prior

to the fire. The primary challenge of this method is to establish

a model based on direct measurements of the backscatter
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and not on the change in backscatter. The second possible

explanation for the poor performance of the C-SAR model is

insufficient training data. The model was trained on examples

from 686 fires, however only 2231 images, consisting of two

bands only, participated in training of the model.

B. Usefulness of Multi-Source Data Fusion

The experiments furthermore showed that combining seg-

mentation maps predicted by S1 and S2 models in cloudy con-

ditions increases the percentage of detected fires and achieves

higher average IOU, kappa and F1 score (cf. Tab. VI). This

happens because the S1 model, despite its large commission

errors is generally able to detect areas affected by fire. As long

as the predictions made by the model are only used in pixels

covered by clouds, the overall segmentation result improves.

Unexpectedly, combining outputs of the S1 and S3 models

did not achieve similar results. Looking at the results, it is

difficult to pinpoint the reason for this behavior. One possible

explanation can be insufficient tuning of the weights w1 and

w2 and the threshold τf that were used in computing the mixed

probability mask and the resulting segmentation map.

C. Comparison of results to other works in the field

It is important to emphasize once more that this work aims

at exploring whether combining results of single-instrument

models can improve semantic segmentation of wildfires.

Therefore, comparison of the results of this work obtained

with single-instrument models with the results of other works

in the field is presented to merely put the results of this work in

context. Table VII presents a comparison between the results

achieved by single-instrument models in this work and results

achieved in [38], [39], [40], [41], [42], [43]. Only three out of

the four single-instrument models are compared because, to the

best of the authors knowledge, only one comprehensive eval-

uation of performance of Sentinel-3 SLSTR data for detection

of fire affected areas exists to date [35], which, unfortunately,

does not report any accuracy or precision metrics.

[39] detected anomalies of the backscattering coefficient in

Sentinel-1 dual-polarized backscatter image time series, which

were combined with thermal anomalies derived from MODIS

to detect burned areas. The performance of the algorithm

was assessed using reference perimeters derived from optical

Sentinel-2 and Landsat imagery and reached a mean F1 score

0f 0.59 with 0.62 and 0.72 in terms of recall and precision,

respectively. [40] used an 18-layer CNN applied to dual-

polarization time series of Sentinel-1 images and achieved an

F1 score of 0.81 and a kappa of 0.67 when evaluated over

3 large fires in California. Compared to the above mentioned

works, the results of this work underachieve with 0.39 and

0.57 precision and recall, respectively. It has to be recalled,

however, that we have only used single-temporal Sentinel-1

imagery as input to the fire detection workflow. Furthermore,

our work demonstrated that combining a model trained on

Sentinel-2 data even with the underachieving mono-temporal

Sentinel-1 model improves segmentation results in the pres-

ence of clouds. For the single-instrument models trained on

MSI and MODIS data, respectively, the results of this work

compare well with the works in the field – especially when

considering the difference in the test datasets that were used.

Providing context for the results that were obtained using

bi-instrument models is challenging due to the limited number

of works that implement multi-sensor data fusion to segment

wildfires and even fewer works reporting evaluation metrics.

Table VIII compares the data fusion results obtained in this

work with two noticeable works from recent years and yet

again confirms comparable performance.
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TABLE VII: Comparison between results achieved by single-instrument models trained on MSI, C-SAR and MODIS data and

results of noticeable works in the field. Conversion to precision and recall values was applied to results of papers marked

with *. Ranges of precision and recall are used to report results obtained in different geographical regions.

Instrument Author Pixel Spacing [m] Temporal Resolution Precision Recall Test dataset

This Work ∼118 Mono-temporal 0.39 0.57 32 Fire perimeters from
CAL-FIRE

* Belenguer-Plomer et al., 2019 20-50 12 days 0.24-0.84 0.19-0.86 Burned area perimeters in
18 globally spread MGRS
tiles obtained from Landsat-
8 images using a RF clas-
sifier trained on manually
annotated data

C-SAR

Ban et al., 2020 20-50 12 days 0.72-0.90 0.93-0.99 Burned areas perimeters
manually derived using
Worldview-3 imagery and
field data in two large fires
in California

This Work ∼118 Mono-temporal 0.83 0.84 32 Fire perimeters from
CAL-FIRE

Farasin et al., 2020 10-60 Mono-temporal 0.45 - 0.91 0.61 - 0.95 Copernicus Emergency
Management Service
damage severity maps of
21 fires in five European
regionsMSI

Knopp et al., 2020 10-20 Mono-temporal 0.77- 0.96 0.97- 0.99 Three manually refined
Copernicus Emergency
Management Service in
Europe

This Work 1000 Mono-temporal 0.57 0.80 32 Fire perimeters from
CAL-FIRE

Mithal et al., 2018 500 Time series 0.29-0.78 0.26-0.74 Automatically generated
Global Landsat reference
maps in 19 Landsat scenesMODIS

* Ramo and Chuvieco, 2017 500 Mono-temporal 0.75 0.75 MODIS BA product in 3
test sites (Canada, Aus-
tralia, California)

TABLE VIII: Comparison between results achieved by bi-instrument models and results of noticeable works in the field.

Conversion to precision and recall values was applied to results of papers marked with *. NR abbreviation stands for not

reported information.

Instrument Author Cloud Coverage Pixel Spacing [m] Temporal Resolution Precision Recall Reference data used

>20% 0.62 0.85C-SAR+
MSI

This work
<20%

∼118 Mono-temporal
0.66 0.92

CAL-FIRE

C-SAR +
MSI +
MODIS

Verhegghen et al., 2016 NR 20 Monthly NR NR NR

>20% 0.51 0.83MSI+
SLSTR

This work
<20%

∼118 Mono-temporal
0.87 0.87

CAL-FIRE

MSI+
MODIS

* Roteta et al., 2019 NR 20 10 days 0.82 0.75 Manually annotated
burned area perimeters
delineated from
Landsat-7 and Landsat-
8 imagery in 45 tiles in
Sub-Saharan Africa
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VIII. SUMMARY & CONCLUSION

With this paper, we have confirmed that deep learning

shows great potential for the automatic and robust detection of

wildfires from openly available multi-sensorial remote sensing

imagery. While in clear, cloud-free weather conditions detec-

tion rates up to 92% are achieved using just the most suitable

sensor (Sentinel-2), and up to 96% when employing the best

multi-sensor fusion scenario (Sentinel-2 and Sentinel-3), we

have been able to show that data fusion can generally be

confirmed as beneficial. This holds, in particular, if different

optical sensors are combined during clear, non-cloudy condi-

tions, or if Sentinel-1 SAR observations are utilized to support

the optical observations during cloudy weather.
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