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Abstract

Distribution shifts—where the training distribu-
tion differs from the test distribution—can sub-
stantially degrade the accuracy of machine learn-
ing (ML) systems deployed in the wild. De-
spite their ubiquity in the real-world deployments,
these distribution shifts are under-represented in
the datasets widely used in the ML community
today. To address this gap, we present WILDS,
a curated benchmark of 10 datasets reflecting
a diverse range of distribution shifts that natu-
rally arise in real-world applications, such as
shifts across hospitals for tumor identification;
across camera traps for wildlife monitoring; and
across time and location in satellite imaging and
poverty mapping. On each dataset, we show that
standard training yields substantially lower out-
of-distribution than in-distribution performance.
This gap remains even with models trained by
existing methods for tackling distribution shifts,
underscoring the need for new methods for train-
ing models that are more robust to the types of
distribution shifts that arise in practice. To facil-
itate method development, we provide an open-
source package that automates dataset loading,
contains default model architectures and hyperpa-
rameters, and standardizes evaluations. The full

paper, code, and leaderboards are available at

https://wilds.stanford.edu.

1. Introduction

Distribution shifts—where the training distribution differs
from the test distribution—pose significant challenges for
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Figure 1: In each WILDS dataset, each data point (x, y, d) is asso-
ciated with a domain d. Each domain corresponds to a distribution
Pd over data points which are similar in some way, e.g., molecules
with the same scaffold, or satellite images from the same region.
We study two types of distribution shifts. Top: In domain general-
ization, we train and test on disjoint sets of domains. The goal is to
generalize to domains unseen during training, e.g., molecules with
a new scaffold in OGB-MOLPCBA (Hu et al., 2020b). Bottom:
In subpopulation shift, the training and test domains overlap, but
their relative proportions differ. We typically assess models by
their worst performance over test domains, each of which corre-
spond to a subpopulation of interest, e.g., different geographical
regions in FMOW-WILDS (Christie et al., 2018).

machine learning (ML) systems deployed in the wild. In this
work, we consider two common types of distribution shifts:
domain generalization and subpopulation shift (Figure 1).
Both of these shifts arise naturally in many real-world sce-
narios, and prior work has shown that they can substantially
degrade model performance. In domain generalization, the
training and test distributions comprise data from related
but distinct domains, such as patients from different hospi-
tals (Zech et al., 2018), images taken by different cameras
(Beery et al., 2018), bioassays from different cell types (Li
et al., 2019a), or satellite images from different countries
and time periods (Jean et al., 2016). In subpopulation shift,
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Figure 2: The WILDS benchmark contains 10 datasets across a diverse set of application areas, data modalities, and dataset sizes. Each
dataset comprises data from different domains, and the benchmark is set up to evaluate models on distribution shifts across these domains.

we consider test distributions that are subpopulations of the
training distribution, with the goal of doing well even on the
worst-case subpopulation; e.g., we might seek models that
perform well on all demographic subpopulations, including
minority individuals (Buolamwini & Gebru, 2018).

Despite their ubiquity in real-world deployments, these
types of distribution shifts are under-represented in the
datasets widely used in the ML community today (Geirhos
et al., 2020). Most of these datasets were designed for
the standard i.i.d. setting, with training and test sets from
the same distribution, and prior work on retrofitting them
with distribution shifts has focused on shifts that are cleanly
characterized but not always likely to arise in real-world
deployments. For instance, many recent papers have studied
datasets with shifts induced by synthetic transformations,
such as changing the color of MNIST digits (Arjovsky et al.,
2019), or by disparate data splits, such as generalizing from
cartoons to photos (Li et al., 2017a). Datasets like these are
important testbeds for systematic studies; but to develop and
evaluate methods for real-world shifts, we need to comple-
ment them with datasets that capture shifts in the wild.

In this paper, we present WILDS, a curated benchmark of 10
datasets with evaluation metrics and train/test splits repre-
senting a broad array of distribution shifts that ML models
face in the wild (Figure 2). WILDS datasets span many im-
portant applications: animal species categorization (Beery
et al., 2020a), tumor identification (Bandi et al., 2018), bioas-
say prediction (Wu et al., 2018; Hu et al., 2020b), genetic
perturbation classification (Taylor et al., 2019), wheat head
detection (David et al., 2020), text toxicity classification
(Borkan et al., 2019b), land use classification (Christie et al.,
2018), poverty mapping (Yeh et al., 2020), sentiment analy-

sis (Ni et al., 2019), and code completion (Raychev et al.,
2016; Lu et al., 2021). These datasets reflect natural dis-
tribution shifts arising from different cameras, hospitals,
molecular scaffolds, experiments, demographics, countries,
time periods, users, and codebases.

WILDS builds on extensive data-collection efforts by domain
experts, who are often forced to grapple with distribution
shifts to make progress in their applications. To design
WILDS, we worked with them to identify, select, and adapt
datasets that fulfilled the following criteria:

1. Distribution shifts with performance drops. The
train/test splits reflect shifts that substantially degrade
model performance, i.e., with a large gap between in-
distribution and out-of-distribution performance.

2. Real-world relevance. The training/test splits and eval-
uation metrics are motivated by real-world scenarios
and chosen in conjunction with domain experts. In Ap-
pendix A, we further discuss the framework we use to
assess the realism of a dataset.

3. Potential leverage. Distribution shift benchmarks must
be non-trivial but also possible to solve, as models cannot
be expected to generalize to arbitrary distribution shifts.
We constructed each WILDS dataset to have training data
from multiple domains, with domain annotations and
other metadata available at training time. We hope that
these can be used to learn robust models: e.g., for domain
generalization, one could use these annotations to learn
models that are invariant to domain-specific features,
while for subpopulation shift, one could learn models
that perform uniformly well across each subpopulation.



We chose the WILDS datasets to collectively encompass a
diverse set of tasks, data modalities, dataset sizes, and num-
bers of domains, so as to enable evaluation across a broad
range of real-world distribution shifts. In Appendix C, we
further survey the distribution shifts that occur in other appli-
cation areas—algorithmic fairness and policing, medicine
and healthcare, genomics, natural language and speech pro-
cessing, education, and robotics—and discuss examples of
datasets from these areas that we considered but did not
include in WILDS, as their distribution shifts did not cause
an appreciable performance drop.

To make the WILDS datasets more accessible, we have
substantially modified most of them, e.g., to clarify the dis-
tribution shift, standardize the data splits, or preprocess the
data for use in standard ML frameworks. In Appendix F,
we introduce our accompanying open-source Python pack-
age that fully automates data loading and evaluation. The
package also includes default models appropriate for each
dataset, allowing all of the baseline results reported in this
paper to be easily replicated. To track the state-of-the-art
in training algorithms and model architectures that are ro-
bust to these distribution shifts, we are also hosting a public
leaderboard; we discuss guidelines for developers in Sec-
tion 7. Code, leaderboards, and updates are available at
https://wilds.stanford.edu.

Datasets are significant catalysts for ML research. Like-
wise, benchmarks that curate and standardize datasets—e.g.,
the GLUE and SuperGLUE benchmarks for language un-
derstanding (Wang et al., 2019a;b) and the Open Graph
Benchmark for graph ML (Hu et al., 2020b)—can acceler-
ate research by focusing community attention, easing de-
velopment on multiple datasets, and enabling systematic
comparisons between approaches. In this spirit, we hope
that WILDS will facilitate the development of ML methods
and models that are robust to real-world distribution shifts
and can therefore be deployed reliably in the wild.

2. Comparison with existing ML benchmarks

Distribution shifts have been a longstanding problem in the
ML research community (Hand, 2006; Quiñonero-Candela
et al., 2009). Earlier work studied shifts in datasets for tasks
including part-of-speech tagging (Marcus et al., 1993), senti-
ment analysis (Blitzer et al., 2007), land cover classification
(Bruzzone & Marconcini, 2009), object recognition (Saenko
et al., 2010), and flow cytometry (Blanchard et al., 2011).
However, these datasets are not as widely used today, in part
because they tend to be much smaller than modern datasets.

Instead, recent papers have focused on object recognition
datasets with shifts induced by synthetic transformations,
such as ImageNet-C (Hendrycks & Dietterich, 2019), which
corrupts images with noise; the Backgrounds Challenge

(Xiao et al., 2020) and Waterbirds (Sagawa et al., 2020a),
which alter image backgrounds; or Colored MNIST (Ar-
jovsky et al., 2019), which changes the colors of MNIST
digits. It is also common to use data splits or combinations
of disparate datasets to induce shifts, such as generalizing
to photos solely from cartoons and other stylized images in
PACS (Li et al., 2017a); generalizing to objects at different
scales solely from a single scale in DeepFashion Remixed
(Hendrycks et al., 2020b); or using training and test sets
with disjoint subclasses in BREEDS (Santurkar et al., 2020)
and similar datasets (Hendrycks & Dietterich, 2019). While
our treatment here is necessarily brief, we discuss other
similar datasets in Appendix B.

These existing benchmarks are useful and important testbeds
for method development. As they typically target well-
defined and isolated shifts, they facilitate clean analysis
and controlled experimentation, e.g., studying the effect of
backgrounds on image classification (Xiao et al., 2020), or
showing that training with added Gaussian blur improves
performance on real-world blurry images (Hendrycks et al.,
2020b). Moreover, by studying how off-the-shelf models
trained on standard datasets like ImageNet perform on dif-
ferent test datasets, we can better understand the robustness
of these widely-used models (Geirhos et al., 2018b; Recht
et al., 2019; Hendrycks & Dietterich, 2019; Taori et al.,
2020; Djolonga et al., 2020; Hendrycks et al., 2020b).

However, existing benchmarks do not generally represent
realistic distribution shifts, i.e., train/test splits that are likely
to arise in real-world deployments. As model robustness
need not transfer across shifts , it is important to develop
and evaluate methods on real-world shifts. For example,
models can be robust to image corruptions but not to shifts
across datasets (Taori et al., 2020; Djolonga et al., 2020),
and a method that improves robustness on a standard vision
dataset can actually consistently harm robustness on real-
world satellite imagery datasets (Xie et al., 2020). With
WILDS, we seek to complement these existing benchmarks
by focusing on datasets with realistic distribution shifts
across a diverse set of data modalities and applications.

3. Problem settings

Each WILDS dataset is associated with a type of domain
shift: domain generalization, subpopulation shift, or a hy-
brid of both (Figure 2). In each setting, we can view the
overall data distribution as a mixture of D domains D =
{1, . . . , D}. Each domain d ∈ D corresponds to a fixed
data distribution Pd over (x, y, d), where x is the input, y is
the prediction target, and all points sampled from Pd have
domain d. We encode the domain shift by assuming that the
training distribution P train =

∑
d∈D

qtrain
d

Pd has mixture
weights qtrain

d
for each domain d, while the test distribution

P test =
∑

d∈D
qtest
d

Pd is a different mixture of domains
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with weights qtest
d

. For convenience, we define the set of
training domains as Dtrain = {d ∈ D | qtrain

d
> 0}, and like-

wise, the set of test domains as Dtest = {d ∈ D | qtest
d

> 0}.

At training time, the learning algorithm gets to see the do-
main annotations d, i.e., the training set comprises points
(x, y, d) ∼ P train. At test time, the model gets either x or
(x, d) drawn from P test, depending on the application.

Domain generalization (Figure 1-Top). In domain gen-
eralization, we aim to generalize to test domains Dtest

that are disjoint from the training domains Dtrain, i.e.,
Dtrain∩Dtest = ∅. To make this problem tractable, the train-
ing and test domains are typically similar to each other: e.g.,
in CAMELYON17-WILDS, we train on data from some hospi-
tals and test on a different hospital, and in IWILDCAM2020-
WILDS, we train on data from some camera traps and test
on different camera traps. We typically seek to minimize
the average error on the test distribution.

Subpopulation shift (Figure 1-Bottom). In subpopulation
shift, we aim to perform well across a wide range of domains
seen during training time. Concretely, all test domains are
seen at training, with Dtest ⊆ Dtrain, but the proportions of
the domains can change, with qtest ̸= qtrain. We typically
seek to minimize the maximum error over all test domains.
For example, in CIVILCOMMENTS-WILDS, the domains
d represent particular demographics, some of which are
a minority in the training set, and we seek high accuracy
on each of these subpopulations without observing their
demographic identity d at test time.

Hybrid settings. It is not always possible to cleanly de-
fine a problem as domain generalization or subpopulation
shift; for example, a test domain might be present in the
training set but at a very low frequency. In WILDS, we also
consider some hybrid settings that combine both problem
settings. For example, in FMOW-WILDS, the inputs are
satellite images and the domains correspond to the year and
geographical region in which they were taken. We simul-
taneously consider domain generalization across time (the
training/test sets comprise images taken before/after a cer-
tain year) and subpopulation shift across regions (there are
images from the same regions in the training and test sets,
and we seek high performance across all regions).

4. WILDS datasets

We now briefly describe each WILDS dataset (Figure 2). For
each dataset, we consider a problem setting—domain gener-
alization, subpopulation shift, or a hybrid—that we believe
best reflects the real-world challenges in the corresponding
application area; see Appendix A for more discussion of
these considerations. To avoid confusion between our modi-
fied datasets and their original sources, we append -WILDS

to the dataset names. We provide more details and context

on related distribution shifts for each dataset in Appendix H.

4.1. Domain generalization datasets

IWILDCAM2020-WILDS (Appendix H.1). Animal popu-
lations have declined 68% on average since 1970 (Grooten
et al., 2020). To better understand and monitor wildlife bio-
diversity loss, ecologists commonly deploy camera traps—
heat or motion-activated static cameras placed in the wild
(Wearn & Glover-Kapfer, 2017)—and then use ML models
to process the data collected (Weinstein, 2018; Norouzzadeh
et al., 2019; Tabak et al., 2019; Beery et al., 2019; Ahumada
et al., 2020). Typically, these models would be trained on
photos from existing camera traps and then used across new
camera trap deployments. However, across different camera
traps, there is drastic variation in illumination, color, camera
angle, background, vegetation, and relative animal frequen-
cies, which results in models generalizing poorly to new
camera trap deployments (Beery et al., 2018).

We study this shift on a variant of the iWildCam 2020 dataset
(Beery et al., 2020a), where the input x is a photo from a
camera trap, the label y is one of 182 animal species, and
the domain d specifies the identity of the camera trap. The
training and test sets comprise photos from disjoint sets of
camera traps. As leverage, we include over 200 camera traps
in the training set, capturing a wide range of variation. We
evaluate models by their macro F1 scores, which emphasizes
performance on rare species, as rare and endangered species
are the most important to accurately monitor.

CAMELYON17-WILDS (Appendix H.2). Models for medi-
cal applications are often trained on data from a small num-
ber of hospitals, but with the goal of being deployed more
generally across other hospitals. However, variations in
data collection and processing can degrade model accuracy
on data from new hospital deployments (Zech et al., 2018;
AlBadawy et al., 2018). In histopathology applications—
studying tissue slides under a microscope—this variation
can arise from sources like differences in the patient popula-
tion or in slide staining and image acquisition (Veta et al.,
2016; Komura & Ishikawa, 2018; Tellez et al., 2019).

We study this shift on a patch-based variant of the Came-
lyon17 dataset (Bandi et al., 2018), where the input x is a
96x96 patch of a whole-slide image of a lymph node section
from a patient with potentially metastatic breast cancer, the
label y is whether the patch contains tumor, and the domain
d specifies which of 5 hospitals the patch was from. The
training and test sets comprise class-balanced patches from
separate hospitals, and we evaluate models by their average
accuracy. Prior work suggests that staining differences are
the main source of variation between hospitals in similar
datasets (Tellez et al., 2019). As we have training data from
multiple hospitals, a model could use that as leverage to
learn to be robust to stain variation.



RXRX1-WILDS (Appendix H.3). High-throughput screen-
ing techniques that can generate large amounts of data
are now common in many fields of biology, including
transcriptomics (Harrill et al., 2019), genomics (Echev-
erri & Perrimon, 2006; Zhou et al., 2014), proteomics
and metabolomics (Taylor et al., 2021), and drug discov-
ery (Broach et al., 1996; Macarron et al., 2011; Swinney &
Anthony, 2011; Boutros et al., 2015). Such large volumes of
data, however, need to be created in experimental batches,
or groups of experiments executed at similar times under
similar conditions. Despite attempts to carefully control
experimental variables such as temperature, humidity, and
reagent concentration, measurements from these screens are
confounded by technical artifacts that arise from differences
in the execution of each batch. These batch effects make it
difficult to draw conclusions from data across experimental
batches (Leek et al., 2010; Parker & Leek, 2012; Soneson
et al., 2014; Nygaard et al., 2016; Caicedo et al., 2017).

We study the shift induced by batch effects on a variant of
the RxRx1 dataset (Taylor et al., 2019), where the input
x is a 3-channel image of cells obtained by fluorescent
microscopy (Bray et al., 2016), the label y indicates which
of the 1,139 genetic treatments (including no treatment) the
cells received, and the domain d specifies the batch in which
the imaging experiment was run. The training and test sets
consist of disjoint experimental batches; as leverage, the
training set has images from 33 different batches, with each
batch containing one sample for every class. We assess a
model’s ability to normalize batch effects while preserving
biological signal by evaluating how well it can classify
images of treated cells in the out-of-distribution test set.

OGB-MOLPCBA (Appendix H.4). Accurate prediction
of the biochemical properties of small molecules can signif-
icantly accelerate drug discovery by reducing the need for
expensive lab experiments (Shoichet, 2004; Hughes et al.,
2011). However, the experimental data available for training
such models is limited compared to the extremely diverse
and combinatorially large universe of candidate molecules
that we would want to make predictions on (Bohacek et al.,
1996; Sterling & Irwin, 2015; Lyu et al., 2019; McCloskey
et al., 2020). This means that models need to generalize to
out-of-distribution molecules that are structurally different
from those seen in the training set.

We study this shift on the OGB-MOLPCBA dataset, which
is directly adopted from the Open Graph Benchmark (Hu
et al., 2020b) and originally from MoleculeNet (Wu et al.,
2018). It is a multi-label classification dataset, where the in-
put x is a molecular graph, the label y is a 128-dimensional
binary vector where each component corresponds to a bio-
chemical assay result, and the domain d specifies the scaf-
fold (i.e., a cluster of molecules with similar structure). The
training and test sets comprise molecules with disjoint scaf-

folds; for leverage, the training set has molecules from over
40,000 scaffolds. We evaluate models by averaging the
Average Precision (AP) across each of the 128 assays.

GLOBALWHEAT-WILDS (Appendix H.5). Models for au-
tomated, high-throughput plant phenotyping—measuring
the physical characteristics of plants and crops, such as
wheat head density and counts—are important tools for
crop breeding (Thorp et al., 2018; Reynolds et al., 2020)
and agricultural field management (Shi et al., 2016). These
models are typically trained on data collected in a limited
number of regions, even for crops grown worldwide such
as wheat (Madec et al., 2019; Xiong et al., 2019; Ubbens
et al., 2020; Ayalew et al., 2020). However, there can be
substantial variation between regions, due to differences in
crop varieties, growing conditions, and data collection pro-
tocols. Prior work on wheat head detection has shown that
this variation can significantly degrade model performance
on regions unseen during training (David et al., 2020).

We study this shift in an expanded version of the Global
Wheat Head Dataset (David et al., 2020; 2021), a large set of
wheat images collected from 12 countries around the world.
It is a detection dataset, where the input x is a cropped
overhead image of a wheat field, the label y is the set of
bounding boxes for each wheat head visible in the image,
and the domain d specifies an image acquisition session
(i.e., a specific location, time, and sensor with which a set
of images was collected). The data split captures a shift
in location, with training and test sets comprising images
from disjoint countries. As leverage, we include images
from 18 acquisition sessions over 5 countries in the training
set. We evaluate model performance on unseen countries
by measuring accuracy at a fixed Intersection over Union
(IoU) threshold, and averaging across acquisition sessions
to account for imbalances in the numbers of images in them.

4.2. Subpopulation shift datasets

CIVILCOMMENTS-WILDS (Appendix H.6). Automatic
review of user-generated text is an important tool for mod-
erating the sheer volume of text written on the Internet. We
focus here on the task of detecting toxic comments. Prior
work has shown that toxicity classifiers can pick up on bi-
ases in the training data and spuriously associate toxicity
with the mention of certain demographics (Park et al., 2018;
Dixon et al., 2018). These types of spurious correlations
can significantly degrade model performance on particular
subpopulations (Sagawa et al., 2020a).

We study this problem on a variant of the CivilComments
dataset (Borkan et al., 2019b), a large collection of com-
ments on online articles taken from the Civil Comments
platform. The input x is a text comment, the label y is
whether the comment was rated as toxic, and the domain
d is a 8-dimensional binary vector where each component



corresponds to whether the comment mentions one of the
8 demographic identities male, female, LGBTQ, Christian,
Muslim, other religions, Black, and White. The training and
test sets comprise comments on disjoint articles, and we
evaluate models by the lowest true positive/negative rate
over each of these 8 demographic groups; these groups over-
lap with each other, deviating slightly from the standard
subpopulation shift framework in Section 3. Models can
use the provided domain annotations as leverage to learn to
perform well over each demographic group.

4.3. Hybrid datasets

FMOW-WILDS (Appendix H.7). ML models for satellite
imagery can enable global-scale monitoring of sustainability
and economic challenges, aiding policy and humanitarian ef-
forts in applications such as deforestation tracking (Hansen
et al., 2013), population density mapping (Tiecke et al.,
2017), crop yield prediction (Wang et al., 2020b), and other
economic tracking applications (Katona et al., 2018). As
satellite data constantly changes due to human activity and
environmental processes, these models must be robust to
distribution shifts over time. Moreover, as there can be dis-
parities in the data available between regions, these models
should ideally have uniformly high accuracies instead of
only doing well on data-rich regions and countries.

We study this problem on a variant of the Functional Map of
the World dataset (Christie et al., 2018), where the input x
is an RGB satellite image, the label y is one of 62 building
or land use categories, and the domain d represents the year
the image was taken and its geographical region (Africa, the
Americas, Oceania, Asia, or Europe). The different regions
have different numbers of examples, e.g., there are far fewer
images from Africa than the Americas. The training set
comprises data from before 2013, while the test set com-
prises data from 2016 and after; years 2013 to 2015 are
reserved for the validation set. We evaluate models by their
test accuracy on the worst geographical region, which com-
bines both a domain generalization problem over time and
a subpopulation shift problem over regions. As we provide
both time and region annotations, models can leverage the
structure across both space and time to improve robustness.

POVERTYMAP-WILDS (Appendix H.8). Global-scale
poverty estimation is a specific remote sensing application
which is essential for targeted humanitarian efforts in poor
regions (Abelson et al., 2014; Espey et al., 2015). However,
ground truth measurements of poverty are lacking for much
of the developing world, as field surveys for collecting the
ground truth are expensive (Blumenstock et al., 2015). This
motivates the approach of training ML models on countries
with ground truth labels and then deploying them on differ-
ent countries where we have satellite data but no labels (Xie
et al., 2016; Jean et al., 2016; Yeh et al., 2020).

We study this shift through a variant of the poverty map-
ping dataset collected by Yeh et al. (2020), where the input
x is a multispectral satellite image, the output y is a real-
valued asset wealth index from surveys, and the domain d

represents the country the image was taken in and whether
the image is of an urban or rural area. The training and
test set comprise data from disjoint sets of countries, and
we evaluate models by the correlation of their predictions
with the ground truth. Specifically, we take the lower of
the correlations over the urban and rural subpopulations,
as prior work has shown that accurately predicting poverty
within these subpopulations is especially challenging. As
poverty measures are highly correlated across space (Jean
et al., 2018; Rolf et al., 2020), methods can utilize the pro-
vided location coordinates, and the country and urban/rural
annotations, to improve robustness.

AMAZON-WILDS (Appendix H.9). In many consumer-
facing ML applications, models are trained on data collected
on one set of users and then deployed across a wide range of
potentially new users. These models can perform well on av-
erage but poorly on some users (Tatman, 2017; Caldas et al.,
2018; Li et al., 2019b; Koenecke et al., 2020). These large
performance disparities across users are practical concerns
in consumer-facing applications, and they can also indicate
that models are exploiting biases or spurious correlations in
the data (Badgeley et al., 2019; Geva et al., 2019).

We study a variant of the Amazon review dataset (Ni et al.,
2019), where the input x is the review text, the label y
is the corresponding 1-to-5 star rating, and the domain d

identifies the user who wrote the review. The training and
test sets comprise reviews from disjoint sets of users; for
leverage, the training set has reviews from 5,008 different
users. As our goal is to train models with consistently high
performance across users, we evaluate models by the 10th
percentile of per-user accuracies. We discuss other distribu-
tion shifts on this dataset (e.g., by category) in Appendix I.3.

PY150-WILDS (Appendix H.10). Code completion
models—autocomplete tools used by programmers to sug-
gest subsequent source code tokens, such as the names of
API calls—are commonly used to reduce the effort of soft-
ware development (Robbes & Lanza, 2008; Bruch et al.,
2009; Nguyen & Nguyen, 2015; Proksch et al., 2015; Franks
et al., 2015). These models are typically trained on data
collected from existing codebases but then deployed more
generally across other codebases, which may have different
distributions of API usages (Nita & Notkin, 2010; Proksch
et al., 2016; Allamanis & Brockschmidt, 2017). This shift
across codebases can cause substantial performance drops
in code completion models. Moreover, prior studies of real-
world usage of code completion models have noted that they
can generalize poorly on some important subpopulations of
tokens such as method names (Hellendoorn et al., 2019).



Table 1: The in-distribution (ID) vs. out-of-distribution (OOD) performance of models trained with empirical risk minimization. The
OOD test sets are drawn from the shifted test distributions described in Section 4, while the ID comparisons vary per dataset and are
described in the main text. For each dataset, higher numbers are better. In all tables in this paper, we report in parentheses the standard
deviation across 3+ replicates, which measures the variability between replicates; note that this is higher than the standard error of the
mean, which measures the variability in the estimate of the mean across replicates.

Dataset Metric In-distribution type In-distribution Out-of-distribution

IWILDCAM2020-WILDS Macro F1 Fixed-train 47.0 (1.4) 31.0 (1.3)
CAMELYON17-WILDS Average accuracy Fixed-train 93.2 (5.2) 70.3 (6.4)
RXRX1-WILDS Average accuracy Fixed-test 39.8 (0.2) 29.9 (0.4)
OGB-MOLPCBA Average AP Randomized 34.4 (0.9) 27.2 (0.3)
GLOBALWHEAT-WILDS Average domain accuracy Fixed-test 64.8 (0.4) 48.4 (1.8)
CIVILCOMMENTS-WILDS Worst-group accuracy Average 92.2 (0.1) 56.0 (3.6)
FMOW-WILDS Worst-region accuracy Fixed-test 48.6 (0.9) 32.3 (1.3)
POVERTYMAP-WILDS Worst-U/R Pearson R Fixed-test 0.60 (0.06) 0.45 (0.06)
AMAZON-WILDS 10th percentile accuracy Average 71.9 (0.1) 53.8 (0.8)
PY150-WILDS Method/class accuracy Fixed-train 75.4 (0.4) 67.9 (0.1)

We study a variant of the Py150 Dataset (Raychev et al.,
2016; Lu et al., 2021), where the goal is to predict the next
token given the context of previous tokens. The input x is a
sequence of source code tokens, the label y is the next token,
and the domain d specifies the repository that the source
code belongs to. The training and test sets comprise code
from disjoint GitHub repositories. As leverage, we include
over 5,300 repositories in the training set, capturing a wide
range of source code variation. We evaluate models by their
accuracy on the subpopulation of class and method tokens.

5. Performance drops from distribution shifts

For a dataset to be included in WILDS, the shift reflected
in its train/test split should cause significant performance
drops in standard models. We ascertained this for each
dataset by training standard models using empirical risk
minimization (ERM), i.e., minimizing the average training
loss, and then comparing their out-of-distribution (OOD)
vs. in-distribution (ID) performance. The OOD setting is
captured by the default train/test split and the evaluation
criteria described in Section 4: for domain generalization,
we report performance on unseen domains, and for subpop-
ulation shift, we report performance on the worst-case sub-
population. ID comparisons vary by dataset. Each dataset
has at least one of the following types of ID comparisons:

1. Fixed-train. We hold the training set constant and eval-
uate on a separate ID test set of data from the same
domains (e.g., camera traps) as the training set. This
comparison is convenient because it does not require
retraining the model, and we use it when we expect the
training and test domains to be interchangeable in the
sense of being randomly drawn from the same distribu-
tion, e.g., in IWILDCAM2020-WILDS, where the camera

traps are randomly split across training and test sets.

2. Fixed-test. We hold the OOD test set approximately
constant and modify the training set to mix in data from
the (OOD) test distribution, while keeping the size of
training set similar or smaller. We use this comparison
when the training and test distributions are qualitatively
different: e.g., in FMOW-WILDS, where the test distri-
bution comes from a later time period, we replace half
of the data in the training set with otherwise unused data
from the test distribution.

3. Randomized. We shuffle all of the data into i.i.d. train-
ing, validation, and test splits. We use this for OGB-
MOLPCBA, where the small size of the domains pre-
clude the other options.

4. Average. For subpopulation shift datasets, where models
are evaluated on a subpopulation of the data, we report
the average performance across the entire OOD test set.

More details on the ID and OOD test sets, and additional
results for datasets that admit multiple ID comparisons, are
described in Appendix H. We further describe model selec-
tion and the general experimental protocol in Appendix G.

Results. Table 1 shows that for each dataset, OOD per-
formance is consistently and substantially lower than ID
performance. Moreover, on the datasets that allow for fixed-
test ID comparisons, we show that oracle models trained
on a mix of the ID and OOD distributions can simultane-
ously achieve high ID and OOD performance, indicating
that lower OOD performance is not due to the OOD test
sets being intrinsically more difficult than the ID test sets
(Appendix H). Overall, these results demonstrate that the
real-world distribution shifts reflected in the WILDS datasets
meaningfully degrade standard model performance.



Table 2: The out-of-distribution test performance of models trained with different baseline algorithms: CORAL, originally designed for
unsupervised domain adaptation; IRM, for domain generalization; and Group DRO, for subpopulation shifts. Evaluation metrics for each
dataset are the same as in Table 1; higher is better. Overall, these algorithms failed to improve over ERM, except on CIVILCOMMENTS-
WILDS where they perform better but still do not close the in-distribution gap in Table 1. For GLOBALWHEAT-WILDS, we omit CORAL
and IRM as those methods do not port straightforwardly to detection settings; its ERM number also differs from Table 1 as its ID
comparison required a slight change to the OOD test set. Parentheses show standard deviation across 3+ replicates.

Dataset Setting ERM CORAL IRM Group DRO

IWILDCAM2020-WILDS Domain gen. 31.0 (1.3) 32.8 (0.1) 15.1 (4.9) 23.9 (2.1)
CAMELYON17-WILDS Domain gen. 70.3 (6.4) 59.5 (7.7) 64.2 (8.1) 68.4 (7.3)
RXRX1-WILDS Domain gen. 29.9 (0.4) 28.4 (0.3) 8.2 (1.1) 23.0 (0.3)
OGB-MOLPCBA Domain gen. 27.2 (0.3) 17.9 (0.5) 15.6 (0.3) 22.4 (0.6)
GLOBALWHEAT-WILDS Domain gen. 49.2 (1.5) — — 46.1 (1.6)

CIVILCOMMENTS-WILDS Subpop. shift 56.0 (3.6) 65.6 (1.3) 66.3 (2.1) 70.0 (2.0)

FMOW-WILDS Hybrid 32.3 (1.3) 31.7 (1.2) 30.0 (1.4) 30.8 (0.8)
POVERTYMAP-WILDS Hybrid 0.45 (0.06) 0.44 (0.06) 0.43 (0.07) 0.39 (0.06)
AMAZON-WILDS Hybrid 53.8 (0.8) 52.9 (0.8) 52.4 (0.8) 53.3 (0.0)
PY150-WILDS Hybrid 67.9 (0.1) 65.9 (0.1) 64.3 (0.2) 65.9 (0.1)

6. Baseline algorithms for distribution shifts

Many algorithms have been proposed for training models
that are more robust to particular distribution shifts than
standard ERM models. Unlike ERM, these algorithms tend
to utilize domain annotations during training, with the goal
of learning a model that can generalize across domains. In
this section, we evaluate several representative algorithms
from prior work and show that the out-of-distribution per-
formance drops shown in Section 5 still remain.

Domain generalization baselines. Methods for domain
generalization typically involve adding a penalty to the ERM
objective that encourages some form of invariance across
domains. We include two such methods as representatives:

• CORAL (Sun & Saenko, 2016), which penalizes dif-
ferences in the means and covariances of the feature dis-
tributions (i.e., the distribution of last layer activations
in a neural network) for each domain. Conceptually,
CORAL is similar to other methods that encourage
feature representations to have the same distribution
across domains (Tzeng et al., 2014; Long et al., 2015;
Ganin et al., 2016; Li et al., 2018c;b).

• IRM (Arjovsky et al., 2019), which penalizes feature
distributions that have different optimal linear classi-
fiers for each domain. This builds on earlier work on
invariant predictors (Peters et al., 2016).

Other techniques for domain generalization include con-
ditional variance regularization (Heinze-Deml & Mein-
shausen, 2017); self-supervision (Carlucci et al., 2019);
and meta-learning-based approaches (Li et al., 2018a; Balaji
et al., 2018; Dou et al., 2019).

Subpopulation shift baselines. In subpopulation shift set-
tings, our aim is to train models that perform well on all
relevant subpopulations. We test the following approach:

• Group DRO (Hu et al., 2018; Sagawa et al., 2020a),
which uses distributionally robust optimization to ex-
plicitly minimize the loss on the worst-case domain
during training. Group DRO builds on the maximin ap-
proach developed in Meinshausen & Bühlmann (2015).

Other methods for subpopulation shifts include reweighting
methods based on class/domain frequencies (Shimodaira,
2000; Cui et al., 2019); label-distribution-aware margin
losses (Cao et al., 2019); adaptive Lipschitz regularization
(Cao et al., 2020); slice-based learning (Chen et al., 2019b;
Ré et al., 2019); style transfer across domains (Goel et al.,
2020); or other DRO algorithms that do not make use of
explicit domain information and rely on, for example, unsu-
pervised clustering (Oren et al., 2019; Sohoni et al., 2020).

Subpopulation shifts are also connected to the well-studied
notions of tail performance and risk-averse optimization
(Chapter 6 in Shapiro et al. (2014)). For example, optimiz-
ing for the worst case over all subpopulations of a certain
size, regardless of domain, can guarantee a certain level of
performance over the smaller set of subpopulations defined
by domains (Duchi et al., 2020; Duchi & Namkoong, 2021).

Setup. We trained CORAL, IRM, and Group DRO models
on each dataset. While Group DRO was originally devel-
oped for subpopulation shifts, for completeness, we also
experiment with using it for domain generalization. In that
setting, Group DRO models aim to achieve similar per-
formance across domains: e.g., in CAMELYON17-WILDS,
where the domains are hospitals, Group DRO optimizes for



the training hospital with the highest loss. Similarly, we also
test CORAL and IRM on subpopulation shifts, where they
encourage models to learn invariant representations across
subpopulations. As in Section 5, we used the same OOD val-
idation set for early stopping and to tune the penalty weights
for the CORAL and IRM algorithms. More experimental
details are in Appendix G, and dataset-specific hyperparam-
eters and domain choices are discussed in Appendix H.

Results. Table 2 shows that models trained with CORAL,
IRM, and Group DRO generally fail to improve over models
trained with ERM. The exception is the CIVILCOMMENTS-
WILDS subpopulation shift dataset, where the worst-
performing subpopulation is a minority domain. By up-
weighting the minority domain, Group DRO obtains an
OOD accuracy of 70.0% on the worst-performing subpopu-
lation compared to 56.0% for ERM, though this is compa-
rable to simple class balancing (Appendix H.6) and is still
substantially below the ERM model’s average accuracy of
92.2% over the entire test set. CORAL and IRM also per-
form well on CIVILCOMMENTS-WILDS, though their gains
stem largely from how our implementation heuristically up-
samples the minority domain. All other datasets involve
domain generalization; the failures here are consistent with
other recent findings on standard domain generalization
datasets (Gulrajani & Lopez-Paz, 2020).

These results indicate that training models to be robust to
distribution shifts in the wild remains a significant open
challenge. However, we are optimistic about future progress
for two reasons. First, current methods were mostly de-
signed for other problem settings besides domain general-
ization, e.g., CORAL for unsupervised domain adaptation
and Group DRO for subpopulation shifts. Second, compared
to existing distribution shift datasets, the WILDS datasets
generally contain diverse training data from many more do-
mains as well as metadata on these domains, which future
algorithms might be able to leverage.

7. Discussion

We end by discussing extensions to WILDS and community
guidelines for method development using WILDS.

Other applications and datasets. Distribution shifts are
a challenge in many application areas beyond those cov-
ered in WILDS. In Appendix C, we survey other applica-
tion areas—algorithmic fairness and policing, medicine and
healthcare, natural language and speech processing, code,
education, and robotics—and discuss relevant distribution
shifts as well as the challenges associated with finding ap-
propriate datasets in these areas. In Appendix I, we also
present results on datasets from these areas that we had con-
sidered including in WILDS, but for which we did not see
an appreciable performance drop under distribution shift.

These include location and time shifts in the BDD100K au-
tonomous driving dataset (Yu et al., 2020), location and race
shifts in the New York stop-question-and-frisk dataset (Goel
et al., 2016), and category and time shifts in the Amazon
and Yelp review datasets (Ni et al., 2019). Understanding
when distribution shifts result in large performance drops is
an important question for future work to resolve.

Other problem settings. In this paper, we focused on the
domain generalization and subpopulation shift problem set-
tings. In Appendix D, we discuss how WILDS can be used
to develop and evaluate models in other problem settings
that allow training algorithms to leverage additional infor-
mation, such as unlabeled test data in unsupervised domain
adaptation (Ben-David et al., 2006).

Guidelines for algorithm development. WILDS is a bench-
mark for developing and evaluating algorithms for training
models that are robust to distribution shifts. To facilitate sys-
tematic comparisons between these algorithms, we encour-
age algorithm developers to use the standardized datasets
(i.e., with no external data), evaluation criteria, and default
model architectures provided in WILDS. Moreover, we
encourage developers to test their algorithms on all applica-
ble WILDS datasets. We emphasize that it is still an open
question if a single general-purpose training algorithm can
produce models that do well on all of the datasets without
accounting for the particular structure of the distribution
shift in each dataset. As such, it would still be a substantial
advance if an algorithm significantly improves performance
on one type of shift but not others.

Methods beyond training algorithms. Beyond new train-
ing algorithms, there are many other promising direc-
tions for improving distributional robustness, including new
model architectures and pre-training on additional external
data beyond what is used in our default models. We en-
courage developers to test these approaches on WILDS as
well, and we will track all such submissions on a separate
leaderboard from the training algorithm leaderboard.

Avoiding overfitting to the test distribution. While each
WILDS dataset aims to benchmark robustness to a type of
distribution shift (e.g., shifts to unseen hospitals), practi-
cal limitations mean that for some datasets, we have data
from only a limited number of domains (e.g., one OOD test
hospital in CAMELYON17-WILDS). As there can be substan-
tial variability in performance across domains, developers
should be careful to avoid overfitting to the specific test
sets in WILDS, especially on datasets like CAMELYON17-
WILDS with limited test domains. We strongly encourage
all model developers to use the provided OOD validation
sets for development and model selection, and to only use
the OOD test sets for their final evaluations.



Reproducibility

An executable version of our paper, hosted on CodaLab,
can be found at https://wilds.stanford.edu/c
odalab. This contains the exact commands, code, en-
vironment, and data used for the experiments reported
in our paper, as well as all trained model weights. The
WILDS package is open-source and can be found at https:
//github.com/p-lambda/wilds.
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