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Abstract
We propose a new approach to the theory of conditioning for numerical analysis prob-
lems for which both classical and stochastic perturbation theories fail to predict the
observed accuracy of computed solutions. To motivate our ideas, we present examples
of problems that are discontinuous at a given input and even have infinite stochas-
tic condition number, but where the solution is still computed to machine precision
without relying on structured algorithms. Stimulated by the failure of classical and
stochastic perturbation theory in capturing such phenomena, we define and analyse a
weak worst-case and a weak stochastic condition number. This new theory is a more
powerful predictor of the accuracy of computations than existing tools, especially
when the worst-case and the expected sensitivity of a problem to perturbations of the
input is not finite. We apply our analysis to the computation of simple eigenvalues of
matrix polynomials, including the more difficult case of singular matrix polynomials.
In addition, we show how the weak condition numbers can be estimated in practice.
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1 Introduction

The condition number of a computational problem measures the sensitivity of an
output with respect to perturbations in the input. If the input–output relationship can
be described by a differentiable function f near the input, then the condition number is
the norm of the derivative of f . In the case of solving systems of linear equations, the
idea of conditioning dates back at least to thework of vonNeumann andGoldstine [47]
and Turing [45], who coined the term. For an algorithm computing f in finite precision
arithmetic, the importance of the condition number κ stems from the “rule of thumb”
popularized by Higham [29, §1.6],

forward error � κ · (backward error).

The backward error is small if the algorithm computes the exact value of f at a
nearby input, and a small condition number would certify that this is enough to get a
small overall error. Higham’s rule of thumb comes from a first-order expansion, and
in practice it often holds as an approximate equality and is valuable for practitioners
who wish to predict the accuracy of numerical computations. Suppose that a solution
is computed with, say, a backward error equal to 10−16. If κ = 102, then one would
trust the computed value to have (at least) 14 meaningful decimal digits.

The condition number can formally still be defined when f is not differentiable,
though it may not be finite. If f is not locally Lipschitz continuous at an input, then
the condition number is +∞; a situation clearly beyond the applicability of Higham’s
rule. Inputs at which the function f is not continuous are usually referred to as ill-
posed. Based on the worst-case sensitivity, one would usually only expect a handful
of correct digits when evaluating a function at such an input, and quite possibly none.1

On the other hand, a small condition number is not a necessary condition for a small
forward–backward error ratio: it is not inconceivable that certain ill-conditioned or
even ill-posed problems can be solved accurately. Consider, for example, the problem
of computing an eigenvalue of the 4 × 4 matrix pencil (linear matrix polynomial)

L(x) =

⎡
⎢⎢⎣

−1 1 4 2
−2 3 12 6
1 3 11 6
2 2 7 4

⎤
⎥⎥⎦ x +

⎡
⎢⎢⎣
2 −1 −5 −1
6 −2 −11 −2
5 0 −2 0
3 1 3 1

⎤
⎥⎥⎦ ; (1)

this is a singular matrix pencil (the determinant is identically zero) whose only finite
eigenvalue is simple and equal to 1 (see Sect. 3 for the definition of an eigenvalue of a
singular matrix polynomial and other relevant terminology). The input is L(x) and the

1 The number of accurate digits that can be expected when the problem is continuous but not locally
Lipschitz continuous requires a careful discussion. It depends on the unit roundoff u, on the exact nature of
the pathology of f , and on D. For example, computing the eigenvalues of a matrix similar to an n×n Jordan
block for n > 1 is Hölder continuouswith exponent 1/n but not Lipschitz continuous. Usually this translates
into expecting only about n√u accuracy, up to constants, when working in finite precision arithmetic. For a
more complete discussion, see [28], where pathological examples of derogatory matrices are constructed,
whose eigenvalues are not sensitive to finite precision computations (for fixed u), or also [33, §3.3]. For
discontinuous f , however, these subtleties alone cannot justify any accurately computed decimal digits.
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solution is 1. If the QZ algorithm [36], which is the standard eigensolver for pencils,
is called via MATLAB’s command eig,2 the output is:

>> eig(L0,−L1)

ans =

−138.1824366539536
−0.674131242894470
1.000000000000000
0.444114486065683

All but the third computed eigenvalues are complete rubbish. This is not surprising:
singular pencils form a proper Zariski closed set in the space ofmatrix pencils of a fixed
format, and it is unreasonable to expect that an unstructured algorithmwould detect that
the input is singular and return only one eigenvalue. Instead, being backward stable,QZ
computes the eigenvalues of some nearby matrix pencil, and almost all nearby pencils
have 4 eigenvalues.On the other hand, the accuracyof the approximation of the genuine
eigenvalue 1 is quite remarkable. Indeed, the condition number of the problem that
maps L(x) to the exact eigenvalue 1 is infinite because the map frommatrix pencils to
their eigenvalues is discontinuous at anymatrix pencilwhose determinant is identically
zero. To make matters worse, there exist plenty of matrix pencils arbitrarily close to
L(x) whose eigenvalues are all nowhere near 1. For example, for any ε > 0,

L̂(x) = L(x) + ε

⎛
⎜⎜⎝

⎡
⎢⎢⎣

0 −1 −4 −1
1 −3 −13 −3
0 −2 −8 −2

−1 −1 −3 −1

⎤
⎥⎥⎦ x + A

⎞
⎟⎟⎠ ,

where

A =

⎡
⎢⎢⎣

−1 −1 −3 −2
−3 −3 −9 −6
−2 −2 −6 −4
−1 −1 −3 −2

⎤
⎥⎥⎦ γ0 +

⎡
⎢⎢⎣
1 0 0 0
3 0 0 0
2 0 0 0
1 0 0 0

⎤
⎥⎥⎦ γ1 +

⎡
⎢⎢⎣
0 −1 −4 −1
0 −3 −12 −3
0 −2 −8 −2
0 −1 −4 −1

⎤
⎥⎥⎦ γ2 +

⎡
⎢⎢⎣

0 0 0 0
−1 0 1 0
0 0 0 0
1 0 −1 0

⎤
⎥⎥⎦ γ3,

has characteristic polynomial ε2(γ3 − x)(x3 + γ2x2 + γ1x + γ0) and therefore, by
an arbitrary choice of the parameters γi , can have eigenvalues literally anywhere. Yet,
unaware of this worrying caveat, the QZ algorithm computes an excellent approxima-
tion of the exact eigenvalue: 16 correct digits! This example has not been carefully
cherry picked: readers are encouraged to experiment with any singular input in order
to convince themselves that QZ often computes3 accurately the (simple) eigenvalues

2 MATLAB R2016a on Ubuntu 16.04.
3 Of course, if the exact solution is not known a priori, one faces the practical issue of deciding which of
the computed eigenvalues is reliable. There are various ways in which this can be done in practice, such
as artificially perturbing the problem; the focus of our work is on explaining why the correct solution has
been shortlisted in the first place; see [32] for a more practical perspective.
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of singular pencils, or singular matrix polynomials, in spite of being a discontinuous
problem. See also [32] for more examples and a discussion of applications. Although
the worst-case sensitivity to perturbations is indeed infinite, the raison d’être of the
condition number, which is to predict the accuracy of computations on a computer, is
not fulfilled.

Why does the QZ algorithm accurately compute the eigenvalue, when the map f
describing this computational problem is not even continuous? Two natural attempts at
explaining this phenomenon would be to look at structured condition numbers and/or
average-case (stochastic) perturbation theory.

1. An algorithm is structured if it computes the exact solution to a perturbed input,
where the perturbations respect some special features of the input: for example,
singular, of rank 3, triangular, orwith precisely one eigenvalue. The vanilla imple-
mentation of QZ used here is unstructured in the sense that it does not preserve
any of the structures that would explain the strange case of the algorithm that
computes an apparently uncomputable eigenvalue.4 It does, however, preserve
the real structure. In other words, if the input is real, QZ computes the eigenvalues
of a nearby real pencil. Yet, by taking real γi in the example above, it is clear that
there are real pencils arbitrary close to L(x) whose eigenvalues are all arbitrarily
far away from 1.

2. The classical condition number is based on the worst-case perturbation of an
input; as discussed in [29, §2.8], this approach tends to be overly pessimistic in
practice. Numerical analysis pioneer James Wilkinson, in order to illustrate that
Gaussian elimination is unstable in theory, but in practice its instability is only
observed by mathematicians looking for it, is reported to have said [43]

Anyone that unlucky has already been run over by a bus.

In other words: in Wilkinson’s experience, the likelihood of seeing the admit-
tedly terrifying worst case appeared to be very small, and therefore, Wilkinson
believed that being afraid of the potential catastrophic instability of Gaussian
elimination is an irrational attitude. Based on this experience, Weiss et al. [48]
and Stewart [41] proposed to study the effect of perturbations on average, as
opposed to worst case; see [29, §2.8] for more references on work addressing the
stochastic analysis of roundoff errors. This idea was later formalized and devel-
oped further by Armentano [4]. This approach gives some hope to explain the
example above, because it is known that the set of perturbations responsible for
the discontinuity of f has measure zero [18]. However, this does not imply that
on average perturbations are not harmful. In fact, as we will see, the stochastic
condition number for the example above (or for similar problems) is still infinite!
Average-case perturbation analysis, at least in the form in which it has been used
so far, is still unable to solve the puzzle.

While neither structured nor average-case perturbation theory can explain the phe-
nomenon observed above, Wilkinson’s colourful quote does contain a hint on how
to proceed: shift attention from average-case analysis of perturbations to bounding

4 There exist algorithms able to detect and exploit the fact that a matrix pencil is singular, such as the
staircase algorithm [46].
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rare events. We will get back to the matrix pencil (1) in Example 5.3, where we show
that our new theory does explain why this problem is solved to high accuracy using
standard backward stable algorithms.

In summary, the main contributions of this paper are

1. a new species of “weak” condition numbers, which we call the weak worst-case
condition number and the weak stochastic condition number that give a more
accurate description of the perturbation behaviour of a computational map (Sect.
2);

2. a precise probabilistic analysis of the sensitivity of the problem of computing
simple eigenvalues of singular matrix polynomials (Sects. 4 and 5);

3. an illustration of the advantages of the new concept by demonstrating that, unlike
both classical and stochastic condition numbers, the weak condition numbers are
able to explain why the apparently uncomputable eigenvalues of singular matrix
polynomials, such as the eigenvalue 1 in the example above, can be computed
with remarkable accuracy (Example 5.3);

4. a concrete method for bounding the weak condition numbers for the eigenvalues
of singular matrix polynomials (Sect. 6).

1.1 RelatedWork

Rounding errors, and hence the perturbations considered, are not random [29, 1.17].
Nevertheless, the observation that the computed bounds on rounding errors are overly
pessimistic has led to the study of statistical and probabilistic models for rounding
errors. An early example of such a statistical analysis is Goldstine and von Neu-
mann [27], see [29, 2.8] and the references therein for more background. Recently,
Higham and Mary [31] have obtained probabilistic rounding error bounds for a wide
variety of algorithms in linear algebra. In particular, they give a rigorous foundation to
Wilkinson’s rule of thumb, which states that constants in rounding error bounds can
be safely replaced by their square roots.

The idea of using an average, rather than a supremum, in the definition of condi-
tioning was introduced by Weiss et al. [48] in the context of the (matrix) condition
number of solving systems of linear equations, and a more comprehensive stochastic
perturbation theory was developed by Stewart [41]. In [4], Armentano introduced
the concept of a smooth condition number and showed that it can be related to the
worst-case condition. His work uses a geometric theory of conditioning and does not
extend to singular problems.

The line ofwork on randomperturbations is not to be confusedwith the probabilistic
analysis of condition numbers, where a condition number is a given function, and the
distribution of this function is studied over the space of inputs (see [13] and the
references therein). Nevertheless, our work is inspired by the idea of weak average-
case analysis [3] that was developed in this framework. Weak average-case analysis is
based on the observation, which has origins in thework of Smale [40] andKostlan [34],
that discarding a small set from the input space can dramatically improve the expected
value of a condition number, shifting the focus away from the average case and
towards bounding the probability of rare events. Our contribution is to apply this line
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of thought to study random perturbations instead of random inputs. However, we stress
that we do not seek to model the distribution of perturbations. The aim is to formally
quantify statements such as “the set of bad perturbations is small compared to the set
of good perturbations”. In other words, the (non-random) accumulation of rounding
errors in a procedure would need a very good reason to give rise to a badly perturbed
problem.

The conditioning of regular polynomial eigenvalue problems has been studied in
detail by Tisseur [42] and by Dedieu and Tisseur in a homogeneous setting [15]. A
probabilistic analysis of condition numbers (for random inputs) for such problems
was given by Armentano and Beltrán [5] over the complex numbers and by Beltrán
and Kozhasov [7] over the real numbers. Their work studies the distribution of the
condition number on thewhole space of inputs, and such an analysis only considers the
condition number of regular matrix polynomials. A perturbation theory for singular
polynomial eigenvalue problems was developed by de Terán and Dopico [14], and
our work makes extensive use of their results. A method to solve singular generalized
eigenvalue problemswith plainQZ, based on applying a certain perturbation to them, is
proposed in [32] (see also the references therein); note that our work goes beyond this,
by showing how to estimate the weak condition number that could guarantee, often
with overwhelming probability, that QZ will do fine even without any preliminary
perturbation step.

1.2 Organization of the Paper

The paper is organized as follows: In Sect. 2, we review the rigorous definitions of the
worst-case (von Neumann–Turing) condition number and the stochastic framework
(Weiss et al., Stewart, Armentano) and comment on their advantages and limitations.
We then define the weak condition numbers as quantiles and argue that, even when
Wilkinson’s metaphorical bus hits von Neumann–Turing’s and Armentano-Stewart’s
theories of conditioning, ours comes well endowed with powerful dodging skills. In
Sect. 3, we introduce the perturbation theory of singular matrix polynomials, along
with the definitions of simple eigenvalues and eigenvectors. We define the input–
output map underlying our case study and introduce the directional sensitivity of such
problems. In Sect. 4, which forms the core of this paper, we carry out a detailed
analysis of the probability distribution of the directional sensitivity of the problems
introduced in Sect. 3. In Sect. 5, we translate the probabilistic results from Sect. 4 into
the language of weak condition numbers and prove the main results, Theorems 5.1
and 5.2. In Sect. 6, we sketch how our new condition numbers can be estimated in
practice. Along the way we derive a simple concentration bound on the directional
sensitivity of regular polynomial eigenvalue problems. Finally, in Sect. 7, we give
some concluding remarks and discuss potential further applications.
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2 Theories of Conditioning

For our purposes, a computational problem is a map between normed vector spaces5

f : V → W, D �→ S := f (D),

and we will denote the (possibly different) norms in each of these spaces by ‖ · ‖.
Following the remark on [30, p. 56], for simplicity of exposition in this paper we
focus on absolute, as opposed to relative, condition numbers. The condition numbers
considered depend on the map f and an input D ∈ V .

As we are only concerned with the condition of a fixed computational problem at
a fixed input D, in what follows we omit reference to f and D in the notation.

Definition 2.1 (Worst-case condition number) The condition number of f at D is

κ = lim
ε→0

sup
‖E‖≤1

‖ f (D + εE) − f (D)‖
ε‖E‖ .

If f is Fréchet differentiable at D, then this definition is equivalent to the operator
norm of the Fréchet derivative of f . However, Definition 2.1 also applies (and can
even be finite) when f is not differentiable. In complexity theory [8,13], an elegant
geometric definition of condition number is often used, which is essentially equivalent
to Definition 2.1 under certain assumptions (which include smoothness).

The following definition is loosely derived from the work of Stewart [41] and
Armentano [4], based on earlier work by Weiss et. al. [48]. In what follows, we use
the terminology X ∼ D for a random variable with distribution D and EX∼D[·] for
the expectation with respect to this distribution.

Definition 2.2 (Stochastic condition number) Let E be a V-valued random variable
with distribution D and assume that EE∼D[E] = 0 and EE∼D[‖E‖2] = 1. Assume
that the function f is measurable. Then, the stochastic condition number is

κs = lim
ε→0

EE∼D
‖ f (D + εE) − f (D)‖

ε‖E‖ .

Remark 2.3 We note in passing that Definition 2.2 depends on the choice of a measure
D. This measure is a parameter that the interested mathematician should choose as
convenient; this is of course not particularly different than the freedom one is given in
picking a norm. In fact, it is often convenient to combine these two choices, using a dis-
tribution that is invariant with respect to a given norm. Typical choices that emphasize
invariance are the uniform (on a sphere) or Gaussian distributions, and the Bombieri-
Weyl inner product when dealing with homogeneous multivariate polynomials [13,

5 One can, more generally, allow V andW to be anything with a notion of distance, such as general metric
spaces or Riemannian manifolds. All the definitions of condition can be adapted accordingly; in this paper,
we focus on the case of normed vector spaces. We will also only need such a map to be defined locally near
an input of interest.
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16.1]. Technically speaking, the distribution is on the space of perturbations, rather
than the space of inputs.

If f is differentiable at D and V is finite dimensional, then it was observed by
Armentano [4] that the stochastic condition number can be related to the worst-case
one. We illustrate this relation in a simple but instructive special case. Consider the
setting6 where f : Rm → R

n (m ≥ n) is differentiable at D ∈ R
m , so that κ is the

operator norm of the differential. If σ1 ≥ · · · ≥ σm denote the singular values of
d f (D) (with σi = 0 for i > n), then κ = σ1. If D is the uniform distribution on the
sphere, then

1

m
κ

(a)≤ σ1EE∼D|E1| ≤ EE∼D

⎡
⎣
√∑

i

σ 2
i E

2
i

⎤
⎦ (b)= EE∼D[‖d f (D)E‖2] = κs, (2)

where for (a) we used the fact that

EE∼D|E1| = 1

m
EE∼D‖E‖1 ≥ 1

m
EE∼D‖E‖2 = 1

m

and for (b) we used the orthogonal invariance of the uniform distribution on the sphere.
As we will see in the case of singular polynomial eigenvalue problems with complex
perturbations, the bound (2) does not hold in general, as the condition number can be
infinite while the stochastic condition number is bounded. However, sometimes it can
happen that the stochastic condition number is also infinite, because the “directional
sensitivity” (see Definition 2.4) is not an integrable function. For example, for the
problem of computing the eigenvalue of the singular pencil L(x) in the introduction,
in spite of the fact that real perturbations are analytic for all but a proper Zariski closed
set of perturbations [18], when restricting to real perturbations, we get

κs = κ = ∞.

Despite this, QZ computes the eigenvalue 1 with 16 digits of accuracy.
To remedy the shortcomings of the stochastic condition number as defined in 2.2,

we propose a change in focus from the expected value to tail bounds and quantiles, and
the key concept for that purpose is the directional sensitivity. Just as the classical worst-
case condition corresponds to the norm of the derivative, the directional sensitivity
corresponds to a directional derivative. And, just as a function can have some, or all,
directional derivatives while still not being continuous, a computational problem can
have well-defined directional sensitivities but have infinite condition number.

Definition 2.4 (Directional sensitivity)Thedirectional sensitivity of the computational
problem f at the input D with respect to the perturbation E is

σE = lim
ε→0

‖ f (D + εE) − f (D)‖
ε‖E‖ .

6 Armentano’s results apply to differentiable maps between Riemannian manifolds and cover the moments
of the directional derivative as well: they are stronger and are derived with a more comprehensive approach.
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The directional sensitivity takes values in [0,∞]. In numerical analytic language,
the directional sensitivity is the limit, for a particular direction of the backward error,
of the ratio of forward and backward errors of the computational problem f ; this limit
is taken letting the backward error tend to zero (again having fixed its direction), which
could also be thought of as letting the unit roundoff tend to zero. See e.g. [29, §1.5]
for more details on this terminology.

The directional sensitivity is, if it is finite, ‖E‖−1 times the norm of the Gâteaux
derivative d f (D; E) of f at D in direction E . If f is Fréchet differentiable, then the
Gâteaux derivative agrees with the Fréchet derivative, and we get

κ = sup
‖E‖≤1

σE .

If E is a V-valued random variable satisfying the conditions of Definition 2.2 and
if f is Gâteaux differentiable in almost all directions, then by the Fatou–Lebesgue
theorem we get

κs = E[σE ].
When integrating, null sets can be safely ignored; however, depending on the exact

nature of the divergence (or lack thereof) of the integrand when approaching those
null sets, the value of the integral need not be finite. To overcome this problem and still
give probabilistically meaningful statements, we propose to use instead the concept
of numerical null sets, i.e. sets of finite but small (in a sense that can be made precise
depending on, for example, the unit roundoff of the number system of choice, the
confidence level required by the user, etc.) measure. This is analogous to the idea
that the “numerical zero” is the unit roundoff. We next define our main characters,
two classes of weak condition numbers which generalize, respectively, the classical
worst-case and stochastic condition numbers.

In the following, we fix a probability space (�,�,P) and a random variable
E : � → V , where we consider V endowed with the Borel σ -algebra. We further
assume that

E[E] =
∫

�

E(ω) dP(ω) = 0, E[‖E‖2] =
∫

�

‖E(ω)‖2 dP(ω) = 1.

The following definitions assume that σE is P-measurable. This is the case, for exam-
ple, if f is measurable and the directional (Gâteaux) derivative d f (D; E(ω)) exists
P-a.e.

Definition 2.5 (Weak worst-case and weak stochastic condition number) Let 0 ≤ δ <

1 and assume that σE is P-measurable. The δ-weak worst-case condition number and
the δ-weak stochastic condition number are defined as

κw(δ) := inf{y ∈ R : P{σE < y} ≥ 1 − δ}, κws(δ) := E[σE | σE ≤ κw(δ)].

Remark 2.6 We note that one can give a definition of the weak worst-case and weak
stochastic condition number that does not require σE to be a random variable, by
setting
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κw(δ) = inf
S∈�,

|S|≥1−δ

sup
ω∈S

σE(ω), κws(δ) = inf
S∈�,

|S|≥1−δ

E[σE | S],

where we used the notation |S| = P(S) for the measure of a set if there is no ambi-
guity. This form is reminiscent of the definition of weak average-case analysis in [3],
and when σE is a random variable, it can be shown to be equivalent to 2.5. Moreover,
this slightly more general definition better illustrates the essence of the weak con-
dition numbers: these are the (worst-case and average-case) condition numbers that
ensue when one is allowed to discard a “numerically invisible” subset from the set of
perturbations.

The directional sensitivity has an interpretation as (the limit of) a ratio of forward
and backward errors, and hence, the new approach provides a potentially useful gen-
eral framework to give probabilistic bounds on the forward accuracy of outputs of
numerically stable algorithms. Moreover, as we discussed in Sect. 6, upper bounds on
the weak condition numbers can be computed in practice for a natural distribution.
One can therefore see δ as a parameter representing the confidence level that a user
wants for the output, and any computable upper bound on κw becomes a practical
reliability measure on the output, valid with probability 1 − δ. Although of course
roundoff errors are not really random variables, we hope that modelling them as such
can become, with this “weak theory”, a useful tool for numerical analysis problems
whose traditional condition number is infinite.

3 Eigenvalues of Matrix Polynomials and Their Directional Sensitivity

Algebraically, the spectral theory of matrix polynomials is most naturally described
over an algebraically closed field; however, the theory of condition is analytic in nature
and it is sometimes of interest to restrict the coefficients, and their perturbations, to
be real. In this section, we give a unified treatment of both real and complex matrix
polynomials. For conciseness, we keep this overview very brief; interested readers
can find further details in [14,18,19,26,37] and the references therein. A square matrix
polynomial is a matrix P(x) ∈ F[x]n×n , where F ∈ {C,R} is a field. Alternatively,
we can think of it as an expression

P(x) = P0 + P1x + · · · + Pdx
d ,

with Pi ∈ F
n×n . If we require Pd �= 0, then the integer d in such an expression is

called the degree of the matrix polynomial.7 We denote the vector space of matrix
polynomials over F of degree at most d by F

n×n
d [x]. A square matrix polynomial is

called singular if det P(x) ≡ 0 and otherwise regular. An element λ ∈ C is said to be
a finite eigenvalue of P(x) if

rankC(P(λ)) < rankF(x)(P(x)) =: r ,
7 By convention, the zero matrix polynomial has degree −∞.
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where F(x) is the field of fractions of F[x], that is, the field of rational functions with
coefficients in F. We assume throughout rank r ≥ 1 (which implies n ≥ 1) and degree
d ≥ 1. The geometric multiplicity of the eigenvalue λ is the amount by which the rank
decreases in the above definition,

gλ = r − rankC(P(λ)).

There exist matrices U , V ∈ F[x]n×n with det(U ) ∈ F\{0}, det(V ) ∈ F\{0}, that
transform P(x) into its Smith canonical form,

U∗P(x)V = D := diag(h1(x), . . . , hr (x), 0, . . . , 0), (3)

where the invariant factors hi (x) ∈ F[x] are nonzero monic polynomials such that
hi (x)|hi+1(x) for i ∈ {1, . . . , r −1}. If one has the factorizations hi = (x −λ)ki h̃i (x)
for some h̃i (x) ∈ C[x], with 0 ≤ ki ≤ ki+1 for i ∈ {1, . . . , r − 1} and (x − λ)

not dividing any of the h̃i (x), then the ki are called the partial multiplicities of the
eigenvalue λ. The algebraic multiplicity aλ is the sum of the partial multiplicities.
Note that an immediate consequence of this definition is aλ ≥ gλ. If aλ = gλ (i.e. all
nonzero ki equal to 1), then the eigenvalue λ is said to be semisimple; otherwise, it is
defective. If aλ = 1 (i.e. ki = 1 for i = r and zero otherwise), then we say that λ is
simple; otherwise, it is multiple.

A square matrix polynomial is regular if r = n, i.e. if det P(x) is not identically
zero. A finite eigenvalue of a regular matrix polynomial is simply a root of the charac-
teristic equation det P(x) = 0, and its algebraicmultiplicity is equal to themultiplicity
of the corresponding root. If a matrix polynomial is not regular it is said to be singular.
More generally, a finite eigenvalue of a matrix polynomial (resp. its algebraic multi-
plicity) is a root (resp. the multiplicity as a root) of the equation γr (x) = 0, where
γr (x) is the monic greatest common divisor of all the minors of P(x) of order r (note
that γn(x) = det P(x)).

Remark 3.1 The concept of an eigenvalue, and the other definitions recalled here, is
valid also in the more general setting of rectangular matrix polynomials. However, in
that scenario a generic matrix polynomial has no eigenvalues [18]; as a consequence,
a perturbation of a matrix polynomial with an eigenvalue would almost surely remove
it. This is a fairly different setting than in the square case, and a deeper probabilistic
analysis of the rectangular case is beyond the scope of the present paper.

Wemention in passing that there are possible ways to extend the analysis to the rect-
angular case, such as embedding them in a larger square matrix polynomial or (at least
in the case of pencils, or linear matrix polynomials) consider structured perturbations
that do preserve eigenvalues.

3.1 Eigenvectors

To define the eigenvectors, let {b1(x), . . . , bn−r (x)} and {c1(x), . . . , cn−r (x)} be
minimal bases [19,23,37] of ker P(x) and ker P(x)∗ (as vector spaces over F(x)),
respectively. For λ ∈ C, it is not hard to see [19,37] that kerλ P(x) :=
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span{b1(λ), . . . , bn−r (λ)} and kerλ P(x)∗ := span{c1(λ∗), . . . , cn−r (λ
∗)} are vector

spaces over C of dimension n − r .
Note that kerλ P(x) ⊆ ker P(λ) and kerλ P(x)∗ ⊆ ker P(λ)∗ for λ ∈ C, and that

the difference in dimension is the geometric multiplicity, ker P(λ) − kerλ P(x) =
ker P(λ)∗ − kerλ P(x)∗ = gλ. A right eigenvector corresponding to an eigen-
value λ ∈ C is defined [19, Sec. 2.3] to be a nonzero element of the quotient
space ker P(λ)/ kerλ P(x). A left eigenvector is similarly defined as an element of
ker P(λ)∗/ kerλ P(x)∗. In terms of the Smith canonical form (3), the last n−r columns
of U , evaluated at λ∗, represent a basis of kerλ P(x)∗, while the last (n − r) columns
of V , evaluated at λ, represent a basis of kerλ P(x).

In the analysis, we will be concerned with a quantity of the form |u∗P ′(λ)v|,
where u, v are representatives of eigenvectors. It is known [19, Lemma 2.9] that
b ∈ kerλ P(x) is equivalent to the existence of a polynomial vector b(x) such that
b(λ) = b and P(x)b(x) = 0. Then,

0 = d

dx
P(x)b(x)|x=λ = P ′(λ)b(λ) + P(λ)b′(λ)

implies that for any representative of a left eigenvector u ∈ ker P(λ)∗ we get
u∗P ′(λ)b(λ) = 0. It follows that for an eigenvalue representative v, u∗P ′(λ)v

depends only the component of v orthogonal to kerλ P(x), and an analogous argu-
ment also shows that this expression only depends on the component of u orthogonal
to kerλ P(x)∗. In practice, we will therefore choose representatives u and v for the left
and right eigenvalues that are orthogonal to kerλ P(x)∗ and kerλ P(x), respectively,
and have unit norm. If P(x) ∈ F

n×n
d [x] is a matrix polynomial with simple eigenvalue

λ, then there is a unique (up to sign) way of choosing such representatives u and v.

3.2 Perturbations of Singular Matrix Polynomials: The De Terán–Dopico Formula

Assume that P(x) ∈ F
n×n
d [x], where F ∈ {R,C}, is a matrix polynomial of rank

r ≤ n, and let λ be a simple eigenvalue. Let X = [U u] ∈ C
n×(n−r+1) be a matrix

whose columns form a basis of ker P(λ)∗, and such that the columns ofU ∈ C
n×(n−r)

form a basis of kerλ P(x)∗. Likewise, let Y = [V v] be a matrix whose columns form
a basis of ker P(λ), such that the columns of V ∈ C

n×(n−r) form a basis of kerλ P(x).
In particular, v and u are representatives of, respectively, right and left eigenvectors
of P(x). The following explicit characterization of a simple eigenvalue is due to De
Terán and Dopico [14, Theorem 2 and Eqn. (20)]. To avoid making a case distinction
for the regular case r = n, we agree that det(U∗E(λ)V ) = 1 if U and V are empty.

Theorem 3.2 Let P(x) ∈ F
n×n
d [x] be matrix polynomial of rank r with simple eigen-

valueλ and X ,Y as above. Let E(x) ∈ F
n×n
d [x] be such that X∗E(λ)Y is non-singular.

Then, for small enough ε > 0, the perturbed matrix polynomial P(x) + εE(x) has
exactly one eigenvalue λ(ε) of the form

λ(ε) = λ − det(X∗E(λ)Y )

u∗P ′(λ)v · det(U∗E(λ)V )
ε + O(ε2).
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Note that in the special case r = n we recover the expression for regular matrix
polynomials from [42, Theorem 5] and [14, Corollary 1],

λ(ε) = λ − u∗E(λ)v

u∗P ′(λ)v
ε + O(ε2), (4)

where u, v are left and right eigenvectors corresponding to the eigenvalue λ.

3.3 The Directional Sensitivity of a Singular Polynomial Eigenproblem

We can now describe the input–output map that underlies our analysis. By the local
nature of our problem, we consider a fixed matrix polynomial P(x) ∈ F

n×n
d [x] of rank

r with simple eigenvalue λ and define the input–output function

f : Fn×n
d [x] → C

that maps P(x) to λ, maps P(x) + εE(x) to λ(ε) for any E(x) and ε > 0 satisfying
the conditions of Theorem 3.2, and maps any other matrix polynomial to an arbitrary
number other than λ.

An immediate consequence of Theorem 3.2 and our definition of the input–output
map is an explicit expression for the directional sensitivity of the problem. Here we
write ‖E‖ for the Euclidean norm of the vector of coefficients of E(x) as a vector in
F
n2(d+1). Fromnowon,when talking about the “directional sensitivity of an eigenvalue

in direction E”, we implicitly refer to the input–output map f defined above.

Corollary 3.3 Let λ be a simple eigenvalue of P(x) and let E(x) ∈ F
n×n
d [x] be a

regular matrix polynomial. Then, the directional sensitivity of the eigenvalue λ in
direction E(x) is

σE = 1

‖E‖
∣∣∣∣

det(X∗E(λ)Y )

u∗P ′(λ)v · det(U∗E(λ)V )

∣∣∣∣ .

In the special case r = n, we have

σE = 1

‖E‖
∣∣∣∣
u∗E(λ)v

u∗P ′(λ)v

∣∣∣∣ .

For the goals in this paper, these results suffice. However, we note that it is possible
to obtain equivalent formulae for the expansion that, unlike the one by De Terán and
Dopico, do not involve the eigenvectors of singular polynomials.

Finally, we introduce a parameter that will enter all of our results and coincides
with the inverse of the worst-case condition number in the regular case r = n. Choose
representatives u, v of the eigenvectors that satisfy ‖u‖ = ‖v‖ = 1 and (if r < n)
U∗u = V ∗v = 0. For such a choice of eigenvectors, define

γP := |u∗P ′(λ)v| ·
⎛
⎝

d∑
j=0

|λ|2 j
⎞
⎠

−1/2

. (5)
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We conclude with the following variation in [42, Theorem 5]. For a proof of the
following result, see [1, Lemma 2.1] or [2] for a discussion in a wider context.

Proposition 3.4 Let P(x) ∈ F
n×n
d [x] be a regular matrix polynomial and λ ∈ C a

simple eigenvalue. Then, the worst-case condition number of the problem of computing
λ is κ = γ −1

P .

Remark 3.5 In practice, an algorithm such as QZ applied to P(x) will typically com-
pute all the eigenvalues of a nearby matrix polynomial. Therefore, any conditioning
results on the conditioning of our specific input–output map f will explain why the
correct eigenvalue is found among the computed eigenvalues, but not tell us how to
choose the right one in practice. For selecting the right eigenvalue, one could use
heuristics, such as computing the eigenvalues of an artificially perturbed problem. For
more details on these practical considerations, we refer to [32].

4 Probabilistic Analysis of the Directional Sensitivity

In this section, we study the probability distribution of the directional sensitivity of
a singular polynomial eigenvalue problem To deal with real and complex perturba-
tions simultaneously as far as possible, we follow the convention from random matrix
theory [22] and parametrize our results with a parameter β, where β = 1 if F = R

and β = 2 if F = C. We consider perturbations E(x) = E0 + E1x + · · · + Edxd ,
which we identify with the matrix E = [

E0 · · · Ed
] ∈ F

n×n(d+1) (each Ei ∈ F
n×n),

and denote by ‖E‖ the Euclidean norm of E considered as a vector in F
N , where

N := n2(d + 1) (equivalently, the Frobenius norm of the matrix E). When we say
that E is uniformly distributed on the sphere, written E ∼ U(βN ) with β = 1 for
real perturbations and β = 2 if E is complex, we mean that the image of E under an
identification F

n×n(d+1) ∼= R
βN is uniformly distributed on the corresponding unit

sphere SβN−1. To avoid trivial special cases, we assume that r ≥ 1 and d ≥ 1, so that,
in particular, N ≥ 2.

The following theorem characterizes the distribution of the directional sensitivity
under uniform perturbations.

Theorem 4.1 Let P(x) ∈ F
n×n
d [x] be a matrix polynomial of rank r and let λ be a

simple eigenvalue of P(x). If E ∼ U(βN ), where β = 1 if F = R and β = 2 if
F = C, then the directional sensitivity of λ in direction E(x) satisfies

P{σE ≥ t} =
{
P{ZN/Zn−r+1 ≥ γ 2

P t
2} if r < n

P{ZN ≥ γ 2
P t

2} if r = n
,

where Zk ∼ B(β/2, β(k − 1)/2) denotes a beta distributed random variable with
parameters β/2 and β(k − 1)/2, and ZN and Zn−r+1 are independent.

The proof is given later in this section, after having introduced some preliminary
concepts and results. If r = n, then the directional sensitivity is distributed like the
square root of a beta randomvariable, and in particular, it is bounded. Using the density
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of the beta distribution, we can derive the moments and tail bounds for the distribution
of the directional sensitivity explicitly.

Corollary 4.2 Let P(x) ∈ F
n×n
d [x] be a matrix polynomial of rank r and let λ be a

simple eigenvalue of P(x). If E ∼ U(βN ), where β = 1 if F = R and β = 2 if
F = C, then the expected directional sensitivity of λ in direction E(x) is

E[σE ] =

⎧⎪⎨
⎪⎩

1
γP

π
2


(N )
(n−r+1)

(N+1/2)
(n−r+1/2) if F = C

∞ if F = R and r < n
1

γP


(N/2)√
π
((N+1)/2)

if F = R and r = n.

If t ≥ γ −1
P , then for r < n we have the tail bounds

P{σE ≥ t} ≤
{ 1

γ 2
P

n−r
N

1
t2

if F = C

1
γP

2
π


(N/2)
((n−r+1)/2)

((N+1)/2)
((n−r)/2)

1
t if F = R.

(6)

If r = n, then σE ≤ γP .

Proof For the expectation, using Theorem 4.1 in the case r < n, we have

E[σE ] = 1

γP

∫ ∞

0
P{(ZN/Zn−r+1)

1/2 ≥ t} dt = 1

γP
E[(XN/Xn−r+1)

1/2],

where Xk denotes a B(β/2, β(k−1)/2) distributed random variable. The claimed tail
bounds and expected values for r < n follow by applying Lemma A.1 with k = 2,
a = c = β/2, b = β(N − 1)/2, and d = β(n − r)/2. If r = n, the expected
value follows along the lines, and the deterministic bound follows trivially from the
boundedness of the beta distribution. ��
Remark 4.3 In the context of random inputs, it is common to study the logarithm of
a condition number instead of the condition number itself [13,21]. Thus, even when
the expected condition is not finite, the expected logarithm may still be small. Using
a standard argument (see e.g. [13, Proposition 2.26]), we can deduce a bound on the
expected logarithm of the directional sensitivity:

E[log σE ] ≤ log

(
1

γP

2

π

√
n − r

N − 1

)
+ 1.

The logarithm of the sensitivity is relevant as a measure for the loss of precision.

As the derivation of the bounds (6) using Lemma A.1 shows, the cumulative
distribution functions in question can be expressed exactly in terms of integrals of
hypergeometric functions. This way, the tail probabilities can be computed to high
accuracy for any given t , see also Remark 4.6. However, as the derivation of the tail
bounds in “Appendix A” also shows, the bounds given in Corollary 4.2 are sharp for
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Fig. 1 Exact distribution tail of σE and the tail bounds for n = 4, d = 2, r = 2, and γP = 1, so that
N = 48

fixed t and n−r → ∞, as well as for fixed n−r and t → ∞. Figure 1 illustrates these
bounds for a choice of small parameters (n = 4, d = 2, r = 2, γP = 1). Moreover,
the bounds (6) have the added benefit of being easily interpretable. These tail bounds
can be interpreted as saying that for large n and/or d, it is highly unlikely that the
directional sensitivity will exceed γ −1

P (which by Proposition 3.4 is the worst-case
condition bound in the smooth case r = n).

Example 4.4 Consider again the matrix pencil L(x) from (1). This pencil has rank 3,
and the cokernel and kernel are spanned by the vectors p(x) and q(x), respectively,
given by

p(x) =

⎡
⎢⎢⎣

1
0

−1
1

⎤
⎥⎥⎦ , q(x) =

⎡
⎢⎢⎣

x
−2x2 − 4x + 1

x
1

⎤
⎥⎥⎦ .

The matrix polynomial has the simple eigenvalue λ = 1, and the matrix L(1) has rank
2. The cokernel ker L(1)T and the kernel ker L(1) are spanned by the columns of the
matrices X and Y , given by

X ≈

⎡
⎢⎢⎣

0.5774 −0.7061
0. 0.4888

−0.5774 −0.4345
0.5774 0.2716

⎤
⎥⎥⎦ , Y ≈

⎡
⎢⎢⎣

0.1924 −0.6873
−0.9623 −0.1322
0.1924 0.02644

0 0.7137

⎤
⎥⎥⎦ .

Let u be the second column of X and let v be the second column of Y . The vectors u
and v are orthogonal to kerλ L(x)T = span{p(1)} and kerλ L(x) = span{q(1)} and
have unit norm. We therefore have

γL := |uT L ′(1)v|√
2

= 0.08223
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Fig. 2 Exact distribution tail of σE for the matrix pencil L(x) from (1) and the theoretically computed tail
bound (6)

Hence, γ −1
L = 12.16. Figure 2 shows the result of comparing the distribution of σE ,

found empirically, with the bounds obtained in Theorem 4.1. The relative error in the
plot is of order 10−5.

The plan for the rest of this section is as follows: In Sect. 4.1, we recall some facts
from probability theory and random matrix theory. In Sect. 4.2, we discuss the QR
decomposition of a randommatrix, and in Sect. 4.3 we use this decomposition to prove
Theorem 4.1

4.1 Probabilistic Preliminaries

We write g ∼ N 1(μ,�) for a normal distributed (Gaussian) random vector g with
mean μ and covariance matrix �, and g ∼ N 2(μ,�) for a complex Gaussian vector;
this is a Cn-valued random vector with expected value μ, whose real and imaginary
parts are independent real Gaussian random vectors with covariance matrix �/2 (a
special case are real and complex scalar random variables,N β(μ, σ 2)). We denote the
uniform distribution on a sphere Sn−1 by U(n). Every Gaussian vector g ∼ N 1(0, In)
can be written as a product g = rq with r and q independent, where r ∼ χ(n) is
χ -distributed with n degrees of freedom, and q ∼ U(n).

4.1.1 Projections of Random Vectors

The squared projected lengths of Gaussian and uniform distributed random vectors
can be described using the χ2 and the beta distribution, respectively. A vector X is
χ2-distributed with k degrees of freedom, X ∼ χ2(k), if the cumulative distribution
function (cdf) is
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P{X ≤ x} = 1

2k/2
(k/2)

∫ x

0
tk/2−1e−t/2 dt .

The special case χ2(2) is the exponential distribution with parameter 1/2, written
exp(1/2). The beta distribution B(a, b) is defined for a, b > −1 and has cdf supported
on [0, 1],

P{X ≤ x} = 1

B(a, b)

∫ x

0
ta−1(1 − t)b−1 dt,

where B(a, b) = 
(a)
(b)/
(a+b) is the beta function. For a vector x ∈ F
n , denote

by πk(x) the projection onto the first k coordinates and by ‖πk(x)‖2 = |x1|2 + · · · +
|xk |2 its squared length. The following facts are known:

• If g ∼ N β(0, In), then β‖πk(g)‖2 ∼ χ2(βk);
• If q ∼ U(n), then ‖πk(q)‖2 ∼ B(k/2, (n − k)/2).

The first claim is a standard fact about the normal distribution and can be derived
directly from it, see, for example, [9]. The statement for the uniform distribution can
be derived from the Gaussian one, but also follows by a change of variables from
expressions for the volume of tubular neighbourhoods of subspheres of a sphere, see
for example [13, Section 20.2]. Since all the distributions considered are orthogonally
(in the real case) or unitarily (in the complex case) invariant, these observations hold
for the projection of a random vector onto any k-dimensional subspace, not just the
first k coordinates.

4.1.2 RandomMatrix Ensembles

If P(x) is a singular matrix polynomial with a simple eigenvalue λ, then the set of
perturbation directions for which the directional sensitivity is not finite is a proper
Zariski closed subset, see Theorem 3.2. It is therefore natural and convenient to con-
sider probability measures on the space of perturbations that have measure zero on
proper Zariski closed subsets. This is the case, for example, if the measure is abso-
lutely continuous with respect to the Lebesgue measure. In this paper, we will work
with real and complex Gaussian and uniform distributions. For a detailed discussion
of the random matrix ensembles used here, we refer to [24, Chapters 1-2].

For a randommatrix, we writeG ∼ Gβ
n (μ, σ 2) if each entry of G is an independent

N β(μ, σ 2) random variable, and call this a Gaussian random matrix. In the case
β = 2, this is called the Ginibre ensemble [25]. Centred (μ = 0) Gaussian random
matrices are orthogonally (if β = 1) or unitarily (if β = 2) invariant ([35, Lemma 1]),
and the joint density of their entries is given by

1

(2π/β)βn
2/2

e− β‖G‖2
2 ,

which takes into account the fact the real and imaginary parts of the entries of a
complexGaussian have variance 1/2. In addition, we consider the circular real ensem-
ble CRE(n) for real orthogonal matrices in O(n) and the circular unitary ensemble
CUE(n) [20] for unitary matrices inU (n), where both distributions correspond to the
unique Haar probability measure on the corresponding groups.
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4.2 The Probabilistic QR Decomposition

Any non-singular matrix A ∈ F
n×n has a unique QR decomposition A = QR, where

Q ∈ O(n) (if F = R) or U (n) (if F = C), and R ∈ F
n×n is upper triangular with

rii > 0 [44, Part II]. The following proposition describes the distribution of the factors
Q and R in the QR decomposition of a (real or complex) Gaussian random matrix.

Proposition 4.5 Let G ∼ Gβ
n (0, 1) be a Gaussian random matrix, β ∈ {1, 2}. Then G

can be factored uniquely as G = QR, where R = (r jk)1≤ j≤k≤n is upper triangular
and

– Q ∼ CUE(n) if β = 2 and Q ∼ CRE(n) if β = 1;
– βr2i i ∼ χ2(β(n − i + 1)) for i ∈ {1, . . . , n};
– r jk ∼ N β(0, 1) for 1 ≤ j < k ≤ n.

Moreover, all these random variables are independent.

An easy and conceptual derivation of the distribution of Q can be found in [35],
while the distribution of R can be deduced from the known expression for the Jacobian
of the QR decomposition [22, 3.3].

4.3 Proof of Theorem 4.1

In this section, we present the proofs of Theorem 4.1 and the corollaries that follow
from it. To simplify notation, we set � = n − r + 1. Recall from Corollary 3.3 the
expression

σE = 1

‖E‖
∣∣∣∣

det (X∗E(λ)Y )

u∗P ′(λ)v · det(U∗E(λ)V )

∣∣∣∣ ,

where the columns of X = [U u],Y = [V v] ∈ F
n×� are orthonormal bases of

ker P(λ)∗ and ker P(λ), the columns of U , V represent bases of kerλ P(x)∗ and
kerλ P(x), respectively, and γP is defined in (5).

Proof of Theorem 4.1 We first assume r < n. By the scale invariance of the direc-
tional sensitivity σE , we consider Gaussian perturbations E ∼ N β(0, σ 2 IβN )

(recall that we interpret E as a vector in F
N ), where σ 2 = (

∑d
j=0 |λ|2 j )−1.

This scaling ensures that the entries of E(λ) are independent N β(0, 1) random
variables. Since the distribution of E(λ) is orthogonally/unitarily invariant, the quo-
tient | det(X∗E(λ)Y |/| det (U∗E(λ)V ) | has the same distribution as the quotient
| det(G)/ det(G)|, where G is the upper left � × � submatrix of E(λ) and G the
upper left (�− 1)× (�− 1) matrix. For the distribution considered, G is almost surely
invertible, with inverse H = G−1. By Cramer’s rule, | det(G)/ det(G)| = |h��|−1.
We are thus interested in the distribution

P{σE ≥ t} = P

{∣∣∣∣
det(X∗E(λ)Y )

det(U∗E(λ)V )

∣∣∣∣ ≥ |u∗P ′(λ)v|t‖E‖
}

= P

{
1

|h��| ≥ |u∗P ′(λ)v|t‖E‖
}

,
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where h�� is the lower right corner of the inverse of an � × � Gaussian matrix G.
To study the distribution of |h��|−1, we resort to the probabilistic QR decomposition
discussed in Sect. 4.2. If G = QR is the unique QR decomposition of G with positive
diagonals in R, then the inverse is given by H = R−1Q∗, and a direct inspection
reveals that the lower right element h�� of H is h�� = q∗

��/r��.
From Sect. 4.2, it follows that Q ∼ CRE(n) or CUE(n), and βr2�� ∼ χ2(β).

Moreover, each column of Q is uniformly distributed on the sphere Sβ�−1, so that
|q��|2 ∼ B(β/2, β(� − 1)/2) (by Sect. 4.1.1), and {r2��, |q��|2} are independent. We
therefore get

P

{
1

|h��| ≥ |u∗P ′(λ)v|t‖E‖
}

= P

{
r2�� ≥ |q��|2|u∗P ′(λ)v|2t2‖E‖2

}
.

Setting γP = |u∗P ′(λ)v| · (
∑d

j=0 |λ|2 j )−1/2 (see 5), we arrive at

P{σE ≥ t} = P

⎧⎨
⎩r2�� ≥ |q��|2γ 2

P t
2

⎛
⎝

d∑
j=0

|λ|2 j
⎞
⎠ · ‖E‖2

⎫⎬
⎭

Let p0 = (1, λ, · · · , λd)T /(
∑d

i=0 |λ|2i )1/2. Then we can rearrange the coefficients of
E(x) to a matrix F ∈ F

n2×(d+1) so that

‖Fp0‖2 = ‖E(λ)‖2 ·
(

d∑
i=0

|λ|2i
)−1

.

Moreover, if Q = [p0 p1 · · · pd ] is an orthogonal/unitary matrix with p0 as the first
column, then

‖E‖2 = ‖F‖2 = ‖FQ‖2 =
(

d∑
i=0

|λ|2i
)−1⎛

⎝‖E(λ)‖2 +
d∑
j=1

‖F p̃ j‖2
⎞
⎠ ,

where p̃ j = p j · (
∑d

i=0 |λ|2i )1/2. If we denote by Gc the vector consisting of those
entries of E(λ) that are not in G, then

‖E(λ)‖2 = ‖G‖2 + ‖Gc‖2 = ‖R‖2 + ‖Gc‖2.

It follows that

⎛
⎝

d∑
j=0

|λ|2 j
⎞
⎠ · ‖E‖2 = ‖R‖2 + ‖Gc‖2 +

d∑
j=1

‖F p̃ j‖2.
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Therefore, the factor r2��, itself a square of a (real or complex) Gaussian, is a summand
in a sum of squares of N = n2(d + 1) Gaussians, and the quotient

r2��(∑d
j=0 |λ|2 j

)
‖E‖2

is equal to the squared length of the projection of a uniform random vector in SβN−1

onto the first β coordinates. By Sect. 4.1.1, this is B(β/2, β(N − 1)/2) distributed.
Denoting this random variable by ZN and |q��|2 by Z�, we obtain

P{σE ≥ t} = P{ZN ≥ γ 2
P t

2Z�}.

This establishes the claim in the case r < n. If r = n, we use the expression (see 4),

σE =
∣∣∣∣

u∗E(λ)v

‖E‖|u∗P ′(λ)v|
∣∣∣∣ ,

where u and v are eigenvectors. By orthogonal/unitary invariance, σ 2
E has the same

distribution as the squared norm of a Gaussian. By the same argument as above, we
can bound ‖E‖ in terms of ‖E(λ)‖, and the quotient with ‖E(λ)‖2 is then the squared
projected length of the first β coordinates of a uniform distributed vector in SβN−1,
which is B(β/2, β(N − 1)/2) distributed. ��
Remark 4.6 If N+ is large, then for a (real or complex) Gaussian perturbation with
entry-wise variance 1/N , by Gaussian concentration (see [11, Theorem 5.6]), ‖E‖ is
close to 1 with high probability:

P{|‖E‖ − 1| ≥ t} ≤ 2e−Nt2/2.

This means that the distribution of ‖E‖σE for a Gaussian perturbation will be close
to that of σE for a uniform perturbation. Even for moderate sizes of d and n, the result
can be numerically almost indistinguishable.

In fact, when G is Gaussian, then the distribution can be expressed explicitly as

P{|h��|−1 ≥ t} = 1F1(1, �;−Nt2),

where 1F1(a, b; z) denotes the confluent hypergeometric function (this follows by
mimicking the proof of Theorem 4.1, expressing the distribution in terms of a quotient
of a χ2 and a beta random variable, and writing out the resulting integrals). Similarly,
using the same computations as in the proof of LemmaA.1, we get the exact expression

P{|h��|−1 ≥ t} =
{
1 − 2F1(1 − N , 1, �; t2) if t ≤ 1

2F1(1 − �, 1, N ; t−2) if t ≥ 1,
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where 2F1(a, b, c; z) is the hypergeometric function. The case distinction corresponds
to different branches of the solution of the hypergeometric differential equation.
See [38,39] for more on computing with hypergeometric functions.

5 Weak Condition Numbers of Simple Eigenvalues of Singular Matrix
Polynomials

The tail bounds on the directional sensitivity can easily be translated into statements
about condition numbers and discuss some consequences and interpretations.

Theorem 5.1 Let P(x) ∈ C
n×n
d [x] be a matrix polynomial of rank r , and let λ be a

simple eigenvalue of P(x). Then

– the worst-case condition number is

κ =
{

∞ if r < n,
1

γP
if r = n

(7)

– the stochastic condition number, with respect to uniformly distributed perturba-
tions, is

κs = 1

γP

π

2


(N )
(n − r + 1)


(N + 1/2)
(n − r + 1/2)
(8)

– if r < n and δ ∈ (0, 1), then the δ-weak worst-case condition number, with respect
to uniformly distributed perturbations, is bounded by

κw(δ) ≤ 1

γP
max

{
1,

√
n − r

δN

}
(9)

The expression for the stochastic condition number involves the quotient of gamma
functions, which can be simplified using the well-known bounds

√
x ≤ 
(x + 1)


(x + 1/2)
≤ √

x + 1/2, (10)

which hold for x > 0 [49]. Using these bounds on the numerator and denominator
of (8), we get the more interpretable

κs ≤ 1

γP

π

2

√
n − r + 1/2

N − 1/2
≤ 1

γP

π

2

√
n − r + 1

N
.

The bound on the weak condition number (9) shows that κw(1/2), which is the median
of the same random variable of which κs is the expected value, is bounded by 1/γP ,
which is the expression of the worst-case condition number in the regular case r = n.

The situation changes dramatically when considering real matrix polynomials with
real perturbations, as in this case even the stochastic condition becomes infinite if
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the matrix polynomial is singular. In the statement, we denote the resulting condition
number with respect to real perturbations by using the superscript R.

Theorem 5.2 Let P(x) ∈ R
n×n
d [x] be a real matrix polynomial of rank r , and let

λ ∈ C be a simple eigenvalue of P(x). Then,

– the worst-case condition number is

κR =
{

∞ if r < n,
1

γP
if r = n

(11)

– the stochastic condition number, with respect to uniformly distributed real pertur-
bations, is

κR
s =

{
∞ if r < n,
1

γP


(N/2)√
π
((N+1)/2)

if r = n
(12)

– if r < n and δ ∈ (0, 1), then the δ-weak worst-case condition, with respect to
uniformly distributed real perturbations, is

κR
w(δ) ≤ 1

γP
max

{
1,

√
n − r

N

1

δ

}

– if r < n and δ <
√

(n − r)/N, then the δ-weak stochastic condition number
satisfies

κR
ws(δ) ≤ 1

γP

(
1

1 − δ

)(
1 +

√
n − r

N
log

(√
n − r

N
δ−1

))
(13)

It is instructive to compare the weak condition numbers in the singular case to
the worst-case and stochastic condition number in the regular case. In the regular
case (n = r ), when replacing the worst-case with the stochastic condition we get an
improvement by a factor of ≈ N−1/2, which is consistent with previous work [4]
(see also Sect. 2) relating the worst-case to the stochastic condition. We will see in
Sect. 6.1 that the expected value in the case n = r captures the typical perturbation
behaviour of the problem more accurately than the worst-case bound. Among many
possible interpretations of the weak worst-case condition, we highlight the following:

– Since the bounds are monotonically decreasing as the rank r increases, we can get
bounds independent of r . Specifically, we can replace the quotient

√
(n − r)/N

with 1/
√
n(d + 1). This is useful since, in applications, the rank is not always

known.
– While the stochastic condition number (12), whichmeasures the expected sensitiv-
ity of the problem of computing a singular eigenvalue, is infinite, for 4(n−r) < N
the median sensitivity is bounded by

κR
w(1/2) ≤ 1

γP
.
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The median is a more robust and arguably better summary parameter than the
expectation.

– Choosing δ = e−N in (13), we get a weak stochastic condition bound of

κR
ws(e

−N ) ≤ 1

γP

(
1 + √

N (n − r)

1 − e−N

)
.

That is, the condition number improves from being unbounded to sublinear in N ,
by just removing a set of inputs of exponentially small measure.

Example 5.3 Consider the matrix pencil L(x) from (1). This matrix pencil has rank 3,
with only one simple eigenvalue λ = 1. As we will see in Example 4.4, the constant
γL appearing in the bounds is

γ −1
L = 12.16.

In this example, n = 4, d = 1 and r = 3, so that n − r = 1, N = n2(d + 1) = 32,
and √

n − r

N
= 0.1767.

For small enough δ, we get the (not optimized) bound κR
w(δ) < 2.15 · δ−1.

It is easy to translate Corollary 4.2 into the main results, Theorem 5.1 and Theo-
rem 5.2. For the weak stochastic condition, we need the following observation, which
is a variation in [3, Lemma 2.2].

Lemma 5.4 Let Z be a random variable such that P{Z ≥ t} ≤ C a
t for t > a. Then

for any t0 > a,

E[Z | Z ≤ t0] ≤ a

1 − Ca
t0

(
1 − C log

(
a

t0

))
.

Proof of Theorems 5.1 and 5.2 The statements about the worst-case, (7) and
(11), and about the stochastic condition number, (8) and (12), follow immediately
from Theorem 4.1 and Corollary 4.2.

For the weak condition number in the complex case, if δ ≤ (n− r)/N , then setting

t := 1

γP

√
n − r

δN

we get γP t ≥ 1, and therefore, using the complex tail bound from Corollary 4.2,

P{σE ≥ t} ≤ 1

γ 2
P t

2

n − r

N
= δ.

This yields κw(δ) ≤ t . If δ > (n − r)/N , then we use the fact that the weak condition
number ismonotonically decreasingwith δ (intuitively, the larger the setwe are allowed
to exclude, the smaller the condition number will be), to conclude that κw(δ) ≤
κw(δ0) ≤ 1/γP , where δ0 := (n − r)/N .
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For the real case, if r < n we use the bound


(N/2)
((n − r + 1)/2)


((N + 1)/2)
((n − r)/2)
≤
√

n − r

N − 1
,

which follows from (10). If δ <
√

(n − r)/N , set

t := 1

γP

√
n − r

N

1

δ
.

Then

P{σE ≥ t} ≤ 1

γP

2

π

√
n − r

N

1

t
= 2

π

√
N

N − 1
· δ ≤ δ,

where for the last inequality we used the fact that N ≥ 2. We conclude that κw(δ) ≤ t .
If δ >

√
(n − r)/N , then we use the monotonicity of the weak condition just as in

the complex case. Finally, for the weak stochastic condition number in the real case,
we use Lemma 5.4 with a = γ −1

P , C = √
(n − r)/N and t0 = C(δγP )−1 in the

conditional expectation. We just saw that κR
w(δ) ≤ t0, so that

κR
ws(δ) ≤ E[σE | σE ≤ t0] ≤ 1

γP

(
1

1 − δ

)(
1 +

√
n − r

N
log

(√
n − r

N
δ−1

))
,

where we used Lemma 5.4 in the second inequality. ��

6 Bounding theWeak Stochastic Condition Number

In this section, we illustrate how theweak condition number of the problem of comput-
ing a simple eigenvalue of a singular matrix polynomial can be estimated in practice.
More precisely, we show that the weak condition number of a singular problem can
be estimated in terms of the stochastic condition number of nearby regular problems.
Before deriving the relevant estimates, given in Theorem 6.3, we discuss the stochastic
condition number of regular matrix polynomials.

6.1 Measure Concentration for the Directional Sensitivity of Regular Matrix
Polynomials

For the directional sensitivity in the regular case, r = n, the worst-case condition
number is γ −1

P , as was shown in Proposition 3.4. In addition, the expression for the
stochastic condition number involves a ratio of gamma functions (see Corollary 4.2 or
the case r = n in Theorems 5.1 and 5.2). From (10), we get the approximation 
(k +
1/2)/
(k) ≈ √

k, so that the stochastic condition number for regular polynomial
eigenvalue problems satisfies

κs ≈ 1√
N

κ.
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This is compatible with previously known results about the stochastic condition num-
ber in the smooth setting (see discussion in Sect. 2). A natural question is whether
the directional sensitivity is likely to be closer to this expected value, or closer to the
upper bound κ .

Theorem 4.1 describes the distribution of σE as that of the (scaled) square root of
a beta random variable. Using the interpretation of beta random variables as squared
lengths of projections of uniformly distributed vectors on the sphere (see Sect. 4.1.1),
tail bounds for the distribution of σE therefore translate into the problem of bounding
the relative volume of certain subsets of the unit sphere. A standard argument from the
realm of measure concentration on spheres, Lemma 6.1, then implies that with high
probability, σE will stay close to its mean.

Lemma 6.1 Let x ∼ U(βN ) be a uniformly distributed vector on the (real or complex)
unit sphere, where β = 1 if F = R and β = 2 if F = C. Then

P{|x1| ≥ t} ≤ e−β(N−1)t2/2.

Proof For complex perturbations, we get the straightforward bound

P{|x1| ≥ t} ≤ (1 − t2γ 2
P )N−1 ≤ e−(N−1)t2 .

In the real case, a classic result (see [6, Lemma 2.2] for a short and elegant proof)
states that the probability in question is bounded by

P{|x1| ≥ t} ≤ e−Nt2/2. (14)

The claimed bound follows by replacing N with N − 1 for the sake of a uniform
presentation. ��

The next corollary follows from the description of the distribution of σE in Theo-
rem 4.1 and the characterization of beta random variables as squared projected lengths
of uniform vectors from Sect. 4.1.1.

Corollary 6.2 Let P(x) ∈ F
n×n
d [x] be a regular matrix polynomial and let λ be a

simple eigenvalue of P(x). If E ∼ U(βN ), where β = 1 if F = R and β = 2 if
F = C, then for t ≤ γ −1

P we have

P{σE ≥ t} ≤ e−β(N−1)γ 2
P t

2/2.

6.2 TheWeak Condition Number in Terms of Nearby Stochastic Condition Numbers

It is common wisdom that computing the condition number is as hard as solving the
problem at hand, so at the very least we would like to avoid making the computation of
the condition estimate more expensive than the computation of the eigenvalue itself.
We will therefore aim to estimate the condition number of the problem in terms of
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the output of a backward stable algorithm for computing the eigenvalue and a pair of
associated eigenvectors.

Let P(x) ∈ F
n×n
d [x] be a matrix polynomial of rank r < n with a simple eigen-

value λ ∈ C, and let E(x) ∈ F
n×n
d [x] be a regular perturbation. Denote by λ(ε) the

eigenvalue of P(x) + εE(x) that converges to λ (see Theorem 3.2), and let u(ε) and
v(ε) be the corresponding left and right eigenvectors of the perturbed problem. As
shown in [14, Theorem 4] (see Theorem 6.4), for all E(x) outside a proper Zariski
closed set, the limits

u = lim
ε→0

u(ε), v = lim
ε→0

v(ε)

converge to representatives of left and right eigenvectors of P(x) associated with λ.
Whenever these limits exist and represent eigenvectors of P(x), define

γ P := u∗P ′(λ)v ·
( d∑

j=0

|λ|2 j
)−1/2

, κ = γ −1
P , and

κs = γ −1
P

{√
π

2

(N )


(N+1/2) if F = C,
1√
π


(N/2)

((N+1)/2) if F = R.

(15)

Note that these parameters depend implicitly on a perturbation direction E(x), even
though the notation does not reflect this. The parameters κ and κs are the limits of the
worst-case and stochastic condition numbers, κ(P(x)+εE(x)) and κs(P(x)+εE(x)),
as ε → 0. Since almost sure convergence implies convergence in probability, we get

E[κs] = lim
ε→0

E[κs(P(x) + εE(x))]

whenever the left-hand side of this expression is finite.
A backward stable algorithm, such as vanilla QZ, computes an eigenvalue λ̃ and

associated unit norm eigenvectors ũ and ṽ of a nearby problem P(x) + εE(x). If ε

is small, then λ̃ ≈ λ, ũ ≈ u and ṽ ≈ v, so that we can approximate the values (15)
using the output of such an algorithm. Unfortunately, this does not yet give us a good
estimate of γP , as the definition of γP makes use of very special representatives of
eigenvectors (recall from Sect. 3.1 that for a singular matrix polynomials, eigenvectors
are only defined as equivalence classes). The following theorem shows that we can
still get bounds on the weak condition numbers in terms of κs .

Theorem 6.3 Let P(x) ∈ F
n×n
d [x] be a singular matrix polynomial of rank r < n with

simple eigenvalue λ ∈ C. Then

κw(δ) ≤ κ · max

{
δ−1/β

√
n − r

N
, 1

}
.

If δ ≤ (n − r)/N, then for any η > 0 we have the tail bounds

P

{
δ−1/βκs ≥ η · κw(δ)

}
≥ 1 − e−β/η2 .
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For the proof of Theorem 6.3 we recall the setting of Sect. 3. Let X = [U u]
and Y = [V v] be matrices whose columns are orthonormal bases of ker P(λ)∗ and
ker P(λ), respectively, such that U and V are bases of kerλ P(x)T and kerλ P(x),
respectively. If u = u and v = v in (15), then γ P = γP . In general, however, we
only get a bound. To see this, recall from Sect. 3.1 that u∗P ′(λ)v depends only on
the component of u that is orthogonal to kerλ P(λ)∗, and the component of v that is
orthogonal to kerλ P(λ). In particular, X∗P ′(λ)Y has rank one, and we have (recall
� = n − r + 1)

X∗P ′(λ)Y = u∗P ′(λ)v · e�e
∗
� . (16)

The key to Proposition 6.3 lies in a result analogous to Theorem 3.2 for the eigen-
vectors by de Terán and Dopico [14, Theorem 4].

Theorem 6.4 Let P(x) ∈ F
n×n
d [x] be matrix polynomial of rank r with simple eigen-

valueλ and X ,Y as above. Let E(x) ∈ F
n×n
d [x] be such that X∗E(λ)Y is non-singular.

Let ζ be the eigenvalue of the non-singular matrix pencil

X∗E(λ)Y + ζ · X∗P ′(λ)Y , (17)

and let a and b be the corresponding left and right eigenvectors. Then, for small enough
ε > 0, the perturbed matrix polynomial P(x) + εE(x) has exactly one eigenvalue
λ(ε) as described in Theorem 3.2, and the corresponding left and right eigenvectors
satisfy

u(ε) = Xa + O(ε), v(ε) = Yb + O(ε).

Given amatrix polynomial P(x) and a perturbation direction E(x), we can therefore
assume that the eigenvectors of a sufficiently small perturbation in direction E(x)
are approximated by u = Xa and v = Yb, where a, b are the eigenvectors of the
matrix pencil (17). We would next like to characterize these eigenvectors for random
perturbations E(x). As with the rest of this paper, the following result is parametrized
by a parameter β ∈ {1, 2} which specifies whether we work with real or complex
perturbations.

Proposition 6.5 Let P(x) ∈ F
n×n
d [x] be a matrix polynomial of rank r < n with

simple eigenvalue λ ∈ C, and let E(x) ∼ U(βN ) be a random perturbation. Let a, b
be left and right eigenvectors of the linear pencil (17), let u = Xa and v = Yb, and
define γ P as in (15). Then

E[γ P ] ≤ (� − 1)−1/2γP , and P{γ P ≥ γP · t} ≤ e−β(�−1)t2/2.

Proof By scale invariance of (17), we may take E(x) to be Gaussian, E(x) ∼
N β(0, σ 2 IβN ) with σ 2 = (

∑d
j=0 |λ|2 j )−1 (so that E(λ) ∼ Gβ

n (0, 1)). Set G :=
X∗E(λ)Y , so that G ∼ Gβ

� (0, 1). Using (16), the eigenvectors associated with (17)
are then characterized as solutions of

a∗(G + ζ · γPe�e
∗
� ) = 0, (G + ζ · γPe�e

∗
� )b = 0.
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It follows that G∗a and Gb are proportional to e�, and hence,

a = G−∗e�

‖G−∗e�‖ , b = G−1e�

‖G−1e�‖ .

Clearly, each of the vectors a and b individually is uniformly distributed. They are,
however, not independent. To simplify notation, set H = G−1. For the condition
estimate we get, using (16),

|a∗X∗P ′(λ)Yb| = |u∗P ′(λ)v| · |e∗
�He�| · |e∗

�He�|
‖H∗e�‖ · ‖He�‖ ≤ |u∗P ′(λ)v| · |e∗

�He�|
‖He�‖ .

By orthogonal/unitary invariance of the Gaussian distribution, the random vector q :=
He�/‖He�‖ is uniformly distributed on Sβ�−1. It follows that |eT He�|/‖He�‖ is
distributed like the absolute value of the projection of a uniform vector onto the first
coordinate. For the expected value, the bound follows by observing that the expected
value of such a projection is bounded by (� − 1)−1/2. For the tail bound, using (14)
(with N replaced by �) we get

P{γ P ≥ γP · t} = P{|a∗X∗P ′(λ)Yb| ≥ |u∗P ′(λ)v| · t} ≤ e−β(�−1)t2/2.

This was to be shown. ��

Proof of Theorem 6.3 If u = Xa and v = Yb, then

|u∗P ′(λ)v| = |aT X∗P ′(λ)Yb| = |a�b�u
∗P ′(λ)v| ≤ |u∗P ′(λ)v|,

and we get the upper bound
γ −1
P ≤ γ −1

P = κ.

For the weak condition numbers, using Theorems 5.1 and 5.2, we get the bounds

κw(δ) ≤ κ · max

{√
n − r

N

1

δ1/β
, 1

}
.

For the tails bounds in the complex case, note that in the complex case we have

P

{
(Nδ)−1/2κ ≤ η · κw(δ)

}
= P

{
γ −1
P ≤ η · √

n − r γ −1
P

}

= P

{
γ P ≥ η−1 · (n − r)−1/2γP

}
≤ e−1/η2 ,

where we used Proposition 6.5 for the inequality. The real case follows in the same
way. ��
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7 Conclusions and Outlook

Theclassical theoryof conditioning in numerical analysis aims toquantify the suscepti-
bility of a computational problem to perturbations in the input.While the theory serves
its purpose well in distinguishing well-posed problems from problems that approach
ill-posedness, it fails to explain why certain problems with high condition number can
still be solved satisfactory to high precision by algorithms that are oblivious to the
special structure of an input. By introducing the notions of weak and weak stochastic
conditioning, we developed a tool to better quantify the perturbation behaviour of
numerical computation problems for which the classical condition number fails to do
so.

Our methods are based on an analysis of directional perturbations and probabilistic
tools. The use of probability theory in our context is auxiliary: the purpose is to
quantify the observation that the set of adversarial perturbations is small. In practice,
any reasonable numerical algorithmwill find the eigenvalues of a nearby regularmatrix
polynomial, and the perturbationwill be deterministic and not random.However, as the
algorithm knows nothing about the particular input matrix polynomial, it is reasonable
to assume that if the set of adversarial perturbations is sufficiently small, then the
actual perturbation will not be in there. Put more directly, to say that the probability
that a perturbed problem has large directional sensitivity is very small is to say that a
perturbation, although non-random, would need a good reason to cause damage.

The results presented continue the line of work of [3], where it is argued that, just
as sufficiently small numbers are considered numerically indistinguishable from zero,
sets of sufficiently small measure should be considered numerically indistinguish-
able from null sets. One interesting direction in which the results presented can be
strengthened is to use wider classes of probability distributions, including such that
are discrete, and derive equivalent (possibly slightly weaker) results. One important
side effect of our analysis is a focus away from the expected value, and more towards
robust measures such as the median8 and other quantiles.

Our results hence have a couple of important implications, or “take-home mes-
sages”, that we would like to highlight:

1. The results presented call for a critical re-evaluation of the notion of ill-posedness.
It has become common practice to simply identify ill-posedness with having
infinite condition, to the extent that condition numbers are often defined in terms
of the inverse distance to a set of ill-posed inputs, an approach that has been
popularized by J. Demmel [16,17].9 The question of whether the elements of
such a set are actually badly behaved a practical sense is often left unquestioned.
Our theory suggests that the set of inputs that are actually ill-behaved from a
practical point of view can be smaller than previously thought.

8 The use of themedian instead of the expected value in the probabilistic analysis of quantitieswas suggested
by F. Bornemann [10].
9 For the complexity analysis of iterative algorithms, and in particular for problems related to convex
optimization, the “distance to ill-posedness” approach may often be the most natural setting. For convex
feasibility problems, for example, the ill-posed inputs form a wall separating primal from dual feasible
problem instances, and closeness to thiswall directly affects the speed of convergence of iterative algorithms;
see [13] for more on this story.
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2. Average-case analysis (and its refinement, smoothed analysis [12]) is, while well
intentioned, still susceptible to the caprices of specific probability distributions.
More meaningful results are obtained when, instead of analysing the behaviour
of perturbations on average, one shifts the focus towards showing that the set of
adversarial perturbations is small; ideally so small, that hitting a misbehaving
perturbation would suggest the existence of a specific explanation for this rather
than just bad luck. In terms of summary parameters, our approach suggests using,
in line with common practice in statistics, more robust parameters such as the
median instead of the mean.

A natural question that arises from the first point is: if some problems that were
previously thought of as ill-posed are not (in the sense that the set of discontinuous
perturbation directions is negligible), then which problems are genuinely ill-posed?
In the case of polynomial eigenvalue problems, we conjecture that problems with
semisimple eigenvalues are not ill-conditioned in our framework; in fact, it appears
that much of the analysis performed in this section can be extended to this setting. It is
not completely obvious which problems should be considered ill-posed based on this
new theory. That some inputs still should can be seen, for example, by considering
Jordan blockswith zeros on the diagonal; the computed eigenvalues of perturbations of
the order of machine precision will not recover the correct eigenvalue in this situation.
Our analysis in the semisimple case is based on the fact that the directional derivative
of the function to be computed exists in sufficiently many directions.

Another consequence is that much of the probabilistic analyses of condition num-
bers based on the distance to ill-posedness, while still correct, can possibly be refined
when using a smaller set of ill-posed inputs. In particular, it is likely that condition
bounds resulting from average-case and smoothed analysis can be refined. Finally, an
interesting direction would be to examine problems with high or infinite condition
number that are not ill-posed in a practical sense in different contexts, such as polyno-
mial system solving or problems arising from the discretization of continuous inverse
problems.
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A Moments and Tails for Ratios of Beta RandomVariables

In appendix, we compute the expected value and tail bounds for moments of quotients
of beta random variables.

Lemma A.1 Let a > 0, b > 0, c > 0, d > 0 and X ∼ B(a, b), Y ∼ B(c, d) random
variables. Then for k such that ck > 1,

E

[
X1/k

]
= B(a + 1/k, b)

B(a, b)
and E

[
(X/Y )1/k

]
= B(a + 1/k, b)B(c − 1/k, d)

B(a, b)B(c, d)
,

If ck = 1, then E[(X/Y )k] = ∞. Moreover, the probability tails are bounded by

P{(X/Y )1/k ≥ t} ≤
{
1 − tak B(a+c,d)

B(c,d)
if t ≤ 1

1
tck

B(a+c,b)
cB(a,b)B(c,d)

if t ≥ 1

Proof We focus on the case of the quotient (X/Y )1/k ; the statement for X1/k follows
by simply setting Y = 1 in the calculations below. Set C = 1/(B(a, b)B(c, d)). For
ck > 1,

E

[
(X/Y )1/k

]
=
∫ ∞

t=0
P{X/Y ≥ tk} dt

= C ·
∫ 1

y=0

∫ y−1/k

t=0

∫ 1

x=tk y
xa−1(1 − x)b−1yc−1(1 − y)d−1 dx dt dy

s=y1/k t= C ·
∫ 1

y=0

∫ 1

s=0

∫ 1

x=sk
xa−1

(1 − x)b−1yc−1/k−1(1 − y)d−1 dx ds dy (A)

= C · B(c − 1/k, d)

∫ 1

s=0

∫ 1

x=sk
xa−1(1 − x)b−1 dx ds

= C · B(c − 1/k, d)

∫ 1

x=0

∫ x1/k

s=0
xa−1(1 − x)b−1 ds dx

= C · B(a + 1/k, b)B(c − 1/k, d). (B)

If ck = 1, then the step from (A) to (B) breaks down, since the integral
∫ 1
0 y−1(1 −

y)d−1 dy diverges. For the tail bound, we proceed similarly. If t ≤ 1, then

P{(X/Y )1/k ≥ t} = 1 − C ·
∫ 1

y=0

∫ tk y

x=0
xa−1(1 − x)b−1yc−1(1 − y)d−1 dx dy

x=(tk y)z= 1 − C · tak
∫ 1

y=0

∫ 1

z=0
za−1

(1 − tk yz)b−1ya+c−1(1 − y)d−1 dy dz
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(1)≤ 1 − C · tak
∫ 1

y=0

∫ 1

z=0
za−1(1 − z)b−1ya+c−1(1 − y)d−1 dy dz

= 1 − tak
B(a + c, d)

B(c, d)
,

where for the inequality (1) we used that tk yz ≤ z when t ≤ 1. If t ≥ 1, then

P{(X/Y )1/k ≥ t} = C ·
∫ 1

x=0

∫ t−k x

y=0
xa−1(1 − x)b−1yc−1(1 − y)d−1 dy dx

y=(t−k x)z= C · 1

tck

∫ 1

x=0

∫ 1

z=0
xa+c−1

(1 − x)b−1zc−1(1 − t−k xz)d−1 dz dx

(2)≤ C · 1

tck

∫ 1

x=0

∫ 1

z=0
xa+c−1(1 − x)b−1zc−1 dz dx

= 1

tck
B(a + c, b)

cB(a, b)B(c, d)
,

where for (2) we used that t−k xz ≥ 0. ��
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