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We model consumer preferences for conventional, hybrid electric, plug-in hybrid electric

(PHEV), and battery electric (BEV) vehicle technologies in China and the U.S. using data

from choice-based conjoint surveys fielded in 2012–2013 in both countries. We find that

with the combined bundle of attributes offered by vehicles available today, gasoline vehi-

cles continue in both countries to be most attractive to consumers, and American respon-

dents have significantly lower relative willingness-to-pay for BEV technology than Chinese

respondents. While U.S. and Chinese subsidies are similar, favoring vehicles with larger

battery packs, differences in consumer preferences lead to different outcomes. Our results

suggest that with or without each country’s 2012–2013 subsidies, Chinese consumers are

willing to adopt today’s BEVs and mid-range PHEVs at similar rates relative to their respec-

tive gasoline counterparts, whereas American consumers prefer low-range PHEVs despite

subsidies. This implies potential for earlier BEV adoption in China, given adequate supply.

While there are clear national security benefits for adoption of BEVs in China, the local and

global social impact is unclear: With higher electricity generation emissions in China, a

transition to BEVs may reduce oil consumption at the expense of increased air pollution

and/or greenhouse gas emissions. On the other hand, demand from China could increase

global incentives for electric vehicle technology development with the potential to reduce

emissions in countries where electricity generation is associated with lower emissions.
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1. Introduction

1.1. The confluence of two trends in the global automotive industry

Motor vehicles consume one third of all oil used globally, two thirds of oil used in the U.S., and half of oil used in China

(Davis et al., 2013; Ma et al., 2012). Together, China and the U.S. consume approximately one third of all oil consumed glob-

ally each year (U.S. EIA, 2014). In the U.S., passenger cars are responsible for 20% of annual greenhouse gas (GHG) emissions

as well as 40% of volatile organic compound (VOC) emissions, 77% of carbon monoxide (CO) emissions, and 49% of nitrogen

dioxide (NOx) emissions (U.S. EIA, 2011). In China the emissions levels are comparable, with even higher portions of CO and

NOx emissions attributable to passenger vehicles (Lang et al., 2013). In addition, increasing China and U.S. dependency on

foreign oil poses significant security implications, since both countries currently import nearly half of their annual oil con-

sumption (see Fig. 1) (U.S. EIA, 2014).

At the same time that concerns about oil use are growing, the composition of the vehicle market is rapidly evolving. While

vehicle ownership rates within developed countries are nearly static, transitional economies are rapidly adopting personal

transportation. Of all the emerging markets, China has the largest growth rate in the world. Chinese passenger car ownership

has had an average annual growth rate of 29% over the past two and a half decades (see Fig. 2). China is now the world’s

largest passenger vehicle market, a title held since 2009 after surpassing the U.S. (Liu et al., 2010; CATARC, 2009). This

growth path should not be expected to stop soon. Currently, with 20% of the world’s population, China has 60 vehicles

per thousand people, compared to 800 vehicles per thousand people in the U.S. (National Bureau of Statistics of China,

2013; U.S. FHWA, 2013).

1.2. Implications of vehicle electrification for emissions and oil consumption

In the context of this study, we define vehicle electrification to include both gasoline HEVs and plug-in PHEVs/BEVs. HEVs

take net propulsion energy from gasoline but utilize a small battery pack and electric motor to improve fuel efficiency,

mostly through regenerative braking, engine downsizing, engine shutoff at idle, and power management. PHEVs are similar

to HEVs, except they typically have a larger battery pack that can be charged by plugging into an electrical outlet. PHEVs can

be driven for short distances (usually less than 40 miles) using only or mostly electricity before switching to gasoline for an

extended range. BEVs run purely on electricity and do not use gasoline. They have large battery packs and large electric

motors and must be plugged into an electrical outlet to charge. Table 1 summarizes these three technologies.

Each vehicle electrification technology offers some potential to reduce air emissions and oil consumption compared to

conventional vehicles. While HEVs continue to rely on gasoline, they reduce both air emissions and oil consumption. PHEVs

use grid electricity to displace additional gasoline, and BEVs displace gasoline entirely, but air emissions implications for

plug-in vehicles depend on battery manufacturing and the mix of sources used to generate electricity (Samaras and

Meisterling, 2008; Elgowainy et al., 2010; Michalek et al., 2011). Seventy-five percent of China’s electricity and 42% of

U.S. electricity is generated by burning coal, with its greenhouse gas and air quality implications (Liu et al., 2010; Lang

et al., 2013; Ji et al., 2011; U.S. EIA, 2011). While plug-in vehicles are less effective at reducing GHGs in China due to higher

life cycle electricity emissions intensity, they are on average still expected to reduce GHGs relative to CVs by as much as 17%

(depending on adoption rates) with even more substantial reductions in the south, central, and north-west regions (Zhou

et al., 2013). Fig. 3 summarizes this effect and shows the average emissions intensity of electricity generation in the U.S.

and in China. Importantly, emissions vary by region and time of day within each country, and marginal emissions intensities

relevant for added electric vehicle charging load are typically higher than average emissions intensities shown in Fig. 3

because dispatchable plants tend to be fossil fuel plants (Siler-Evans et al., 2012; Graff Zivin et al., 2014). Plug-in vehicles
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Fig. 1. Growth in U.S. and China dependency on foreign oil (U.S. EIA, 2014).
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also replace tailpipe emissions with power plant emissions, potentially reducing exposure to harmful air pollution in urban

centers depending on plant location and wind patterns, though in China this may actually result in increases in primary

PM2.5 environmental health impacts per passenger-km (Ji et al., 2011).

Further, the emissions benefits of electrified vehicles depend on the fuel to which it is being compared. Because of China’s

limited supply of petroleum, it is promoting not only electrified vehicles but also coal-to-liquids – a GHG-intensive way to

produce gasoline (Jaramillo et al., 2009). Fuel quality is also different in China. While China has already implemented a policy

to phase out lead fuel, the sulfur levels of most Chinese petroleum products remain high. A high sulfur level in gasoline limits

the ability of catalytic converters in automobiles to lower CO, HC, and NOx emissions. Depending on shifts in government

regulation, these national differences could have a significant impact on the relative competitiveness of alternative power-

trains and their implications.

1.3. Government incentives and consumer preferences

Both the U.S. and Chinese governments offer numerous incentives for plug-in vehicles, such as tax credits and high

occupancy vehicle (HOV) lane exemptions. The U.S. Department of Energy offers details of federal and state incentives in

2010

2008

0 200 400 600 800 1000

0

5

10

15

20

Vehicles per 1,000 people
A

n
n
u
a
l 
N

e
w

 V
e
h
ic

le
 S

a
le

s
 (

M
ill

io
n
)

1931
1933

1941

1955

1961

1978

1982

1986

1991

2000

2007

2008

2009

2010

2013

1995

2004

2007

2009

2012

2013

China

U.S.
2012

Fig. 2. Growth in Chinese passenger vehicle sales and ownership (National Bureau of Statistics of China, 2013; U.S. FHWA, 2013).

Table 1

Summary of electrified vehicle powertrains.

Vehicle type Battery

size

Typical Electric

Range (miles)

Description

Hybrid electric

(HEV)

Small 0 More efficient gasoline powertrain through use of small electric motor and battery pack

Plug-in hybrid

electric (PHEV)

Small–

medium

5–40 Larger battery pack than HEV. Can be plugged-into charge, uses electricity to propel for

short distances and gas for longer distances

Battery electric

(BEV)

Large 75–250 Electric motor and large battery pack. Must be plugged-into an electrical outlet to charge

Fig. 3. Life cycle GHG emissions from vehicles shown as a function of the life cycle GHG intensity of the electricity generation (adapted from Samaras and

Meisterling (2008)).
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the United States (U.S. DOE, 2013b, 2013c), and Zheng et al. (2012) and provide a detailed review of the relevant policies for

EV development in China. We focus on federal subsidies for PHEVs and BEVs for two reasons: (1) the U.S. and Chinese sub-

sidies have similar structures and (2) these are national subsidies, and state or provincial level incentives are too geograph-

ically specific for our scope. The federal subsidies in each country increase proportionally with the vehicle’s battery capacity

from a baseline up to a maximum of $7500 in the U.S. and $9400 in China (U.S. Congress, 2009; State Council, 2012). While

both subsidies favor larger-battery PHEVs and BEVs, there is some evidence that smaller-battery HEVs and PHEVs do more to

reduce the negative impacts from passenger cars per dollar spent (Michalek et al., 2011).

But even with an incentive structure that favors the most technically efficient products, mass adoption of hybrid and elec-

tric vehicles will not occur if the incentives are insufficient to induce consumers to buy them. Understanding consumer pref-

erences allows us to identify tensions between consumer preferences, government incentives, and social benefits and begin

to answer related policy questions, such as what would need to happen (e.g. changing key vehicle attributes or policy

options) to achieve mainstream adoption of hybrid and electric vehicles.

Given the size of China’s passenger vehicle market, the future of vehicle technologies globally could be tied to market

trends in China. In 2011, one in four passenger vehicles made globally were made in China (OICA, 2013). At the same time,

China is becoming an increasingly important market for many global automakers. For example, Buick, Volkswagen, and

Honda now sell 77%, 21%, and 20% of their global sales in China, respectively (LMC Automotive, 2011). As the world’s leading

automakers navigate China’s regulatory environment and the preferences of Chinese consumers during strategic planning of

vehicle platforms, the trends in China’s market have the potential to change the competitiveness of emerging technologies

worldwide (Fuchs, 2014).

1.4. Research questions

We design and field a controlled conjoint experiment in both China and the U.S., and we construct and estimate discrete

choice models to quantify preferences for different vehicle technologies and attributes. We focus our analysis on the follow-

ing key research questions:

1. How do U.S. and Chinese preferences for electrified vehicle technologies and attributes compare?

2. How would plug-in vehicles compete against their gasoline counterparts in each country without subsidies?

3. How do subsidies influence the competitiveness of plug-in vehicles vs. their gasoline counterparts?

We address question 1 by estimating consumerWTP for incremental changes in vehicle attributes based on conjoint data.

We address questions 2 and 3 via market simulations where pairs of selected plug-in vehicles and their gasoline counter-

parts compete against one another in the U.S. and Chinese markets both with and without subsidies.

2. Method

Given the limited history of plug-in vehicle sales in the U.S. and China and the complications of regional regulations, sup-

ply limitations, incentives, mandates, and non-representative early-adopter preferences, historical sales data offer limited

information about potential mainstream adoption of electrified vehicles. Stated choice methods provide an alternative

approach for understanding potential future mainstream adoption. For these reasons, we use choice-based conjoint (CBC)

analysis to measure consumer preferences. In CBC analysis, participants in a survey experiment are asked to compare several

product profiles (each defined by a set of attributes, such as price, brand, type, etc.) and choose the product they are most

likely to buy. Discrete choice models are then used to infer the relative importance of each attribute in determining con-

sumer choice (Train, 2009). Because the experiment is controlled, we avoid many of the pitfalls of using historic sales data,

such as multicolinearity, endogeneity, missing attributes, and a lack of information about consumers, the attributes they

observed, and the alternatives they considered (Feit et al., 2010; Louviere et al., 2000). However, the key disadvantage of con-

trolled conjoint experiments is the potential difference between a consumer’s choice behavior in the hypothetical survey

conditions we create vs. choice behavior in the market when real money is being spent in the point-of-purchase context.

We attempt to mitigate these sources of error by targeting new car buyers and presenting choice questions in a way that

mimics real purchase decisions (choose one among a set of concrete alternatives). For this research, we design and field

equivalent controlled survey experiments in China and the U.S. during the summer of 2012 and spring of 2013.

2.1. Literature on measuring vehicle preferences

Many previous studies have applied conjoint analysis and/or discrete choice models to examine automobile demand. Lave

and Train (1979) were the first to apply a multinomial logit model to survey data of new car buyers to examine how vehicle

attributes and consumer covariates influence choice. Boyd and Mellman (1980) extended the multinomial logit model using

the hedonic demand model, also known as the ‘‘random coefficients logit model,’’ which incorporates variation in consumer

tastes and preferences. Others further improved upon these modeling techniques by using mixed logit models, which allow

for more flexible substitution patterns (Brownstone and Train, 1999; McFadden and Train, 2000). Berry et al. (1995)
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proposed a method to deal with endogeneity, which enables regression based on market data rather than survey data. Other

model classes have also been applied, such as the multiple discrete–continuous extreme value (MDCEV) model used to

model vehicle type and use in cases where households may hold multiple vehicle types with different usage patterns

(Bhat and Sen, 2006; Shin et al., 2012).6 Over time, the literature has expanded beyond examining vehicle attributes to stress

the importance of consumer characteristics such as travel attitude, personality, lifestyle, and mobility (Choo and Mokhtarian,

2004) as well as socio-demographic factors and environmental awareness (Ziegler, 2012) as important factors that affect vehicle

type choice.

Consumer preference models have been used to study multiple topics in the automotive industry. McCarthy (1996) uses a

multinomial logit demand model on data from a 1989 nationwide household survey of new vehicle buyers to examine the

market price elasticity of demand for automobiles. Goldberg (1998) uses a discrete choice model of auto demand and a con-

tinuous model of vehicle utilization from the Consumer Expenditure Survey (1984–1990) to examine the effects of CAFE

standards on automobile sales, prices, and fuel consumption. Train and Winston (2007) employ a mixed logit demand model

to study the relation between the consumer choice behavior and market share drops of the U.S. automakers in the past

decade.

More recent studies have focused on demand for alternative-fuel vehicles (AFVs). Golob et al. (1997) use conjoint analysis

to examine fleet demand of AFVs. Others have examined AFVs by combining stated and revealed preference data using mul-

tinomial logit and mixed logit models (Brownstone et al., 2000; Axsen et al., 2009). Other methods have used interactive sur-

veys to investigate consumer awareness of and preferences towards AFVs (Axsen and Kurani, 2008).

The majority of studies examining AFVs have been focused on the United States, with only a few in other countries:

Ziegler (2012) in Germany; Dagsvik and Liu (2009) in Shanghai, China; and Axsen et al. (2009) in Canada. Comparing results

across such studies, however, is challenging because each has differences in survey designs, research objectives, and timing.

Our study enables direct comparison of Chinese and American preferences since the surveys fielded in each country were

identical in content and presentation and were fielded during relatively close time periods. Thus, the results for each country

are directly placed in a comparative context.

2.2. Survey design

In designing the choice experiment we sought to balance three study goals: (1) provide sufficient information about con-

sumer preferences, (2) match as closely as possible the survey-taker’s experience to the experience of making product

choices in the marketplace, and (3) limit the cognitive burden on the respondent. Guided by results from several preparatory

interviews and pilot surveys conducted in the spring of 2012, we designed a field experiment with three main parts: (1) a

vehicle image section, (2) a choice experiment section, and (3) questions on demographics, experience, knowledge, and atti-

tudes towards driving and electrified vehicles. To facilitate comparisons, the survey design was created to be as similar as

possible across the two countries. In addition, we also recorded information about each respondent’s previous vehicle pur-

chases as well as daily and annual vehicle miles traveled (VMT). We describe each part in turn.

2.2.1. Part 1: Vehicle image selection

Given the limited number of HEVs, PHEVs, and BEVs currently available in the market, some respondents might assume

an associated vehicle aesthetic when considering a powertrain type (e.g. visualizing a Toyota Prius when shown an alterna-

tive with an HEV powertrain). To control for potential bias from inferred vehicle aesthetics or size/class, we ask respondents

early in the survey to choose a vehicle class and select an image of a vehicle they found visually appealing. Once selected, we

hold this image fixed at the top of each choice question, informing respondents that each vehicle is exactly the same except

for differences in the attributes shown in the choice question (similar to selecting a vehicle options package). This isolates

the effect of the attributes from aesthetic or vehicle class choices.

2.2.2. Part 2: Choice experiment

The choice section of the conjoint survey consisted of one ‘‘warm-up’’ choice task and 15 choice tasks used in model esti-

mation, with three options in each choice task. We chose this design as a compromise between collecting sufficient data to

estimate heterogeneous models and avoiding excessive cognitive load.7 The ‘‘warm-up’’ choice task was always shown first

and included a clearly dominant alternative (i.e. all attributes identical across alternatives except one was cheaper and more

efficient). This warm-up was used as a screener question to identify respondents who did not understand the task or did not

take it seriously. Fig. 4 below is an example of a choice task for the U.S. survey.

Each alternative has six attributes – type, brand, purchase price, fast charging capability, fuel cost, and acceleration – each

with several levels. We chose these attributes for the following reasons: type, purchase price, fast charging capability, and

fuel cost are all necessary attributes to address our research questions, and brand and acceleration were included as critically

6 Because almost no households in China own more than one vehicle, we do not explore the MDCEV model.
7 The literature is mixed on how many questions respondents can reasonably answer. While Bradley and Daly (1994) find a fatigue effect after too many

questions, Hess et al. (2012) find the contrary: that such an effect is over-stated in related literature and perhaps non-existent. Given the lack definitive

guidance in the literature, we relied on our pilot surveys, which suggested that 15 was an acceptable number of questions while 20 garnered respondent

complaints about length.
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important attributes influencing choice (informed by pilot surveys). Vehicle range is treated not as a separate attribute but

rather as a component of the vehicle type attribute. The experiment design was fully randomized, meaning that the combi-

nation of attribute levels shown for any given alternative for any respondent was randomly selected from the set of all pos-

sible combinations.8 For vehicle type, we included conventional vehicles (CVs) and HEVs as well as PHEVs and BEVs with

varying all-electric range (AER). The AERs for the China survey were given in the km equivalent of the U.S. ranges (within 5%

difference due to rounding in the associated unit). ‘‘Brand’’ was represented using country of origin (e.g.: ‘‘Volkswagen’’ would

be ‘‘German,’’ and ‘‘Ford’’ would be ‘‘American’’) to maintain a statistically manageable number of alternatives. The ‘‘Fast Charg-

ing Capability’’ attribute was a binary attribute indicating whether or not a plug-in vehicle had the ability to charge in under

15 min (the attribute was hidden for CV and HEV powertrains). Operating cost was presented as cost per mile driven due to

the mixed fuel types of the different vehicles. The cost-equivalent fuel economy for a conventional gasoline vehicle was pro-

vided in parenthesis for reference, since it is a more familiar metric for respondents. The cost-equivalent fuel economywas com-

puted using average gasoline prices in each country ($3.60/gal in the U.S. and 7.08 RMB/L ($4.40/gal) in China) and was

presented in the most commonly used form for each country (miles/gallon in the U.S. and L/100 km in China). Finally, acceler-

ation performance was provided as the time to accelerate from 0 to 60 miles per hour in the U.S. (0–100 km per hour in China).

For each attribute we included levels that were appropriate for the country. The levels were the same across all surveys

for vehicle type, brand, and fast charging capability but were different between each country for purchase price, operating

cost, and acceleration time. We chose the levels for these attributes based on the respective sales distributions of vehicles in

the 2011 market of each country (approximately the 5th, 25th, 50th, 75th, and 95th percentile values in each case). Table 2

below summarizes the attributes and levels used in each country for the experiment. While we fielded both car and SUV

surveys, based on each respondent’s indicated preference, we discuss only results of the car surveys here because (1) we

received fewer SUV responses, particularly in China, and (2) electric vehicles are being implemented first in cars.

2.2.3. Part 3: Questions on demographics, experience, knowledge, and attitudes

The last section of the survey contained demographic questions as well as questions related to personal experience, atti-

tudes, and knowledge about driving and electrified vehicles. We use a 5-point Likert scale to rate preferences for attributes

not included in the choice section including storage space, reliability, safety, towing capacity, and outward appearance. We

used the same scale to ask about environmental attitudes. We also asked about access to parking, access to vehicle charging,

income, sex, age, household size, zip code, education level, number of children, and marital status. The full survey text is pre-

sented in the Supplemental Information.

Fig. 4. Example choice task for the U.S. (see the Supplemental Information for the equivalent example in Chinese). The attribute values (levels) in each

choice task were randomly assigned for each question and each respondent.

8 While other experimental designs may have yielded more main-effects information, we chose a randomized design that is nearly orthogonal, which allows

us to explore interaction effects between attributes and avoids confounding main effects with interaction effects (Sematech, 2006). The questions were

randomized for each respondent, which has been shown to increase efficiency for mixed logit models (Sandor and Wedel, 2005) and may compensate for any

loss in efficiency relative to a fixed main-effects design.
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2.3. Data collection

The goal of our sampling strategy was to approximate the population of new car buyers in each country rather than a

representative sample of citizens. In China, the population of new car buyers is concentrated in large urban centers, so

we conducted surveys in person in July and August 2012 using laptop computers in four major cities: Beijing, Shanghai,

Shenzhen, and Chengdu. We chose these cities for their large passenger vehicle market size, which together account for

35% of 2010 national sales in China, as well as geographic diversity (Maritz, 2010). In each city, we visited large passenger

car markets and surveyed respondents walking through the market, screening first for people who reported being in the

market for a new vehicle. In the US, the new car buying market is more diverse and not concentrated in cities, so we took

a two-pronged sampling approach. First, we sampled users from Amazon Mechanical Turk (AMT) in September 2012 with

the goal of achieving a geographically diverse sample as well as a mix of urban, suburban, and rural new car buyers. We sup-

plemented this sample with an in-person sample in February 2013 at the Pittsburgh Auto Show. Unlike some larger auto

shows, the Pittsburgh auto show features primarily mainstream vehicles rather than high-end or concept vehicles, and

the audience attracted is composed primarily of ordinary new car buyers rather than auto hobbyists or enthusiasts. We col-

lected the auto show sample primarily to have a U.S. on-the-ground comparison sample to the China sample. We also found

that we over-sampled younger, less-wealthy respondents online, so the auto show sample was able to help capture addi-

tional older and wealthier U.S. respondents.

In each country, a percentage of the respondents who completed the survey were eliminated from our analysis due to

issues with their responses including: (1) completing the survey in under 6 min, the approximate minimum time for com-

pleting the survey without randomly answering the choice questions,9 or (2) failing to choose the dominant choice in the

example question which was fixed for each respondent, indicating that the respondent either misunderstood the task or did

not pay close attention to the choice question. All respondents in both countries were screened to have had purchased a car

within the last year or have intentions of purchasing a car within the next two years. In both countries respondents filled

out computer-based surveys that were equivalent in content and in presentation except for language (English in the U.S., Man-

darin Chinese in China) and the values of the attribute levels. The translation of the original English survey into Mandarin was

performed by one translator and was subsequently back-translated into English by another translator to assess the translation

and ensure equivalent language and descriptions in both surveys. Disputes in translation were resolved by discussion with both

translators and within the author team.

In the U.S. we collected 312 respondents online and 103 at the Pittsburgh auto show for a total of 415. We discarded 29

online and 2 at the auto show (7.5% of total) based on screening criteria for a total sample size of 384. In China we collected

667 respondents across the four cities and discarded 95 (14%) based on screening criteria for a total of 572 qualified respon-

dents. Of these, we then discarded all remaining data collected in Beijing (124 respondents) since those data appear to

include many random responses. The problems with the Beijing data may have been driven by a number of influences. First,

Beijing was the only city for which the surveys were fielded outside in the sun on hot summer days, making it uncomfortable

and difficult to take the survey. Second, Beijing was the only city for which the authors were unable to be present to ensure

the survey was correctly set up and administered. If we include the Beijing data, we find that all effects in China remain com-

parable, but just larger in magnitude. With the Beijing data removed, our China sample was 448. About two-thirds of the

respondents in all four Chinese cities were first-time vehicle buyers, vs. only approximately 4% in the U.S. (see Table 3).

We compared the age and income distributions of our U.S. and China samples to those of a much larger, representative

new car buyer survey obtained from Ford Motor Company and found that we oversampled younger, less wealthy individuals

in both countries, with particularly strong oversampling of this population in the U.S. To account for these differences, we

weighted the respondents using least squares optimization to match the age and income cumulative distribution functions

from our survey to those from the larger survey as closely as possible subject to lower and upper bounds on the weights to

avoid placing too much weight on any one respondent. Details of the procedure and a comparison of the resulting distribu-

tions are provided in the Supplemental Information.

Table 2

Attributes and levels used in U.S. & China choice experiments.

Attributes Levels

U.S. China

Purchase price 15/18/24/32/50 ($USD, 1000s) 60/90/130/170/250 (¥CNY, 1000s)

Operating cost 6/9/12/19 (¢/mi.) 34/42/49/61 ( /km)

Acceleration time 5.5/7/8.5/10 (0–60 mi/h, sec) 9/11/13/15 (0–100 km/h, sec)

Vehicle type with AER CV/HEV/PHEV10/PHEV20 /PHEV40/BEV75/BEV100/BEV150

(AER in mi)

CV/HEV/PHEV15/PHEV30 /PHEV60/BEV120/BEV160/BEV240

(AER in km)

Brand German/American/Japanese/Chinese/S. Korean

Fast charging capability Available/not available (applicable for PEVs only)

9 Pilot studies informed expected survey completion times.
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2.4. Model specification

Using a random utility model, we assume each consumer i on each choice occasion (each conjoint question) t will select

among a set of alternative j 2 Jit the one that offers the greatest utility uijt:

uijt ¼ v ij þ eijt ; j 2 Jit ð1Þ

Here, utility is decomposed into an observable component v ij and an unobservable component eijt . The observable compo-

nent v ij is a function of the observable attributes of the product xj, so that v ij ¼ f iðxjÞ. The unobservable component eijt , which

captures the factors not included in v ij, is treated as a random variable. Utility uijt is therefore a random variable, and the

probability that consumer i will select product j on choice occasion t is the probability that uijt > uikt8k 2 Jit n j.

The observable component v ij is often presumed to be linear, so that v ij ¼ b0ixj, where bi is a vector of coefficients that

define the relative importance of the product attributes xj in driving choice. The linear assumption on v ij results in what

is known as a ‘‘preference space’’ model, where the estimated coefficients for bi are measured in units of utility. For this

study, we use a ‘‘willingness-to-pay (WTP) space’’ model for which the coefficients are in units of dollars – a more intuitive

unit of comparison. This specification takes the form of v ij ¼ aiðpj þ c0
ixjÞ, where ai is the estimated coefficient for price, pj is

the price attribute, xj is the vector of all other attributes, and ci is the vector of WTP coefficients, which could equivalently be

represented as bi=ai (Train and Weeks, 2005).10

We employ variants of the logit model (one of the most widely adopted choice models), which assume that the unobserv-

able utility eijt has an independent and identically distributed extreme value distribution, yielding a closed-form expression

for choice probabilities given by

Pijt ¼
ev ij

P
k2Jit

ev ik
ð2Þ

In order to relax some limiting assumptions from the basic logit model (e.g. the independence from irrelevant alternatives

(IIA) property (Train, 2009)), we also apply a random coefficients mixed logit model (McFadden and Train, 2000) in the WTP

space, which allows for heterogeneity of preferences across the population and more general substitution patterns. While

the basic logit model effectively assumes ci ¼ c8i and captures variation in WTP across individuals only in the error term

eijt , the mixed logit model instead assumes that the ci coefficients are drawn from a parametric distribution.11 Following con-

vention, we assume each element cij of the vector ci is drawn from an independent normal distribution, where cij � Nðli;r
2
i Þ.

We assume a fixed (non-random) ai coefficient for all mixed logit models. While WTP could also be computed from a preference

space mixed logit model post hoc, Train and Weeks (2005) show that such estimates have unreasonably large variance in com-

parison to those from a WTP space model.

Eq. (3) below shows the explicit model used for this study, with explanations of variable names shown in Table 4. Param-

eters are estimated through maximum likelihood estimation. It is important to note that because v ij is nonlinear in param-

eters in theWTP space, multiple local maxima could exist, so we use a randomizedmultistart algorithm to search for a global

solution. The full estimation procedure is described in the Supplemental Information.

Table 3

Summary of sample demographic information in our survey, our weighted results, and the reference survey. Standard deviation is shown in parentheses.

U.S. China

Our sample Weighted sample Reference sample Our sample Weighted sample Reference sample

Household income 57.3 (29.3) 74.3 (28.7) 74.8 (27.3) 24.1 (15.7) 26.1 (18) 26.1 (17.6)

Age 33.9 (12.7) 51 (14.8) 53.1 (15.4) 33.3 (10.6) 34.8 (7.8) 35.1 (7.8)

Number of children 0.6 (1.1) 1.4 (1.4) 0.4 (0.8) 0.6 (0.6) 0.7 (0.6) 0.7 (0.6)

Number of vehicles 1.8 (0.8) 2 (0.7) – 0.4 (0.6) 0.5 (0.7) –

Daily VMT 22.9 (10.4) 23.3 (11.4) – – – –

Annual VMT 11,200 (4800) 12,461 (4628) 11,386 (6377) – – 10,609 (5995)

Household size 2.7 (1.3) 2.7 (1.2) 2.5 (1.2) 3.3 (1.1) 3.3 (1.2) 3.2 (1)

Years education 7.2 (1.9) 7.9 (2.3) 7.2 (2.3) 5.9 (1.9) 6 (1.8) 5.9 (2)

Percent female 35.3% 32.6% 39.3% 39.4% 41.1% 28.7%

Percent married 44.6% 68.9% 73.5% 55.1% 70.2% 85.6%

Percent with no children 72.1% 40.3% 75.0% 52.2% 36.5% 36.4%

Percent college graduates 52.3% 71.2% 53.7% 30.6% 33.1% 34.4%

Percent first time buyers 4.4% 1.3% – 65.4% 59.2% –

n 384 384 161,903 448 448 13,469

10 For comparison, we also estimate equivalent models in the preference space. Results are shown in the Supplemental Information.
11 Models that include interactions with consumer covariates can also capture variation of preferences across consumers.
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Price : v j ¼ ajpjþ

Type : aj½c1x
HEV
j þ c2x

PHEV10
j þ c3x

PHEV20
j þ c4x

PHEV40
j þ

c5x
BEV75
j þ c6x

BEV100
j þ c7x

BEV150
j þ

Fast Charging Capability : c8ðx
PHEV10
j þ xPHEV20

j þ xPHEV40j ÞxFASTCHARGEj

c9ðx
BEV75
j þ xBEV100j þ xBEV150j ÞxFASTCHARGEj þ

Performance : c10x
OPCOST
j þ c11x

ACCEL
j þ

Brand : c12x
AMERICAN
j þ c13x

JAPANESE
j þ c14x

CHINESE
j þ c15x

S KOREAN
j �þ

Error : enj

ð3Þ

3. Results

Using the model from Eq. (3), we investigate model fit between multinomial logit (MNL) and mixed logit (MXL) models,

interpret the model coefficients, and examine the influence of consumer demographic, experience, and attitude information

on preferences. We estimate each model for China and the U.S. separately, and because the estimates are in the WTP space

they can be directly compared without worry over difference in error scale. Each model is estimated using the data from all

respondents from each respective country excluding the Beijing sample and invalid responses. In model 1, we fit a MNL

model with fixed coefficients for all covariates as in Eq. (3). In model 2, we fit a MXL model with a fixed price parameter

and all other coefficients modeled as independently normally distributed (so the estimated parameters are the mean and

variance of the distribution for each coefficient). In each model we weight the sample to match income and age distributions

from the new car buyer reference sample (un-weighted model coefficients are provided in the Supplemental Information).

The estimates from models 1 and 2 for the U.S. and China are presented in Table 5.12 We present the coefficients as l and r,

referring to the parameters of the assumed distribution on ci (e.g. cin � Nðln;r
2
nÞ). For the MNL models, c ¼ l and r ¼ 0.

Comparing fit across the models, the log-likelihood increases when moving from a fixed coefficient MNL model (model 1)

to a MXL model with random coefficients (model 2), indicating a better fit to the data (as is expected since the MXL models

have more parameters). The Akaike information criterion (AIC) also decreases, suggesting the MXL models do not over-fit the

data compared to the MNL models. Another metric for comparing model fit is the McFadden’s R-squared (MR2), which is a

measure of how much better the estimated model fits the data compared to the null model with all parameters set to zero

(the adjusted MR2 adjusts for the number of model parameters). For both countries, the MR2 values of the MXL models are

better than those of the MNL models, further suggesting that the MXL models better fit the data compared to the MNL

models.

Going forward, we focus on predictions based on model 2 because in addition to having the better log-likelihood values

and AIC, they also avoid the IIA assumption inherent in the MNL models and capture some level of preference heterogeneity

in the samples. While we discuss in depth the results from model 2, the following observations can be made across all

models:

1. Both U.S. and Chinese consumers dislike BEV75 and BEV100 options relative to alternatives and prefer lower price, oper-

ating cost, and acceleration time as well as fast-charging capabilities for both PHEVs and BEVs.13

Table 4

Description of model variables.

Variable Description

pj Price paid in thousands of US dollars

xHEV
j Dummy for HEV vehicle type {1: yes, 0: no} (base level is CV)

xPHEV#
j Dummy for PHEV vehicle type with AER of # miles {1: yes, 0: no} (base level is CV)a

xBEV#j Dummy for BEV vehicle type with AER of # miles {1: yes, 0: no} (base level is CV)a

xFASTCHARGE
j Dummy for whether a vehicle can be rapidly charged in less than 15 min {1: yes, 0: no}

xOPCOSTj Operating cost in US cents per mile

xACCELj Time required to accelerate from 0 to 60 mph or 0 to 100 km/h (seconds)

xAMERICAN
j Dummy for brand of American origin {1: yes, 0: no} (base level is German)

xJAPANESEj Dummy for brand of Japanese origin {1: yes, 0: no} (base level is German)

xCHINESE
j Dummy for brand of Chinese origin {1: yes, 0: no} (base level is German)

xSKOREANj Dummy for brand of S. Korean origin {1: yes, 0: no} (base level is German)

a The electric range is shown in miles, though the Chinese survey was in km (see Table 2). We model everything in U.S. units for comparability.

12 For comparison, we also run the equivalent models 1 and 2 in the preference space. Coefficients are shown in the Supplemental Information.
13 Preference for fast charging capability for BEVs is not significant in the US.
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2. Compared to Chinese consumers, U.S. consumers have substantially more disutility for BEV powertrains and are less sen-

sitive to acceleration, operating cost, and fast-charging capabilities for both PHEVs and BEVs.

3. Brand is an important factor for both American and Chinese consumers. Americans have stronger preferences for Amer-

ican, German, and Japanese brands and against Chinese and S. Korean brands, while Chinese consumers have stronger

preferences for German brands and against Japanese and South Korean brands.

In addition to models 1 and 2, we also estimate several MNL models (models 3–8) where we interact vehicle attributes

(vehicle type, price, and operating cost) with respondent characteristics to examine differences in preferences for different

groups of individuals. We run these models in the preference space with the linear observable utility function v ij ¼ b0ixj

because it is easier to separate out groups by their characteristics in this framework. Model 3 is the base case with no

respondent interactions. Models 4 – 6 interact the demographic variables income, age, and all other demographic variables,

respectively; we separate out income and age from all others to avoid multicolinearity in the models. Model 7 interacts

respondent covariates that deal with their past driving experience, and model 8 interacts attitude covariates about envi-

ronmental friendliness and social status. All model estimates for the U.S. and China are shown in the Supplemental

Information.

Broadly, we find that U.S. respondents are less sensitive to price and operating cost if they are older, have higher incomes,

have higher education, own more vehicles, and have children. Higher income respondents are also more opposed to any

Table 5

Regression Coefficient for weighted U.S. and China models in the WTP space.

Attribute Coef. Model 1: MNL Model 2: MXL

U.S. China U.S. China

Price l 0.052 (0.002)*** 0.033 (0.002)*** 0.066 (0.003)*** 0.039 (0.002)***

Powertrain type (base = CV)

HEV l �1.176 (1.611) 4.882 (1.917) �0.418 (1.585) 4.962 (1.992)

r – – 0.188 (4.664) 19.403 (7.723)

PHEV10 l 0.027 (1.782) �1.291 (2.069) 0.822 (1.796) �1.748 (2.098)

r – – 2.197 (5.428) 6.055 (8.872)

PHEV20 l 1.695 (1.751) �1.242 (2.031) 3.207 (1.734) �2.245 (2.074)

r – – 8.664 (5.719) 4.041 (6.792)

PHEV40 l 2.650 (1.774) 0.930 (2.023) 3.304 (1.741) 0.380 (2.039)

r – – 7.141 (5.466) 9.108 (6.179)

BEV75 l �20.137 (1.978)*** �6.032 (2.088)*** �18.453 (1.934)*** �7.627 (2.365)***

r – – 4.175 (6.232) 29.843 (7.417)***

BEV100 l �19.496 (1.984)*** �8.151 (2.144)*** �18.947 (1.965)*** �10.377 (2.286)***

r – – 1.898 (5.368) 8.600 (7.340)

BEV150 l �13.691 (1.959)*** 1.305 (2.050) �12.727 (1.959)*** 0.616 (2.075)

r – – 10.486 (6.061) 6.973 (6.406)

Brand (base = German)

American l 8.188 (1.289)*** �10.574 (1.560)*** 7.432 (1.268)*** �7.612 (1.687)***

r – – 0.665 (3.439) 19.299 (5.866)***

Japanese l 0.934 (1.289) �18.098 (1.689)*** �0.577 (1.289) �15.169 (1.790)***

r – – 11.765 (3.508)*** 23.666 (5.941)***

Chinese l �19.008 (1.550)*** �9.674 (1.509)*** �19.848 (1.666)*** �6.049 (1.691)***

r – – 8.078 (4.173) 34.541 (6.544)***

S. Korean l �9.510 (1.398)*** �19.361 (1.725)*** �10.412 (1.378)*** �17.774 (2.124)***

r – – 12.335 (3.850)*** 54.771 (6.171)***

Cost and performance

PHEV fast-charge l 3.944 (1.330)*** 7.615 (1.565)*** 3.331 (1.335) 7.567 (1.653)***

r – – 8.882 (4.396) 20.119 (5.449)***

BEV fast-charge l 3.343 (1.478) 6.662 (1.599)*** 0.030 (1.821) 6.428 (1.668)***

r – – 26.237 (3.871)*** 11.567 (5.360)

Operating cost l �1.598 (0.106)*** �3.214 (0.242)*** �1.626 (0.104)*** �3.467 (0.267)***

r – – 0.076 (0.247) 3.275 (0.968)***

Acceleration time l �1.172 (0.255)*** �4.651 (0.299)*** �1.269 (0.293)*** �4.878 (0.319)***

r – – 5.766 (0.880)*** 3.359 (0.949)***

LL: �3425.6 �6788.8 �3373.1 �6720.9

Null model LL: �4360.5 �7487.3 �4360.6 �7487.3

AIC: 6883.3 13609.6 6808.3 13503.8

McFadden R2: 0.21 0.09 0.23 0.10

Adj. McFadden R2: 0.21 0.09 0.22 0.10

Num. of Obs: 5760 6720 5760 6720

Standard errors of estimates are presented in parenthesis. Coefficient units are USD $1000. * 60.05. ** 60.01. *** 60.001.
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electrified vehicle technology (HEV, PHEV, or BEV, regardless of range) compared to lower income buyers. The effect on elec-

trified technologies is so strong that after accounting for income differences the lower income group has a positive effect for

HEV and PHEV technologies relative to CVs, ceteris paribus.14 Because electrified vehicles typically have higher prices relative

to other available conventional gasoline vehicles, these results suggest that the barriers to their adoption in the U.S. may be

compounded by demographics. Those who can more easily afford an electrified vehicle are more opposed to them, and those

who prefer them have lower incomes and may not be able to afford them.

In contrast to U.S. respondents, Chinese respondents who have higher incomes and higher education aremore sensitive to

operating cost, and those with larger households are less sensitive to price. While perhaps counterintuitive, it is important to

note that operating cost and price are different types of costs. Some car buyers be more sensitive to operating cost to save

money but less to price because expensive cars are an important status symbol in Chinese culture. We also find no statis-

tically significant income or age effects with vehicle technology. These results suggest that the higher income buyers who

may be more able to afford electrified vehicles may also more highly value their operating cost savings, potentially further

increasing their attractiveness. Finally, Chinese respondents with multiple vehicles and those who have access to home

charging have statistically significantly positive effects for BEV technology, indicating that charging availability could be

an important factor in preference towards pure-electric BEVs.

As might be expected, respondents in both countries who ranked appearing environmentally friendly as important have

statistically significantly positive effects for all electrified vehicle technologies relative to conventional gasoline vehicles. For

these respondents, they may be willing to pay a positive premium for an HEV, PHEV, or BEV in order to appear more envi-

ronmentally friendly. Attitude towards being environmentally friendly is among the strongest factors correlated with pref-

erence towards any electrified vehicle type in both countries. However, U.S. and Chinese respondents differ on how they

view electrified vehicles in terms of social status. U.S. respondents who rated their vehicle as being an important status sym-

bol have statistically significantly positive effects for PHEVs and BEVs whereas Chinese respondents show the opposite effect.

These results suggest that electrified vehicles may be viewed as a high-status symbol to U.S. car buyers but not so to Chinese

car buyers.

4. Analysis

We use the estimated coefficients from model 2 to answer the primary research questions posed in the introduction.

Q1: How do U.S. and Chinese preferences for electrified vehicle technologies and attributes compare?

Since the coefficients from our models are in the WTP space, we can directly interpret the model coefficients as the

amount respondents are willing to pay for incremental changes in each vehicle attribute independently of the other attri-

butes. For example, when examining vehicle type we are comparing a difference in WTP for two vehicles that are identical

in every way except for powertrain type (e.g. a CV vs. a HEV, with identical fuel economy, styling, operating cost, price, etc.).

The only coefficient that cannot be so readily interpreted is the price coefficient, which is not a WTP estimate but rather an

estimated constant that converts dollars to units of utility. It can equivalently be thought of as consumer sensitivity to price

relative to the error term, with a larger coefficient signifying greater price sensitivity (more consistent choices). Past research

has shown that respondent choices on hypothetical conjoint questions for high cost durables can be less sensitive to price

relative to other attributes than when choices are made with real money in the marketplace (Feit et al., 2010), so we expect

our estimates of willingness-to-pay may potentially be inflated. Fig. 5 below summarizes the mean WTP for each vehicle

attribute in our survey. The error bars represent uncertainty in the mean.

U.S. respondent expected average WTP for BEV technology is $10,000–$20,000 lower than CV, depending on

range – larger than what can be gained in fuel cost savings even if vehicle purchase prices were comparable. And fast

charging capability does little to mitigate the drop in WTP. In contrast, expected average Chinese consumer WTP for BEV

technology ranges from �$0 to $10,000 lower than CVs, depending on range, with fast charging capability increasing

expected average WTP by $6400. We also find a large and significant WTP heterogeneity for the lower range BEV75

in China (standard deviation of $19,000), which becomes substantially smaller with increased range (standard deviation

of $7000 for a BEV150). Such large standard deviations could suggest bimodal preferences. Average WTP for other vehicle

technologies are not statistically significantly different from CV in either country, although the expected value of WTP

for HEVs is higher in China (�$5000), and expected WTP for PHEVs is higher in the US (�$3200–3300 for PHEV20

and PHEV40).

Parameters for operating cost and acceleration time are both significant and robust to model specification, with consis-

tent signs and orders of magnitude across all models. On average, Chinese respondents are willing to pay nearly double the

premiums U.S. respondents are willing to pay for a decrease in operating costs ($3000 and $1600 per $0.01/mile-reduced,

respectively), and Chinese respondents are willing to pay nearly three times what U.S. respondents are for a decrease in

the 0 to 60 mph acceleration time ($5000 and $1200 per 1 s decrease, respectively), likely in part due to vehicles in the

14 Because a majority of the higher income buyers in our sample are from the Pittsburgh Auto Show, this effect may only be local to car buyers near

Pittsburgh.
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Chinese market having substantially lower acceleration capabilities than those in the U.S. market. These results hold across

all models.

Finally, all brand effects are significant with large magnitudes and large, statistically significant differences between the

two countries. The brand ranking from most preferred to least preferred, ceteris paribus, for the U.S. is: American, Japanese,

German, S. Korean, and Chinese. For China the brand ranking is: German, Chinese, American, Japanese, and S. Korean. We

estimate that on average Chinese respondents are willing to pay as much as $18,000 and U.S. respondents as much as

$27,000 to move from equivalent vehicles of the least preferred to the most preferred brands. We find large standard devi-

ations in WTP for brand in both countries, suggesting large heterogeneity in brand preference (as may be expected for pas-

senger vehicles).

Since these results are a comparison of WTP, it is important to note the differences in purchasing power between the two

countries. While the average U.S. citizen has a much higher purchasing power than that of the average Chinese citizen, this

difference is less extreme between the car-buying populations in each country. Furthermore, the prices shown to survey

respondents in each country reflect actual vehicle prices from each respective country. Nonetheless, an equal WTP value

in each country may reflect different proportions of an individual consumer’s income across the two countries.

Q2: How would plug-in vehicles compete against their gasoline counterparts in each country without subsidies?

Fig. 5. Mean willingness-to-pay to change each vehicle attribute independently of other attributes in China and the U.S. (Model 2). WTP for vehicle

technology indicates preference for the technology alone, independent of any expected influence of that technology on operation cost, performance, or

other attributes. Error bars show a 95% confidence interval for the estimated population mean.
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Consumer willingness to adopt plug-in vehicles will depend on the mix of attributes manufacturers are able to offer in a

single vehicle (technology type, range, acceleration, operation cost, price, etc.) – not just the vehicle type. To examine the

implications of the model coefficients for consumer WTP towards combinations of attributes offered in today’s plug-in vehi-

cles, we use model 2 to simulate choice among select plug-in vehicles currently available and their gasoline counterparts.

Each simulation is a pairwise comparison of a plug-in vehicle vs. its gasoline counterpart as if they were the only two vehi-

cles available for all car buyers. The conjoint model is not appropriate for making full market forecasts among all vehicles in

the marketplace because key attributes that vary across vehicles in the marketplace and drive consumer choice (such as aes-

thetics, size, etc.) were held constant in the conjoint study. However, the model can be applied to compare vehicles that have

identical bodies and differ only in powertrain characteristics captured by the conjoint attributes. Future work may consider

joint models using stated and revealed preference data to simulate the entire market (Axsen et al., 2009; Hensher et al.,

1999). We run each simulation using 2012 vehicle attributes (as this is the year our data was collected) in different subsidy

environments. The attribute values used are listed in the Supplemental Information. Fig. 6 summarizes the simulation results

for no subsidy.

We chose vehicles for which the body and general appearance are similar between different vehicle types (such as the

Ford Focus CV and Ford Focus BEV76 (modeled as a BEV75), since this mimics how our survey was presented, and since choice

models can predict share when all attributes excluded from the model (including aesthetics) are identical across vehicle

alternatives or have a negligible effect on choice. It is important to note that these share estimates reflect the expected out-

come if every survey respondent selects one vehicle from the two vehicle options available in each case. Since the set of con-

sumers who would consider the two vehicle models in practice is not a random subset of the respondents – and for other

reasons such as limited availability of different vehicle models, advertising, incentives, etc. – observed share in the market-

place will differ. Most of these vehicles are not yet available for sale in China and are only available in relatively small num-

bers in the U.S. In addition, early adopters are driving current plug-in vehicle sales; since our sample is of mainstream car

buyers, these simulations allow us to examine larger, mainstream preferences for these technologies.

We make comparisons between six pairs of plug-in and gasoline vehicles: two comparing PHEVs to HEVs, two comparing

PHEVs to CVs, and two comparing BEVs to CVs. Without any subsidies, we find that the HEVs are preferred to the PHEVs in

both countries. The CVs are also preferred over their PHEV counterparts in both countries to an even larger degree than the

HEVs. The only result with a significant difference between the U.S. and China is for the BEV simulations. We find that BEVs

compete poorly against their CV counterparts in the U.S. but compete substantially better in China, reaching approximately

20% share of choices without subsidies, similar to how the PHEVs compete against their CV counterparts.

Q3: How do subsidies influence the competitiveness of plug-in vehicles vs. their gasoline counterparts?

To examine how federal subsidies might influence plug-in vehicle competitiveness, we run simulations of the same pairs

of plug-in and gasoline vehicles under varying subsidy environments, scaling from $0 to $20,000 per vehicle. Today’s

national subsidies are summarized in the Supplemental Information. In both the U.S. and in China subsidies vary with bat-

tery capacity, providing lower subsidies for small-battery low-range PHEVs and larger subsidies for larger-battery longer-

range PHEVs and BEVs. Our sensitivity study covers roughly twice the range of national subsidies observed today. We treat

subsidies as though they only affect the price observed by the consumer, although in practice consumer knowledge that a

vehicle is being subsidized may influence consumer adoption in other ways for which we lack data, and subsidies in the form

of tax breaks may not be realized at full value for all consumers and/or valued on a dollar-per-dollar basis by all consumers.

We plot the results of the plug-in vehicle share of choices vs. the subsidy in Fig. 7. The shaded region represents a 95% con-

fidence interval based on uncertainty in the parameters and was calculated using 10,000 simulated draws from the model

described in Eq. (3).

Results suggest that share of BEVs is higher in China than the U.S. and that share of low-range PHEVs is likely higher in the

U.S. than in China whenever the two countries have comparable subsidies. Results are inconclusive for the mid-range PHEV

cases as shares are similar between the two countries for the BYD case but higher in China for the Chevrolet case (likely a

Fig. 6. Predicted share of respondent choices for select plug-in vehicles and their gasoline counterparts in 2012 vehicle attributes. Vehicle attributes used in

these simulations are in detailed in the Supplemental Information.
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result of high price of the Volt relative to the Cruze Eco). To achieve a 50% share of plug-in vehicles vs. their gasoline coun-

terparts (indicating no net preference for one over the other in the population), the low-range PHEVs would require a U.S.

subsidy of about $9000 and a Chinese subsidy of $18,000 or more. In contrast, the larger battery PHEVs and BEVs would

require subsidies exceeding $20,000 in both countries to achieve a 50% share of choices. Under current subsidies, low-range

PHEVs could achieve a 41–44% share in the U.S. and a 32–36% share in China vs. their respective gasoline counterparts, while

larger-battery PHEVs could achieve only a 25–33% share in the U.S. and a 26–35% share in China vs. their respective gasoline

counterparts. In contrast, the current subsidies for BEVs have substantially different impacts on share between China and the

U.S., achieving a 24–25% share in China while only a 7–12% share in the U.S. vs. their respective gasoline counterparts.

5. Limitations

Both the U.S. and China have a range of policies in addition to federal subsidies that influence adoption of electrified vehi-

cles. For example, in the U.S., state level subsidies for plug-in vehicles as high as $7500 per vehicle are added to federal sub-

sidies (U.S. DOE, 2013a); state mandates like California’s zero-emission vehicle (ZEV) program force automakers to sell

specific technologies, such as electrified vehicles – often at a loss (Collantes and Sperling, 2008); perks like high-occupancy

vehicle (HOV) lane access for plug-in vehicles hold high value for some consumers (Dubin et al., 2011); and government fleet

Fig. 7. Simulated share of respondent choices for select plug-in vehicles and their gasoline counterparts, illustrating how share changes with increasing

plug-in vehicle subsidies. The vertical lines indicate the current plug-in vehicle subsidy in each country.
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purchases influence sales. In Beijing, BEV buyers are exempt from going through the city’s lottery system to obtain a license

plate (only one out of 77 applicants were awarded plates in February, 2013), and local subsidies reach a maximum of

¥120,000 RMB (�$19,600 USD) (Xinhua, 2013). For tractability, we do not attempt to assess the effect of local and non-

monetary policies in driving adoption.

Additionally, while our choice-based conjoint study was designed to mitigate bias, consumer decisions in practice may

deviate from reported choices in a hypothetical survey environment. As previously noted, it has been observed that respon-

dent choices on hypothetical conjoint questions for high cost durables can be less sensitive to price than choices made with

real money in the marketplace (Feit et al., 2010), so we expect estimates of WTP to potentially be somewhat inflated. Further,

we use point estimates for fuel economy, gas price, and vehicle price that, in practice, may vary from consumer to consumer

(e.g.: city vs. highway driving (Karabasoglu and Michalek, 2013), gas price regional or temporal fluctuations, and vehicle pur-

chase transaction prices via dealer negotiation and financing).

More generally, research has shown that consumer choice often does not follow neoclassical economic assumptions of

utility maximization – especially when consumer learning about new technologies is involved. For example, Turrentine

and Kurani (2007) provide a useful critique of the utility maximization framework for vehicle fuel economy and offer alter-

native approaches rooted in anthropological study. In a study of semi-structured interviews of 57 households in California,

they found that consumer decisions about fuel economy were more heavily influenced by emotion rather than analysis and

that car buyers do not think about fuel economy in terms of payback periods, willingness-to-pay, or other constructs based

on the assumption of economic rationality (Turrentine and Kurani, 2007). Furthermore, similar research has shown that

sometimes buyers of HEVs make functional compromises in order to gain the symbolic benefits associated with driving a

vehicle that is viewed as more environmentally friendly Heffner et al., 2005). Other research has shown that these effects

can be further magnified through a ‘‘neighbor effect,’’ where ‘‘a new technology becomes more desirable as its adoption

becomes more widespread in the market’’ (Axsen et al., 2009). In China, where owning a vehicle is such a strong social status

symbol, such effects could be even more influential in driving consumer choice.

It is difficult to separate consumer responses on our survey from the current social and policy environments, which may

influence perception of and preferences for electrified vehicles. Further, future vehicles, both conventional and electrified,

will have different attributes and prices from today’s vehicles. In comparing currently available plug-in vehicles to their cur-

rent gasoline counterparts, we do not aim to predict current market behavior, especially since current adoption trends are

driven by early adopters (Santini and Vyas, 2005), and our samples are of mainstream consumers. Our share simulations are

based on the situation where all consumers consider only the plug-in vehicle vs. its gasoline counterpart. In addition, factors

other than consumer preferences play a major role in influencing adoption, including policies such as California’s ZEV policy

(increasing Nissan Leaf sales in California (Collantes and Sperling, 2008)), and supply constraints. China in particular faces

large supply constraints, with currently no commercially available BEVs for sale to private owners, and only a small set of

HEV models available.

Finally, While our consumer preference results suggest potential for greater BEV adoption in China based on consumer

preferences, other factors such as Chinese policies requiring joint venture automotive firms for foreign automakers, intellec-

tual property rights protection in China, firm experience with each technology, and consumer access to off-street parking

and authorization for charger installation (Traut et al., 2013) complicate future adoption patterns.

6. Conclusions and discussion

Vehicle electrification is one particularly promising option to reduce world wide air emissions and oil consumption,

given a sufficiently clean electricity grid. Different vehicle electrification technologies have difference consequences for

air emissions (and thus human health) and oil consumption (and thus national security): HEVs reduce gasoline con-

sumption, PHEVs use grid electricity to displace additional gasoline, and BEVs displace gasoline entirely. Air emissions

implications for plug-in vehicles (PHEVs and BEVs) depend on battery manufacturing and the mix of sources used to

generate electricity.

Vehicle technology adoption in China and the United States is influenced by consumer preferences and public policy.

We model consumer preferences for conventional, hybrid electric, plug-in hybrid electric, and battery electric vehicle

technologies in China and the U.S. using data from choice-based conjoint surveys fielded in both countries. Results sug-

gest that the expected average U.S. consumer WTP for BEV technology is $10,000–$20,000 lower than equivalent con-

ventional technology (depending on range, fast charging availability, and model specification) ceteris paribus (given

the same body, brand, performance, and operating cost). In contrast, average Chinese consumer WTP for BEV technology

is within $10,000 of equivalent conventional vehicles and in some cases (e.g.: with sufficient range and fast charging

capability) is larger.

To understand competitiveness of the combined bundle of attributes realized with today’s technology, we apply WTP for

vehicle type, price, brand, operating cost, and acceleration to attributes of plug-in vehicles available today and their gasoline

counterparts. We find that in China, BEVs and mid-range PHEVs both compete comparably with their respective gasoline

counterparts, while in the U.S., mid-range PHEVs compete more strongly than BEVs against their respective gasoline coun-

terparts. Low-range PHEVs compete most strongly against their gasoline counterparts in both countries. These patterns hold

in both countries with or without the 2012–2013 national subsidies, which favor large-battery PHEVs and BEVs over low-

range PHEVs in both countries. Further, these patterns hold in both countries even if all subsidies were doubled.
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Overall, our results suggest that Chinese respondents are more receptive to BEVs than American respondents regardless of

subsidies. The Chinese car market has several key distinctions that might support BEV adoption. First, approximately two-

thirds of Chinese car buyers are first-time buyers who typically have less experience with both gasoline and plug-in vehicle

technology and who may not have established expectations for the ability to take long trips. In addition, many Chinese con-

sumers have experience with electric bicycles, so the culture of plugging in a vehicle and driving short distances is well

established. Furthermore, China has a major intercity train system, providing inexpensive and reliable travel between cities.

This alternative allows consumers to mode shift to trains during longer trips, an alternative less accessible in the U.S. These

preferences, which support the adoption of BEVs, have clear national security benefits for China.

While our consumer preference estimates point to greater potential for mainstream adoption of BEVs in China than the

U.S., the electricity grid in China is more emissions-intensive than that of the U.S., and a shift to BEVs might result in

increased air pollution and/or GHG emissions, depending on the emissions intensity of the vehicles displaced, marginal grid

emissions factors in the regions where EVs are adopted, and driving patterns. In contrast, today’s hybrids, which reduce oil

consumption and emissions, have higher near term adoption potential in both countries and may therefore offer more total

emissions and oil displacement benefits in the near term, given today’s electricity grid, technology attributes, and consumer

preferences.

Given that China is now the largest consumer and producer of automobiles worldwide, the trends in China’s market and

the strategies of automakers and government in China have the potential to change the economic incentives for emerging

technology development worldwide. Even though EV adoption in China might increase local emissions, global emissions

from automobiles could nevertheless plausibly decrease as a result of increased development and adoption of EV technology

worldwide.
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