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Abstract— In this paper we investigate data-driven predictive
control of discrete-time linear descriptor systems. Specifically,
we give a tailored variant of Willems’ fundamental lemma,
which shows that for descriptor systems the non-parametric
modelling via a Hankel matrix requires less data compared
to linear time-invariant systems without algebraic constraints.
Moreover, we use this description to propose a data-driven
framework for optimal control and predictive control of
discrete-time linear descriptor systems. For the latter, we
provide a sufficient stability condition for receding-horizon
control before we illustrate our findings with an example.

Index Terms— Data-driven control, descriptor systems, dis-
crete time, Hankel matrix, MPC, Willems’ fundamental lemma,
predictive control, non-parametric system description, optimal
control

I. INTRODUCTION

Recently, data-driven control—and in particular Willems’
fundamental lemma [1]—is subject to substantial research
interest. This includes non-parametric system representa-
tions for deterministic discrete-time linear time-invariant
(LTI) systems [2] and linear parameter-varying (LPV) sys-
tems [3], stochastic LTI systems [4], as well as extensions to
polynomial and non-polynomial nonlinear systems [5], [6].
These non-parametric representations enable system identi-
fication [7], control design [8], and also the implementation
of predictive control [9], [10].

In the context of modelling of dynamical systems,
continuous-time and discrete-time descriptor systems are of
tremendous relevance in applications [11]. However, system-
theoretic analysis as well as controller design for such sys-
tems face several challenges which range from existence of
solutions [12], stability and controllability [13], to feedback
design [14], [15]. In the context of model predictive control
(MPC), early works on descriptor systems include [16]–
[18], while more recent results can be found in [19], [20].
However, to the best of the authors’ knowledge, only little
has been done in terms of data-driven analysis and control
of discrete-time descriptor systems. One of the few excep-
tions is [21], wherein identification and data-driven feedback
design are discussed.

In the present paper, we show that the behavioral approach
allows the consideration of linear discrete-time descriptor
systems. To this end, we give a variant of the fundamental
lemma tailored to such systems. Interestingly, it turns out
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that—compared to the usual LTI case—the necessary amount
of data in the Hankel matrix is reduced for regular descriptor
systems while the persistency of excitation requirements for
the input signals do not change. Moreover, we leverage
the developed non-parametric system description to derive a
data-driven predictive control framework for LTI descriptor
systems. We give a stability proof based on terminal con-
straints and illustrate the scheme with a numerical example.

The remainder of the paper is structured as follows:
Section II recalls the basics of discrete-time linear
descriptor systems such as their representation in quasi-
Weierstraß form as well as specific controllability and
observability notions. Section III presents and discusses a
fundamental lemma for discrete-time descriptor systems,
while Section IV turns towards data-driven predictive
control tailored to this system class. In Section IV-C our
findings are illustrated by an example before conclusions
are drawn in Section V.

Notation: N0, N denote the natural numbers with and with-
out zero, respectively. Moreover, for two numbers a, b ∈ N0

with a ≤ b, the non-empty interval [a, b]∩N0 is denoted by
[a : b]. The identity and the zero matrix in Rn×m are denoted
by In and 0n×n, respectively. For a matrix A ∈ Rm×n we
denote by rk(A) and im(A) the rank and the image of A,
respectively. Further, for k ∈ N let diagk(A) = Ik ⊗ A,
where ⊗ denotes the Kronecker product.

For a function f : Ω→ Γ, we denote the restriction of f
to Ω0 ⊂ Ω by f |Ω0

. Considering a map f : [t : T −1]→ Rk
with t < T , we denote the vectorization of f by

f[t,T−1]
.
=
[
f(t)> . . . f(T − 1)>

]> ∈ Rk(T−t)

and, for L ∈ N with L ≤ T − t, the corresponding Hankel
matrix HL(f[t,T−1]) ∈ RkL×(T−t−L+1) is defined by

HL(f[t,T−1])
.
=

[
f(t) ... f(T−L)

...
. . .

...
f(t+L−1) ... f(T−1)

]
.

Given a symmetric positive-definite matrix Q we define the
norm ‖x‖Q .

= (x>Qx)1/2.

II. BASICS OF LINEAR DESCRIPTOR SYSTEMS

We consider discrete-time linear descriptor systems

Ex(t+ 1) = Ax(t) +Bu(t), (1a)
y(t) = Cx(t) +Du(t), (1b)

with (consistent) initial condition (Ex)(0) = x0, where
A,E ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m. We
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assume that det(λE−A) 6= 0 for some λ ∈ C, i.e., regularity
of system (1a). Particularly, we are interested in the case
where the matrix E is singular, i.e., rk(E) < n.

We rely on the behavior notion given in [22, Definition
1.3.4], i.e., the trajectories of the system (1) are collected in
the full behavior,

Bf
.
=

{
(x, u, y) : N0 → Rn × Rm × Rp

∣∣∣∣∣x, u, y satisfy (1)
for all t ∈ N0

}
.

Further, we consider the input-output trajectories associated
to the full behavior, i.e., the so-called manifest behavior

Bm
.
=

{
(u, y) : N0 → Rm × Rp

∣∣∣∣∣∃x : N0 → Rn :

(x, u, y) ∈ Bf

}
. (2)

For t, T ∈ N0, t ≤ T , we denote the restrictions of the
behaviors to the finite time interval [t, T ] by Bf [t, T ]

.
=

{b|[t,T ] | b ∈ Bf} and Bm[t, T ]
.
= {b|[t,T ] | b ∈ Bm},

respectively. The consistent initial values of the system (1)
are collected in

V
.
= {x0 ∈ Rn | ∃(x, u, y) ∈ Bf with (Ex)(0) = x0}. (3)

Since the descriptor system (1a) is regular, there exist invert-
ible matrices P , S ∈ Rn×n such that

SEP =

[
Iq 0
0 N

]
, SAP =

[
A1 0
0 Ir

]
,

SB =

[
B1

B2

]
, CP =

[
C1 C2

]
,

(4)

where N ∈ Rr×r is nilpotent with nilpotency index s, and
A1 ∈ Rq×q , B1 ∈ Rq×m, B2 ∈ Rr×m, C1 ∈ Rp×q , C2 ∈
Rp×r with q + r = n, cf. [23] and [13, Section 8.2]. Upon
introduction of the coordinate change z = P−1x, system (1)
can equivalently be written in quasi-Weierstraß form, i.e.[

Iq 0
0 N

]
z(t+ 1) =

[
A1 0
0 Ir

]
z(t) +

[
B1

B2

]
u(t) (5a)

y(t) =
[
C1 C2

]
z(t) +Du(t). (5b)

Although the quasi-Weierstraß form is not unique, the nilpo-
tency index s and the state dimensions q and r do not depend
on the particular transformation matrices P and S [14,
Lemma 2.10]. Put differently, the indices q and s (and, thus,
r = n−q) are invariants of the original system (1) preserved
in the quasi-Weierstraß form. Similarly to before, we con-
sider the full and manifest behavior as well as their restric-
tions to finite time intervals for system (5). Specifically, we
denote these behaviors by B′f , B

′
m, B′f [t, T ], and B′m[t, T ],

respectively. Note that B′f = {(z, u, y) | (Pz, u, y) ∈ Bf)}.
Further, observe that the manifest behaviors of (1) and (5)
coincide, i.e., Bm = B′m and Bm[t, T ] = B′m[t, T ].

Given an input trajectory u : N0 → Rm and an initial
value z0

1 ∈ Rq there is a unique trajectory (z, u, y) ∈ B′f
such that the state

z =
[
z>1 z>2

]> : N0 → Rq+r

satisfies z1(0) = z0
1 . This state z(t), t ∈ N0, is given by

z1(t) = At1z1(0) +

t∑
k=1

At−k1 B1u(k − 1) (6a)

z2(t) = −
s−1∑
k=0

NkB2u(t+ k). (6b)

Observe that to determine the state z at time t one needs
the future inputs u(t), . . . , u(t + s − 1). Respectively, the
future inputs need to satisfy (6b). Hence, system (5) can be
regarded as non-causal.

The set of consistent initial values of system (5) in
quasi-Weierstraß form is given by V′ = SV and can be
equivalently characterized as

V′ =


[
z0

1

z0
2

]
∈ Rq+r

∣∣∣∣∣∣∣
∃u ∈ [0 : s− 2]→ Rm s.t.

z0
2 = −

s−2∑
k=0

Nk+1B2u(k)

 . (7)

The characterization (7) together with the transformation P
gives rise to an equivalent description of the set of consistent
initial values V of the original system (1), cf. the concept of
an input index in the continuous-time setting [24].

Next we recall the concepts of R-controllability and R-
observability, established in [13], see also [25], [26].

Definition 1 (R-controllability and R-observability [13]):
The descriptor system (1) is called R-controllable if

rk
([
λE −A B

])
= n (8a)

holds for all λ ∈ C. System (1) is called R-observable if

rk

([
λE −A
C

])
= n (8b)

holds for all λ ∈ C. �
Remark 2 (Controllability/Observability conditions): The

R-controllability property is equivalent to the usual Kalman
controllability rank condition for z1 in (5a)

rk
([
B1 A1B1 . . . Aq−1

1 B1

])
= q, (9a)

see [25]. Similarly, R-observabilty is equivalent to

rk




C1

C1A1

...
C1A

q−1
1


 = q. (9b)

�
The next lemma provides a lower bound on the length

of an input-output trajectory to guarantee uniqueness of the
corresponding internal state.

Lemma 3 (Uniqueness of state trajectories): Consider
system (1) let the corresponding values of q and s
be known. Assume that (1) is R-observable. If two
trajectories (x, u, y), (x̃, ũ, ỹ) ∈ Bf [0, q + s − 2] satisfy
u|[0,q+s−2] = ũ|[0,q+s−2] and y|[0,q+s−2] = ỹ|[0,q+s−2], then
x|[0,q−1] = x̃|[0,q−1].



Proof: We consider the corresponding trajectories
(z, u, y), (z̃, ũ, ỹ) ∈ B′f [0, q+s−2] of the equivalent system
(5), that is z = P−1x, z̃ = P−1x̃. According to (6) we have

C1

(
At1
(
z1(0)− z̃1(0)

)
+

t∑
k=1

At−k1 B1

(
u(k − 1)− ũ(k − 1)

))
− C2

s−1∑
k=0

NkB2

(
u(t+ k)− ũ(t+ k)

)
+D

(
u(t)− ũ(t)

)
= y(t)− ỹ(t) = 0

for t = 1, . . . , q − 1, This implies

C1A
t
1

(
z1(0)− z̃1(0)

)
= 0 (10)

for all t = 0, . . . , q− 1. With (9b) this yields z1(0) = z̃1(0).
Moreover, (6b) implies z2(0) = z̃2(0). By evolving the states
z1 and z2 via (6) up to the time q − 1 we find z1|[0,q−1] =
z̃1|[0,q−1] and z2|[0,q−1] = z̃2|[0,q−1]. The assertion follows
with x = Pz and x̃ = P z̃.

III. THE FUNDAMENTAL LEMMA FOR DESCRIPTOR
SYSTEMS

We recall the notion of persistency of excitation.
Definition 4 (Persistency of excitation): A function u :

[0 : T − 1] → Rm is said to be persistently exciting of
order L if the Hankel matrix HL(u[0,T−1]) has rank mL.�
Note that (m+ 1)L− 1 ≤ T is necessary for persistency of
excitation. Further, persistent excitation of order L implies
persistent excitation of lower order L̃, L̃ ≤ L.

The next result shows that the vector space Bm[0, L−1] of
input-output trajectories with finite-time horizon is spanned
by a Hankel matrix built from input-output data. The result
is implicitly included in the original fundamental lemma by
Willems et al. [1], whose original proof heavily relies on
algebraic concepts and is formulated in behavioral notation.
Based on a result for explicit LTI systems [27] we give a
proof in terms of state-space descriptions. This proof allows
to deduce further insights, especially regarding the amount
of data needed in the Hankel matrix. The basic idea for
descriptor systems is that only (A1, B1) subsystem of the
quasi-Weierstraß form (5a), which is an explicit LTI system,
has to be persistently excited to reconstruct trajectories.

Lemma 5 (Fundamental lemma for descriptor systems):
Suppose that the system (1) is R-controllable and regular.
Let (ū, ȳ) ∈ Bm[0, T − 1] such that ū is persistently
exciting of order L + q + s − 1 and T, L ∈ N satisfy
(m+ 1)(L+ q+ s)− 1 ≤ T . Then (u, y) ∈ Bm[0, L− 1] if
and only if there is α ∈ R(m+p)L×(T−s−L+2) such that[

HL(ū[0,T−s])
HL(ȳ[0,T−s])

]
α =

[
u[0,L−1]

y[0,L−1]

]
. (11)

�
Proof: Without loss of generality, we assume that

system (1a) is given in quasi-Weierstraß form (5a). The proof
proceeds in two steps.

Step 1. Consider S ∈ RqL×q , T ∈ RqL×mL, R ∈
RrL×m(L+s−1)

S =


Iq
A1

...
AL−1

1

 , T =


0 . . . 0 0

B1
. . . . . . 0

...
. . . . . .

...
AL−2

1 B1 . . . B1 0

 ,

R =


B2 . . . Ns−1B2 0 . . . 0
0 B2 . . . Ns−1B2 . . . 0
...

. . . . . . . . .
...

0 . . . 0 B2 . . . Ns−1B2


and U ∈ R(n+m)L×(q+m(L+s−1)), V ∈ R(n+m+p)L×(n+m)L

U .
=

 S T 0qL×m(s−1)

0rL×q −R
0mL×q ImL 0mL×m(s−1)



V .
=


IqL 0qL×rL 0qL×mL

0rL×qL IrL 0rL×mL
0mL×qL 0mL×rL ImL

diagL(C1) diagL(C2) diagL(D)

 .
We show that (z, u, y) ∈ B′f [0, L− 1] if and only if

z1[0,L−1]

z2[0,L−1]

u[0,L−1]

y[0,L−1]

 ∈ im(VU) (12)

holds, where z(t) is composed of two vectors z1(t) ∈ Rq
and z2(t) ∈ Rr. To this end, let (z, u, y) ∈ B′f [0, L − 1].
Then there exists (z∗, u∗, y∗) ∈ B′f with z∗|[0,L−1] = z,
u∗|[0,L−1] = u and y∗|[0,L−1] = y. The explicit solution (6)
of (5a) gives z∗1[0,L−1]

z∗2[0,L−1]

u∗[0,L−1]

 = U
[

z∗1(0)
u∗[0,L+s−2]

]
,

which together with (5b) yields
z1[0,L−1]

z2[0,L−1]

u[0,L−1]

y[0,L−1]

 =


z∗1[0,L−1]

z∗2[0,L−1]

u∗[0,L−1]

y∗[0,L−1]

 = VU
[

z∗1(0)
u∗[0,L+s−2]

]
. (13)

This implies (12).
On the other hand, if (12) holds for some (z, u, y) : [0 :

L − 1] → Rn × Rm × Rp, then there exists (z∗, u∗, y∗) ∈
B′f [0, L−1] such that (13) holds. This implies z∗|[0,L−1] = z,
u∗|[0,L−1] = u and y∗|[0,L−1] = y, which shows (z, u, y) ∈
B′f [0, L− 1].

Step 2. Consider (ū, ȳ) ∈ B′m[0, T − 1]. There exists
z̄ =

[
z̄>1 z̄>2

]> : [0 : T − 1] → Rq+r such that
(z̄, ū, ȳ) ∈ B′f [0, T − 1]. By assumption (A1, B1) from (5a)
is controllable (cf. Remark 2) and ū is persistently exciting
of order L+ q+ s−1. As a consequence of [27, Thm. 1 (i)]

H .
=

[
H1(z̄1[0,T−L−s+1])
HL+s−1(ū[0,T−1])

]
,



where H ∈ R(q+m(L+s−1))×(T−L−s+2), has rank q+m(L+
s− 1). Therefore, im(VU) = im(VUH).

Similar to (13) one sees that for the jth column of the
matrix H, where j ∈ {0, . . . , T − L− s+ 1},

z̄1[j,j+L−1]

z̄2[j,j+L−1]

ū[j,j+L−1]

ȳ[j,j+L−1]

 = V

z̄1[j,j+L−1]

z̄2[j,j+L−1]

ū[j,j+L−1]

 = VU
[

z̄1(j)
ū[j,j+L+s−2]

]
.

Hence, we have 
HL(z̄1[0,T−s])
HL(z̄2[0,T−s])
HL(ū[0,T−s])
HL(ȳ[0,T−s])

 = VUH.

Consequently, (z, u, y) ∈ B′f [0, L− 1] if and only if
z1[0,L−1]

z2[0,L−1]

u[0,L−1]

y[0,L−1]

 ∈ im(VU) = im(VUH) = im


HL(z̄1[0,T−s])
HL(z̄2[0,T−s])
HL(ū[0,T−s])
HL(ȳ[0,T−s])

 .
The assertion follows from the definition of the manifest
behavior (2) and B′m[0, L− 1] = Bm[0, L− 1].

Remark 6 (Upper-bounding the data demand): In
general, the index s of the nilpotent matrix N and
the dimension q of A1 in the quasi-Weierstraß system (5)
are unknown. However,[

HL(ū[0,T−1])
HL(ȳ[0,T−1])

]
α ∈ Bm[0, L− 1],

holds, provided that ū is persistently exciting of order L+k,
where k ≥ q + s− 1. An upper bound on k is given by the
state dimension n of the original system (1). �

Remark 7 (Descriptor systems can work with less data):
In the case the matrix E is invertible, i.e. q = n, r = 0,
and s = 1, Lemma 5 coincides with results for LTI
systems, see for instance in [27]. However, it deserves to be
noted that in case of a singular matrix E the input-output
trajectories of length L can be reconstructed by the Hankel
matrix in (11) which contains only values of the trajectory
(ū, ȳ) ∈ Bm[0, T − 1] up to the time T − s, while in the
LTI case all values of (ū, ȳ) are needed. This might be
exploited for system whose physical interpretation gives rise
to insights on s and q. �
Moreover, we conjecture that recent results which allow fur-
ther reduction of the data demand in the Hankel matrix [28]
carry over to the descriptor setting without major issues. The
details are, however, beyond the scope of the present paper.

IV. DATA-DRIVEN CONTROL FOR DESCRIPTOR SYSTEMS

In this section, we demonstrate the ramifications of Lemma 5
for optimal and predictive control. Suppose that system (1)
is R-controllable and R-observable.

A. Descriptor systems: data-driven optimal control

The control objective is to steer the system to the origin in
finite time, i.e., until the end of the optimization horizon.
Moreover, the input-output trajectory is chosen such that
a quadratic cost function is minimized. In the successor
subsection, we embed this Optimal Control Problem (OCP)
into a predictive control methodology.

Given an observed trajectory (u, y) ∈ Bm[t−q−s+1, t−
1], we consider the OCP

minimize
(û,ŷ)

L−1∑
k=0

‖ŷ(t+ k)‖2Q + ‖û(t+ k)‖2R (14a)

subject to (û, ŷ) ∈ Bm[t− q − s+ 1, t+ L− 1] and[
û[t−q−s+1,t−1]

ŷ[t−q−s+1,t−1]

]
=

[
u[t−q−s+1,t−1]

y[t−q−s+1,t−1]

]
, (14b)[

û[t+L−q−s+1,t+L−1]

ŷ[t+L−q−s+1,t+L−1]

]
=

[
0
0

]
(14c)

with symmetric positive-definte matrices Q ∈ Rp×p and
R ∈ Rm×m in the quadratic stage cost. Clearly, the terminal
equality constraint (14c) can be replaced by a terminal
inequality constraint on the control û and the output ŷ or
even dropped. In the same way one can formulate an OCP
targeting a setpoint (us, ys). We say (us, ys) ∈ Rm × Rp is
a stationary setpoint if there is (u, y) ∈: Bm with u(t) = us

and y(t) = ys for all t ∈ N0. In this setting the stage cost
function penalizes the distance to (us, ys) and the terminal
constraint is adapted to (us, ys).

The consistency condition (14b) ensures that the latent
internal states of the true and the predicted trajectory are
aligned up to time t − 1, cf. Lemma 3. In particular, the
internal state at time t−1 imposes further restrictions on the
predicted input signal up to the time t+ s− 2.

Remark 8 (Relaxing the consistency condition):
According to (10) in the proof of Lemma 3, the consistency
condition (14b), which ensures consistency of the latent
internal state with input and output, can be relaxed to[

û[t−ϑ−s+1,t−1]

ŷ[t−ϑ−s+1,t−1]

]
=

[
u[t−ϑ−s+1,t−1]

y[t−ϑ−s+1,t−1]

]
,

if the rank condition

rk




C1

C1A1

...
C1A

ϑ−1
1


 = q

holds with ϑ < q for the quasi-Weierstraß form (5). �
Lemma 5 implies that all trajectories contained in the

manifest behavior Bm[t−q−s+1, t−1] can be parameterised
by a Hankel matrix. Hence, assuming that there is an input-
output trajectory (ū, ȳ) ∈ Bm[0, T − 1] such that ū is
persistently exciting of order L+ 2(q + s− 1), OCP (14) is



equivalent to

minimize
(û,ŷ):[t−q−s+1:t+L−1]→Rm×Rp

α(t)∈RT−L−2s−q+3

L−1∑
k=0

‖ŷ(t+k)‖2Q+‖û(t+k)‖2R

(15a)
subject to[

û[t−q−s+1,t+L−1]

ŷ[t−q−s+1,t+L−1]

]
=

[
HL+q+s−1(ū[0,T−s])
HL+q+s−1(ȳ[0,T−s])

]
α(t),

(15b)[
û[t−q−s+1,t−1]

ŷ[t−q−s+1,t−1]

]
=

[
u[t−q−s+1,t−1]

y[t−q−s+1,t−1]

]
, (15c)[

û[t+L−q−s+1,t+L−1]

ŷ[t+L−q−s+1,t+L−1]

]
=

[
0
0

]
. (15d)

We summarize our findings in the following proposition.
Proposition 9 (Equivalence of the OCPs): The

OCPs (14) and (15) are equivalent, i.e.,
(a) OCP (14) is feasible if and only if OCP (15) is feasible,
(b) for every optimal solution (u?, y?) ∈ Bm[t − q − s +

1, t + L − 1] of the OCP (14), there exists α?(t) ∈
RT−L−2s−q+3 such that (u?, y?, α?(t)) is an optimal
solution of OCP (15),

(c) for every optimal solution (u?, y?, α?(t)) of OCP (15),
(u?, y?) is contained in the manifest behavior Bm[t −
q − s+ 1, t+ L− 1] and optimal for OCP (14). �

Observe that the comments made in Remark 6 on the know-
ledge of the nilpotency index s, on the dimension q of A1

in the quasi-Weierstraß form (5), as well as the principal
need for less data (Remark 7) remain valid in the context of
OCP (15).

B. Descriptor systems: data-driven predictive control

In predictive control OCP (15) is solved at each time step t
and, for the solution (u?, y?, α?(t)), the value u?(t) is
applied as new input u(t) to the system (1). For the descriptor
system (1) we propose the predictive control scheme based
on the OCP (15) as summarized in Algorithm 1.

Here, we emphasize that, due to the absence of input
constraints and due to R-controllability, the optimization
problem with convex objective function and affine constraints
has a feasible (and, thus, also an optimal solution) for
all consistent initial values if the optimization horizon is
sufficiently long, i.e., L ≥ L̃+ q+ s− 2, where L̃ = 2s+ q.
Roughly speaking the first s− 1 time steps of the prediction
serve to satisfy the noncausal restrictions established by the
consistency condition (14b) (see (6b)), followed by q + s
steps to steer the latent state into the origin (see (6) and
(9a)). The terminal constraint (14c) guarantees that the latent
state is zero on [t + L − q, t + L − 1], see Lemma 3. This
ensures that every (initially) feasible and, in particular, every
optimal solution can be extended, recursively feasible, i.e.,
feasibility of OCP (15) at the successor time instant t+1, cf.
[29]. Analogously, one may conclude asymptotic stability of
the origin—or of an arbitrary controlled equilibrium (ys, us)
if the stage cost is suitably adapted, i.e., ‖u − us‖2R +
‖y−ys‖2Q—w.r.t. the predictive control closed loop resulting

from Algorithm 1. Moreover, note that the terminal equality
constraint may be replaced by suitably constructed terminal
inequality constraints, see, e.g., [17]–[19].

Proposition 10 (Recursive feasibility and stability): Let
system (1) be R-controllable and R-observable and suppose
that Q and R are symmetric positive definite. Let the
prediction horizon L ≥ 2q + 3s − 2. Assuming initial
feasibility, i.e., feasibility of the OCP (15) at time t = 0,
feasibility is ensured for all t ∈ N. Moreover, the origin is
globally asymptotically stable w.r.t. the predictive control
closed loop, whereby the domain of attraction is implicitly
characterized by the set of all feasible consistent initial
values. �
The proof follows the usual arguments [29] and is hence
omitted. We remark that initial feasibility is guaranteed for
consistent initial values at time t = 0 if the optimization
horizon is sufficiently long in view of the assumed R-
controllability and R-observability as pointed out in the pre-
vious subsection. Moreover, we emphasize that the assertions
of Proposition 10 remain valid if control constraints and
output constraints are imposed. However, the assumed initial
feasibility can then not be simply covered by choosing the
prediction horizon L sufficient long despite the assumed R-
controllability and R-observability.

Algorithm 1 : Data-driven predictive control
Input: horizon L, (pers. exciting) input/output data (ū, ȳ)

1: Set t = 0
2: Measure (u, y) ∈ Bm[t− q − s+ 1, t− 1]
3: Compute (u?, y?, α?(t)) to (15)
4: Apply u(t) = u?(t)
5: t← t+ 1 and goto Step 2

C. Numerical example

We consider system (1) with

E =


0 0 1 0
1 2 0 2
2 3 1 3
1 2 0 2

 , A =


1 1 0 2
0 2 1 1
1 4 2 3
−1 1 1 0

 , B =


−1

2
2
3

 ,
and the output matrices

C =


1 2 1 2
0 1 0 1
1 2 1 1
2 2 1 2

 , D = 04×1.

Via the matrices

P =


0 −1 0 1
−1 0 1 1

1 0 0 −1
1 1 −1 −1

 , S =


0 −1 1 0
1 2 −1 0
−1 −1 1 0

0 1 0 −1


the system can be transformed into quasi-Weierstraß form
(s = q = 2), which allows easily to verify the R-
controllability as well as the R-observability via (9a) and
(9b), cf. Remark 2.
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Fig. 1. A trajectory emerging from the predictive control scheme in
Algorithm 1. At time t = 10 the transition from a random input signal
to the optimal control input (blue shaded), which steers the system in
to the controlled equilibrium (us,1, ys,1), can be seen. At time t = 30
(green shaded) the desired controlled equilibrium is changed to (us,2, ys,2).
The depicted state x was calculated after the optimization for the sake of
illustration.

We apply the predictive control Algorithm 1 with pre-
diction horizon L = 20. For the input-output trajectory
(ū, ȳ) ∈ Bm[0, T − 1] with T = 30, the values of ū are
drawn independently from a uniform distribution over the
interval [−1, 1] such that ū is persistently exciting of order
L+ 2(q+ s−1) = 26. Further, we assume that R = Im and
Q = Ip. We want to steer the (1) to the setpoints

(us,1, ys,1) =
(

0,
[
20 0 0 20

]>)
,

(us,2, ys,2) =
(

0,
[
−10 0 0 −10

]>)
one by one. A closed-loop predictive control trajectory
generated by Algorithm 1 is shown in Figure 1.

V. CONCLUSIONS

This paper has investigated data-driven control for linear
discrete-time descriptor systems. We have shown that—
compared to the usual LTI case—in the descriptor setting the
data demand for the non-parametric system description via
Hankel matrices is reduced. We leveraged Willems’ funda-
mental lemma tailored to descriptor system to propose a data-
driven predictive control scheme. We presented sufficient
stability conditions and illustrated the findings with a nu-
merical example. Interestingly, in the data-driven predictive
control setting, and under the considered assumptions, the

differences between usual LTI systems and their descriptor
counterparts are marginal. This underpins the usefulness
of Willems’ fundamental and the prospect of data-driven
predictive control.
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“Data-based system analysis and control of flat nonlinear systems,”
arXiv preprint arXiv:2103.02892, 2021.

[7] I. Markovsky and F. Dörfler, “Behavioral systems theory in data-driven
analysis, signal processing, and control,” Annual Reviews in Control,
vol. 52, pp. 42–64, 2021.

[8] C. De Persis and P. Tesi, “Formulas for data-driven control: Stabi-
lization, optimality, and robustness,” IEEE Transactions on Automatic
Control, vol. 65, no. 3, pp. 909–924, 2019.
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