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Willems’ Fundamental Lemma for State-Space
Systems and Its Extension to Multiple Datasets

Henk J. van Waarde , Claudio De Persis , M. Kanat Camlibel , and Pietro Tesi

Abstract—Willems et al.’s fundamental lemma asserts
that all trajectories of a linear system can be obtained from
a single given one, assuming that a persistency of exci-
tation and a controllability condition hold. This result has
profound implications for system identification and data-
driven control, and has seen a revival over the last few
years. The purpose of this letter is to extend Willems’
lemma to the situation where multiple (possibly short)
system trajectories are given instead of a single long one.
To this end, we introduce a notion of collective persistency
of excitation. We will show that all trajectories of a lin-
ear system can be obtained from a given finite number of
trajectories, as long as these are collectively persistently
exciting. We will demonstrate that this result enables the
identification of linear systems from data sets with miss-
ing samples. Additionally, we show that the result is of
practical significance in data-driven control of unstable
systems.

Index Terms—Identification for control, linear systems.

I. INTRODUCTION

I
N THE seminal work by Willems and coauthors [1], it

was shown that a single, sufficiently exciting trajectory of

a linear system can be used to parameterize all trajectories

that the system can produce. This result has later been named

the fundamental lemma [2], [3], and plays an important role

in the learning and control of dynamical systems on the basis

of measured data.

An immediate consequence of the fundamental lemma is

that a persistently exciting trajectory captures the entire behav-

ior of the data-generating system, thus allowing successful

identification of a system model using subspace methods [4].

The lemma also enables data-driven simulation [3], which

involves the computation of the system’s response to a given
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reference input. In addition, Willems’ lemma is instrumen-

tal in the design of controllers from data. The result has been

applied to tackle several control problems, ranging from output

matching [3] to control by interconnection [5], predictive con-

trol [6], [7], [8], optimal and robust control [9], linear quadratic

regulation [3], [9], [10] as well as set-invariance control [11].

All of the above examples show the value of the funda-

mental lemma in modeling, simulation and control using a

single measured system trajectory. Nonetheless, there are many

scenarios in which multiple system trajectories are measured

instead of a single one. For example, performing multiple

short experiments becomes desirable when the data-generating

system has unstable dynamics. Also, as pointed out in [12],

a single system trajectory collected during normal operations

may be too poorly excited to reveal the system dynamics.

In contrast, multiple archival data may collectively provide

a well-excited experiment. Another situation is when a single

trajectory is measured but some of the samples are corrupted or

missing. In this case, we have access to multiple system trajec-

tories consisting of the remaining, uncorrupted, data samples.

System identification from multiple experiments [13], [14] and

from data with missing samples [15], [16], [17] has been

studied. However, a proof of Willems’ lemma for multiple

trajectories is still missing. Therefore, in this letter we aim

at extending Willems’ fundamental lemma to the case where

multiple trajectories, possibly of different lengths, are given

instead of a single one.

Originally, the fundamental lemma was formulated and

proven in a behavioral context. The starting point in this letter,

however, is a reformulation of the lemma in terms of state-

space systems. Such a version of Willems’ fundamental lemma

has appeared before in [9, Lemma. 2] and [18, Th. 3] but no

proof of the statement was given in this context. Our first con-

tribution is to provide a complete and self-contained proof of

the lemma for state-space systems. Strictly speaking, such an

alternative proof is not necessary since the original proof of [1]

applies to state-space systems as a special case. Nonetheless,

we believe that our proof can be of interest to researchers who

want to apply Willems’ lemma to state-space systems. In fact,

the proof is elementary in the sense that it only makes use

of basic concepts such as the Cayley-Hamilton theorem and

Kalman controllability test. The proof is also direct, and in

contrast to [1] does not rely on a contradiction argument.

Our second contribution involves the extension of the funda-

mental lemma to the case of multiple trajectories. To this end,
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we first introduce a notion of collective persistency of excita-

tion. Then, analogous to Willems’ lemma, we show that a finite

number of given trajectories can be used to parameterize all

trajectories of the system, assuming that collective persistency

of excitation holds. We will illustrate this result by two exam-

ples. First, we will show that the extended fundamental lemma

enables the identification of linear systems from data sets with

missing samples. Next, we will show how the result can be

used to compute controllers of unstable systems from multiple

short system trajectories, even when this is problematic from

a single long trajectory.

This letter is organized as follows: in Section II we for-

mulate and prove Willems’ fundamental lemma. Section III

extends the lemma to multiple trajectories. In Section IV we

provide applications of this result. Finally, Section V contains

our conclusions.

A. Notation

The left kernel of a real matrix M is the space of all real row

vectors v such that vM = 0. The zero vector of dimension n is

denoted by 0n. Consider a signal f : Z → R
• and let i, j ∈ Z

be integers such that i ≤ j. We denote by f[i,j] the restriction

of f to the interval [i, j], that is,

f[i,j] :=
[

f (i)⊤ f (i + 1)⊤ · · · f (j)⊤
]⊤

.

With slight abuse of notation, we will also use the notation

f[i,j] to refer to the sequence f (i), f (i + 1), . . . , f (j). Let k be a

positive integer such that k ≤ j − i + 1 and define the Hankel

matrix of depth k, associated with f[i,j], as

Hk(f[i,j]) :=

⎡

⎢

⎢

⎢

⎣

f (i) f (i + 1) · · · f (j − k + 1)

f (i + 1) f (i + 2) · · · f (j − k + 2)
...

...
...

f (i + k − 1) f (i + k) · · · f (j)

⎤

⎥

⎥

⎥

⎦

.

Note that the subscript k refers to the number of block rows

of the Hankel matrix.

Definition 1: The sequence f[i,j] is said to be persistently

exciting of order k if Hk(f[i,j]) has full row rank.

II. WILLEMS et al.’S FUNDAMENTAL LEMMA IN THE

CONTEXT OF STATE-SPACE SYSTEMS

In this section we explain the fundamental lemma [1] in a

state-space setting. Our goal is to provide a simple and self-

contained proof of the result within this context. Consider the

linear time-invariant (LTI) system

x(t + 1) = Ax(t) + Bu(t) (1a)

y(t) = Cx(t) + Du(t), (1b)

where x ∈ R
n denotes the state, u ∈ R

m is the input and y ∈

R
p is the output. Let (u[0,T−1], y[0,T−1]) be a given input/output

trajectory1 of (1). We consider the Hankel matrices of these

1Throughout this letter, we denote variables such as u and y by bold
font characters, and specific instances of such variables in normal font, e.g.,
u(0), u(1), . . . , and y(0), y(1), . . .

inputs and outputs, given by:

[

HL(u[0,T−1])

HL(y[0,T−1])

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

u(0) u(1) · · · u(T − L)
...

...
...

u(L − 1) u(L) · · · u(T − 1)

y(0) y(1) · · · y(T − L)
...

...
...

y(L − 1) y(L) · · · y(T − 1)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (2)

where L ≥ 1. Clearly, each column of (2) contains a length L

input/output trajectory of (1). By linearity of the system, every

linear combination of the columns of (2) is also a trajectory

of (1). In other words,
[

ū[0,L−1]

ȳ[0,L−1]

]

:=

[

HL(u[0,T−1])

HL(y[0,T−1])

]

g (3)

is an input/output trajectory of (1) for any real vector g.

The powerful crux of Willems et al.’s fundamental lemma

is that every length L input/output trajectory of (1) can be

expressed in terms of (u[0,T−1], y[0,T−1]) as in (3), assuming

that u[0,T−1] is persistently exciting. The result has appeared

first in a behavioral context in [1, Th. 1]. In Theorem 1, we will

formulate the fundamental lemma for systems of the form (1).

The theorem consists of two statements. First, under controlla-

bility and excitation assumptions, a rank condition on the state

and input Hankel matrices (4) is satisfied. Second, under the

same conditions, all length L input/output trajectories of (1)

can be written as a linear combination of the columns of the

matrix (2).

Theorem 1: Consider the system (1) and assume that the

pair (A, B) is controllable. Let (u[0,T−1], x[0,T−1], y[0,T−1]) be

an input/state/output trajectory of (1). Assume that the input

u[0,T−1] is persistently exciting of order n + L. Then the

following statements hold:

(i) The matrix

[

H1(x[0,T−L])

HL(u[0,T−1])

]

=

⎡

⎢

⎢

⎢

⎣

x(0) x(1) · · · x(T − L)

u(0) u(1) · · · u(T − L)
...

...
...

u(L − 1) u(L) · · · u(T − 1)

⎤

⎥

⎥

⎥

⎦

(4)

has full row rank.

(ii) Every length L input/output trajectory of (1) can

be expressed in terms of u[0,T−1] and y[0,T−1] as follows:

(ū[0,L−1], ȳ[0,L−1]) is an input/output trajectory of (1) if and

only if
[

ū[0,L−1]

ȳ[0,L−1]

]

=

[

HL(u[0,T−1])

HL(y[0,T−1])

]

g, (5)

for some real vector g.

Statement (i) has appeared first in the original paper by

Willems and coworkers, see [1, Cor. 2(iii)]. The result is

intriguing since a rank condition on both input and state matri-

ces can be inposed by injecting a sufficiently exciting input

sequence. This rank condition is important from a design

perspective and plays a fundamental role in MOESP type

subspace algorithms, see [4, Sec. 3.3]. Also, in the case that

L = 1, full row rank of (4) has been shown to be instru-

mental for the construction of state feedback controllers from

data [9]. In this letter, statement (i) is used to prove the second

Authorized licensed use limited to: University of Groningen. Downloaded on June 12,2020 at 06:29:42 UTC from IEEE Xplore.  Restrictions apply. 
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statement of Theorem 1. Statement (ii) is a reformulation

of [1, Th. 1]. In what follows, we provide a self-contained and

elementary proof of the fundamental lemma in a state-space

context.

Proof: Statement (ii) has been proven assuming statement (i)

in [9, Lemma 2]. It therefore remains to be shown that (4) has

full row rank. Let
[

ξ η
]

be a vector in the left kernel of (4),

where ξ⊤ ∈ R
n and η⊤ ∈ R

mL. We will first show that ξ and

η can be used to construct n + 1 vectors in the left kernel of

the “deeper” Hankel matrix
[

H1(x[0,T−n−L])

Hn+L(u[0,T−1])

]

. (6)

First, by definition of ξ and η, it is clear that

[

ξ η 0nm

]

[

H1(x[0,T−n−L])

Hn+L(u[0,T−1])

]

= 0.

Next, by the laws of system (1a) we have

H1(x[1,T−n−L+1]) =
[

A B
]

[

H1(x[0,T−n−L])

H1(u[0,T−n−L])

]

.

Using this fact, we see that

[

ξA ξB η 0(n−1)m

]

[

H1(x[0,T−n−L])

Hn+L(u[0,T−1])

]

=

[

ξ η
]

[

H1(x[1,T−n−L+1])

HL(u[1,T−n])

]

= 0,

where the latter equality holds by definition of ξ and η. Now,

by repeatedly exploiting the laws of (1a) and using the same

arguments we find that the n + 1 vectors

w0 :=
[

ξ η 0nm

]

w1 :=
[

ξA ξB η 0(n−1)m

]

w2 :=
[

ξA2 ξAB ξB η 0(n−2)m

]

...

wn :=
[

ξAn ξAn−1B · · · ξB η
]

(7)

are all contained in the left kernel of the matrix (6). By

persistency of excitation, Hn+L(u[0,T−1]) has full row rank,

and hence the left kernel of (6) has dimension at most n.

Therefore, the n + 1 vectors in (7) are linearly dependent. We

claim that this implies η = 0. To prove this claim, partition

η =
[

η1 η2 · · · ηL

]

, where η⊤
1 , η⊤

2 , . . . , η⊤
L ∈ R

m. Since

the last m entries of the vectors w0, w1, . . . , wn−1 are zero,

the linear dependence of the vectors (7) implies ηL = 0 by

inspection of wn. We substitute this equation in η and con-

clude that the last 2m entries of w0, w1, . . . , wn−1 are zero.

As such, also ηL−1 = 0. We can proceed with these substitu-

tions to show that η1 = η2 = · · · ηL = 0, i.e., η = 0. Next,

by Cayley-Hamilton theorem,
∑n

i=0 αiA
i = 0 where αi ∈ R

for all i = 0, 1, . . . , n, and αn = 1. Define the linear combi-

nation v :=
∑n

i=0 αiwi. By (7) and by substitution of η = 0,

the vector v is equal to
[

0n

∑n
i=1 αiξAi−1B

∑n
i=2 αiξAi−2B · · · αnξB 0mL

]

.

This implies that the vector
[
∑n

i=1 αiξAi−1B
∑n

i=2 αiξAi−2B · · · αnξB
]

is contained in the left kernel of Hn(u[0,T−L−1]), which is zero

by persistency of excitation. In other words,

0 = α1ξB + · · · + αnξAn−1B

0 = α2ξB + · · · + αnξAn−2B

...

0 = αn−1ξB + αnξAB

0 = αnξB.

Since αn = 1 it follows from the last equation that ξB =

0. Substitution in the second to last equation then results in

ξAB = 0. We continue by backward substitution to obtain

ξB = ξAB = · · · = ξAn−1B = 0. Controllability of (A, B)

hence results in ξ = 0. We therefore conclude that (4) has full

row rank, which proves the theorem.

III. EXTENSION OF WILLEMS et al.’S LEMMA TO

MULTIPLE TRAJECTORIES

In this section we propose an extension of the fundamental

lemma that is applicable to the case in which multiple system

trajectories are given. Our approach will require the notion of

collective persistency of excitation.

Definition 2: Consider the input sequences ui
[0,Ti−1] for i =

1, 2, . . . , q, where q is the number of data sets. Let k be a

positive integer such that k ≤ Ti for all i. The input sequences

ui
[0,Ti−1] for i = 1, 2, . . . , q are called collectively persistently

exciting of order k if the mosaic-Hankel matrix
[

Hk(u
1
[0,T1−1]) Hk(u

2
[0,T2−1]) · · · Hk(u

q

[0,Tq−1])
]

(8)

has full row rank.

Collective persistency of excitation is more flexible than the

persistency of excitation of a single input sequence. Indeed,

for the input sequences ui
[0,Ti]

to be collectively persistently

exciting, it is sufficient that at least one of them is persistently

exciting. However, this is clearly not necessary: the sequences

ui
[0,Ti]

may be collectively persistently exciting even when

none of the individual input sequences is persistently exciting.

The added flexibility of collective persistency of excitation is

also apparent from the length of the input sequences. Indeed,

a single u[0,T−1] can only be persistently exciting of order k if

T ≥ k(m + 1)− 1. In comparison, for collective persistency of

excitation of order k it is necessary that
∑q

i=1 Ti ≥ k(m+q)−q.

This means that collective persistency of excitation can be

achieved by input sequences having length Ti as short as k,

assuming the number of data sets q is sufficiently large. In the

next theorem we extend the fundamental lemma to the case

of multiple data sets.

Theorem 2: Consider system (1) and assume that the pair

(A, B) is controllable. Let (ui
[0,Ti−1], xi

[0,Ti−1], yi
[0,Ti−1]) be an

input/state/output trajectory of (1) for i = 1, 2, . . . , q. Assume

that the inputs ui
[0,Ti−1] are collectively persistently exciting of

order n + L. Then the following statements hold:

(i) The matrix
[

H1(x
1
[0,T1−L]) H1(x

2
[0,T2−L]) · · · H1(x

q

[0,Tq−L])

HL(u1
[0,T1−1]) HL(u2

[0,T2−1]) · · · HL(u
q

[0,Tq−1])

]

(9)

has full row rank.
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(ii) Every length L input/output trajectory of (1) can be

expressed in terms of ui
[0,Ti−1] and yi

[0,Ti−1] (i = 1, 2, . . . , q) as

follows: (ū[0,L−1], ȳ[0,L−1]) is an input/output trajectory of (1)

if and only if
[

ū[0,L−1]

ȳ[0,L−1]

]

=

[

HL(u1
[0,T1−1]) · · · HL(u

q

[0,Tq−1])

HL(y1
[0,T1−1]) · · · HL(y

q

[0,Tq−1])

]

g, (10)

for some real vector g.

Note that if q = 1 and T1 = T we deal with a single

experiment, and in this case Theorem 2 recovers Theorem 1.

Proof: We first prove that (9) has full row rank. Let
[

ξ η
]

be a vector in the left kernel of (9), where ξ⊤ ∈ R
n and

η⊤ ∈ R
mL. By exploiting the laws of the system (1a) we see

that the vectors

w0 :=
[

ξ η 0nm

]

w1 :=
[

ξA ξB η 0(n−1)m

]

w2 :=
[

ξA2 ξAB ξB η 0(n−2)m

]

...

wn :=
[

ξAn ξAn−1B · · · ξB η
]

(11)

are contained in the left kernel of the matrix
[

H1(x
1
[0,T1−n−L]) · · · H1(x

q

[0,Tq−n−L])

Hn+L(u1
[0,T1−1]) · · · Hn+L(u

q

[0,Tq−1])

]

. (12)

By the persistency of excitation assumption, the matrix
[

Hn+L(u1
[0,T1−1]) · · · Hn+L(u

q

[0,Tq−1])
]

has full row rank, and hence the left kernel of (12) has dimen-

sion at most n. Therefore, the n+1 vectors in (11) are linearly

dependent. This yields η = 0 following the same argument as

in the proof of Theorem 1. Next, by Cayley-Hamilton theo-

rem,
∑n

i=0 αiA
i = 0 where αi ∈ R for i = 0, 1, . . . , n and

αn = 1. We define the linear combination v :=
∑n

i=0 αiwi.

Clearly, the vector v is equal to
[

0n

∑n
i=1 αiξAi−1B

∑n
i=2 αiξAi−2B · · · αnξB 0mL

]

.

Hence, the vector
[
∑n

i=1 αiξAi−1B
∑n

i=2 αiξAi−2B · · · αnξB
]

is contained in the left kernel of
[

Hn(u
1
[0,T1−L−1]) · · · Hn(u

q

[0,Tq−L−1])
]

,

which is zero by collective persistency of excitation. Following

the same steps as in the proof of Theorem 1 we conclude by

backward substitution that ξB = ξAB = · · · = ξAn−1B =

0. By controllability of (A, B) we have ξ = 0, proving

statement (i).

Next, we prove statement (ii). Let ū[0,L−1] and ȳ[0,L−1] be

vectors such that (10) is satisfied for some g. Then
[

ū[0,L−1]

ȳ[0,L−1]

]

is a linear combination of length L trajectories of (1) and

hence, by linearity, itself an input/output trajectory of (1).

Conversely, let (ū[0,L−1], ȳ[0,L−1]) be an input/output trajec-

tory of (1) and denote by x̄0 a corresponding initial state at

time 0. We have the relation
[

ū[0,L−1]

ȳ[0,L−1]

]

=

[

0 I

OL TL

][

x̄0

ū[0,L−1]

]

, (13)

where TL and OL are defined as

TL :=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

D 0 0 · · · 0

CB D 0 · · · 0

CAB CB D · · · 0
...

...
...

. . .
...

CAL−2B CAL−3B CAL−4B · · · D

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (14)

OL :=
[

C⊤ (CA)⊤ (CA2)⊤ · · · (CAL−1)⊤
]⊤

. (15)

Since (9) has full row rank, there exists a vector g such that
[

x̄0

ū[0,L−1]

]

=

[

H1(x
1
[0,T1−L]) · · · H1(x

q

[0,Tq−L])

HL(u1
[0,T1−1]) · · · HL(u

q

[0,Tq−1])

]

g.

Substitution of the latter expression into (13) and using the

fact that
[

0 I

OL TL

][

H1(x
i
[0,Ti−L])

HL(ui
[0,Ti−1])

]

=

[

HL(ui
[0,Ti−1])

HL(yi
[0,Ti−1])

]

for all i = 1, 2, . . . , q yields (10), as desired.

IV. EXAMPLES OF APPLICATION

A. Identification With Missing Data Samples

In this section we treat an example in which we want to

identify a system model from a measured trajectory with miss-

ing data samples. System identification from trajectories with

missing data has been studied in the papers [15], [16], [17].

As we will see, it is also possible to apply Theorem 2(ii) in

this context.

Suppose that we have access to the following, partially

corrupted, input/output trajectory of length T = 20:

t 0 1 2 3 4 5 6 7 8 9

u(t) 1 0 2 −1 0 × 1 1 −1 −5

y(t) 3 3 7 6 11 × 18 21 23 24

t 10 11 12 13 14 15 16 17 18 19

u(t) 0 −1 × 1 −6 2 −2 0 1 ×

y(t) 33 31 × 30 20 26 14 10 3 ×

The data are generated by a minimal LTI system of

(unknown) state-space dimension n = 2. Note that some of

the samples are missing, which we indicate by ×. Our goal is

to identify an LTI system that is compatible with the observed

data.

In this problem, we have access to three input/output

system trajectories, namely (u[0,4], y[0,4]), (u[6,11], y[6,11]) and

(u[13,18], y[13,18]). It is not difficult to verify that the input

sequences u[0,4], u[6,11] and u[13,18] are collectively persis-

tently exciting of order 5. It can be easily verified that no LTI

system of dimension 1 can explain the data. Thus we consider

LTI systems of dimension 2. Since the inputs are collectively

persistently exciting of order 5, and since the data-generating

system has dimension n = 2, by Theorem 2(ii) every length

L = 3 input/output trajectory of the system can be written as

linear combination of the columns of

D :=

[

H3(u[0,4]) H3(u[6,11]) H3(u[13,18])

H3(y[0,4]) H3(y[6,11]) H3(y[13,18])

]

. (16)

We exploit this result by computing, as a function of D, the

length 7 system trajectory

ū[−2,4] =
[

0 0 1 0 0 0 0
]⊤

(17)
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ȳ[−2,4] =
[

0 0 ? ? ? ? ?
]⊤

, (18)

where question marks denote to-be-computed values. The idea

is as follows: if the “past” inputs ū(−2), ū(−1) and “past”

outputs ȳ(−2), ȳ(−1) are zero, the state x̄(0) ∈ R
2 corre-

sponding to (ū[−2,4], ȳ[−2,4]) is unique, and equal to zero.

This means that ū[0,4] is an impulse, applied to a system

of the form (1) with zero initial state. Consequently, the

output ȳ[0,4] simply consists of the first Markov parameters

of (1), that is, ȳ[0,4] =
[

D CB CAB CA2B CA3B
]

. From

these Markov parameters it is straightforward to compute a

state-space realization, e.g., using the Ho-Kalman algorithm

[19, Sec. 3.4.4].

Therefore, our remaining task is to compute ȳ[0,4]. Inspired

by [20], we will compute this trajectory iteratively by comput-

ing multiple length 3 trajectories as linear combinations of the

columns of (16). To begin with, we compute the first unknown

in (18), which is ȳ(0). To do so, we have to solve the system

of linear equations2

Dg =
[

0 0 1 0 0 ȳ(0)
]⊤

(19)

in the unknowns g and ȳ(0). One possible approach [3, Alg. 1]

is to obtain a solution ḡ to the first five linear equations in (19).

Subsequently, ȳ(0) is obtained by multiplication of the last

row of D with ḡ. We do this to find ȳ(0) = 1. Next, to find

ȳ(1) we complete the length 3 trajectory (ū[−1,1], ȳ[−1,1]) by

solving the system of equations

Dg =
[

0 1 0 0 1 ȳ(1)
]⊤

,

which results in ȳ(1) = 0. Repeating this process, we obtain

ȳ(2) = 1, ȳ(3) = 2 and ȳ(4) = 3, meaning that

D = 1, CB = 0, CAB = 1, CA2B = 2, CA3B = 3.

Finally, it is not difficult to obtain a state-space realization of

these Markov parameters as

A =

[

1 0

1 1

]

, B =

[

1

0

]

, C =
[

0 1
]

, D = 1.

The approach outlined in this section is generally also appli-

cable in the case that multiple consecutive data samples are

missing. Even in the case that the number of consecutive miss-

ing samples is unknown, we can apply Theorem 2 to the partial

trajectories. Note that we require a sufficient number of partial

trajectories of length at least 5 to guarantee collective persis-

tency of excitation of order 5. In the case of missing data

with larger frequency, it may still be possible to identify the

system by computation of the left kernels of submatrices of

the Hankel matrix [16].

B. Data-Driven LQR of an Unstable System

Consider the unstable batch reactor system [21], which we

have discretized using a sampling time of 0.5s to obtain a

2Note that the solution g is not unique in general, but ȳ(0) is unique. The
reason is that the initial state x̄(0) = 0 is uniquely specified by the “past”
inputs ū(−2), ū(−1) and outputs ȳ(−2), ȳ(−1). In turn, the initial state x̄(0)

and input ū(0) uniquely specify the output ȳ(0). Also see [3, Prop. 1].

system of the form (1a) with

A =

⎡

⎢

⎢

⎢

⎣

2.622 0.320 1.834 − 1.066

−0.238 0.187 − 0.136 0.202

0.161 0.789 0.286 0.606

−0.104 0.764 0.089 0.736

⎤

⎥

⎥

⎥

⎦

, B =

⎡

⎢

⎢

⎢

⎣

0.465 − 1.550

1.314 0.085

2.055 − 0.673

2.023 − 0.160

⎤

⎥

⎥

⎥

⎦

.

The goal of this example is the data-based design of an optimal

control input u∗ that minimizes the cost functional

J :=

∞
∑

t=0

x⊤(t)Qx(t) + u⊤(t)Ru(t).

under the zero endpoint constraint limt→∞ x(t) = 0. Here

Q and R are state and input weight matrices, respectively.

Under standard assumptions on A, B, Q and R [22, Th. 23],

the optimal input exists, is unique, and is generated by the

feedback law u∗ = Kx, where

K = −(R + B⊤P+B)−1B⊤P+A

and where P+ is the largest real symmetric solution to the

algebraic Riccati equation

P = A⊤PA − A⊤PB(R + B⊤PB)−1B⊤PA + Q.

In [9, Th. 4] an attractive design procedure is introduced to

obtain K directly from input/state data. The idea is to inject

an input sequence u[0,T−1] that is persistently exciting of order

n + 1 such that the matrix3

[

X−

U−

]

:=

[

x(0) x(1) · · · x(T − 1)

u(0) u(1) · · · u(T − 1)

]

(20)

has full row rank by Theorem 1(i). Subsequently, K is found

by solving a semidefinite program involving the data x[0,T] and

u[0,T−1] alone; see [9, eq. (27)]. Later on, it was shown [22,

Th. 26] that full row rank of (20) is actually also necessary

for obtaining K from input/state data. In addition, another

semidefinite program was introduced [22, Th. 29] to obtain

P+ and K from input/state data. Both semidefinite programs

of [9] and [22] are applicable to this example, but we will fol-

low the method of [22] since it involves less decision variables,

see [22, Remark 31]. We will compare the approach based on

a single measured trajectory of the system with the one based

on multiple trajectories. In both the approaches, we take Q and

R as the identity matrices of appropriate dimensions.

First, we compute K on the basis of a single measured

trajectory of (1a). We choose a random initial state and ran-

dom input sequence of length T = 20, generated using the

MATLAB command rand. This input is persistently exciting

of order 5. Finally, we let X− and U− as in (20), and define

X+ := H1(x[1,T]). By [22, Th. 29], the largest solution P+

to the algebraic Riccati equation is the unique solution to the

optimization problem

maximize trace P

subject to P = P⊤ ≥ 0 and L(P) ≤ 0, (21)

where L(P) := X⊤
−PX−−X⊤

+PX+−X⊤
−QX−−U⊤

−RU−. We use

Yalmip with Sedumi 1.3 as LMI solver. Because of the large

magnitude of the data samples (reaching ||x(19)|| = 1.049 ·

108), the solver runs into numerical problems and returns a

3Note that X− := H1(x[0,T−1]) and U− := H1(u[0,T−1]).
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matrix Psing that does not resemble P+. In fact, comparing

Psing with the “true” matrix P+ obtained via the (model-based)

MATLAB command dare, we see

Psing =

⎡

⎢

⎢

⎣

0.002 0.013 −0.005 0.015

0.013 0.075 0.017 0.067

−0.005 0.017 0.823 0.066

0.015 0.067 0.066 0.010

⎤

⎥

⎥

⎦

P+ =

⎡

⎢

⎢

⎣

3.604 0.049 1.762 −1.306

0.049 1.170 0.072 0.142

1.762 0.072 2.202 −0.845

−1.306 0.142 −0.845 1.823

⎤

⎥

⎥

⎦

.

To overcome this problem, we next consider multiple short

experiments, demonstrating the effectiveness of this second

approach. We collect q = 5 data sets of length Ti = 6 for

i = 1, 2, 3, 4, 5. The input sequences ui
[0,Ti−1] of these sets

are again chosen randomly, and are verified to be collectively

persistently exciting of order 5. Similar as before, we use the

notation Xi
− := H1(x

i
[0,Ti−1]), Xi

+ := H1(x
i
[1,Ti]

) and Ui
− :=

H1(u
i
[0,Ti−1]) for all i. In addition, we concatenate these data

matrices and define

X− :=
[

X1
− X2

− · · · X5
−

]

X+ :=
[

X1
+ X2

+ · · · X5
+

]

U− :=
[

U1
− U2

− · · · U5
−

]

.

With these data matrices, we solve again (21). This result in

the solution Pmult with ||Pmult−P+|| = 7.849·10−10. Next, we

continue the design procedure of [22, Th. 29] by computing a

right inverse X
†
− of X− such that L(Pmult)X

†
− = 0. The optimal

control gain is then computed as

Kmult := U−X
†
− =

[

0.163 −0.292 0.046 −0.328

1.418 0.116 0.984 −0.625

]

.

The error between Kmult and the true optimal gain K obtained

via the command dare is small. In fact, we have ||Kmult −

K|| = 7.083 · 10−11. The closed-loop matrix A + BKmult is

stable and its spectral radius is 0.188.

The approach that uses multiple trajectories overall requires

more samples than the one using a single trajectory. Indeed, as

explained in Section III, a necessary condition for collective

persistency of excitation of order k is that

q
∑

i=1

Ti ≥ k(m + q) − q.

This means that
∑5

i=1 Ti ≥ 30 in our example. In comparison,

a necessary condition for persistency of excitation of order 5

of a single trajectory is T ≥ 14. Nonetheless, as shown in

this example, the use of multiple short trajectories enables

the accurate computation of feedback gains even for unstable

systems while this may be problematic when using a single

long trajectory.

V. CONCLUSION

Willems et al.’s fundamental lemma is a beautiful result

that asserts that all trajectories of a linear system can be

parameterized by a single, persistently exciting one. In this

letter we have extended the fundamental lemma to the scenario

where multiple trajectories are given instead of a single one. To

this end, we have introduced a notion of collective persistency

of excitation. Subsequently, we have shown that all trajectories

of a linear system can be parameterized by a finite number of

them, assuming these are collectively persistently exciting. We

have shown that this result enables the identification of linear

systems from data sets with missing data samples. We have

also shown that the result can be used to construct controllers

of unstable systems from multiple measured trajectories, even

when this is not possible from a single trajectory.

REFERENCES

[1] J. C. Willems, P. Rapisarda, I. Markovsky, and B. L. M. De Moor, “A
note on persistency of excitation,” Syst. Control Lett., vol. 54, no. 4,
pp. 325–329, 2005.

[2] I. Markovsky, J. C. Willems, P. Rapisarda, and B. L. M. De Moor, “Data
driven simulation with applications to system identification,” IFAC Proc.
Vol., vol. 38, no. 1, pp. 970–975, 2005.

[3] I. Markovsky and P. Rapisarda, “Data-driven simulation and control,”
Int. J. Control, vol. 81, no. 12, pp. 1946–1959, 2008.

[4] M. Verhaegen and P. Dewilde, “Subspace model identification part 1.
The output-error state-space model identification class of algorithms,”
Int. J. Control, vol. 56, no. 5, pp. 1187–1210, 1992.

[5] T. M. Maupong and P. Rapisarda, “Data-driven control: A behavioral
approach,” Syst. Control Lett., vol. 101, pp. 37–43, Mar. 2017.

[6] J. Coulson, J. Lygeros, and F. Dörfler, “Data-enabled predictive control:
In the shallows of the DeePC,” in Proc. Eur. Control Conf., Jun. 2019,
pp. 307–312.

[7] L. Huang, J. Coulson, J. Lygeros, and F. Dörfler, “Data-enabled
predictive control for grid-connected power converters,” in Proc. IEEE
Conf. Decis. Control, Dec. 2019, pp. 8130–8135.

[8] J. Berberich, J. Köhler, M. A. Müller, and F. Allgöwer, “Data-driven
model predictive control with stability and robustness guarantees,” 2019.
[Online]. Available: https://arxiv.org/abs/1906.04679

[9] C. De Persis and P. Tesi, “Formulas for data-driven control: Stabilization,
optimality, and robustness,” IEEE Trans. Autom. Control, vol. 65, no. 3,
pp. 909–924, Mar. 2020.

[10] M. Rotulo, C. De Persis, and P. Tesi, “Data-driven linear quadratic
regulation via semidefinite programming,” 2019. [Online]. Available:
https://arxiv.org/abs/1911.07767

[11] A. Bisoffi, C. De Persis, and P. Tesi, “Data-based guaran-
tees of set invariance properties,” 2019. [Online]. Available:
https://arxiv.org/abs/1911.12293

[12] C. M. Holcomb and R. R. Bitmead, “Subspace identification with
multiple data records: Unlocking the archive,” 2017. [Online]. Available:
https://arxiv.org/abs/1704.02635

[13] I. Markovsky, “A software package for system identification in the
behavioral setting,” Control Eng. Pract., vol. 21, no. 10, pp. 1422–1436,
2013.

[14] I. Markovsky and R. Pintelon, “Identification of linear time-invariant
systems from multiple experiments,” IEEE Trans. Signal Process.,
vol. 63, no. 13, pp. 3549–3554, Jul. 2015.

[15] I. Markovsky and K. Usevich, “Structured low-rank approximation with
missing data,” SIAM J. Matrix Anal. Appl., vol. 34, no. 2, pp. 814–830,
2013.

[16] I. Markovsky, “The most powerful unfalsified model for data with
missing values,” Syst. Control Lett., vol. 95, pp. 53–61, Sep. 2016.

[17] I. Markovsky, “A missing data approach to data-driven filtering and
control,” IEEE Trans. Autom. Control, vol. 62, no. 4, pp. 1972–1978,
Apr. 2017.

[18] J. Berberich and F. Allgöwer, “A trajectory-based framework for
data-driven system analysis and control,” 2019. [Online]. Available:
https://arxiv.org/abs/1903.10723

[19] M. Verhaegen and V. Verdult, Filtering and System Identification: A
Least Squares Approach. Cambridge, U.K.: Cambridge Univ. Press,
2007.

[20] I. Markovsky, J. C. Willems, P. Rapisarda, and B. L. M. De Moor,
“Algorithms for deterministic balanced subspace identification,”
Automatica, vol. 41, no. 5, pp. 755–766, 2005.

[21] G. C. Walsh and Hong Ye, “Scheduling of networked control systems,”
IEEE Control Syst. Mag., vol. 21, no. 1, pp. 57–65, Feb. 2001.

[22] H. J. Van Waarde, J. Eising, H. L. Trentelman, and M. K. Camlibel,
“Data informativity: A new perspective on data-driven analysis and
control,” IEEE Trans. Autom. Control, early access, Jan. 15, 2020,
doi: 10.1109/TAC.2020.2966717.

Authorized licensed use limited to: University of Groningen. Downloaded on June 12,2020 at 06:29:42 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TAC.2020.2966717



