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Williamson–Hadamard spreading sequences for DS-CDMA
applications

Jennifer Seberry, Beata J. Wysocki and Tadeusz A. Wysocki*,y

University of Wollongong, NSW2522, Australia

Summary

Orthogonal bipolar spreading sequences are used in direct sequence code division multiple access (DS-CDMA)

systems for both spectrum spreading and channel separation. The most commonly used sequences are Walsh–

Hadamard sequences of lengths being an integer power of 2. A construction based on Williamson’s arrays leading

to sequences of lengths N:4 (mod 8) is presented in the paper. Aperiodic correlation characteristics, for example

sequence sets of lengths 12–252 are presented. The correlation properties of the sequence sets are later improved

using a diagonal modification technique. Copyright # 2003 John Wiley & Sons, Ltd.
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1. Introduction

Orthogonal bipolar sequences are of a great practical

interest for the current and future direct sequence (DS)

code division multiple access (CDMA) systems where

the orthogonality principle can be used for channels

separation, e.g. Reference [1]. The most commonly

used sets of bipolar sequences are Walsh–Hadamard

sequences [2], as they are easy to generate and simple

to implement. However, they exist only for sequence

lengths being an integer power of 2, which can be a

limiting factor in some applications. In the paper, we

describe a technique to generate sets of bipolar se-

quences of order N:4 (mod 8) based on a William-

son’s construction [3]. The resultant Williamson–

Hadamard sequences possess very good autocorrela-

tion properties that make them amenable to synchro-

nization requirements.

It is well known, e.g. Reference [4–6], that if the

sequences have good aperiodic cross-correlation

properties, the transmission performance can be im-

proved for those CDMA systems where different

propagation delays exist. Wysocki and Wysocki in

Reference [7] proposed a technique to modify bipolar

Walsh–Hadamard sequences to achieve changes in

their correlation characteristics without compromis-

ing orthogonality. In this paper, we apply the same

technique to improve cross-correlation properties of

Williamson–Hadamard sequences. As it is always the

case, the improvement is achieved at the expense of

slightly worsening the autocorrelation properties.

However, the overall autocorrelation properties of

the modified sequence sets are still significantly better

than those of Walsh–Hadamard sequences of compar-

able lengths.

The paper is organized as follows. In Section 2, we

introduce principles of constructing Hadamard ma-

trices using Williamson’s arrays and provide a list of

some possible seed sequences of lengths 3–63 to

construct Williamson–Hadamard matrices of orders

12–252. Section 3 introduces some correlation mea-

sures that can be used to compare different sets of
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spreading and show the values of those parameters for

the sequence sets derived utilizing the seed sequences

listed in Section 2. In Section 4, we briefly describe

the method used to modify correlation characteristics

of sequence sets and show the results when applied to

Williamson–Hadamard sequences. Section 5 con-

cludes the paper.

2. Williamson–Hadamard Construction

A Hadamard matrix H of order n has elements�1 and

satisfies HHT ¼ nIn. The order of a Hadamard matrix

is 1, 2 or n:(0 mod 4) and the first unsolved case is

order 428. We briefly describe the theory of William-

son’s construction below. Previous computer searches

for Hadamard matrices using Williamson’s condition

are described in Section 2.1.

Theorem 1 (Williamson [8]): Suppose there exist four

symmetric (1, �1) matrices A, B, C, D of order n

which satisfy

XYT ¼ YXT ; X;Y 2 fA;B;C;Dg:

Further, suppose

AAT þ BBT þ CCT þ DDT ¼ 4nIn: ð1Þ

Then

H ¼

A B C D

�B A �D C

�C D A �B

�D �C B A

2
664

3
775 ð2Þ

is a Hadamard matrix of order 4n constructed from a

Williamson array.

Let the matrix T given below be called the shift

matrix:

T ¼

0 1 0 . . . 0

0 0 1 . . . 0

..

. ..
. ..

.
. . . ..

.

0 0 0 . . . 1

1 0 0 . . . 0

2
66664

3
77775 ð3Þ

and note that

Tn ¼ I; Ti
� �T¼ Tn�i: ð4Þ

If n is odd, T is the matrix representation of the nth

root of unity !; !n ¼ 1.

Let

A ¼
Pn�1

i¼0 aiT
i; ai ¼ �1; an�i ¼ ai

B ¼
Pn�1

i¼0 biT
i; bi ¼ �1; bn�i ¼ bi

C ¼
Pn�1

i¼0 ciT
i; ci ¼ �1; cn�i ¼ ci

D ¼
Pn�1

i¼0 diT
i; di ¼ �1; dn�i ¼ di:

8>>><
>>>:

ð5Þ

Then matrices A, B, C, D may be represented as

polynomials. The requirement that xn�i ¼ xi; x 2
fa; b; c; dg, forces the matrices A, B, C, D to be

symmetric. Hereafter, we will refer to the sequences

a, b, c, d, as the seed sequences.

Since A, B, C, D are symmetric, Equation (1)

becomes

A2 þ B2 þ C2 þ D2 ¼ 4nIn;

and the relation XYT¼YXT becomes XY¼YX

which is true for polynomials.

Definition 1: Williamson matrices are (1, �1) sym-

metric circulant matrices.

As a consequence of being symmetric and circulant,

they commute in pairs.

The following theorem of Williamson has been

used as the motivator for search algorithm:

Theorem 2 (Williamson [8]): If there exist solutions

to the equations

�i ¼ 1 þ 2
Xs
j¼1

tij !
j þ !n�j

� �
; i ¼ 1; 2; 3; 4;

ð6Þ

where s ¼ 1
2
n� 1ð Þ, ! is a nth root of unity, exactly

one of t1j, t2j, t3j, t4j, is nonzero and equals�1 for each

1 � j � s, and

�2
1 þ �2

2 þ �2
3 þ �2

4 ¼ 4n;

then there exist solutions to the equations:

A ¼
Pn�1

i¼0 aiT
i; a0 ¼ 1; ai ¼ an�i ¼ �1

B ¼
Pn�1

i¼0 biT
i; b0 ¼ 1; bi ¼ bn�i ¼ �1

C ¼
Pn�1

i¼0 ciT
i; c0 ¼ 1; ci ¼ cn�i ¼ �1

D ¼
Pn�1

i¼0 diT
i; d0 ¼ 1; di ¼ dn�i ¼ �1:

8>>><
>>>:

ð7Þ

That is, there exists a Hadamard matrix of order 4n.

In matrix form, !j þ !n�j is represented as Tj þ Tn�j.

Since these are symmetric, we write

! ¼ !j þ !n�j:
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Remark 1: The solutions for Equation (6) are inde-

pendent of the particular root !, so if n as defined by

Equation (1) is prime, ! can be chosen so that the first

� having any !j assigned has !1. Since the equations are

true for all roots of unity !, they are also true for !¼ 1.

2.1. Results From Previous Searches

In many cases, complete searches have been con-

ducted for Hadamard matrices of Williamson type.

Searches have also been conducted for special classes

of Williamson type Hadamard matrices. Furthermore,

an infinite class of such matrices is known and will

also be discussed briefly.

� Williamson [8] used algebraic and number theore-

tic results to simplify his first searches by hand in

1944.

� Baumert and Hall [9] report results of a complete

search for orders 4t, t odd and 3� t� 23. Some

incomplete results for higher orders are also given.

� Sawade [10] reports results of a complete search for

orders 4t, t¼ 25, 27. The results for t¼ 25 were

later demonstrated to be incomplete by Djokovic

[11].

� Djokovic [12] reports results of a complete search

for orders 4t, t¼ 29, 31. Only a single non-equiva-

lent solution was found for t¼ 29 and is equivalent

to an earlier result of Baumert [13].

� Koukouvinos and Kounias [14, 15] report results of

a complete search for order 4t, t¼ 33 and 39. These

results were complete search for order 4t, t¼ 33 and

39. These results were later demonstrated to be

incomplete by Djokovic [16].

� Djokovic [16] reports results of a complete search

for orders 4t, t¼ 33, 35, 39.

� Djokovic [11] reports results of a complete search

for orders 4t, t¼ 25, 37. This extends results ob-

tained by Sawade [10] for t¼ 25 and, for t¼ 37, by

Williamson [9] and later Yamada [17] for a special

class of matrices.

� Horton et al. [18] report results of a complete

search for orders 4t, t odd and 25 t 37. No new

results were found, confirming existence results.

An infinite family of Hadamard matrices of William-

son type has been proved to exist under certain

conditions [19, 20]:

Theorem 3 (Williamson [9]): If q is a prime power,

q � 1 (mod 4), qþ 1 ¼ 2t, then there exists a Wil-

liamson matrix of order 4t; we have C¼D, and A and

B differ only on the main diagonal.

This theorem gives examples of Hadamard matrices

of Williamson type for orders 4t, t¼ 31, 37, 41, 45, 49,

51, 55, . . . , for example.

Yamada [17] has searched for Hadamard matrices

of Williamson type, with certain restrictions. These

matrices are referred to as Williamson type j matrices.

The Williamson equation for such matrices, of order

4n is:

4n ¼ 1 � 2
X
s2A

cs!s

 !2

þ 1 � 2
X
s2A

cs!sj

 !2

þ 1 � 2
X
s2B

cs!s

 !2

þ 1 � 2
X
s2B

cs!sj

 !2

;

ð8Þ

where cs; ds ¼ �1; !s ¼ !s þ !�s; !n ¼ 1, j2 � �1

(mod n), A, B, jA, jB is a partition of {1; 2; . . . ;
(n�1)=2). Such a j exists, if and only if, all prime

divisors of n are � 1 (mod 4). This led to some new

results for n¼ 29, 37, 41. A summary of the presently

known results can be found in Horton et al. [18].

In Table 1, we list some of the seed sequences that

can be used to construct Walsh–Hadamard sequence

sets for DS-CDMA applications. This list includes just

a single quadruple of sequences for a given length.

3. Correlation Measures

It is well known (e.g. References [4, 5]) that the level

of multi-access interference and synchronization

amenability depend on the cross-correlations between

the sequences and the autocorrelation functions of the

sequences respectively. In this section, we introduce

some of the quantitative measures based on the

aperiodic correlation functions that can be used to

compare the sequence sets from the viewpoint of

their usefulness in DS-CDMA systems. Then, we

present the computed values of these measures for

the Williamson–Hadamard sequences created using

formula (2) from the seed sequences listed in Table I.

For general polyphase sequences fsðiÞn g and fsðlÞn g of

length N, the discrete aperiodic correlation function is

defined as [5,22]:

ci;lð�Þ ¼
1
N

PN�1��
n¼0 s

ðiÞ
n ½sðlÞnþ� ��; 0 � � � N � 1

1
N

PN�1þ�
n¼0 s

ðiÞ
n�� ½sðlÞn ��; 1 � N � � < 0

0; j� j � N;

8><
>:

ð9Þ
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Table I. List of the seed sequences for Williamson–Hadamard sequences of length 12–252.

N Seed sequences

12 A þþþ
B þ��
C þ��
D þ��

20 A þ����
B þ����
C þþ��þ
D þ�þþ�

28 A þ������
B þþ����þ
C þ�þ��þ�
D þ��þþ��

36 A þþ������þ
B þ�þ����þ�
C þ��þ��þ��
D þ���þþ���

44 A þþ��������þ
B þþ�þþ��þþ�þ
C þþ�þ�þþ�þ�þ
D þ�þþ����þþ�

52 A þþþ�þþ��þþ�þþ
B þþ�þ�þþþþ�þ�þ
C þþ��þ�þþ�þ��þ
D þ���þþþþþþ���

60 A þ�þ����þþ����þ�
B þ�þ����þþ����þ�
C þ��þþ�þþþþ�þþ��
D þþþ��þ����þ��þþ

68 A þ��þ�þ������þ�þ��
B þ�þ���þþ��þþ���þ�
C þ�����þþþþþþ�����
D þþ��þ�þþ��þþ�þ��þ

76 A þþ��þþ�þþþþþþ�þþ��þ
B þ�þþ��þ������þ��þþ�
C þþþ���þ�þ��þ�þ���þþ
D þþþ���þ�þ��þ�þ���þþ

84 A þþþþþ��þþ����þþ��þþþþ
B þþþ�þ��þ�þþþþ�þ��þ�þþ
C þþþ��þ�þþþ��þþþ�þ��þþ
D þ���þ�þ�þþ��þþ�þ�þ���

92 A þ�þþ�þþ��þþþþþþ��þþ�þþ�
B þþ���þ���þ�þþ�þ���þ���þ
C þþþ���þþ�þ�þþ�þ�þþ���þþ
D þþþ�þþþ�þ������þ�þþþ�þþ

100 A þ���þ�þ�þþ������þþ�þ�þ���
B þ��þ��þ�þ���þþ���þ�þ��þ��
C þþ�þþ�þþþ��������þþþ�þþ�þ
D þ�þþþþ����þþ��þþ����þþþþ�

108 A þ�þ�þþ�þþþ��þþþþ��þþþ�þþ�þ�
B þþ�þ�þ�þþ�þþ�þþ�þþ�þþ�þ�þ�þ
C þþþþ�þþ�����þþþþ�����þþ�þþþ
D þþþþ���þþ���þ��þ���þþ���þþþ

116 A þþþþ�þþ�þ���þþþþþþ���þ�þþ�þþþ
B þþ��þ��þ�þþþ�þþþþ�þþþ�þ��þ��þ
C þþþ���þþ��þ�þ����þ�þ��þþ���þþ
D þ�þ���þþ��þ�þþþþþþ�þ��þþ���þ�

124 A þþ�þ���þþþþþ�þ�þþ�þ�þþþþþ���þ�þ
B þþþþþ��þþþ�þ��þ��þ��þ�þþþ��þþþþ
C þþ�þþ��þ����þþ����þþ����þ��þþ�þ
D þ���þþþ�þþ�þ�þ����þ�þ�þþ�þþþ���

132 A þ��þþþ��þ��þþþþþþþþþþþþ��þ��þþþ��
B þþþþþþ����þþ�þ��þþ��þ�þþ����þþþþþ
C þþ�þ�þ�þ��þþþ�þ�þþ�þ�þþþ��þ�þ�þ�þ
D þþ��þ�þ��þþ�þþþ����þþþ�þþ��þ�þ��þ

Continues
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where ½��� denotes a complex conjugate operation.

When fsðiÞn g ¼ fsðlÞn g, Equation (9) defines the discrete

aperiodic autocorrelation function.

In order to evaluate the performance of a whole set

of M spreading sequences, the average mean-square

value of cross-correlation for all sequences in the set,

denoted by RCC, was introduced by Oppermann and

Vucetic [5] as a measure of the set cross-correlation

performance:

RCC ¼ 1

MðM � 1Þ
XM
i¼1

XM
k¼1
k 6¼i

XN�1

�¼1�N

jci;kð�Þj2: ð10Þ

A similar measure, denoted by RAC, was introduced

in Reference [5] for comparing the autocorrelation

performance:

RAC ¼ 1

M

XM
i¼1

XN�1

�¼1�N
� 6¼0

jci;ið�Þj2: ð11Þ

The measure defined by Equation (11) allows for

comparison of the autocorrelation properties of the set

of spreading sequences on the same basis as the cross-

correlation properties.

The measures defined by Equations (10) and (11)

are very useful for large sets of sequences and large

number of active users, when the constellation of

interferers (i.e. relative delays among the active users

and the spreading sequences used) changes randomly

for every transmitted information symbol. However,

for a more static situation, when the constellation of

interferers stays constant for the duration of many

information symbols, it is also important to consider

the worst-case scenarios. This can be accounted for

by analyzing the maximum value of peaks in the

aperiodic cross-correlation functions over the whole

set of sequences and in the aperiodic autocorrelation

function for � 6¼ 0. Hence, we introduce here two

Table I. Continued

148 A þ��þ�þþþþ�����þ�þ����þ�þ�����þþþþ�þ��
B þþ���þ�þ��þþ���þ��þþ��þ���þþ��þ�þ���þ
C þþþ��þþþþ�þþþ�þ��������þ�þþþ�þþþþþ�þþ
D þþ��þ�þ�þþþþ�þþ��þ��þ��þþ�þþþþ�þ�þ��þ

156 A þþþ��þ�þ�����þ��þþ����þþ��þ�����þ�þ��þþ
B þþþ��þþ�þ���þ�þ��þ����þ��þ�þ���þ�þþ��þþ
C þþþþ���þ��þþ����þ�þ��þ�þ����þþ��þ���þþþ
D þ���þþ�þ�þ�����þþþ�þþ�þþþ�����þ�þ�þþ���

164 A þ�þ���þþþ�þþ�þ��þþþþþþþþþþ��þ�þþ�þþþ���þ�
B þ�þ���þþþ�þþ�þ��þþþþþþþþþþ��þ�þþ�þþþ���þ�
C þþ����þ�þþþ�þþ�þþ���þþ���þþ�þþ�þþþ�þ����þ
D þ�þþþþ�þ���þ��þ��þþþ��þþþ��þ��þ���þ�þþþþ�

172 A þ���þþ��þþþþ�þ�þþþ�þþ��þþ�þþþ�þ�þþþþ��þþ���
B þþ�þþþþþþ����þ�þ��þþ�þþ�þþ��þ�þ����þþþþþþ�þ
C þþþ�þ�þþ��þ�þ�þþþþ�þ����þ�þþþþ�þ�þ��þþ�þ�þþ
D þþ���þþþþ�þ��þ��þþ��������þþ��þ��þ�þþþþ���þ

180 A þþþ��þþþ�þþ�þ�þþþþþ��������þþþþþ�þ�þþ�þþþ��þþ
B þ��þþ���þ��þ�þ�����þþþþþþþþ�����þ�þ��þ���þþ��
C þþ��þþþþ�þ�þ�þþþ��þ��þ��þ��þ��þþþ�þ�þ�þþþþ��þ
D þþ��þþþþ�þ�þ�þþþ��þ��þ��þ��þ��þþþ�þ�þ�þþþþ��þ

196 A þþþþ�þþ�þ���þþ�þþþ���þþ�þþ�þþ���þþþ�þþ���þ�þþ�þþþ
B þþþþ�þþ�þ���þþ�þþþ���þþ�þþ�þþ���þþþ�þþ���þ�þþ�þþþ
C þ����þ�þþþþ��þ�þþþ�þ�þþþ��þþþ�þ�þþþ�þ��þþþþ�þ����
D þþþþþ�þ����þþ�þ���þ�þ���þþ���þ�þ���þ�þþ����þ�þþþþ

220 A þ�þ��þ�þ�þþ��þ�þþþþþ�þþþ��þþþþ��þþþ�þþþþþ�þ��þþ�þ�þ��þ�
B þþ�þþ�þ�þ��þþ�þ�����þ���þþ����þþ���þ�����þ�þþ��þ�þ�þþ�þ
C þþþ����þþ�þþ��þþ����þ�þ�þþþþþþþþ�þ�þ����þþ��þþ�þþ����þþ
D þþþ����þþ�þþ��þþ����þ�þ�þþþþþþþþ�þ�þ����þþ��þþ�þþ����þþ

228 A þ���þþ�þ��þþþþ�þþþ�þþ���þ�þþþþþþ�þ���þþ�þþþ�þþþþ��þ�þþ���
B þþþþ��þ�þþ����þ���þ��þþþ�þ������þ�þþþ��þ���þ����þþ�þ��þþþ
C þþ�þ�þ���þþ�þþ�þ��þþþ�����þ����þ�����þþþ��þ�þþ�þþ���þ�þ�þ
D þþ�þ�þ���þþ�þþ�þ��þþþ�����þ����þ�����þþþ��þ�þþ�þþ���þ�þ�þ

244 A þþ��þ��þþ��þ�þ�þþþþ��þ�����þ������þ�����þ��þþþþ�þ�þ��þþ��þ��þ
B þþ��þ��þþ��þ�þ�þþþþ��þ�����þ������þ�����þ��þþþþ�þ�þ��þþ��þ��þ
C þ���þ�þ�þþþþ���þþ��þ�þþ�þ���þþþþþþ���þ�þþ�þ��þþ���þþþþ�þ�þ���
D þþþþ�þ�þ����þþþ��þþ�þ��þ�þþþ������þþþ�þ��þ�þþ��þþþ����þ�þ�þþþ

252 A þþþþ�þþ�þ�þþþþ�þ���þ���þþþ���þþþþþþ���þþþ���þ���þ�þþþþ�þ�þþ�þþþ
B þþþþ�þþ�þ�þþþþ�þ���þ���þþþ���þþþþþþ���þþþ���þ���þ�þþþþ�þ�þþ�þþþ
C þþ�þþþ��þþ�þþ��þ��þ�þþ�þ�þþþ��������þþþ�þ�þþ�þ��þ��þþ�þþ��þþþ�þ
D þ�þ���þþ��þ��þþ�þþ�þ��þ�þ���þþþþþþþþ���þ�þ��þ�þþ�þþ��þ��þþ���þ�
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additional measures to compare the spreading se-

quence sets:

� Maximum value of the aperiodic cross-correlation

functions Cmax

cmaxð�Þ ¼ max
i¼1;...;M
k¼1;...;M

i6¼k

jci;kð�Þj;

� ¼ ð�N þ 1Þ; . . . ; ðN � 1Þ
Cmax ¼ max

�
fcmaxð�Þg: ð12Þ

� Maximum value of the off-peak aperiodic auto-

correlation functions

amaxð�Þ ¼ max
k¼1;...;M

ck;kð�Þ
�� ��;

Amax ¼ max
� 6¼0

famaxð�Þg: ð13Þ

In Table II, we list the correlation parameters RCC,

RAC, Cmax and Amax, computed for the Williamson–

Hadamard sequences of lengths 12–252 created using

the seed sequences listed in Table I. In Figures 1 and

2, we show the typical behavior of the peaks in the

aperiodic cross-correlation functions cmax(�) and

peaks in the aperiodic autocorrelation functions

amax(�) respectively.

4. Modification Method

Further improvement to the values of correlation

parameters of the sequence sets based on William-

son–Hadamard matrices can be obtained using the

method introduced in Reference [7] for Walsh–Hada-

mard sequences. That method is based on the fact that

for a matrix H to be orthogonal, it must fulfill the

condition HHT ¼ NI, where HT is the transposed

Hadamard matrix of order N and I is the N 	 N unity

matrix. In the case of Williamson–Hadamard ma-

trices, we have N¼ 4n. The modification is achieved

by taking another orthogonal N 	 N matrix DN, and

the new set of sequences is based on a matrix WN,

given by:

WN ¼ HDN : ð14Þ

Of course, the matrix WN is also orthogonal [7].

In Reference [7], it has been shown that the correla-

tion properties of the sequences defined by WN can be

Table II. Correlation parameters of the Williamson–Hadamard sequences of length N¼ 12–252 obtained from the seed sequences listed in
Table I.

N RCC RAC Cmax Amax

12 0.9082 1.00930 0.9167 0.6667
20 0.9675 0.61800 0.9500 0.4000
28 0.9813 0.50510 0.9643 0.2857
36 0.9818 0.63820 0.9722 0.3333
44 0.9874 0.54040 0.9773 0.2727
52 0.9854 0.74700 0.9808 0.3077
60 0.9894 0.62730 0.9833 0.4000
68 0.9898 0.68330 0.9853 0.2941
76 0.9916 0.62770 0.9868 0.3158
84 0.99355 0.53507 0.9881 0.26190
92 0.99246 0.68655 0.98913 0.27174
100 0.99300 0.69333 0.9900 0.26000
108 0.99379 0.66439 0.99074 0.22222
116 0.99461 0.62025 0.99138 0.23276
124 0.99323 0.83231 0.99194 0.23387
132 0.99530 0.61556 0.99242 0.21970
148 1.01010 0.64471 0.99324 0.22297
156 0.99516 0.74966 0.99359 0.19231
164 0.99656 0.56130 0.99390 0.23780
172 0.99641 0.61407 0.99419 0.19186
180 0.99668 0.59480 0.99444 0.21667
196 0.99714 0.55864 0.99490 0.24490
220 0.99736 0.57722 0.99545 0.20909
228 0.99760 0.54495 0.99561 0.27632
244 0.99769 0.56104 0.9959 0.19262
252 0.99762 0.5984 0.99603 0.21825
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Fig. 1. Plot of the peaks in cross-correlation functions for the Williamson–Hadamard sequence set of order N¼ 52.

Fig. 2. Plot of the peaks in autocorrelation functions for the Williamson–Hadamard sequence set of order N¼ 52.
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significantly different than those of the original se-

quences.

A simple class of orthogonal matrices of any order

are diagonal matrices with their elements di,j fulfilling

the condition:

dl;m
�� �� ¼ 0 for l 6¼ m

k for l ¼ m
; l;m ¼ 1; . . . ;N:

�
ð15Þ

To preserve the normalization of the sequences, the

elements of DN, being in general complex numbers,

must be of the form:

dl;m ¼
0 for l 6¼ m

expðj�lÞ for l ¼ m

�
;

l;m ¼ 1; . . . ;N:

ð16Þ

From the implementation point of view, the best

class of sequences are binary sequences.

To find the best possible modifying diagonal matrix

DN, we can do an exhaustive search of all possible

bipolar sequences of length N and choose the one

which leads to the best performance of the modified

set of sequences. However, this approach is very

computationally intensive, and even for a modest

value of N, e.g. N¼ 28, it is rather impractical. Hence,

other search methods, like a random search, must be

considered.

By applying a Monte Carlo algorithm [23,24] to

N� 20 and looking for a minimum value of the peaks

in the aperiodic cross-correlation functions Cmax in

5000 random draws, we have found the sequences

listed in Table III for lengths 20–100, and in Table IV,

we present the corresponding correlation parameters

of the modified sequence sets. In Figures 3 and 4, we

present examples of the plots of the peaks in the

aperiodic cross-correlation functions cmax(�) and

peaks in the aperiodic autocorrelation functions

amax(�) respectively for the modified sequence sets.

There, it is clearly visible that the peaks in the cross-

correlation functions are significantly reduced com-

pared to the original sequence sets, shown in the

figures by the dotted line. However, this is done on

the expense of lifting the peaks in the off-peak

autocorrelation functions.

Because of the nonlinear character of the cost

function, it is difficult to assess how far the obtained

result is from the global minimum without performing

the exhaustive search. Calculating the theoretical T
ab
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lower bound for the aperiodic cross-correlation and

aperiodic out-of-phase autocorrelation magnitudes

can give some insight into this. The best-known bound

is given by Welch [25] and states that for any set of M

bipolar sequences of length N

maxfCmax;Amaxg �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M � 1;

2NM �M � 1

r
¼ BW : ð17Þ

A more tighter bound was given by Levenshtein

[26] and is expressed by:

maxfCmax;Amaxg �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2N2 þ 1ÞM � 3N2

3N2ðMN � 1Þ

s
¼ BL:

ð18Þ

The values of both BW and BL calculated for the

considered values of N are also listed in Table IV.

It must be noted here that both Welch and Levensh-

tein bounds are derived for sets of bipolar sequences

where the condition of orthogonality for perfect

Table IV. Correlation parameters of the Williamson–Hadamard sequences of length N modified using a diagonal method to find minimum of
ACmax.

N RCC RAC Cmax Amax BW BL

20 0.9321 1.2900 0.5500 0.6500 0.1562 0.1759
28 0.9664 0.9074 0.5357 0.4643 0.1325 0.1503
36 0.9764 0.8248 0.5000 0.4444 0.1170 0.1333
44 0.9777 0.9604 0.4773 0.5227 0.1060 0.1210
52 0.9804 0.9987 0.4615 0.3654 0.0976 0.1116
60 0.9838 0.9539 0.4500 0.3833 0.0909 0.1041
68 0.9854 0.9795 0.4265 0.4412 0.0854 0.0979
76 0.9877 0.9210 0.4079 0.3026 0.0808 0.0927
84 0.9879 1.0008 0.3929 0.4048 0.0769 0.0883
92 0.9885 1.0451 0.3913 0.3261 0.0735 0.0844
100 0.9902 0.9660 0.3800 0.3400 0.0705 0.0810

Fig. 3. Plot of the peaks in cross-correlation functions for the modified Williamson–Hadamard sequence set of order N¼ 52;
the dotted line represents the values for the original sequence set.
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synchronization is not imposed. Hence, one can ex-

pect that by introducing the orthogonality condition,

the lower bound for the aperiodic cross-correlation

and aperiodic out-of-phase autocorrelation magni-

tudes must be significantly lifted.

5. Conclusions

In this paper, we presented a family of bipolar ortho-

gonal spreading sequences of order N:4 (mod 8)

based on a Williamson’s construction. These se-

quences possess very good autocorrelation properties

that make them amenable to synchronization require-

ments. Later, we applied a modification technique to

improve cross-correlation properties of Williamson–

Hadamard sequences without compromising their

orthogonality. The improvement was achieved at the

expense of slightly worsening the autocorrelation

properties. However, the overall autocorrelation prop-

erties of the modified sequence sets are still signifi-

cantly better than those of Walsh–Hadamard

sequences of comparable lengths. The proposed family

of bipolar spreading sequences can be very useful in

those DS-CDMA systems that require spreading dif-

ferent than by a factor being an integer power of 2.
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