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WILLIJiMSON ~1I\TRIC[S OF EVEN ORDER 
c:::: _:J_ 

Jenni fer SclJcrry Wall is 

Alwtralinn NatiC'na.l Universi ty, Conberro 

ABSTRACT 

Recent advances in the construction of Hadamard matrices have depended on 

the existence of I1aumert-Hall arrays and Williamson-.type matrices. TI,ese latter are 

four (1,-1) matrices A,B,C,D, of order.m, which pairwise satisfy 

M,N E (A,B,C,OJ, 

and (ii) where I is the identity matrix. 

Currently Williamson m~trices are kno~l to exist for all orders less th~n 

100 except: 35,39,47,53,59,65,67,70,71,73,76,77,83,89,94. 

This paper gives two constructions for Williamson matrices of even order, 

2n. This is most significant when no Williamson matrices of order n are kno-m. In 

particular we give matrices for tile new orders 2.39,2.203,2.303,2.333.2.689,2.915. 

2.1603. 

1. INTRODUCTION ANO BASIC DeFINITIONS 

A matrix with every entry +1 or -1 is called a (l.-U-m,ltrix. An 

Haddmard matrix II = (h
ij

) is a square (1.-1) matrix of order n which satisfies the> 

equation 

We use J for the matrix of alII's and I for the identity matrix. l~e Kroneck~r 

product is written x. 

A Baumert-Hall arr.1Y of order t is a 4t><4t array with entries A.-A,B.-fl.C, 

-c,O,-O and the properties that: 



133 

(i) in any row there are exactly t entri <; ±A, t entries ±B, 

t entries ±C, and t entries ±D; and similarly for 

columns; 

(ii) the rows are formally orthogonal, in the sense that if 

±A,±B,±C,±D are realised as elements of any commutative 

ring then the distinct rows of the array are pairwise 

orthogonal; and similarly for columns. 

The Baumert-Hall arrays are a generalisation of the following array of 

Williamson: 

A II C D 

-B A -D C 

-C D A-B 

-D -C B A 

which gives, when A,B,C,D are replaced by matrices of Williamson-type - that is, 

(1,-1) matrices of order m which pairwise satisfy 

- an Hadamard matrix of order 4m. 

The status of knowledge about Williamson matrices and Baumert-Hall arrays 

is summarised below; these, together with the following theorem, give many in­

finite families of Hadamard matrices. 

THEOREM 1. (Baumert and Hall) If there exists a Baumert-Hall array of order t and 

a Williamson matrix of order m then there exists an Hadamard matrix of order 4mt. 

STATEMENT 1. There exist Baumert-Hall arrays of order 

(i) {3,5,7, ... ,59} = B, 

(ii) {1+2a .IOb .26c : a,b,c natural numbers} = A, 

(ii i ) 5b, b E A VB. 

STATEMENT 2. There exist Williamson-type matrices of order 
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(i) {1,3,5,7, ... ,29,37,43}, 

(ii) ~(ptl), p = 1 (mod 4) a prime power, 

(iii) d a natural number, 

(iv) ~(ptl), P = 1 (mod 4) a prime power, 

(v) s(4st3),s(4s-1), s £ {l,3,5, ... ,25}, 

(vi) 93. 

This leaves the following orders less than 100 for which Williamson-type matrices 

are not yet known: 35,39,47,53,59,65,67,70,71,73,76,77,83,89,94. 

Four (1,-1) matrices A,B,e,D of order m with the properties 

(i) MNT = NI1T for M,N £ {A,B,e,D}, 

(ii) (A_I)T = -(A-I), BT = B, eT = e, DT 

(iii ) T T T T 
AA tBB tee tDD 

D, (1) 

will be called good matri~es. l~ese are used in [2],[7],[12] to form skew-Hadamard 

matrices and exist for odd m ~ 25. 

Let Sl,S2, ... ,Sn be subsets of V, an additive abelian group of order v, 

containing k l ,k2 , ... ,k
n 

elements respectively. Write Ti for the totality of all 

differences between elements of Sj (with repetitions), and T for the totality of 

elements of all the Ti . If T contains each non-zero element a fixed number of times, 

A say, then the sets SI,S2,'" ,Sn will be called n-{v; k l ,k2 , ... ,kn ; A} supplementary 

difference sets. This will be abbreviated to sds. If n = 1 we have a (V,k,A) 

difference set which is cyclic or abelian according as V is cyclic or abelian. 

Henceforth we assume V is always an additive abelian group of order v with elements 

The type 1 (1,-1) incidence matrix M (m .. ) of order v of a subset X of V 
l.J 

is defined by 

m •• 
l.J 

g.-g. £ X, 
J l. 

otherwise; 

while the type 2 (1,-1) incidence matrix N = (n .. ) of order v of a subset Y of V is 
l.J 

defined by 



n .. 
11 
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g/gi £ Y, 

otherwise. 

It is shown in [12] that if M is <1 type 1 (1,-1) incidence matrix ilno N is 

a type 2 (1,-1) incidence mdtrix of 2-{v; k1,k Z; A} supplementary difference sets 

then 

Also in [12], it is shown that R = (r .. ) of order v, defined on V by 
1J 

r .. 
1,J 

if g.+g. = 0, 
1 J 

otherwise, 

then if M is type 1, MR is type 2. 

T Hence if M and N are type 1 of order v, MN = NM and M(NR) 

In general the (1,-1) incidence matrices AI"" ,An of 

n-{v; kl,kz, .•. ,kn ; A} supplementary difference sets satisfy 

I A.A.
T 

= 4[ I k.-AJ I + [nv-4 [ I k.-A]J J. 
i=l 1 1 i=l 1 i=l 1 

(2) 

Let v = ef+l = pa (p a prime). Let x be a primitive element of Gr(v) r 

and write G = {zl,'" ,zv_l} for the cyclic group of order v-I generated by x. 

Define the cyclotomic classes, Ci , of G (see Storer [4] for more details) 

by 

O!Si!Se-l. 

For any results implied, but unproved in this paper, on forming supplementary di ffer-

ence sets from cyclotomic classes, the reader is referred to [9] or [12]. 

2. USING GOOD MATRICES 

THEOREM 2. Let A,B,C,D be four good matrices of order s. Suppose there exist 

four (1,-1) matrices of order p,X,Y,P,Q which satisfy 

for R, S £ {X, Y , P ,Q} , 
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2a It (2p-2a)J , 

2(p+l1I-2J. 

Then there exist Williamson-typ~ matrices of order 2sp, when lis 

PROOF. Let 

Then 

Now consider 

Clearly 

and 

M N 

I2 x (2aI+(2p-2a)J), 

12 x (2(ptl)I-2J). 

Al IxM t (A-I )xN 

A2 Bxt! 

A.A.
T 

1. ) 

II T 
L A.A. 

i=l 1. 1. 

i,j 1,2,3,4, 

p-a+l. 

I xI2x[(2at2(4s-1)(ptl))It(2p-2a-8st2)J] 
s 

Hence we have the result. 

8spI 2 ' sp 
when s = (p-atl)!4. 

COROLLARY 1. Suppose there exist 2-{p; kl~2~ltkr}-(Ptll+2S) sds, XI~2' and 

2-{p; -}-(p-l); -}-(p-3)} sds, X3~'" with the property that 

where s is the order of a good matrix. Then there exist Williamson-type matrices of 

order 2sp. 

PROOF. Let Q,X,Y be the type 1 (1,-1) incidence matrices of X2,X3,X", Then Q,X,Y 

are symmetric. 
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Let P be the type 2 (1,-1) incidence matrix of Xl, Then (i) of the 

theorem is satisfied. Further 

(2p+2-8s)I+(8s-2)J, 

(2p+2)I-2J. 

Hence there exist Williamson-type matrices of order 2sp. 

COROLLARY 2. If P = 4f+l, f odd, is a prime power of the form 9+4t2 or 25+4t2 and 

there exist good matrices of order (f+l)/8, then there exist Williamson-type matrices 

of order (f+l)(4f+l)/4. 

PROOF. We note that for 9+4t2 and 2S+4t2, CO,CO+C z and C1,CO+C2 respectively are 

2-{4f+l; 2f,f; (5f-3)/4) sds. Then using CO+Cz and C1+C j for the other sds in the 

pre-vious corollary we have the result. 

COROLLARY 3. If P = 4f+l, f odd, is a prime power of the form 1+llt2 or It'J+4t 2 and 

there exist good matrices of order (f-l)/8, then there exist Williamson-type 

matrices of order (f-l)(4f+l)/4. 

PROOF. We note that for 1+4t2 ancl lt9+'1t 2 , {O}+Co ,CO+CZ and {O}+C j ,CO+C 2 respect­

ively ~re 2-{4f+l; 2f,f+l; (5f-l)/ij) sds. Then using Co+Cz and C1+C3 for the other 

sds in corollary 1 we have the result. 

For f = 25 and 57 we get Williamson matrices for the following orders 2n 

where no Williamson matrix of order n is known: 2.303,2.1603. 

COROLLARY 4. If P = 4[+1 is a prime power and (p-1l/4 is the order of a eood matrix, 

then there exist Williamson type matrices of order ,tp(p-l). 

PROOF. Use the (p,p,p) and (p,p-l,p-2) difference sets to form the 

2-{p; p,p-l; 2p-2} sds for the corollary. 

For p = 13 we find there is a good matrix of order 3 = (p-ll/4 and hence 

Williamson-type rna trices of o'rder 2.39 even though Williamson-type matrices of order 

39 are not yet known. This corollary also f,ives us Williamson-type matrices for the 

fallowing orders 2n where no Williamson matrix of order n is known: 2.203,2.333, 
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2.689,2.915. 

COROLLARY 5. Let p = 1 (mod 4) be a prime power. further suppose there exists a 

(p,k,1.) difference set; then if there exist good matrices of order 

(i) s = [2(\-k)+p+l]/4; (ii) s = [2(\-k)+p-lJ/4 

respectively, there exist Williamson-type matrices of order 2sp. 

PROOf. Use Q = J, Q = J-21 respectively in the theorem and form X and Y from the 

type 1 incidence matrices of Co+C 2 and CI+C 3 respectively. for P use the type 2 in-

cidence matrix of the difference set. 

3. USING SOME OTHER WILLIAMSON MATRICES 

THEOREM 3. Let I+R,I-R,S,S be four Williamson matrices of order s. Suppose there 

exist four (1,-1) matrices of order p,X,Y,P,Q which satisfy 

(i) ZW
T = wzT

, for Z,WE: {X,Y,P,Q}, 

(E) ppT+QQT 
2aI+{2p-2a)J, 

(iii) XxT+yyT 2(p+l )I-2J. 

Then there exist Williamson matrices of order 2ps, where s }-(p-a+l). 

PROOf. Let 

M N 

Then, as before, 

Mt? 
T 

NM , 

MMT 12 x (2alt(2p-2a)J) , 

NN
T 12x(2(p+l)I-2J). 

Now consider 

Al IxM + RxN 

A2 SxN 

A3 Ix-M + RxN 

A4 SXN. 



Clearly 

and 

A.A. T 
1 J 

4 T 
E A.A. 

i=l 1 1 

T A.A. , 
J 1 
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i,j 1,2,3,11, 

IxI2x[4aI+2(2p-2a)J] + IxI 2x[4(2s-l)(p+llI- 4(2s-1 )Jl 

which gives the result. 

8SpI 2 ' sp when s = ~(p-a+l); 

COROLLARY 1. Suppose there exist Williamson-type matrices, I+R,I-R,S,S, of order s. 

Suppose there exist 2-{p; kl~~I~+S-~(p+l)} sds with incidence matrices P and Q, 

and 2-{p; ~(p-l); ~(p-3)} sds with incidence matrices X and Y which satisfy 

for Z, W £ {p, Q, X, Y} • 

Then there exist Williamson matrices OC order 2ps. 

COROLLARY 2. Supp0se there exist Williamson-type matrices I+R,I-R,S,S, of order 

p = ~(s-l). Suppose there exists a symmetric Hadamard matrix of order s+l = 0 (mod 

4). Then there exist Williamson matrices of order s(s-l). 

PROOF. Normalize the Hadamard matrix to the form 

E, 

and use P J, Q J-2I, X = Y E in the theorem. 

COROLLARY 3. Let pool (mod 4) be a prime power. Suppose there exists a symmetric 

Hadamard matrix of order p+3. Then there exist Williamson matrices of order 

(p+2)(p+U. 

PROOF. There exist Williamson matrices of order ~(p+l) of the required form. 

This gives Williamson matrices of the following orders 2n where none are 

known for n: 2.105,2.171,2.903. 
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COROLLARY 4. Let p = 1 (mod 4) be a prime power. Suppos" there exists a (V,k,A) 

difference set, where v is a prime power and A = k+~(p-v). Then there exist 

Williamson matrices of order v(p+l). 

PROOF. Let P J,Q be the type 2 (l,-l) incidence matrix of the (V,k,A) difference 

set; let X Y be the type 1 (l,-l) incidence matrix of the (v,{v-l)/2,{v-3)/4) 

difference set for v = 3 (mod 4) and X,Y be the type 1 (l,-l) incidence matrices of 

2-{v; {v-l)/2; (v-3)/2} sds for v = 1 (mod 4). 

COROLLARY 6. Let p = 1 (mod 4) be a prime power. Suppose there exists a (v,k,X) 

difference set, where v is a prime power and A = k+{p-v)/4. Then there exist 

Williamson matrices of order v{p+l). 

PROOF. For P = Q use the type 2 incidence matrix of the difference set. Form X and 

Y as in the previous corollary. 

Neither of the last two corollaries give interesting matrices for small 

orders. 

COROLLARY 7. Let p = 4ftl (f odd) be a prime power of the form 9+4t 2 or 25t 11t 2. 

Suppose {f-l)/2 = 1 (mod 4) is a prime power. Then there exist Williamson matrices 

of order ~(ftl){4f+l). 

PROOF. For P and Q in the theorem use the type 2 and type 1 incidence matrices 

respectively of Co and CO+C2 or Cl and COtC2 which are 2-{4f+l; 2f,f; (Sf-3)/4} sds 

for the prime powers of the theorem. For X and Y use the type 1 incidence matrices 

of COtC2 and CI+C 3 which are 2-{4f+l; 2f; 2f-l} sds. 

COROLLARY 8. Let p = 4ftl (f odd) be a prime power of the form l+4t2 or 49t11t2 . 

Suppose {f-3)/2 = 1 (mod 4) is a prime power. Then there exist Williamson matrices 

of order ~(f-l)(4f+l). 

PROOF. Proceed as in the previous corollary but use {O}+Co or {O}tCI to form r. 
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