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Williamson matrices of even order

Abstract

Recent advances in the construction of Hadamard matrices have depended on the existence of Baumert-
Hall arrays and Williamson-type matrices. These latter are four (1,-1) matrices A,B,C,D, of order m, which
pairwise satisfy

(i) MNT = NMT, M\N E (AB,C,D),
and (ii) AAT +BBT +CCT +DD' = 4mlim, where | is the identity matrix.

Currently Williamson matrices are known to exist for all orders less than 100 except:
35,39,47,53,59,65,67,70,71,73,76,77,83,89,94.

This paper gives two constructions for Williamson matrices of even order, 2n. This is most significant
when no Williamson matrices of order n are known. In particular we give matrices for the new orders
2.39,2.203,2.303,2.333.2.689,2.915. 2.1603.
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WILLIAMSON MATRICES OF EVEN ORDER

Jennifer Seberry Wallis

Mistralian National University, Canberra

ABSTRACT

Recent advances in the construction of Hadamard matrices have depended on
the existence of Baumert-Hall arrays and Williamson-type matrices, These latter are
four (1,-1) matrices A,B,C,D, of order m, which pairwise satisfy

. T T
(1) MN = NM | M,Ne {A,B,C,D],

T

. T . : .
and (ii) AA +BB +CCT+DDT = UmIm, where I is the identity matrix,

Currently Williamson matrices are known to exist for all orders less than

100 except: 35,39,47,53,59,65,67,70,71,73,76,77,83,89,94,

This paper gives two constructions for Williamson matrices of even order,
2n, This is most significant when no Williamson matrices of order n are known. In
particular we give matrices for the new orders 2.39,2.203,2.303,2.333,2.689,2.915,

2.1603.

1. INTRODUCTION AND BASIC DEFINITIONS

A matrix with every entry +1 or -1 is called a (1,-1)-matrix, An

Hadamard matrix H = (hij) is a square (1,-1) matrix of order n which satisfies the

equation

T T,
HH = H'H = nIn.
We use J for the matrix of all 1's and I for the identity matrix. The Kronecker

product is written x,

A Baumert-Hall array of order t is a Wtxut array with entries A,-A,B,-B,C,

-C,D,-D and the properties that:
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(1) in any row there are exactly t entri-s *A, t entries *B,
t entries *C, and t entries #D; and similarly for
columns;

(ii) the rows are formally orthogonal, in the sense that if
*A,+B,*C, %D a;e realised as elements of any commutative
ring then the distinct rows of the array are pairwise

orthogonal; and similarly for columns.

The Baumert-Hall arrays are a generalisation of the following array of

Williamson:
A B C D
-B A -D C
R ]
-C D A -B
-D -C B A

which gives, when A,B,C,D are replaced by matrices of Williamson-type - that is,
(1,-1) matrices of order m which pairwise satisfy
(1) T = NMT,

and (ii) aaT+maT+ccT4op! = 4m_,

- an Hadamard matrix of order um.

The status of knowledge about Williamson matrices and Baumert-Hall arrays
is summarised below; these, together with the following theorem, give many in-

finite families of Hadamard matrices.

THEOREM 1. (Baumert and Hall) If there exists a Baumert-Hall array of order t and

a Williamson matrix of order m then there exists an Hadamard matrix of order 4mt.

STATEMENT 1. There exist Baumert-Hall arrays of order
(i) {8,5,7,...,5%} = B,

b.ZBC: a,b,c natural numbers} = A,

(i1) {1+2%.10
(iii) Sb, beAUB.

STATEMENT 2. There exist Williamson-type matrices of order
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(i) {1,3,5,7,...,29,37,u3},
(ii) %(p+l), p = 1 (mod 4) a prime power,
(iii) 97, d a natural number,
(iv) %p(p+l), p = 1 (mod 4) a prime power,
(v) s(Usf3),s(us-l), se{1,3,5,...,25},

(vi) 93,

This leaves the following orders less than 100 for which Williamson-type matrices

are not yet known: 35,39,47,53,59,65,67,70,71,73,76,77,83,89,94.

Four (1,-1) matrices A,B,C,D of order m with the properties

(i) T = wm’ for m,Ne (A,B,C,D},

(i) -7 = -a-1, 8T =8, T=c, 0 =0, (1)
T
(iii) AAT+BBT+CC +DDT = umIm,
will be called good matrices. These are used in [2],[71,[12] to form skew-Hadamard

matrices and exist for odd m g 25,

Let Sl,Sz,...,Sn be subsets of V, an additive abelian group of order v,
containing kl,kz,...,kn elements respectively. Write Ti for the totality of all
differences between elements of Si (with repetitions), and T for the totality of
elements of all the Ti' If T contains each non-zero element a fixed number of times,
X say, then the sets 81,82,...,Sn will be called n-{v; kl’kZ,-~-’kn3 A} supplementary
difference sets., This will be abbreviated to sds. If n =1 we have a (v,k,\)

difference set which is cyclic or abelian according as V is cyclic or abelian.

Henceforth we assume V is always an additive abelian group of order v with elements
g1582s- "1gv'

The type 1 (1,-1) incidence matrix M = (mij) of order v of a subset X of V

is defined by

+1 gj-gi e X,

m, .
H -1 otherwise;

while the type 2 (1,-1) incidence matrix N = (nij) of order v of a subset Y of V is

defined by
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T EtEe T
ns o=
! 1:1 otherwise.

It is shown in [12] that if M is a type 1 (1,-1) incidence matrix and N is
a type 2 (1,-1) incidence matrix of 2-{v; kj,kp; A} supplementary difference sets
then

MNT = NMT.

Also in [12], it is shown that R = (Pij) of order v, defined on V by
1 if g.+g, = 0,
ros v (2)
»J {0 otherwise,

then if M is type 1, MR is type 2.
Hence if M and N are type 1 of order v, MN = NM and M(NR)T = (NR)MT.

In general the (1,-1) incidence matrices Apye.orA of

n~-{v; kl,kz,...,kn; A} supplementary difference sets satisfy

IapT ) [ ) ]
AA, = u[ k,-AJ I+ (nv-i [ k,-A] J.
=1t izl b igl 1

Let v = ef+l = pOl (p a prime). Let x be a primitive element of GF(v) = F

and write G = (zl,...,zv_l).for the cyclic group of order v-1 generated by x.

Define the cyélotomic classes, Ci’ of G (see Storer [4] for more details)

by

c, = (¥ 0 ¢y e 1), 0gisce-1.

For any results implied, but unproved in this paper, on forming supplementary differ-

ence sets from cyclotomic classes, the reader is referred to [9] or [12].

2. USING GOOD MATRICES

THEOREM 2. Let A,B,C,D be four good matrices of order s. Suppose there exist

four (1,-1) matrices of order p,X,Y,P,Q which satisfy

(i) srT = RST, for R,5e {X,Y,P,Q},
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(ii) PPT+QQT = 2al+(2p-2a)d,

(ii)  xx"+yy| = 2(p+1)1-24.

Then there exist Williamson-type matrices of order 2sp, when Us = p—é+l.

PROOF. Let _
P 0 X Y
M= , N= .
-Q T Y -
Then
T
et o= '
T
MM = Ipx(2al+(2p-2a)J),
NN = Ipx{2(p+1)1-2J).

Now consider

Al = IxM+ (A-I)xN

Ay = BxN

Ag = CxN

Ay = DxN.
Clearly

AlAjT = AjAlT, i,j = 1,2,3,4,
and

n
P oaaT = oo’ e (us-1)xm”

I xIpx[(2a+2(4s-1)(p+1)) 1+(2p-2a-85+2)J]
= = - L
BspIQSp, when s = (p-a+l)}/4,
Hence we have the result,
COROLLARY 1. Suppose there exist 2-{p; k;,k;; kytk,-%(ptl)+2s) sds, X15Xp, and

1y

2-{p; %(p-1); %(p-3)}sds, X3,Xy, with the property that

xt:Xi = -xeXi_,_ i=2,3,u4,

where s is the order of a good matrix. Then there exist Williamson-type matrices of

order 2sp.

PROOF. Let Q,X,Y be the type 1 (1,-1) incidence matrices of X,,X3,Xy. Then Q,X,Y

are symmetric.
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Let P be the type 2 (1,-1) incidence matrix of X;. Then (i) of the
theorem is satisfied. Further
T T
PP +QQ = (2p+2-8s)I+(8s-2)J,
xxT+YYT = (2p+2)I-24.

Hence there exist Williamson-type matrices of order 2sp.

COROLLARY 2, If p = 4f+l, f odd, is a prime power of the form 9+4t? or 25+4t? and

there exist good matrices of order (f+1)/8, then there exist Williamson-type matrices

of order (f+1){(uf+l)/4.

PROOF. We note that for 9+ut? and 25+ut?, Cp,Cp+Cy and Cy,Co+C, respectively are
2-{uf+l; 2f,f; (5£-3)/4} sds. Then using Cy+C, and C1+Cy4 for the other sds in the

previous corollary we have the result.

COROLLARY 3. If p = uf+l, f odd, is a prime power of the form 1+4t? or u9+4t2 and

there exist good matrices of order (f-1)/8, then there exist Williamson-type

matrices of order (f-1)(uf+1)/4,

PROOF. We note that for l+4t? and #9+4t?, {0}+Cy,Co+Cy and {0}+C;,Cq+Cy respect-
ively are 2-{4f+l; 2f,f+l; (5f-1)/4} sds. Then using Cy+C, and C;+C3 for the other

sds in corollary 1 we have the result.

For f = 25 and 57 we get Williamson matrices for the following orders 2n

where no Williamson matrix of order n is known: 2,303,2.1603.

COROLLARY 4. If p = Yf+l is a prime power and (p-1)/4 is the order of a good matrix,

then there exist Williamson type matrices of order %p(p-1).

PROOF. Use the (p,p,p) and (p,p-1,p-2) difference sets to form the

2-{p; p,p-1; 2p-2} sds for the corollary.

For p = 13 we find there is a good matrix of order 3 = (p-1)/4 and hence
Williamson-type matrices of order 2.39 even though Williamson-type matrices of order
39 are not yet known. This corollary also gives us Williamson-type matrices for the

following orders 2n where no Williamson matrix of order n is known: 2.203,2.333,
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2.689,2,915,

COROLLARY S5, Let p = 1 (mod 4) be a prime power. Further suppose there exists a

(p,k,}) difference set; then if there exist good matrices of order

(1) s = [200-J)+p+1)/4; (i) s = [2(A-k)+p-1]/u

respectively, there exist Williamson-type matrices of order 2sp.

PROOF. Use Q = J, Q = J-2I respectively in the theorem and form X and Y from the
type 1 incidence matrices of Cg+C, and C1+Cj3 respectively. For P use the type 2 in-

cidence matrix of the difference set.

3. USING SOME OTHER WILLIAMSON MATRICES

THEOREM 3. Let I+R,I-R,5,S be four Williamson matrices of order s. Suppose there

exist four (1,-1) matrices of order p,X,Y,P,Q which satisfy

(1) zWl = wzl, for z,We {X,Y,P,qQ},

(i1) PP +0ql

n

2al+{2p-2a)J,

it

(1ii) XX +YY© = 2(p+1)I-2J.

Then there exist Williamson matrices of order 2ps, where s = %(p-a+l).

PROOF. Let
P Q X Y
M= s N = .
-Q P Y -X
Then, as before,
‘ T
N = M s
T
MM = Ipx(2al+(2p-2a)),
NNT = I,x{2(p+1)1-2J).

Now consider
A = IxM+RxN
A, = SxN
A3 = Ix-M+ RxN

Aq = SxN,
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Clearly

and

T

n
Joaa, = 20’ + 2(RRT4sST)xnnT

= IxTpx[4al+2(2p-2a)d] + IxI,x[4(28-1)(p+1)I-4(2s-1)J]

n

BSPIQSp’ when s = %(p—a+});

which gives the result.

COROLLARY 1. -Suppose there exist Williamson-type matrices, I+R,I-R,5,5, of order s.

Suppose there exist 2-{p; kj,kp; kjtk,+s-%(p+1)} sds with incidence matrices P and Q,

and 2-{p; %(p-1); %(p-3)} sds with incidence matrices X and Y which satisfy

T
i = W' for Z,We (P,Q,X,Y}.

Then there exist Williamson matrices o order 2ps.

COROLLARY 2. Suppnse there exist Williamson-type matrices I+R,I-R,S,S, of order

p_= %(s-1). Suppose there exists a symmetric Hadamard matrix of order s+l = 0 (mod

4), Then there exist Williamson matrices of order s(s-1).

PROOF. Normalize the Hadamard matrix to the form

1 1...1

[

and use P = J, Q = J-2I, X = Y = E in the theorem.

COROLLARY 3. Let p = 1 (mod 4) be a prime power. Suppose there exists a symmetric

Hadamard matrix of order p+3., Then there exist Williamson matrices of order

(p+2)(ptl).

PROOF. There exist Williamson matrices of order %¥(pt+l) of the required form.

This gives Williamson matrices of the following orders 2n where none are

known for n: 2.105,2.171,2.903.
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COROLLARY 4. Let p = 1 (mod 4) be a prime power. Suppos: there exists a (v,k,))

difference set, where v is a prime power and )\ = k+k(p-v). Then there exist

Williamson matrices of order v(p+l).

PROOF., Let P = J,Q be the type 2 (1,-1) incidence matrix of the (v,k,\) difference
set; let X = Y be the type 1 (1,-1) incidence matrix of the [v,(v-l)/Q,(v—3)/“)
difference set for v = 3 (mod 4) and X,Y be the type 1 (1,-1) incidence matrices of

2-{v; (v-1)/2; (v-3)/2} sds for v = 1 (mod 4).

COROLLARY 6, Let p = 1 (mod 4) be a prime power. Suppose there exists a (v,k,})

difference set, where v is a prime power and A = k+(p-v)/4. Then there exist

Williamson matrices of order v(p+l).

PROOF. For P = Q use the type 2 incidence matrix of the difference set, Form X and

Y as in the previous corollary.

Neither of the last two corollaries give interesting matrices for small

orders.

COROLLARY 7. lLet p = 4f+l (f odd) be a prime power of the form 9+ut? or 25+4t2,

Suppose (£-1)/2 = 1 (mod 4) is a prime power. Then there exist Williamson matrices

of order %(f+1){(uf+l).

PROOF. For P and Q in the theorem use the type 2 and type 1 incidence matrices
respectively of Cp and Cg+Cp; or C; and Cg+Cp which are 2-{uf+l; 2f,f; (5£-3)/4} sds
for the prime powers of the theorem. For X and Y use the type 1 incidence matrices

of Cg+Cy and Cy+C3 which are 2-{u4f+l; 2f; 2f-1} sds,

COROLLARY 8., Let p = L4f+l (f odd) be a prime power of the form 14462 op LO+lt?,

Suppose (f-3)/2 = 1 (mod 4) is a prime power. Then there exist Williamson matrices

of order %(f-1)(uf+l),

PROOF. Proceed as in the previous corollary but use {0}+Cy or {0}+C; to form P.
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