University of Wollongong

Research Online

Faculty of Informatics - Papers (Archive)

Faculty of Engineering and Information Sciences

1974

Williamson matrices of even order

Jennifer Seberry University of Wollongong, jennie@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

Recommended Citation

Seberry, Jennifer: Williamson matrices of even order 1974. https://ro.uow.edu.au/infopapers/959

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

Williamson matrices of even order

Abstract

Recent advances in the construction of Hadamard matrices have depended on the existence of Baumert-Hall arrays and Williamson-type matrices. These latter are four (1,-1) matrices A,B,C,D, of order m, which pairwise satisfy

(i) $MN^{T} = NM^{T}$, M,N E (A,B,C,D),

and (ii) $AA^{T} + BB^{T} + CC^{T} + DD^{T} = 4mI_{m}$, where I is the identity matrix.

Currently Williamson matrices are known to exist for all orders less than 100 except: 35,39,47,53,59,65,67,70,71,73,76,77,83,89,94.

This paper gives two constructions for Williamson matrices of even order, 2n. This is most significant when no Williamson matrices of order n are known. In particular we give matrices for the new orders 2.39,2.203,2.303,2.333.2.689,2.915. 2.1603.

Disciplines

Physical Sciences and Mathematics

Publication Details

Jennifer Seberry Wallis, Williamson matrices of even order, Combinatorial Mathematics: Proceedings of the Second Australian Conference, (D.A. Holton, (Ed.)), Lecture Notes in Mathematics, 403, Springer–Verlag, Berlin–Heidelberg–New York, (1974), 132-142.

WILLIAMSON MATRICES OF EVEN ORDER

Jennifer Seberry Wallis

Australian National University, Canberra

ABSTRACT

Recent advances in the construction of Hadamard matrices have depended on the existence of Baumert-Hall arrays and Williamson-type matrices. These latter are four (1,-1) matrices A,B,C,D, of order m, which pairwise satisfy

> (i) $MN^{T} = NM^{T}$, $M, N \in \{A, B, C, D\}$, and (ii) $AA^{T}+BB^{T}+CC^{T}+DD^{T} = 4mI_{m}$, where I is the identity matrix.

Currently Williamson matrices are known to exist for all orders less than 100 except: 35,39,47,53,59,65,67,70,71,73,76,77,83,89,94.

This paper gives two constructions for Williamson matrices of even order, 2n. This is most significant when no Williamson matrices of order n are known. In particular we give matrices for the new orders 2.39,2.203,2.303,2.333,2.689,2.915, 2.1603.

1. INTRODUCTION AND BASIC DEFINITIONS

A matrix with every entry +1 or -1 is called a (1,-1)-matrix. An <u>Hadamard matrix</u> H = (h_{ij}) is a square (1,-1) matrix of order n which satisfies the equation

$$HH^{T} = H^{T}H = nI_{n}.$$

We use J for the matrix of all 1's and I for the identity matrix. The Kronecker product is written ×.

A Baumert-Hall array of order t is a $4t\times4t$ array with entries A,-A,B,-B,C, -C,D,-D and the properties that:

- (i) in any row there are exactly t entries ±A, t entries ±B, t entries ±C, and t entries ±D; and similarly for columns;
- (ii) the rows are formally orthogonal, in the sense that if ±A,±B,±C,±D are realised as elements of any commutative ring then the distinct rows of the array are pairwise orthogonal; and similarly for columns.

The Baumert-Hall arrays are a generalisation of the following array of Williamson:

 $\begin{bmatrix} A & B & C & D \\ -B & A & -D & C \\ -C & D & A & -B \\ -D & -C & B & A \end{bmatrix},$

which gives, when A,B,C,D are replaced by matrices of <u>Williamson-type</u> - that is, (1,-1) matrices of order m which pairwise satisfy

(i)
$$MN^{T} = NM^{T}$$
,
and (ii) $AA^{T} + BB^{T} + CC^{T} + DD^{T} = 4mI_{m}$;

- an Hadamard matrix of order 4m.

The status of knowledge about Williamson matrices and Baumert-Hall arrays is summarised below; these, together with the following theorem, give many infinite families of Hadamard matrices.

THEOREM 1. (Baumert and Hall) If there exists a Baumert-Hall array of order t and a Williamson matrix of order m then there exists an Hadamard matrix of order 4mt.

STATEMENT 1. There exist Baumert-Hall arrays of order

(i) {3,5,7,...,59} = B,
 (ii) {1+2^a.10^b.26^c: a,b,c natural numbers} = A,
 (iii) 5b, b ε A ∪ B.

STATEMENT 2. There exist Williamson-type matrices of order

(i) {1,3,5,7,...,29,37,43},

- (ii) $\frac{1}{2}(p+1)$, $p \equiv 1 \pmod{4}$ a prime power,
- (iii) 9^d, d a natural number,
- (iv) $\frac{1}{2}p(p+1)$, $p \equiv 1 \pmod{4}$ a prime power,
- (v) s(4s+3), s(4s-1), sc{1,3,5,...,25},
- (vi) 93.

This leaves the following orders less than 100 for which Williamson-type matrices are not yet known: 35,39,47,53,59,65,67,70,71,73,76,77,83,89,94.

Four (1,-1) matrices A,B,C,D of order m with the properties

(i) $MN^{T} = NM^{T}$ for $M, N \in \{A, B, C, D\}$, (ii) $(A-I)^{T} = -(A-I)$, $B^{T} = B$, $C^{T} = C$, $D^{T} = D$, (1) (iii) $AA^{T} + BB^{T} + CC^{T} + DD^{T} = 4mI_{m}$,

will be called good matrices. These are used in [2],[7],[12] to form skew-Hadamard matrices and exist for odd $m \leq 25$.

Let S_1, S_2, \ldots, S_n be subsets of V, an additive abelian group of order v, containing k_1, k_2, \ldots, k_n elements respectively. Write T_i for the totality of all differences between elements of S_i (with repetitions), and T for the totality of elements of all the T_i . If T contains each non-zero element a fixed number of times, λ say, then the sets S_1, S_2, \ldots, S_n will be called $n - \{v; k_1, k_2, \ldots, k_n; \lambda\}$ <u>supplementary</u> <u>difference sets</u>. This will be abbreviated to <u>sds</u>. If n = 1 we have a (v, k, λ) <u>difference set</u> which is <u>cyclic</u> or <u>abelian</u> according as V is cyclic or abelian. Henceforth we assume V is always an additive abelian group of order v with elements g_1, g_2, \ldots, g_v .

The type 1 (1,-1) incidence matrix $M = (m_{ij})$ of order v of a subset X of V is defined by

$$m_{ij} = \begin{cases} +1 & g_j - g_i \in X, \\ -1 & \text{otherwise}; \end{cases}$$

while the type 2 (1,-1) incidence matrix $N = (n_{ij})$ of order v of a subset Y of V is defined by

$$h_{ij} = \begin{cases} +1 & g_j + g_i \in Y, \\ -1 & \text{otherwise.} \end{cases}$$

It is shown in [12] that if M is a type 1 (1,-1) incidence matrix and N is a type 2 (1,-1) incidence matrix of 2-{v; k_1,k_2 ; λ } supplementary difference sets then

 $MN^{T} = NM^{T}$.

Also in [12], it is shown that $R = (r_{ij})$ of order v, defined on V by

$$r_{i,j} = \begin{cases} 1 & \text{if } g_i + g_j = 0, \\ 0 & \text{otherwise,} \end{cases}$$
(2)

then if M is type 1, MR is type 2.

Hence if M and N are type 1 of order v, MN = NM and $M(NR)^{T} = (NR)M^{T}$.

In general the (1,-1) incidence matrices A_1,\ldots,A_n of

n-{v; k_1, k_2, \ldots, k_n ; λ } supplementary difference sets satisfy

$$\sum_{i=1}^{n} A_{i}A_{i}^{T} = 4 \left(\sum_{i=1}^{n} k_{i} - \lambda \right) I + \left[nv - 4 \left(\sum_{i=1}^{n} k_{i} - \lambda \right) \right] J.$$

Let $v = ef+1 = p^{\alpha}$ (p a prime). Let x be a primitive element of GF(v) = Fand write $G = \{z_1, \dots, z_{v-1}\}$ for the cyclic group of order v-l generated by x.

Define the cyclotomic classes, C_i , of G (see Storer [4] for more details) by

$$C_{i} = \{x^{e_{j+1}}: 0 \le j \le f_{-1}\}, \quad 0 \le i \le e_{-1}.$$

For any results implied, but unproved in this paper, on forming supplementary difference sets from cyclotomic classes, the reader is referred to [9] or [12].

2. USING GOOD MATRICES

THEOREM 2. Let A,B,C,D be four good matrices of order s. Suppose there exist four (1,-1) matrices of order p,X,Y,P,Q which satisfy

(i) $SR^{T} = RS^{T}$, for $R, S \in \{X, Y, P, Q\}$,

$$\frac{(\text{ii}) \quad PP^{T} + QQ^{T} = 2aI + (2p-2a)J}{(\text{iii}) \quad XX^{T} + YY^{T} = 2(p+1)I - 2J}.$$

Then there exist Williamson-type matrices of order 2sp, when 4s = p-a+1.

PROOF. Let

$$M = \begin{bmatrix} F & \overline{Q} \\ -Q & F \end{bmatrix}, \qquad N = \begin{bmatrix} X & \overline{Y} \\ Y & -X \end{bmatrix}.$$

Then

$$MN^{T} = NM^{T},$$

$$MM^{T} = I_{2} \times (2aI + (2p - 2a)J),$$

$$NN^{T} = I_{2} \times (2(p+1)I - 2J).$$

Now consider

Al	Ξ	$I \times M + (A-I) \times N$
A ₂	=	B×N
Аз	=	C×N
A4	=	D×N.

Clearly

$$A_{i}A_{j}^{T} = A_{j}A_{i}^{T}$$
, $i,j = 1,2,3,4$,

and

$$\sum_{i=1}^{4} A_{i}A_{i}^{T} = I \times MM^{T} + (4s-1)I \times NN^{T}$$

= $I_{s} \times I_{2} \times [(2a+2(4s-1)(p+1))]I + (2p-2a-8s+2)J]$
= $8spI_{2sp}$, when $s = (p-a+1)/4$.

Hence we have the result.

COROLLARY 1. Suppose there exist $2-\{p; k_1,k_2; k_1+k_2-\frac{1}{2}(p+1)+2s\}$ sds, X_1,X_2 , and $2-\{p; \frac{1}{2}(p-1); \frac{1}{2}(p-3)\}$ sds, X_3, X_4 , with the property that

$$\frac{x \in X}{i} = 2, 3, 4, \quad i = 2, 3, 4,$$

where s is the order of a good matrix. Then there exist Williamson-type matrices of order 2sp.

PROOF. Let Q,X,Y be the type 1 (1,-1) incidence matrices of X_2, X_3, X_4 . Then Q,X,Y are symmetric.

 $PP^{T} + QQ^{T} = (2p+2-8s)I + (8s-2)J,$ $xx^{T} + YY^{T} = (2p+2)I - 2J.$

Hence there exist Williamson-type matrices of order 2sp.

COROLLARY 2. If p = 4f+1, f odd, is a prime power of the form $9+4t^2$ or $25+4t^2$ and there exist good matrices of order (f+1)/8, then there exist Williamson-type matrices of order (f+1)(4f+1)/4.

PROOF. We note that for $9+4t^2$ and $25+4t^2$, C_0, C_0+C_2 and C_1, C_0+C_2 respectively are 2-{4f+1; 2f,f; (5f-3)/4} sds. Then using C_0+C_2 and C_1+C_3 for the other sds in the previous corollary we have the result.

COROLLARY 3. If p = 4f+1, f odd, is a prime power of the form $1+4t^2$ or $49+4t^2$ and there exist good matrices of order (f-1)/8, then there exist Williamson-type matrices of order (f-1)(4f+1)/4.

PROOF. We note that for $1+4t^2$ and $49+4t^2$, $\{0\}+C_0,C_0+C_2$ and $\{0\}+C_1,C_0+C_2$ respectively are 2-{4f+1; 2f,f+1; (5f-1)/4} sds. Then using C_0+C_2 and C_1+C_3 for the other sds in corollary 1 we have the result.

For f = 25 and 57 we get Williamson matrices for the following orders 2n where no Williamson matrix of order n is known: 2.303,2.1603.

COROLLARY 4. If p = 4f+1 is a prime power and (p-1)/4 is the order of a good matrix, then there exist Williamson type matrices of order $\frac{1}{2}p(p-1)$.

PROOF. Use the (p,p,p) and (p,p-1,p-2) difference sets to form the 2-{p; p,p-1; 2p-2} sds for the corollary.

For p = 13 we find there is a good matrix of order 3 = (p-1)/4 and hence Williamson-type matrices of order 2.39 even though Williamson-type matrices of order 39 are not yet known. This corollary also gives us Williamson-type matrices for the following orders 2n where no Williamson matrix of order n is known: 2.203,2.333, 2.689,2.915.

COROLLARY 5. Let $p \equiv 1 \pmod{4}$ be a prime power. Further suppose there exists a (p,k,λ) difference set; then if there exist good matrices of order

(i)
$$s = [2(\lambda - k) + p + 1]/4$$
; (ii) $s = [2(\lambda - k) + p - 1]/4$

respectively, there exist Williamson-type matrices of order 2sp.

PROOF. Use Q = J, Q = J-2I respectively in the theorem and form X and Y from the type 1 incidence matrices of C_0+C_2 and C_1+C_3 respectively. For P use the type 2 incidence matrix of the difference set.

3. USING SOME OTHER WILLIAMSON MATRICES

THEOREM 3. Let I+R,I-R,S,S be four Williamson matrices of order s. Suppose there exist four (1,-1) matrices of order p,X,Y,P,Q which satisfy

(i)
$$ZW^{T} = WZ^{T}$$
, for Z, $W \in \{X, Y, P, Q\}$,
(ii) $PP^{T} + QQ^{T} = 2aI + (2p - 2a)J$,
(iii) $XX^{T} + YY^{T} = 2(p+1)I - 2J$.

Then there exist Williamson matrices of order 2ps, where $s = \frac{1}{2}(p-a+1)$.

PROOF. Let

M =	F	Q	,		N =	Гx	Ŷ		
	-Q	P		V	. =	Y	-x	•	

Then, as before,

$$MN^{T} = NM^{T},$$

$$MM^{T} = I_{2} \times (2aI + (2p - 2a)J),$$

$$NN^{T} = I_{2} \times (2(p+1)I - 2J).$$

Now consider

 $A_1 = I \times M + R \times N$ $A_2 = S \times N$ $A_3 = I \times -M + R \times N$

 $A_4 = S \times N$.

Clearly

 $A_{i}A_{j}^{T} = A_{j}A_{i}^{T}$, i,j = 1,2,3,4,

and

$$\sum_{i=1}^{4} A_{i}A_{i}^{T} = 2I \times MM^{T} + 2(RR^{T} + SS^{T}) \times NN^{T}$$

$$= I \times I_{2} \times [4aI + 2(2p - 2a)J] + I \times I_{2} \times [4(2s - 1)(p + 1)I - 4(2s - 1)J]$$

$$= 8spI_{2sp}, \quad \text{when } s = \frac{1}{2}(p - a + 1);$$

which gives the result.

COROLLARY 1. Suppose there exist Williamson-type matrices, I+R,I-R,S,S, of order s. Suppose there exist 2-{p; k_1,k_2 ; $k_1+k_2+s-\frac{1}{2}(p+1)$ } sds with incidence matrices P and Q, and 2-{p; $\frac{1}{2}(p-1)$; $\frac{1}{2}(p-3)$ } sds with incidence matrices X and Y which satisfy $7W^T = WZ^T$ for Z Ws (P O X X)

$$ZW = WZ$$
 for Z, $W \in \{P, Q, X, Y\}$

Then there exist Williamson matrices of order 2ps.

COROLLARY 2. Suppose there exist Williamson-type matrices I+R,I-R,S,S, of order $p = \frac{1}{2}(s-1)$. Suppose there exists a symmetric Hadamard matrix of order s+1 \equiv 0 (mod 4). Then there exist Williamson matrices of order s(s-1).

PROOF. Normalize the Hadamard matrix to the form

$$\begin{bmatrix} 1 & 1 & \dots & 1 \\ 1 & & \\ \vdots & E \\ 1 & & \end{bmatrix}, E^{T} = E,$$

and use P = J, Q = J-2I, X = Y = E in the theorem.

COROLLARY 3. Let $p \equiv 1 \pmod{4}$ be a prime power. Suppose there exists a symmetric Hadamard matrix of order p+3. Then there exist Williamson matrices of order (p+2)(p+1).

PROOF. There exist Williamson matrices of order ½(p+1) of the required form.

This gives Williamson matrices of the following orders 2n where none are known for n: 2.105,2.171,2.903.

COROLLARY 4. Let $p \equiv 1 \pmod{4}$ be a prime power. Suppose there exists a (v,k,λ) difference set, where v is a prime power and $\lambda = k+\frac{1}{2}(p-v)$. Then there exist Williamson matrices of order v(p+1).

PROOF. Let P = J,Q be the type 2 (1,-1) incidence matrix of the (v,k,λ) difference set; let X = Y be the type 1 (1,-1) incidence matrix of the (v,(v-1)/2,(v-3)/4)difference set for v \equiv 3 (mod 4) and X,Y be the type 1 (1,-1) incidence matrices of 2-{v; (v-1)/2; (v-3)/2} sds for v \equiv 1 (mod 4).

COROLLARY 6. Let $p \equiv 1 \pmod{4}$ be a prime power. Suppose there exists a (v,k,λ) difference set, where v is a prime power and $\lambda = k+(p-v)/4$. Then there exist Williamson matrices of order v(p+1).

PROOF. For P = Q use the type 2 incidence matrix of the difference set. Form X and Y as in the previous corollary.

Neither of the last two corollaries give interesting matrices for small orders.

COROLLARY 7. Let p = 4f+1 (f odd) be a prime power of the form $9+4t^2$ or $25+4t^2$. Suppose (f-1)/2 $\equiv 1 \pmod{4}$ is a prime power. Then there exist Williamson matrices of order $\frac{1}{2}(f+1)(4f+1)$.

PROOF. For P and Q in the theorem use the type 2 and type 1 incidence matrices respectively of C_0 and C_0+C_2 or C_1 and C_0+C_2 which are 2-{4f+1; 2f,f; (5f-3)/4} sds for the prime powers of the theorem. For X and Y use the type 1 incidence matrices of C_0+C_2 and C_1+C_3 which are 2-{4f+1; 2f; 2f-1} sds.

COROLLARY 8. Let p = 4f+1 (f odd) be a prime power of the form $1+4t^2$ or $49+4t^2$. Suppose (f-3)/2 \equiv 1 (mod 4) is a prime power. Then there exist Williamson matrices of order $\frac{1}{2}(f-1)(4f+1)$.

PROOF. Proceed as in the previous corollary but use $\{0\}+C_0$ or $\{0\}+C_1$ to form P.

REFERENCES

- JOAN COOPER AND JENNIFER WALLIS, A construction for Hadamard arrays, <u>Bull.</u> Austral.Math.Soc. 7 (1972), 269-278.
- DAVID C. HUNT, Skew-Hadamard matrices of order less than 100, <u>Proceedings of</u> the First Australian Conference on Combinatorial Mathematics, (Editors Jennifer Wallis and W.D. Wallis), TUNRA, Newcastle, Australia, 1972, 23-27.
- DAVID C. HUNT AND JENNIFER WALLIS, Cyclotomy, Hadamard arrays, and supplementary difference sets, <u>Proceedings of the Second Manitoba Conference on Numerical</u> <u>Mathematics</u>, (1972), 351-381.
- THOMAS STORER, Cyclotomy and Difference Sets, Lectures in Advanced Mathematics, Markham, Chicago, 1967.
- RICHARD J. TURYN, An infinite class of Williamson matrices, <u>J. Combinatorial</u> <u>Theory</u> 12 (1972), 319-321.
- RICHARD J. TURYN, Computation of certain Hadamard matrices, <u>Notices of Amer</u>. Math.Soc. 20 (1973), A-1.
- JENNIFER WALLIS, A skew-Hadamard matrix of order 92, <u>Bull.Austral.Math.Soc</u>. 5 (1971), 203-204.
- JENNIFER SEBERRY WALLIS, Some matrices of Williamson type, <u>Utilitas Math</u>. (to appear).
- 9. JENNIFER SEBERRY WALLIS, Some remarks on supplementary difference sets, <u>Proceedings of International Colloquium on Infinite and Finite Sets</u> (to appear).
- 10. JENNIFER SEBERRY WALLIS, Construction of Williamson-type matrices, (to appear).
- 11. JENNIFER SEBERRY WALLIS, Goethals-Seidel type Hadamard matrices, (to appear).

141

- 12. W.D. WALLIS, ANNE PENFOLD STREET, JENNIFER SEBERRY MALLIS, <u>Combinatorics:</u> <u>Room squares, sum-free sets, Hadamard matrices</u>, Lecture Notes in Mathematics, Vol. 292, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
- ALBERT LEON WHITEMAN, An infinite family of Hadamard matrices of Williamson type, <u>J. Combinatorial Theory</u> (to appear).

•