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Abstract: The heuristic optimization algorithm is a popular optimization method for solving opti-
mization problems. A novel meta-heuristic algorithm was proposed in this paper, which is called
the Willow Catkin Optimization (WCO) algorithm. It mainly consists of two processes: spreading
seeds and aggregating seeds. In the first process, WCO tries to make the seeds explore the solution
space to find the local optimal solutions. In the second process, it works to develop each optimal
local solution and find the optimal global solution. In the experimental section, the performance of
WCO is tested with 30 test functions from CEC 2017. WCO was applied in the Time Difference of
Arrival and Frequency Difference of Arrival (TDOA-FDOA) co-localization problem of moving nodes
in Wireless Sensor Networks (WSNs). Experimental results show the performance and applicability of
the WCO algorithm.

Keywords: Willow Catkin Optimization; metaheuristic optimization algorithm; CEC2017; TDOA-FDOA
location problem; WSNs

1. Introduction

The optimization problem [1] comes from the human pursuit of optimal results, and
the traditional optimization methods mainly include the analytical and iterative methods.
The theory and optimization algorithm gradually formed since the French mathematician
Charles Cauchy proposed the most rapid descent method. With the emergence of complex,
non-trivial and large-scale optimization problems, the solution of optimization problems
has developed from Newton’s method, the conjugate gradient method and Powell’s method
to intelligent optimization algorithms.

In recent decades, various meta-heuristic optimization algorithms [2,3] are proposed.
They can be divided into six main categories in Figure 1: plant-based methods, population-
based methods, evolutionary algorithms, nature-based methods, human-based methods,
and mathematical methods. Most traditional intelligent optimization algorithms belong to
the first five categories, which are inspired by the natural behaviors and natural phenomena
of plants and animals in nature, by summarizing natural laws, discovering features, building
models, adjusting parameters, and designing optimization algorithms based on natural laws
to optimize specific problems. Plant-based methods find the global optimum by simulating
the growth process of plants. The representative algorithms are Artificial Plant Optimization
(APO) [4], the Artificial Algae Algorithm (AAA) [5], Rooted Tree Optimization (RTO) [6],
and the Flower Pollination Algorithm (FPA) [7]. Population-based methods include Particle
Swarm Optimization (PSO) [8], Cat Swarm Optimization (CSO) [9], Ant Colony Optimiza-
tion (ACO) [10] and Fish Migration Optimization (FMO) [11]. There is also the Phasmatodea
Population Evolution (PPE) [12] algorithm, which was recently proposed. This algorithm has
multiple individuals, and the performance of the algorithm is affected by the initial values.
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Each individual in a population-based algorithm works independently or cooperatively to
find the global optimum. Evolutionary-based algorithms include the Genetic Algorithm
(GA) [13], Differential Evolution (DE) [14], and the Gaining Sharing Knowledge-based
Algorithm (GSK) [15]. Such algorithms improve the ability to find the global optimum by
continuously accumulating high-quality solutions. Nature-based methods include the Simu-
lated Annealing Algorithm (SAA) [16], the Gravitational Search Algorithm (GSA) [17], and
Chemical Reaction Optimization (CRO) [18]. These algorithms are designed by simulating
the phenomena existing in nature and summarizing the objective laws of the phenomena to
build an algorithmic model. Human-based algorithms include Immune Algorithm (IA) [19],
Population Migration Algorithm (PMA) [20] and Brain Storm Optimization (BSO) [21].
Mathematical-based methods include the Sine Cosine Algorithm (SCA) [22], Golden Sine
Algorithm (GSA) [23] and Arithmetic Optimization Algorithm (AOA) [24]. Many excellent
intelligent optimization algorithms [25] have been proposed. Meta-heuristic optimization
algorithms are cross-integrated with image processing, fault detection, path planning, parti-
cle filtering, feature selection, production scheduling, intrusion detection, support vector
machines, wireless sensors, neural networks, and other technical fields for a wider range
of applications. However, the fact that an algorithm performs well in optimizing a specific
problem does not guarantee its effectiveness in other problems. No optimization algorithm
can solve all optimization problems, which is the famous “No Free Lunch (NFL)” theory [26].
Therefore, researchers continue to improving existing algorithms and propose new ones to
solve optimization problems in different fields.
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Figure 1. Meta-heuristic algorithm classification.

Based on the NFL, a novel meta-heuristic algorithm was proposed in this paper,
which is called the Willow Catkin Optimization algorithm. This algorithm was inspired
by willow trees’ process of seed dispersal. Willow catkins are the seed of the willow
tree. It is characterized by its ability to float to distant places with the help of the wind.
Even a fragile wind will make it float with the wind, and throughout the floating process,
it can float down to the land suitable for growth and take root and grow. In addition,
willow catkins stick to each other and often gather in a cluster. Ultimately, the willow will
always find a suitable place to take root. Based on the above characteristics, we divide
the willow flocking algorithm into two processes to implement: fluttering with the wind
and gathering into a cluster. We select CEC2017 [27] as the benchmark function set to test
the effect of the WCO algorithm on the numerical function. Its results are compared in
the three dimensions of 10D, 30D, and 50D with PSO, SCA, the Bat Algorithm (BA) [28],
Bamboo Forest Growth Optimizer (BFGO) [29], Rafflesia Optimization Algorithm (ROA),
and Tumbleweed Algorithm (TA) [30]. In addition, WCO was applied to the motion node
localization problem in WSN to test the ability of the new algorithm to handle the practical
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problem. The WCO algorithm has achieved good results in this application compared with
other algorithms.

Wireless sensor networks (WSN) [31] consist of many low-cost sensor nodes with
communication and data processing capabilities. The current wireless sensor localization
methods are divided into two types: non-ranging and ranging. Non-ranging-based local-
ization methods do not require known distances, angles, or signal strengths and have the
advantage of low hardware overhead, simple configuration, and high system scalability.
Typical representatives of non-ranging localization algorithms include the distance vector-
hop (DV-hop) [32,33] and multidimensional scaling maximum a posteriori probability
estimation (MDS-MAP) [34,35]. Range-based methods extract measurement information
based on distance, angle, etc. from different features of the radio signal, such as time of ar-
rival (TOA) [36,37], Time Difference of Arrival (TDOA) [38,39], angle of arrival (AOA) [40]
and radio signal strength indication (RSSI) [41,42], etc. TDOA has high positioning accu-
racy. However, it is also prone to time difference blurring, it is not easy to locate the target
signal with high frequency, and the speed of the target cannot be determined. Adding
Doppler frequency difference information to TDOA can improve the localization accuracy,
eliminate the problem of time difference blurring, and determine the target’s speed. Many
scholars have put forward their views on motion target localization techniques in recent
years. The multi-station TDOA/FDOA co-localization [43,44] method is used to solve the
nonlinear system of equations with the time difference and frequency difference, which has
the defects of high complexity and extensive computation [45,46]. If the algorithm needs to
be optimized enough, the localization results easily fall into the local optimum and slow
convergence speed. Therefore, this paper applies the WCO algorithm to the motion node
localization problem in WSN to optimize the joint TDOA/FDOA joint localization accuracy
and improve the localization speed to reduce the time.

The remaining sections of this paper are arranged as follows. Section 2 will briefly
introduce the formula principle of the iterative search of the WCO algorithm. Section 3
analyzes in detail the optimization results of the algorithm under the benchmark function
test. Section 4 discusses the algorithm’s performance applied to the motion node localiza-
tion problem in WSN. Finally, Section 5 gives the work of this paper and proposes future
work directions.

2. Willow Catkin Optimization Algorithm

In this section, WCO is proposed as the new metaheuristic optimization algorithm. A
hybrid exploration–exploitation model is proposed in WCO. The particles are divided into
two parts in the search process, and exploration and exploitation are started simultaneously.
The particles in different modes will have different behaviors and parameters.

2.1. Initialization Phase

In the initialization phase, several random seeds are generated from a willow tree and
distributed in the solution space. The population is represented using a matrix with N rows
and D columns. N is the number of particles in the population and D is the data dimension
of each particle. The WCO starts with a random particle swarm and uses Equation (1) to
generate random particles.

xi = r× (UB− LB) + LB, i = 1, 2, . . . , N (1)

r is a random number in the interval [0, 1]. xi represents a solution of D dimensions. The
upper and lower bounds of the solution space are UB and LB.

2.2. Search Phase

During this phase, a willow catkin falls from the willow trees and flutters in the wind,
which are each affected by two parameters: wind direction and wind speed. Airflow in
the atmosphere has both speed and direction. The wind is represented mathematically
by a vector. Therefore, converting the meteorological wind vector into a “math” wind
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direction is necessary. It is common practice in meteorology to work with the wind’s u
and v components. If the wind speed and direction have been measured, the component
vectors of the wind, u and v, can be obtained as follows:

{
v = −ws× cos(wd)
u = −ws× sin(wd)

(2)

ws is the wind speed, and wd is the wind direction. Figure 2 shows the conversion of wind
speed and direction into u, v components on a two-dimensional plane. In Figure 2, the
symbol (N.) is an abbreviation for north.

N.

E.W.

S.

𝜑𝜑

L

𝑣𝑣 = −𝐿𝐿 × cos(𝜑𝜑)

𝑢𝑢 = −𝐿𝐿 × sin(𝜑𝜑)

Figure 2. Obtaining u and v from wind vectors.

After decomposing the wind speed and direction to obtain u, v, the particles can be
updated. The particle update is mainly related to the wind direction and speed. The particle
update is performed in the exploration phase using Equation (3).

xi+1 = xi + a× (u× v) + (2− a)(Pg − xi) (3)

where xi represents the individual’s current position and a is the variable that controls
the shift from exploration to exploitation during the individual iteration. Pg is the global
optimum under the current iteration. a will change over the course of iterations, with the
aim of balancing exploration and exploitation:

a = c× e−(
t

1000 )
2

(4)

T is the maximum number of iterations. c is a constant with value 2. t is the current number
of iterations. As shown in Figure 3, when t < 0.4T, a is greater than 1, the particle updates
will be more influenced by the wind, making the particle positions more random.
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Figure 3. The function curve of parameter a.

In the iterative update of individuals, individuals that are too close together will be
brought closer by the wind blowing, causing the two willow fuzzes to stick together. The
distance di between the current individual and the global optimum is calculated. According
to the easy adhesion radius R, if di > R, the two seeds are less likely to stick together.
The random wind custom and wind direction are obtained by executing Equation (3).
If di <= R, it means that the two seeds are likely to stick together and then execute
Equation (8). {

ws = r× R
wd = r× 2π

(5)

The di is the distance of the particle from the global optimal solution. When di > R, ws
is generated by Equation (5). r is a random number between 0 and 1, and R is the adhesion
radius of willow catkins. Bringing the randomly generated ws and wd into Equation (2)
can determine the individuals’ direction and distance of movement, so that each individual
with a distance more than R will move randomly, improve the exploration ability of the
algorithm and avoid the algorithm falling into local optimum.

DW = 1−
∣∣pg − xi

∣∣
∥∥xi − pg

∥∥ (6)

K =
DW

∑D
i=1 DWi

(7)

{
ws = µ× (∑D

i=1 Ki
∣∣pg − xi

∣∣) + (1− µ)× r2 × R
wd = arccos( xi ·pg

‖xi‖×‖pg‖ ) + r3 × π
8

(8)

When di <= R, the weights are calculated by Equation (6) and Equation (7), and the
wind speed and wind direction are calculated by Equation (8). || · || denotes the Euclidean
distance between xi and pg, and DW denotes the weight of each dimensional distance in
pg and xi to the total distance. Equation (8) normalizes DW. µ is a random number from
0.4 to 0.6. r2 and r3 are random numbers in the interval [0, 1].

2.3. WCO Pseudo-Code

The entire optimization process of the WCO algorithm starts with generating a series of
random solutions. In each iteration, all individuals are adjusted according to the updated for-
mula provided by WCO. The parameters control the development and exploration phase of
the algorithm. The focus on exploration in the first half of the iteration makes the individuals
move more randomly and explore more fully in the solution space. Exploitation is performed
in the second half of the iteration to make the particles move closer to the global optimum.
The attempt to find the optimal global solution is repeated throughout the population update
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until the maximum number of iterations is reached or an approximate global optimal solution
is obtained. Algorithm 1 is the pseudo-code of WCO, and the flowchart is shown in Figure 4.

Algorithm 1 WCO

Require: Population size N, Max iteration T, Fitness function, Dimension D, Upper and
Lower bounds UB,LB

Ensure: Global best value GlobalBest
1: Initialize the Pop, Gbest and GlobalBestPos of each group
2: while (t < MaxIteration or met the mimimum threshold value) do
3: a = Equation (4)
4: for i = 1 : N do
5: if Ri > R then
6: Generate ws and wd using Equation (5)
7: else
8: Generate ws and wd using Equations (6)–(8)
9: end if

10: Update Pop using Equations (2) and (3)
11: Calculate fitness value of population
12: Update GlobalBest and GlobalFmin
13: end for
14: end while

Figure 4. Flowchart of WCO.
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2.4. Complexity Analysis

The complexity of WCO consists of three main components: initialization phase, search
phase and fitness value calculation. The initialization phase mainly generates the population
matrix of (N ∗ D), and the complexity of this phase is O(ND). The complexity of the search
phase is O(TND). The positions of N individuals need to be updated in each iteration.
Based on the above analysis, the time complexity of WCO is O(TND).

3. Experiment and Analysis

In this section, the CEC2017 benchmark is used to test the optimization performance
of the WCO algorithm. The WCO is compared with other swarm intelligence optimization
algorithms.

3.1. Parameter Settings

WCO experiments were performed using a PC with Windows 11 Professional 64-bit,
Intel(R) Core (TM) i7-12700 CPU @ 2.10 GHz, 32.0 GB RAM, and Matlab R2021b. The WCO
algorithm is run 30 times on each benchmark function, and the individual dimensions are
10, 30, and 50 dimensions. The upper and lower bounds are [−100, 100]. The results are
compared with typical swarm intelligence optimization algorithms such as PSO, BA, SCA,
BFGO, ROA, and TA. Table 1 shows the parameters of the comparison algorithm.

Table 1. Parameter setting of the comparison algorithm.

Algorithm Parameter Value

Vmax 10
PSO c1, c2 2

w 0.2

r0 0.7
BA α 0.9

γ 0.9

SCA a 2

BFGO Q 2

A 2.5
ROA f 40

B 0.1
ϕ −0.78545

TA gc 50
t 2

3.2. CEC2017 Benchmark Analysis

In CEC2017, there are 30 benchmark functions divided into four categories: unimodal,
multimodal, hybrid, and composite. Unimodal functions (F1–F3) have only one global
optimum and are used to compare the development capabilities of optimization algorithms.
Simple multimodal functions (F4–F10) have many local optima, and the second better local
optimum is far from the global optimum. In the hybrid functions (F11–F20), a hybrid function
is composed of several essential functions. It comprises the unimodal function, multimodal
function, and other essential functions. Hybrid functions test the performance of optimization
algorithms on real-world optimization problems. The composition function (F21–F30) better
merges the subfunctions properties and maintains continuity around the global/local optima.
The local optimum, which has the smallest bias value, is the global optimum.

3.3. Statistical Results

The test results of each algorithm on each function are compared with those of the
WCO algorithm. The symbol (<) indicates that the algorithm performs worse than the WCO
algorithm in the current function. The symbol (>) indicates that the WCO algorithm performs
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poorly. The symbol (=) indicates that the two algorithms perform similarly on the current
benchmark function. The comparison results of all benchmark functions are summarized in
the last row of the table. The optimal solution in the table is bolded.

Table 2 shows the test results of the WCO algorithm in 10 dimensions. WCO outperforms
BA, SCA, ROA, and TA by at least 25 benchmark functions, respectively. It outperforms the
24 benchmark functions of BFGO. It outperforms PSO 30% of the tested functions in terms of
multimodal and composition functions. The most global optima were achieved in simple
multimodal functions and composition functions, where 50% of the optima were obtained
for 20 functions.

Table 2. The 10 Dim Simulation Results of CEC 2017 Benchmark Function.

Function PSO BA SCA BFGO ROA TA WCO

F1 1.00× 102 3.66× 105 5.28× 108 1.44× 104 5.59× 103 1.75× 104 5.74× 102

F2 2.00× 102 2.00× 102 8.52× 106 3.69× 102 2.00× 102 1.90× 103 2.00× 102

F3 3.00× 102 3.01× 102 9.41× 102 3.00× 102 3.00× 102 3.00× 102 3.00× 102

F4 4.00× 102 4.01× 102 4.42× 102 4.05× 102 4.02× 102 4.05× 102 4.01× 102

F5 5.42× 102 5.52× 102 5.45× 102 5.24× 102 5.62× 102 5.22× 102 5.21× 102

F6 6.09× 102 6.36× 102 6.17× 102 6.06× 102 6.43× 102 6.10× 102 6.03× 102

F7 7.18× 102 8.49× 102 7.69× 102 7.24× 102 7.54× 102 7.53× 102 7.28× 102

F8 8.22× 102 8.44× 102 8.34× 102 8.18× 102 8.88× 102 8.31× 102 8.17× 102

F9 9.10× 102 1.68× 103 1.01× 103 9.06× 102 9.43× 102 9.57× 102 9.00× 102

F10 2.82× 103 2.19× 103 2.14× 103 1.76× 103 2.92× 103 1.99× 103 1.58× 103

F11 1.12× 103 1.21× 103 1.18× 103 1.16× 103 1.16× 103 1.17× 103 1.14× 103

F12 2.44× 103 4.41× 105 6.51× 106 5.27× 104 5.36× 104 2.34× 106 5.28× 104

F13 1.88× 103 2.21× 104 1.60× 104 1.26× 104 4.90× 103 1.09× 104 1.25× 104

F14 1.43× 103 1.96× 103 1.57× 103 1.46× 103 4.20× 103 1.49× 103 1.49× 103

F15 1.60× 103 6.84× 103 1.96× 103 1.79× 103 2.12× 103 1.92× 103 1.66× 103

F16 1.84× 103 2.04× 103 1.71× 103 1.72× 103 1.73× 103 1.72× 103 1.68× 103

F17 1.75× 103 1.81× 103 1.77× 103 1.76× 103 1.86× 103 1.76× 103 1.72× 103

F18 1.89× 103 1.52× 104 6.29× 104 1.92× 104 1.29× 104 1.74× 104 1.52× 103

F19 1.90× 103 3.49× 103 2.68× 103 1.96× 103 2.01× 103 2.04× 103 1.94× 103

F20 2.10× 103 2.17× 103 2.08× 103 2.09× 103 2.08× 103 2.07× 103 2.06× 103

F21 2.33× 103 2.31× 103 2.23× 103 2.26× 103 2.35× 103 2.23× 103 2.20× 103

F22 2.31× 103 2.31× 103 2.35× 103 2.30× 103 2.31× 103 2.33× 103 2.27× 103

F23 2.64× 103 2.66× 103 2.65× 103 2.63× 103 2.62× 103 2.63× 103 2.62× 103

F24 2.76× 103 2.84× 103 2.76× 103 2.71× 103 2.78× 103 2.71× 103 2.58× 103

F25 2.90× 103 2.93× 103 2.95× 103 2.91× 103 2.95× 103 2.93× 103 2.92× 103

F26 2.90× 103 3.22× 103 3.05× 103 3.10× 103 2.90× 103 2.93× 103 2.88× 103

F27 3.13× 103 3.14× 103 3.10× 103 3.08× 103 3.10× 103 3.10× 103 3.10× 103

F28 3.20× 103 3.25× 103 3.27× 103 3.26× 103 3.41× 103 3.21× 103 3.23× 103

F29 3.19× 103 3.32× 103 3.22× 103 3.26× 103 3.20× 103 3.23× 103 3.19× 103

F30 3.69× 103 1.28× 104 6.23× 105 4.98× 103 8.22× 105 8.41× 105 9.34× 103

</=/> 15/3/12 28/2/0 29/1/0 24/1/5 25/4/1 25/3/2 -

Table 3 shows that the WCO algorithm achieves 12 global optima in 30 dimensions,
with PSO following closely behind with ten global optima. The algorithm also achieves
four optimal solutions out of seven multimodal functions. The algorithm achieves 50% of
the optimal values in 10 composition functions.

The test results in particle 50 dimensions are shown in Table 4. WCO achieves 60%
optimal results on hybrid functions and 50% optimal values on compositions functions,
indicating that WCO can still rely on the algorithm’s exploration and development capabil-
ities to find the global optimal solution in the high-dimensional case. WCO outperforms
PSO by 17 experimental results, while WCO is slightly weaker than PSO under unimodal
functions but outperforms other comparative algorithms.
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Table 3. The 30 Dim Simulation Results of CEC 2017 Benchmark Function.

Function PSO BA SCA BFGO ROA TA WCO

F1 5.69× 105 7.02× 106 1.44× 1010 8.72× 105 1.93× 103 7.83× 106 1.31× 105

F2 3.43× 108 6.17× 103 8.320× 1035 1.46× 1020 1.42× 108 2.41× 1022 4.27× 1012

F3 3.29× 102 3.74× 102 4.90× 104 1.32× 104 3.00× 102 1.46× 104 2.07× 104

F4 5.17× 102 4.54× 102 1.73× 103 4.83× 102 4.91× 102 6.21× 102 5.10× 102

F5 6.49× 102 8.64× 102 7.93× 102 6.66× 102 7.91× 102 6.92× 102 6.22× 102

F6 6.38× 102 6.74× 102 6.56× 102 6.36× 102 6.67× 102 6.47× 102 6.34× 102

F7 8.86× 102 1.71× 103 1.15× 103 8.70× 102 1.02× 103 1.08× 103 8.63× 102

F8 9.49× 102 1.12× 103 1.07× 103 9.37× 102 1.06× 103 9.76× 102 9.02× 102

F9 2.87× 103 1.41× 104 6.03× 103 2.38× 103 1.11× 104 7.05× 103 2.78× 103

F10 5.86× 103 5.85× 103 8.44× 103 5.26× 103 3.99× 103 5.16× 103 5.08× 103

F11 1.21× 103 1.29× 103 2.45× 103 1.28× 103 1.40× 103 1.42× 103 1.25× 103

F12 1.14× 105 1.01× 107 1.58× 109 7.47× 106 1.75× 105 6.36× 107 1.44× 107

F13 1.55× 104 5.11× 105 4.66× 108 1.58× 105 2.64× 104 1.38× 105 1.02× 105

F14 1.72× 103 1.67× 104 2.45× 105 4.76× 104 2.26× 104 3.85× 104 2.16× 104

F15 1.94× 103 1.17× 105 1.76× 107 6.34× 104 8.24× 104 6.12× 104 3.07× 104

F16 2.60× 103 3.65× 103 3.76× 103 2.99× 103 2.62× 103 3.05× 103 2.84× 103

F17 2.17× 103 2.88× 103 2.57× 103 2.30× 103 2.55× 103 2.29× 103 2.14× 103

F18 8.62× 103 2.92× 105 6.20× 106 3.96× 105 6.33× 104 1.30× 106 2.97× 105

F19 2.15× 103 2.05× 106 4.67× 107 6.06× 104 8.89× 104 3.52× 106 2.27× 106

F20 2.72× 103 2.85× 103 2.72× 103 2.62× 103 3.01× 103 2.56× 103 2.52× 103

F21 2.46× 103 2.63× 103 2.57× 103 2.48× 103 2.67× 103 2.48× 103 2.40× 103

F22 7.45× 103 6.57× 103 8.72× 103 4.92× 103 7.56× 103 5.27× 103 2.44× 103

F23 3.02× 103 3.33× 103 3.02× 103 2.92× 103 3.03× 103 2.90× 103 2.81× 103

F24 3.08× 103 3.46× 103 3.19× 103 3.14× 103 3.04× 103 3.08× 103 2.96× 103

F25 2.90× 103 2.89× 103 3.27× 103 2.91× 103 2.89× 103 2.97× 103 2.92× 103

F26 2.81× 103 9.28× 103 7.25× 103 6.42× 103 6.60× 103 6.45× 103 4.19× 103

F27 3.37× 103 3.23× 103 3.44× 103 3.20× 103 3.34× 103 3.43× 103 3.35× 103

F28 3.24× 103 3.30× 103 3.95× 103 3.27× 103 3.22× 103 3.34× 103 3.25× 103

F29 4.36× 103 4.89× 103 4.87× 103 4.37× 103 5.04× 103 4.36× 103 4.07× 103

F30 2.36× 104 3.36× 106 1.05× 108 3.58× 105 1.09× 105 6.79× 106 5.82× 106

</=/> 18/0/12 20/0/10 30/0/0 22/0/8 16/0/14 29/0/1 -

Table 4. The 50 Dim Simulation Results of CEC 2017 Benchmark Function.

Function PSO BA SCA BFGO ROA TA WCO

F1 9.02× 106 2.27× 107 4.87× 1010 1.71× 107 1.64× 106 3.45× 108 2.60× 103

F2 2.51× 1029 1.25× 1014 4.01× 1067 2.11× 1047 1.06× 1026 2.12× 1058 5.35× 1035

F3 5.72× 103 4.03× 104 1.40× 105 7.17× 104 1.97× 104 9.04× 104 3.95× 104

F4 7.26× 102 5.40× 102 8.24× 103 6.10× 102 6.23× 102 1.06× 103 6.36× 102

F5 7.11× 102 1.15× 103 1.07× 103 8.40× 102 9.95× 102 9.42× 102 7.38× 102

F6 6.53× 102 6.86× 102 6.73× 102 6.56× 102 6.46× 102 6.58× 102 6.59× 102

F7 1.22× 103 2.75× 103 1.70× 103 1.11× 103 1.65× 103 1.60× 103 1.09× 103

F8 1.07× 103 1.42× 103 1.39× 103 1.14× 103 1.52× 103 1.27× 103 1.06× 103

F9 1.16× 104 3.74× 104 2.66× 104 1.19× 104 2.19× 104 2.35× 104 1.06× 104

F10 6.87× 103 9.40× 103 1.50× 104 8.51× 103 9.12× 103 9.40× 103 8.13× 103

F11 1.39× 103 1.45× 103 8.56× 103 1.49× 103 1.42× 103 2.12× 103 1.41× 103

F12 1.17× 107 4.92× 107 1.50× 1010 5.39× 107 1.35× 107 3.54× 108 1.69× 107

F13 9.88× 104 1.93× 106 3.61× 109 3.78× 105 9.98× 104 4.25× 105 5.84× 104

F14 2.66× 103 1.09× 105 3.66× 106 4.38× 105 1.92× 105 3.14× 105 1.59× 103

F15 4.12× 103 6.51× 105 6.13× 108 9.17× 104 2.28× 105 6.53× 105 3.49× 104

F16 3.30× 103 4.88× 103 5.75× 103 4.13× 103 3.60× 103 4.58× 103 3.16× 103

F17 3.27× 103 4.02× 103 4.53× 103 3.66× 103 4.01× 103 3.69× 103 3.21× 103

F18 2.78× 105 1.10× 106 2.43× 107 1.12× 106 3.30× 106 5.71× 106 1.32× 106

F19 3.46× 103 3.89× 106 2.98× 108 2.69× 105 3.93× 105 2.89× 106 8.43× 105

F20 3.20× 103 3.98× 103 4.08× 103 3.46× 103 4.04× 103 3.45× 103 3.10× 103
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Table 4. Cont.

Function PSO BA SCA BFGO ROA TA WCO

F21 2.60× 103 3.00× 103 2.89× 103 2.70× 103 2.90× 103 2.74× 103 2.53× 103

F22 9.40× 103 1.10× 104 1.66× 104 1.04× 104 1.30× 104 1.14× 104 9.47× 103

F23 3.78× 103 4.07× 103 3.58× 103 3.48× 103 3.68× 103 3.48× 103 3.07× 103

F24 3.82× 103 4.23× 103 3.75× 103 3.67× 103 3.61× 103 3.69× 103 3.20× 103

F25 3.12× 103 3.00× 103 7.24× 103 3.07× 103 3.11× 103 3.35× 103 3.13× 103

F26 1.07× 104 1.46× 104 1.25× 104 9.25× 103 1.20× 104 1.10× 104 6.78× 103

F27 4.81× 103 3.36× 103 4.58× 103 3.21× 103 4.01× 103 4.30× 103 4.01× 103

F28 3.38× 103 3.30× 103 7.40× 103 3.39× 103 3.28× 103 3.97× 103 3.45× 103

F29 5.48× 103 6.44× 103 7.65× 103 5.59× 103 8.23× 103 6.79× 103 5.24× 103

F30 8.95× 105 4.03× 107 7.33× 108 1.96× 106 3.30× 107 1.32× 108 1.10× 107

</=/> 17/0/13 25/0/5 30/0/0 23/0/7 21/1/8 29/0/1 -

The above test results show that WCO handles multimodal functions and composition
functions better under low-dimensional optimization functions and performs better for
compound functions when optimizing high-dimensional problems. The conclusions of this
experiment show that the WCO algorithm has excellent global exploration ability and can
escape from the local optimal solution for better global search when the particles near the
global optimal solution are trapped in the local optimal solution. During the gradual shift
of the algorithm from the exploration phase to the development phase, the distance di of the
particles from the global optimal solution is less than R, so the particles keep the process of
random exploration, which makes the algorithm have the ability to escape from the local
optimal solution even in the late iteration.

4. WCO for TDOA and FDOA Joint Location
Fitness function of TDOA and FDOA Joint Location

In the 3D spatial coordinate system, the motion node localization in WSN typically uses
the TDOA-FDOA joint localization method. It is used to determine the position and velocity
of the localized target by receiving TDOA information and FDOA information between two
independent receivers. Suppose the position and velocity of the target are u = [x, y, z]T,
u̇ = [ẋ, ẏ, ż]T. The coordinates and velocity of each base station are si = [xi, yi, zi]

T and
ṡi = [ẋi, ẏi, żi]

T, i = 1, 2, . . . , M, where ()◦ represents the true value of the zero error. M is
the number of anchor nodes. M ≥ 4 is required for positioning in 3D space. Anchor nodes
cannot be in the same plane or line in the 3D spatial coordinate system.

Usually, the first anchor node is chosen as a reference. The distance between the target
and the anchor node i is Ri.

R◦i = ‖U − Xi‖ =
√
(x− xi)2 + (y− yi)2 + (z− zi)2 (9)

The distance difference between the target node to anchor node i and anchor node 1
is Ri1.

Ri1 = R◦i − R◦1 + ηi1 = c× ti1 + ηi1(i = 2, 3, . . . , M) (10)

where c is the speed of light, and ti1 is the time difference between the arrival of the signal
from the target node to the anchor node i and the anchor node 1. ηi1 is the distance noise
error between the observation Ri and R1. Differentiating the time in Equation (10) yields
the Doppler frequency difference observation equation:

Ṙi1 = Ṙ◦i − Ṙ◦1 + η̇i1 =
c fi1
fc

+ η̇i1(i = 2, 3, ..., M) (11)
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fi1 is the Doppler frequency difference. fc is the carrier frequency. Ṙi is the rate of change
of Ri with time. η̇i1 is the distance noise error between the observation Ṙi and Ṙ1. The
differentiation of time in Equation (9) yields Ṙi:

Ṙi =
(U̇ − Ẋi)

T(U − Xi)

Ri
(12)

We shift the term for Equation (10) and square both sides of the equal sign.

R2
i1 + 2Ri1R◦1 = R◦2i − R◦21 + ηi

= XT
i Xi − XT

1 X1 − 2(Xi − X1)
TU + ηi1

(13)

where the noise error term in Equation (13) can be expressed as:

εi1 = R2
i1 + 2Ri1R1 − XT

i Xi + XT
1 X1 + 2(Xi − X1)

TU (14)

Expressing Equation (14) in matrix form yields:

εt = ht − Gtθ (15)

εt =
[
εt2, εt3, . . . , εtM

]T (16)

ht =




R2
21 − XT

2 X2 + XT
1 X1

R2
31 − XT

3 X3 + XT
1 X1

...
R2

i1 − XT
i Xi + XT

1 X1


 (17)

Gt = −2




(X2 − X1)
T R2

21 0T 0
(X3 − X1)

T R2
31 0T 0

...
(XM − X1)

T R2
M1 0T 0


 (18)

θ =
[
U, R1, U̇, Ṙ1

]T (19)

In the above equation, 0T is a three-dimensional row vector consisting of zeros. θ is
obtained by the optimization algorithm and is an eight-dimensional column vector. The
goal of the algorithm is to find the global optimal solution that makes the TDOA localization
error εt minimum, and this solution is the position of the target.

Equation (13) is a nonlinear equation containing the position of the target node,
which can only calculate the target position because it only contains the time difference
information. By introducing FDOA information combined with TDOA, not only can the
instantaneous velocity information of the target be solved, but also a higher position
accuracy than that of TDOA localization alone can be obtained. Thus, differentiating the
time of Equation (13) yields the following:

Ri1Ṙi1 + Ṙi1R◦1 + Ri1Ṙ◦1 = ẊT
i Xi − ẊT

1 X1 − (ẊT
i − Ẋ1)

TU + (XT
i − X1)

TU̇ + η̇i1 (20)

Expressing Equation (20) in matrix form.

ε f = h f − G f θ (21)

ε f =
[
ε f 2, ε f 3, ..., ε f M

]T (22)
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h f = 2




R21Ṙ21 − ẊT
2 X2 + ẊT

1 X1
R31Ṙ31 − ẊT

3 X3 + ẊT
1 X1

...
Ri1ṘM1 − ẊT

i Xi + ẊT
1 X1


 (23)

G f = −2




(Ẋ2 − Ẋ1)
T Ṙ21 (X2 − X1)

T R21
(Ẋ3 − Ẋ1)

T Ṙ31 (X3 − X1)
T R31

...
(ẊM − Ẋ1)

T ṘM1 (XM − X1)
T RM1


 (24)

The joint TDOA-FDOA error matrix can be obtained from Equations (15) and (21)
as follows:

ε =

[
εt
ε f

]
= h− Gθ, h =

[
ht
h f

]
, g =

[
gt
g f

]
(25)

The above analysis finally leads to the fitness function:

f itness = ‖h− Gθ‖ (26)

In order to realize the reconnaissance of radiation source by space platform and
verify the proposed algorithm’s effectiveness, this experiment will use five base stations to
complete the target localization, whose coordinate positions and velocities are shown in
Table 5. WCO is compared with PSO, BA, and TSWLS through 1000 Monte Carlo simulation
experiments, and the simulation results are specifically analyzed. The standard parameters
used in the experiments include the number of particles N = 100, T = 500, and D = 6. The
time difference and the Doppler frequency difference are independent in this simulation
environment. The estimated value is the actual value plus the Gaussian white noise with
the mean value of 0. The noise range is from −20 to 20 dB.

Table 5. Position and velocity of anchor nodes.

Anchor Node
m m/s

xi yi zi ẋi ẏi żi

1 300 100 150 30 −20 20

2 400 150 100 −30 10 20

3 300 500 200 10 −20 10

4 350 200 100 10 20 30

5 −100 −100 −100 −10 10 10

In this experiment, root mean square error (RMSE) and bias will be used to analyze
the positioning accuracy of the position and velocity of the target, which is calculated
as follows:

RMSE(u) =

√
∑L

i=1‖u− u◦‖
L

RMSE(u̇) =

√
∑L

i=1‖u̇− u̇◦‖
L

Bias(u) =

∥∥∥∑L
i=1 u− u◦

∥∥∥
L

Bias(u̇) =

∥∥∥∑L
i=1 u̇− u̇◦

∥∥∥
L

(27)
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Figure 5 shows the positioning accuracy analysis of the target position and velocity under
the conditions of Figure 6; the actual position of the target is [285, 325, 275] m and the velocity
is [−20, 15, 40] m/s. From the above two figures, it can be seen that the position deviation
of WCO is more significant than that of the BA algorithm when the noise is lower than
−5 dB, and the overall positioning accuracy advantage of WCO is reflected at 0–20 dB. The
BA algorithm’s position deviation increases with the error and finally approaches PSO after
10 dB. Overall, PSO, BA and WCO are better than the TSWLS algorithm. Regarding velocity
error, TSWLS is significantly better than the three algorithms before 2 dB. However, due to
the characteristics of the TSWLS algorithm, the results are more susceptible to perturbation
as the noise increases, and WCO achieves a better velocity error after 2 dB.
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Figure 6. TDOA/FDOA Joint Location Model.

Figure 7 shows that the position and velocity deviations remain basically the same for the
three algorithms until 0 dB, and then, the positioning accuracy of WCO improves significantly
in the position deviation. When the noise is greater than 5 dB and less than 12 dB, the speed
measurement error of WCO is less than BA. Overall, the position deviation of WCO is better
than the velocity deviation regardless of the position deviation or velocity deviation.

As shown in Table 6, the execution time required by the WCO algorithm is compared
with TSWLS and the cluster intelligence algorithms of PSO and BA. It can be seen that the
WCO algorithm takes the least amount of time to complete an estimation, reducing the
running time by 18.6% compared to TSWLS, and improving the execution speed by 34.4%
and 31.7% compared to PSO and BA, respectively.
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Table 6. The optimization results for time design optimization.

Algorithm TSWLS PSO BA WCO

Time (s) 72.819125 82.471092 80.814939 61.347426

5. Conclusions

By simulating the behavior of willow seeds falling with the wind, a new meta-heuristic
optimization algorithm is proposed, which is called the Willow Catkin Optimization algo-
rithm. In order to verify the performance of the algorithm, 30 benchmark functions from
CEC2017 are used. In comparing the results of the WCO algorithm with other heuristic
algorithms, it is concluded that the WCO algorithm is very competitive in dealing with
optimization problems. Finally, WCO is applied to the joint TDOA/FDOA localization prob-
lem of motion nodes in WSN. The results show that the localization and velocity accuracy
of WCO is higher than the comparison algorithms. Regarding algorithm execution speed,
the WCO algorithm outperforms TSWLS 18.6%, PSO 34.4% and BA 31.7%. Adding binary
and multi-objective versions [47] and applying it to more practical applications [48,49] is a
valuable direction for future research.
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