
Journal of Mathematical Neuroscience  (2016) 6:1 

DOI 10.1186/s13408-015-0034-5

R E S E A R C H Open Access

Wilson–Cowan Equations for Neocortical Dynamics

Jack D. Cowan1
· Jeremy Neuman2

·

Wim van Drongelen3

Received: 27 July 2015 / Accepted: 18 December 2015 /

© 2016 Cowan et al. This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give appropriate credit to the original

author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were

made.

Abstract In 1972–1973 Wilson and Cowan introduced a mathematical model of the

population dynamics of synaptically coupled excitatory and inhibitory neurons in the

neocortex. The model dealt only with the mean numbers of activated and quiescent

excitatory and inhibitory neurons, and said nothing about fluctuations and correla-

tions of such activity. However, in 1997 Ohira and Cowan, and then in 2007–2009

Buice and Cowan introduced Markov models of such activity that included fluctua-

tion and correlation effects. Here we show how both models can be used to provide a

quantitative account of the population dynamics of neocortical activity.

We first describe how the Markov models account for many recent measurements

of the resting or spontaneous activity of the neocortex. In particular we show that the

power spectrum of large-scale neocortical activity has a Brownian motion baseline,

and that the statistical structure of the random bursts of spiking activity found near

the resting state indicates that such a state can be represented as a percolation process

on a random graph, called directed percolation.

Other data indicate that resting cortex exhibits pair correlations between neighbor-

ing populations of cells, the amplitudes of which decay slowly with distance, whereas

B J.D. Cowan

cowan@math.uchicago.edu

J. Neuman

jneuman@uchicago.edu

W. van Drongelen

wvandron@peds.bsd.uchicago.edu

1 Department of Mathematics, University of Chicago, 5734 South University Avenue, Chicago, IL

60637, USA

2 Department of Physics, University of Chicago, 5720 South Ellis Avenue, Chicago, IL 60637,

USA

3 Department of Pediatrics, University of Chicago, KCBD 900 East 57th Street, Chicago, IL

60637, USA

http://crossmark.crossref.org/dialog/?doi=10.1186/s13408-015-0034-5&domain=pdf
mailto:cowan@math.uchicago.edu
mailto:jneuman@uchicago.edu
mailto:wvandron@peds.bsd.uchicago.edu


Page 2 of 24 J.D. Cowan et al.

stimulated cortex exhibits pair correlations which decay rapidly with distance. Here

we show how the Markov model can account for the behavior of the pair correlations.

Finally we show how the 1972–1973 Wilson–Cowan equations can account for

recent data which indicates that there are at least two distinct modes of cortical re-

sponses to stimuli. In mode 1 a low intensity stimulus triggers a wave that propagates

at a velocity of about 0.3 m/s, with an amplitude that decays exponentially. In mode

2 a high intensity stimulus triggers a larger response that remains local and does not

propagate to neighboring regions.

Keywords Wilson–Cowan equations · Bogdanov–Takens bifurcation · Propagating

decaying LFP and VSD waves · Localized decaying LFP and VSD responses ·
Neural network master equation · Directed percolation phase transition ·
Pair-correlations

1 Introduction

The analysis of large-scale brain activity is a difficult problem. There are about 50

billion neurons in the cortex of the human brain: 80 % are excitatory, whereas the

remaining 20 % are inhibitory. Each neuron has about seven thousand axon terminals

from other neurons, but there is some redundancy in the connectivity so that it has

effective connections from about 80 other neurons, mostly nearest neighbors. Each

neuron is actually a complex switching device, but in this review, we introduce only

the simplest cellular model, that neurons are binary switches, either quiescent or ac-

tivated. It follows that there are approximately 101.5×1010
configurations of activated

or quiescent neurons. Such a large configuration space suggests the need to use sta-

tistical methods to analyze large-scale brain activity. In addition there is some degree

of microscopic randomness in neural connectivity, and there are also random fluctua-

tions of neural activity, both of which also support the need for a statistical treatment,

as noted by Sholl in 1956 [1].

2 Experimental Data on Large-Scale Brain Activity

There is a large body of data on large-scale brain activity, including electroencephalo-

graphic (EEG) recordings with large electrodes from the surface of the scalp, func-

tional magnetic resonance (fMRI) measurements of blood flow in different brain re-

gions (also large-scale), local field potentials (LFP) recorded with smaller electrodes,

microelectrode recordings from or near individual neurons, or (currently) microelec-

trode arrays which can record the simultaneous activity of many neighboring neurons.

Currently there are also new techniques for forming optical images of local brain ac-

tivity, using voltage sensitive dyes (VSD). All such recordings can be classified as

either spontaneous or resting activity, or stimulus-driven evoked activity.
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Fig. 1 The upper trace is the first recording of spontaneous electrical activity from the human scalp. The

lower trace is a 10 Hz oscillation. [Reproduced from [3]]

Fig. 2 The power spectrum of

the occipital EEG of a resting,

awake human. [Reproduced

from [4]]

2.1 Resting Activity

We first consider the resting brain activity of unanesthetized animals first observed in

animals by Caton in 1875 [2], and in humans by Berger in 1924 [3]. Recordings from

the human scalp are referred to as electroencephalographs (EEG) and are measured

via electrodes on the unshaven scalp. The voltage differences measured between such

electrode pairs are about 50 µV. Figure 1 shows a typical EEG recording.

It will be seen that there are intermittent bursts of 10 Hz oscillations in the scalp

activity. These oscillations comprise the alpha rhythm, seen in awake relaxed hu-

mans, mainly in the occipital region of the brain which processes visual signals from

the eyes. Figure 2 shows the power spectrum of such activity. It will be seen that

there is a pronounced peak in the power spectrum at around 10 Hz and a secondary

peak around 20 Hz. This peak is said to be in the range of the beta rhythm of oc-

cipital EEG activity. Interestingly if the contributions of such peaks are eliminated,

what is left can be fitted with the function a/(b + f 2), where a and b are constants,

and f is the frequency in Hz. Figure 3 shows such a function and its fit to the EEG

power spectrum. It is important to note that this power spectrum fit is that of Brow-

nian motion, which suggests that resting brain activity is largely desynchronized and

random.

Other measurements of resting brain activity have been carried out on lightly anes-

thetized animals using local field potential recordings of spiking neuron activity, or
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Fig. 3 The left panel shows the function 75/(3 +f 2), the right panel the fit of such a function to the EEG

power spectrum shown in Fig. 2

Fig. 4 The left panel shows the power spectra of LFP recordings from a cat’s visual cortex in response

to sine-wave modulated grating patterns. [Reproduced from [5].] The right panel shows fMRI recordings

of both resting and stimulated human brain activity, and their associated power spectra. [Reproduced from

[6]]

else via fMRI measurements of blood flows in the brain that accompany unanes-

thetized brain activity. Figure 4 shows examples. Note the fit of the Brownian motion

power spectrum 125/(5 + f 2) to the resting LFP.

2.1.1 Isolated Neocortex

But the most detailed studies, and the most information about the nature of sponta-

neous activity, has been obtained from studies of isolated neocortical slabs. The first

detailed studies were carried out in the early 1950s by DeLisle Burns, on isolated

slabs of parietal neocortex [7, 8]. The main relevant result was that very lightly anes-

thetized slabs spontaneously generated bursts of propagating activity from a number

of randomly occurring sites. Any variation of the level of anesthesia, either up or

down, abolished the activity.
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Fig. 5 Electrode data from

slices of rat neocortex. The top

graph is a raster plot of

electrode activation times. They

seem synchronous, but closer

examination reveals that the

times exhibit self-similarity. The

bottom graphs show a sequence

of electrode activations in the

original array. [Reproduced

from [9]]

However, it was not until 2003 that a systematic study of such burst activity was

carried out by Beggs and Plenz [9] using isolated slabs of rat somatosensory cortex,

either in mature tissue cultures, or else in slices. The tissue cultures exhibited spon-

taneous bursts of propagating activity in the form of local field potentials recorded

at microelectrodes. The slices, however, were silent until stimulated with NMDA, a

glutamate-receptor agonist, in combination with a dopamine D1-receptor agonist. In

contrast to DeLisle Burns, Beggs and Plenz used an 8 × 8 microelectrode array to

record local field potentials (LFPs) in the slab. The main result of their experiments

is summarized in Figs. 5 and 6.

Beggs and Plenz’s conclusion is that such bursts of activity are avalanches defined

as follows: the configuration of active electrodes in the array during one time bin of

width �t is termed a frame, and a sequence of frames preceded and followed by blank

frames is called an avalanche. However, successive frames are not highly correlated,

so the activity is not wave-like: it is in fact self-similar, and in addition, the avalanche

size distribution follows the power law P [n] ∝ nα . In addition the exponent α is

approximately −1.5. This is the mean-field exponent of a critical branching process

[10]. This result was a step beyond that of Softky and Koch [11] who found Poisson-

like spiking activity in individual cortical neurons, and introduced the possibility of

criticality in brain dynamics. In fact this mean-field exponent turns up in several kinds

of percolation processes on random graphs, including both isotropic and directed

percolation. But branching and annihilating random walks are equivalent to directed
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Fig. 6 Probability distribution

of burst sizes at different bin

widths �t . Inset: Dependence of

slope exponent α on bin width.

[Reproduced from [9]]

percolation, so it is possible that what Beggs and Plenz observed in cortical slices

was a form of directed percolation. We will return to this topic later.

2.2 Driven or Stimulated Activity

In case there is an external stimulus, neocortical dynamics indicates a very different

picture. It turns out that there is a big difference in the responses to weak stimuli,

compared to those triggered by stronger stimuli. In addition correlations between

pairs of neurons in driven neocortex have a shorter length scale than those found in

spontaneous activity.

2.2.1 Weak Stimuli

The basic result for weak stimuli is that the cortical response is a propagating wave

whose amplitude decays exponentially with distance. Figure 7 shows the cortical

responses to low amplitude stimuli in the form of spikes, recorded by an implanted

microelectrode array in three monkey visual cortices by Nauhaus et al. [13]. Each row

shows data from the spike-triggered local field potentials (LFP) from a single loca-

tion. The first column shows the dependence of time to peak of the LFP as a function

of the cortical distance from the triggering electrode, and estimated propagation ve-

locities. The second column shows the propagating wave, both as a pseudo-colored

image, and as a plot of wave amplitude vs. distance from the triggering electrode, to-

gether with estimates of the space-constants of the decaying waves. The third column

shows average LFP waveforms at three locations from the triggering spike.

It will be seen that the response is indeed a traveling LFP, whose velocity is about

25–30 cm/s. In addition the LFP amplitude decays exponentially, with a decay con-

stant λ of about 3 mm.



Journal of Mathematical Neuroscience  (2016) 6:1 Page 7 of 24

Fig. 7 Spikes of low amplitude initiate traveling waves of LFP in the cortex. See text for details. [Repro-

duced from [13]]

Fig. 8 Spikes of larger amplitude initiate standing waves of LFP in the cortex. See text for details. [Re-

produced from [13]]

2.2.2 Strong Stimuli

In contrast the basic result for strong stimuli is that cortical responses to such stim-

uli are much more localized. Figure 8 shows a comparison of cortical responses to

weak and strong stimuli [13]. It will be seen that responses to larger stimuli remain

essentially localized. These observations immediately suggest a role for inhibition in

localizing such responses.

2.2.3 Correlations

The basic result for correlations is that correlations between pairs of LFP fall off

with separation distance, and such a falloff is much greater for strong stimuli than for
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Fig. 9 Fall of with distance of cortical pair correlations. See text for details. [Reproduced from [13]]

weaker ones; see Fig. 9. Thus strong stimuli weaken the intrinsic pair correlations that

exist in spontaneous activity. See Lampl et al. and others [16–19]. These observations

also suggest a role for inhibition.

To explain all these observations we need to understand the competing roles of

neural excitation and inhibition in neural population dynamics. We therefore give a

short account of the history and development of the Wilson–Cowan neural population

equations.

3 Neural Population Equations

3.1 Introduction

Following early work by Shimbel and Rapaport [20], Beurle [21] focused, not on the

activity of single neurons, but on the proportion of neurons activated per unit time

in a given volume element of a slice or slab of neocortex, denoted by n(x, t). For all

practical purposes this can be taken to be equivalent to the spike-triggered LFP and

VSD described earlier.

Beurle introduced the update equation

n(x, t + τ) = q(x, t)f
[

n(x, t)
]

, (1)

where q(x, t) is the density of quiescent neurons in the given volume element, and

f [n(x, t)] the proportion of neurons receiving exactly threshold excitation. [There is

an implicit assumption that individual neurons are of the integrate-and-fire variety.]

There are three points to note here.

1. By assuming that n(t +τ) = q(t)f [n(t)] Beurle ignored the effects of fluctuations

and correlations on the dynamics. It is not true that q and f [n] are statistically

independent quantities, as was first pointed out in [22].

2. The update equation is incorrect. f [n] should be the proportion of neurons receiv-

ing at least threshold excitation, as was first noted by Uttley [23].

This proportion can be expressed [24] as:

f [n] =
∫ n

−∞
P(nTH) dnTH =

∫ ∞

−∞
ϑ[n − nTH]P(nTH) dnTH =

〈

ϑ[n]
〉

, (2)
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where ϑ[n] is the Heaviside step function and 〈ϑ[n]〉 is the average of ϑ[n] over

the probability distribution of thresholds P(nTH).

This implies that the function f [n] should have the form of a probability dis-

tribution function, not a probability density. In Cowan [25] the logistic or sigmoid

form,

f [n] =
[

1 + exp[−n]
]−1 =

1

2

[

1 + tanh

(

n

2

)]

(3)

was introduced, as an analytic approximation to the Heaviside step function used

in McCulloch–Pitts neurons [26]. This indicates that the required continuum equa-

tions should represent the dynamics of a population of integrate-and-fire neurons

in which there is a random distribution of thresholds.

The corrected version of Beurle’s equation takes the form

n(x, t + τ)

= q(x, t)f
[

n(x, t)
]

= q(x, t)f

[∫ t

−∞
dt ′

∫ ∞

−∞
dx′α

(

t − t ′
)[

β
(

x − x′)n
(

x′, t ′
)

+ h
(

x, t ′
)]

]

, (4)

where

q(x, t) = 1 −
∫ t

t−r

n(x, t); (5)

r = 1 ms is the (absolute) refractory period or width of the action potential, and

α
(

t − t ′
)

= α0e
−(t−t ′)/τ , β

(

x − x′) = be−|x−x′|/σ (6)

are the impulse response function and spatially homogeneous weighting function

of the continuum model, with membrane time constant τ ∼ 10 ms, and space

constant σ ∼ 100 µm.

3. Beurle’s formulation does not explicitly incorporate a role for inhibitory neurons.

3.2 The Wilson–Cowan Equations

Wilson and Cowan corrected and extended Beurle’s work and introduced equations

for the population dynamics of a spatially homogeneous population of coupled excita-

tory and inhibitory binary neurons [24], and its extension to spatially inhomogeneous

populations [27]. These equations take the forms

τ
dE

dt
= −E(t) +

(

1 − rE(t)
)

fE

[

wEEE − wEI I + hE(t)
]

,

τ
dI

dt
= −I (t) +

(

1 − rI (t)
)

fI

[

wIEE − wII I + hI (t)
]

,

(7)
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for the spatially homogeneous case, and

τ
∂E(x, t)

∂t
= −E(x, t) +

(

1 − rE(x, t)
)

× fE

[∫ ∞

−∞
ρE dx′βEE

(

x − x′)E
(

x′, t
)

−
∫ ∞

−∞
ρI dx′βEI

(

x − x′)I
(

x′, t
)

+ hE(x, t)

]

,

τ
∂I (x, t)

∂t
= −I (x, t) +

(

1 − rI (x, t)
)

× fI

[∫ ∞

−∞
ρE dx′βIE

(

x − x′)E
(

x′, t
)

−
∫ ∞

−∞
ρI dx′βII

(

x − x′)I
(

x′, t
)

+ hI (x, t)

]

,

(8)

for the continuum form of the spatial case, in which ρE , and ρI are, respectively, the

packing densities of excitatory and inhibitory cells in the cortical slab.

Note that fE[n] and fI [n] are modified versions of the firing rate function f [n]
introduced in Eq. (3), such that fE[0] = fI [0] = 0.

Note also that the variables E(x, t) and I (x, t) are time coarse-grained, i.e.

E(x, t) =
∫ t

−∞
dt ′α

(

t − t ′
)

nE

(

x, t ′
)

,

I (x, t) =
∫ t

−∞
dt ′α

(

t − t ′
)

nI

(

x, t ′
)

,

(9)

where nE(x, t) and nI (x, t) are the proportions of excitatory and inhibitory neurons

activated per unit time. It follows from Eq. (4) that α(t) acts as a low-pass filter,

and therefore that E(x, t) and I (x, t) are low-pass filtered version of nE(x, t ′) and

nI (x, t ′), respectively. The net effect of such a coarse-graining is to remove oscilla-

tory components of neural population responses greater than 100 Hz.

3.3 Attractor Dynamics

A major feature of Eq. (7) is that it supports different kinds of asymptotically sta-

ble equilibria. Figure 10 shows two such equilibrium patterns: There is also another

phase plane portrait in which the equilibrium is a damped oscillation, i.e., a stable

focus. In fact by varying the synaptic weights wEH and wIH or a = wEEwII and

b = wIEwEI we can move from one portrait to another. It turns out that there is a

substantial literature dealing with the way in which such changes occur, The math-

ematical technique for analyzing these transformations is bifurcation theory, and it

was first applied to neural problems 53 years ago by Fitzhugh [28], but first applied

systematically by Ermentrout and Cowan [29–31] in a series of papers on the dy-

namics of the mean-field Wilson–Cowan equations. Subsequent studies by Borisyuk
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Fig. 10 The left panel shows the E–I phase plane and nullclines of Eq. (7). The intersections of the two

null clines are equilibrium or fixed points of the equations. Those labeled (+) are stable, those labeled (−)

are unstable. Parameters: wEE = 12, wEI = 4, wIE = 13, wII = 11, nH = 0. The stable fixed points are

nodes. The right panel shows an equilibrium which is periodic in time. Parameters: wEE = 16, wEI = 12,

wIE = 15, wII = 3, nH = 1.25. In this case the equilibrium is a limit cycle. [Redrawn from [24]]

Fig. 11 The left panel shows bifurcations of Eq. (7) in the spatially homogeneous case, organized

around the Bogdanov–Takens (BT) bifurcation. SN1 and SN2 are saddle-node bifurcations. AH is an An-

dronov–Hopf bifurcation, and SHO is a saddle homoclinic-orbit bifurcation. Note that a and b are the

control parameters introduced earlier. The right panel shows the nullcline structure of a Bogdanov–Takens

bifurcation. At the Bogdanov–Takens point, a stable node (open circle) coalesces with an unstable point.

[Redrawn from [34]]

and Kirillov [32] and Hoppenstaedt and Izhikevich [33] have greatly extended this

analysis.

The left panel of Fig. 11 shows the detailed structure around such bifurcations.

Evidently the saddle-node and Andronov–Hopf bifurcations lie near the Bogdanov–

Takens bifurcation. Thus all the bifurcations described in the spatially homogeneous

Wilson–Cowan equations lie close to such a bifurcation in the (a,b)-plane. The

Bogdanov–Takens bifurcation depends on two control parameters a and b, and is

therefore of codimension 2. In such a bifurcation an equilibrium point can simulta-

neously become a marginally stable saddle and an Andronov–Hopf point. So at the

bifurcation point the eigenvalues of its stability matrix have zero real parts. In addi-

tion the right panel of Fig. 11 shows how the fast E-nullcline and the slow I-nullcline

intersect. The first point of contact of the two nullclines is the Bogdanov–Takens

bifurcation point. The two nullclines remain close together over a large part of the

subsequent E–I phase space before diverging. As we will later discuss, this property
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Fig. 12 Neural state transitions. a is the activated state of a neuron. q is the quiescent state. α is a decay

constant, but f depends on the number of activated neurons connected to the neuron, and on an external

stimulus h

of the nullclines is closely connected with the existence of a balance between exci-

tatory and inhibitory currents in the network described by the Wilson–Cowan equa-

tions, and therefore with the existence of avalanches in stochastic Wilson–Cowan

equations [35].

4 Stochastic Neural Dynamics

4.1 Introduction

To develop such equations we need to reformulate neural population dynamics as a

Markov process. We first consider the representation of the dynamics of a cortical

sheet or slab comprising a single spatially homogeneous network of N excitatory

binary neurons. Such neurons transition from a quiescent state q to an activated state

a at the rate f and back again to the quiescent state q at the rate α, as shown in

Fig. 12.

4.2 A Master Equation for a Network of Excitatory Neurons

The first step is to formulate a master equation describing the evolution of the prob-

ability distribution of neural activity Pn(t) in such a network. Consider first n acti-

vated neurons, each becoming quiescent at the rate α. This produces a flow out of

the state n at rate α, proportional to pn(t), hence a term in the master equation of

the form −αnPn(t). Similarly the flow into n from the state n + 1 produces a term

α(n + 1)Pn+1(t). The net effect is the term

α
[

(n + 1)Pn+1(t) − nPn(t)
]

. (10)

Now consider the N − n quiescent neurons in state n, each prepared to spike at

rate f [sE(n)], leading to the term −(N − n)f [sE(n)]Pn(t), in which the total input

is sE(n) = I (n)/ITH = (wEEn + hE)/ITH, and f [sE(n)] is the function shown in

Fig. 13, a low-noise version of Eq. (3).

The flow into the state n from the state n − 1 is therefore (N − n + 1) ×
f [sE(n − 1)]Pn−1(t), and the total contribution from excitatory spikes is then

(N − n + 1)f
[

sE(n − 1)
]

Pn−1(t) − (N − n)f
[

sE(n)
]

Pn(t). (11)
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Fig. 13 The firing rate function

f [sE(n)], τm = 1/α = 3 ms is

the neural membrane time

constant, I is the input current,

and IRH is the rheobase or

threshold current

It follows that the probability Pn(t) evolves according to the master equation

dPn(t)

dt
= α

[

(n + 1)Pn+1(t) − nPn(t)
]

+ (N − n + 1)f
[

sE(n − 1)
]

Pn−1(t) − (N − n)f
[

sE(n)
]

Pn(t). (12)

It is easy to derive an evolution equation for 〈n(t)〉, the average number of active

neurons in the network, using standard methods. The equation takes the form

d〈n(t)〉
dt

= −α
〈

n(t)
〉

+
(

N −
〈

n(t)
〉)

f
[〈

sE(n)
〉]

, (13)

where 〈sE(n)〉 = wEE〈n〉 + hEE , and is the simplest form of Eq. (7) for a single

excitatory population. Such a mean-field equation can be obtained in a number of

different ways, in particular by using the van Kampen “system-size expansion” of

Eq. (12) about a locally stable equilibrium [36]. However, as is well known, this ex-

pansion breaks down at a marginally stable critical point, e.g. at a Bogdanov–Takens

point, and a different method must be used to analyze such a situation.

Before proceeding we note that these equations can be extended to cover the situ-

ation introduced in Eq. (7) which incorporates spatial effects. The variable n(t)/N is

extended to n(x, t) representing the density of active neurons at the cortical location

x at time t , and the total input current I (n) becomes the current density

I
(

n(x)
)

=
∫

ddx′wEE

(

x − x′)n
(

x′) + hE(x). (14)

4.3 A Master Equation for a Network of Excitatory and Inhibitory Neurons

Since about 1/5th of all cortical neurons are inhibitory, it is important to include the

effects of such inhibition. We therefore extend Eq. (10) to include inhibitory neurons.

The result is the master equation:

dP (nE, nI , t)

dt
= αE

[

(nE + 1)P (nE + 1, nI , t) − nEP(nE, nI , t)
]

+
[

(NE − nE + 1)fE

[

sE(nE − 1, nI )
]

P(nE − 1, nI , t)
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− (NE − nE)fE

[

sE(nE, nI )
]

P(nE, nI , t)
]

+ αI

[

(nI + 1)P (nE, nI + 1, t) − nIP(nE, nI , t)
]

+
[

(NI − nI + 1)fI

[

sI (nE, nI − 1)
]

P(nE, nI − 1, t)

− (NI − nI )fI

[

sI (nE, nI )
]

P(nE, nI , t)
]

. (15)

See Benayoun et al. [35] for a derivation of this equation. It is easy to derive Eq. (7)

from this master equation. However, there is much more information as regards

stochastic neural dynamics contained in Eq. (15) than is contained in such an equa-

tion. We refer, of course, to the effects of intrinsic fluctuations and of correlations.

5 Analyzing Intrinsic Fluctuations

To analyze such effects we need to look more closely at the attractor dynamics of

Eq. (7). There are two cases to consider. In case 1, the attractor is either an asymp-

totically stable node or focus, or else a limit cycle. In case 2, the attractor is only

marginally stable. In nonlinear dynamics this is a bifurcation point, e.g. a Bogdanov–

Takens point, or a saddle node or Andronov–Hopf point. In statistical mechanics this

is the critical point of a phase transition.

5.1 The System-Size Expansion

The system-size expansion was introduced by van Kampen [36] to analyze the effects

of intrinsic fluctuations in case 1. The intuition behind this approach comes from the

idea that if neurons are independently activated, then the total activity in a excitatory

neural network in such a case is Gaussian distributed, with mean activity 〈nE(t)〉
proportional to N , the total number of neurons in the network, and standard distribu-

tion proportional to
√

N . So the number of neurons activated at a given time can be

represented by the variable

k = NnE +
√

NξE, (16)

where ξE is a Gaussian random perturbation.

The deterministic term satisfies Eq. (7), the random variable satisfies the linear

Langevin equation

dξE

dt
= AξE +

√

αEnE + (1 − nE)fE

[

sE(nE)
]

ηE (17)

to order N−1/2, where A is a constant and ηE is an independent white noise variable,

whose amplitudes are calculated from Eq. (7).

An early version of this application of the system-size expansion can be found in

Ohira and Cowan [37]. The extension to the excitatory and inhibitory neural network

introduced in Eq. (7) is to be found in Benayoun et al. [35]. This paper is notable

for its use of the Gillespie algorithm [38]. In this algorithm the simulation time is

advanced only when the network’s state is updated, and the time intervals dt are
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Fig. 14 Raster plot of the

spiking patterns in a network of

N = 800 excitatory neurons.

Each black dot represents a

neural spike. The mean activity

〈nE(t)〉 is represented by the

blue trace. Simulation using the

Gillespie algorithm with

parameter values

hE = hI = 0.001,

w0 = wE − wI = 0.2, and

wE + wI = 0.8. [Redrawn from

[35]]

Fig. 15 Phase plane plots of the

activity shown in Fig. 14

showing the vector field (blue)

and nullclines Ė = 0 (magenta)

and İ = 0 (red), of Eq. (1) and

plots of a deterministic (black)

and a stochastic (green)

trajectory starting from identical

initial conditions. [Redrawn

from [35]]

random variables dependent upon the network state. The simulation is carried out for

a network in which certain symmetry conditions are introduced. These conditions are

wIE = wEE = wE; wEI = wII = wI ; wE − wI = w0, (18)

where w0 is kept constant. Figures 14, 15, 16, 17 show the results.

It should be evident from a study of these figures that the location of the fixed point

of Eq. (7) remains unchanged as wE +wI increases from 0.8 to 13.8, but the stochas-

tic trajectory (green) becomes increasingly spread out as the nullclines become more

parallel. Such a feature is also evident in the right panel of Fig. 11 in which the null-

cline structure of the Bogdanov–Takens bifurcation is shown. It is also evident that a

qualitative change has taken place in the nature of the activity: it has changed from

random fluctuations to random bursts. Figures 18 and 19 make this clear.
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Fig. 16 Raster plot of the

spiking patterns in a network of

N = 800 excitatory neurons.

Each black dot represents a

neural spike. The mean activity

〈nE(t)〉 is represented by the

blue trace. Simulation using the

Gillespie algorithm with

parameter values

hE = hI = 0.001,

w0 = wE − wI = 0.2, and

wE + wI = 13.8. [Redrawn

from [35]]

Fig. 17 Phase plane plots of the

activity shown in Fig. 16

showing the vector field (blue)

and nullclines Ė = 0 (magenta)

and İ = 0 (red), of Eq. (1) and

plots of a deterministic (black)

and a stochastic (green)

trajectory starting from identical

initial conditions. [Redrawn

from [35]]

5.2 Symmetries and Power Laws

It will be seen that the simulations described above, in which the network symmetry

represented in Eq. (17) is present, have uncovered an important property, namely

that a stochastic version of Eq. (7) incorporating such a symmetry can spontaneously

generate random activity in the form of bursts, whose statistical distribution is a power

law. The other important property concerns the basic network dynamics generating

such bursts.

We first note the experimental data provided by DeLisle Burns [7] and Beggs and

Plenz [9] described in the introduction, and then we discuss the underlying neurody-

namics. The main result of the Beggs–Plenz observations is that isolated slices gener-

ate bursting behavior similar to that found in the simulations, with a power law burst

distribution with slope exponent of β = −1.5. This should be compared with the sim-

ulation data shown in Fig. 18 in which β = −1.62. Note, however, that the geometry
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Fig. 18 Network burst

distribution in number of spikes,

together with geometric (red)

and power law (blue) fit; �t , the

mean inter-spike interval, is the

time bin used to calculate the

distribution, and β = −1.62 is

the slope exponent of the fit.

Simulation using the Gillespie

algorithm with parameter values

hE = hI = 0.001,

w0 = wE − wI = 0.2, and

wE + wI = 0.8. [Redrawn from

[35]]

Fig. 19 Network burst

distribution in number of spikes,

together with geometric (red)

and power law (blue) fit; �t , the

mean inter-spike interval, is the

time bin used to calculate the

distribution, and β is the slope

exponent of the fit. Simulation

using the Gillespie algorithm

with parameter values

hE = hI = 0.001,

w0 = wE − wI = 0.2, and

wE + wI = 13.8. [Redrawn

from [35]]

of our network simulation is not comparable with that of a cortical slice. It remains to

carry out simulations of the stochastic version of Eq. (7) on a 2-dimensional lattice.

Work on this is currently ongoing. In any event, the Beggs–Plenz paper generated a

great deal of interest in the possibility of critical behavior in the sense of statistical

physics existing in stochastic neural dynamics, including the possibility that brain

dynamics exhibits self-organized criticality. In the later parts of this paper, we briefly

address this possibility.

5.2.1 Random Bursting

We turn now to the neuro-dynamics underlying random bursting. We first note that

the fixed point of the dynamics remains unchanged as wE + wI increases from

0.8 → 13.8, and nE = nI . We also recall by Eq. (18) that wE − wI = w0 = 0.2,
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so that as the network begins to fire in random bursts,

w0 ≪ wE + wI . (19)

This inequality has a number of consequences [35, 39]. Most importantly, it allows a

particular change of variables in Eq. (12) extended to include inhibition.

d〈nE(t)〉
dt

= −α
〈

nE(t)
〉

+
(

1 −
〈

nE(t)
〉)

f
[

〈s〉
]

,

d〈nI (t)〉
dt

= −α
〈

nI (t)
〉

+
(

1 −
〈

nI (t)
〉)

f
[

〈s〉
]

,

(20)

where 〈s〉 = wEnE − wInI + h, and 〈nE〉 and 〈nI 〉 are interpreted as the mean frac-

tions of activated neurons in the network.

Now introduce the change of variables

Σ =
1

2
(nE + nI ), � =

1

2
(nE − nI ), (21)

so that Eq. (20) transforms into the equation

d〈Σ(t)〉
dt

= −α
〈

Σ(t)
〉

+
(

1 −
〈

Σ(t)
〉)

f
[

〈s〉
]

,

d〈�(t)〉
dt

= −
〈

�(t)
〉(

α + f
[

〈s〉
])

.

(22)

Such a transformation was introduced into neural dynamics by Murphy and Mil-

lar [39], and used by Benayoun et al. [35]. But it was introduced much earlier by

Janssen [40] in a study of the statistical mechanics of stochastic Lotka–Volterra pop-

ulation equations on lattices, which are known to be closely related to stochastic

neural population equations on lattices [41].

The important point about the transformed equations is that they are decoupled,

with the unique stable solution (Σ0,0), which is equivalent to nE = nI in the original

variables. This is precisely the stable fixed point used in the simulations. Note also

that, in the new variables Σ and �, the fixed point current is

s = w0Σ + (wE + wI )� + h. (23)

So at the stable fixed point (Σ0,0), s = w0Σ0 + h. Near such a fixed point, � is

only weakly sensitive to changes in Σ , and Σ0 is unchanged when varying wE + wI

for constant w0. Murphy and Miller called Eq. (20) an effective feed-forward sys-

tem exhibiting a balance between excitatory and inhibitory currents, and a balanced

amplification of a stimulus h.

We can now perform a system-size expansion of the associated master equations

[35], to obtain a two component linear Langevin equation for small Gaussian fluctu-

ations about the stable fixed point (Σ0,0). This takes the form

d

dt

(

ξΣ

ξ�

)

=
(

−λ1 wff

0 −λ2

)(

ξΣ

ξ�

)

+
√

αΣ0

(

ηΣ

η�

)

, (24)
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where the eigenvalues are λ1 = (α+f [s0])+(1−Σ0)w0f
′[s0] and λ2 = (α+f [s0]),

and wff = (1 − Σ0)(wE + wI )f
′[s0].

The Jacobian matrix

A =
(

−λ1 wff

0 −λ2

)

is upper triangular and has eigenvalues −λ1 and −λ2. It follows that when w0 is small

and positive, then so are the eigenvalue magnitudes λ1 and λ2. So the eigenvalues are

small and negative and the fixed point (Σ0,0) is weakly stable. Evidently A lies close

to the matrix

B =
(

0 wff

0 0

)

=
(

0 1

0 0

)

wff = B̄wff.

But the matrix B̄ is the signature of the normal form of the Bogdanov–Takens bifurca-

tion [33]. Thus the weakly stable node lies close to a Bogdanov–Takens bifurcation,

as we have suggested.

5.3 Intrinsic Fluctuations at a Marginally Stable Fixed Point

We now turn to case 2, in which the network dynamics is at a marginally stable fixed

point. As we showed earlier, such a fixed point is a Bogdanov–Takens point. We

cannot use the system-size expansion at such a point, but we can use the methodology

and formalism of statistical field theory [42–45]. However, for the neuro-dynamics

considered in this article, case 1 applies: the resting and driven activities are all at

or near a weakly stable fixed point. Despite this, the fact that the fixed point is only

weakly stable indicates that the resting and weakly driven states lie in what has been

called the fluctuation-driven region near the marginally stable fixed point [46]. Thus

we need to outline some of the results of the analysis of case 2. The reader is referred

to the details in the article by Cowan et al. [45].

The basic result is that the stochastic equivalent of the Bogdanov–Takens bifur-

cation is the critical point of a Directed Percolation phase transition, or DP [47]. In

DP there are two stable states, separated by a marginally stable critical point. One of

these is an absorbing state, corresponding to the neural population state in which all

neurons are quiescent, so that the mean number of activated states or order parameter

〈n〉 = 0. The other is one in which many neurons are activated, so that 〈n〉 �= 0 in the

activated state. At a critical point the quiescent state becomes marginally stable and

is driven by fluctuations into the activated state.

What is important for the present study is that in the neighborhood of such a

critical point, i.e. in the fluctuation-driven regime, there are two significant features

of the activity which relate to the experimental data we have described: (a) the resting

behavior shows random burst behavior whose statistical signature is consistent with

DP, i.e., the distribution of bursts follows a power law with slope exponent −1.5,

which is the slope of several forms of random percolation, including what is called

mean-field DP [9, 10]; (b) intrinsic correlations are large, and pair correlations extend

over significant cortical distances [18].
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Fig. 20 The left panel shows the pair-correlation function for resting and driven activity, for additive

Gaussian noise, the right panel that for resting and driven activity, for intrinsic noise, averaged over many

simulations using the Gillespie algorithm. [Reproduced from [38]]

6 Modeling the Experimental Data

6.1 Resting Activity

6.1.1 Random Burst Activity

Assuming that the resting state occurs in the neighborhood of a weakly stable node

or focus, to start with we can use the results of the system-size expansion of the E–I

master equation described earlier. The conclusion we reach is that in the case that

there is a balance between excitation and inhibition, so that the network is at weakly

stable node, or possible a focus, then random burst behavior with a power law slope

exponent close to −1.5 is seen [35]. This is the result shown in Figs. 14–19, and

of course the result is also completely consistent with the Beggs–Plenz data plotted

in Figs. 5 and 6. We also note that these results are completely consistent with our

recent analysis, Cowan [45], and with recent experimental data that demonstrates the

sub-criticality of the resting state by Priesemann et al. [48].

6.1.2 Pair Correlations

As to pair correlations associated with resting or spontaneous activity, we refer to

Fig. 9 in which the measured resting pair correlation falls off with pair separation, in

both cats and monkeys. This finding can be replicated within the theoretical frame-

work we have established in two differing ways.

(a) We first make use of Eq. (7), the mean-field Wilson–Cowan equations for the

1D-spatial case, and simply add δ-correlated Gaussian noise to the equations. The

resulting pair-correlation function for resting activity is shown in the left panel of

Fig. 20. (b) We then use the stochastic Wilson–Cowan master equation introduced in

Eq. (14), extended to the spatial case. In such a case the noise is multiplicative and

intrinsic, and we used the Gillespie algorithm [38] to simulate the process.
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Fig. 21 A Variation in the LFP amplitude of decaying waves. The largest amplitude is the initial response

to a brief weak current pulse. B The exponential decay of the LFP amplitude, as a function of distance

traveled. C Time–distance plot of the peak amplitude indicating that the velocity of wave propagation is

constant at about 0.3 m s−1. D Localized LFP in response to a strong current pulse. E Rapid decay of the

amplitude in a linear fashion. F Very slow propagation of the LFP

Such simulations of the behavior of Wilson–Cowan equations replicate very accu-

rately, the pair-correlation behavior shown in Fig. 9, reported in [13], both for resting

activity and for driven activity.

6.2 Driven Activity

6.2.1 Weak Stimuli

We now consider the results reported by Carandini et al. [12–14], of traveling, de-

caying waves seen in LFP, shown in Figs. 7 and 8; and by Muller and Destexhe [15],

in VSD recordings, in response to brief weak current pulses. These results can be

replicated quite precisely in simulations of Eq. (8), in which the network dynamics is

near the balanced state in which E ≈ I . The top row of Fig. 21 shows a simulation

of these simulations. These results should be compared with those plotted in Fig. 7.

It should be clear that the simulations replicate very accurately, such data.

6.2.2 Strong Stimuli

The other result reported by Carandini et al. is that for strong stimuli the resulting

LFP does not propagate very far and remains localized. This property was actually

reported in Wilson and Cowan’s 1973 paper [27]! The bottom row of Fig. 21 shows a

current simulation of this property, again in which the network state is approximately

balanced.
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6.3 Explaining the Differing Effects of Weak and Strong Stimuli

It is evident that there are big differences between the effects produced by weak and

strong stimuli. What is the cause of such differences? Given that the only param-

eter in the Wilson–Cowan equations that is varied in the two cases is the stimulus

intensity, this suggests that the property which causes the different responses is the

level of inhibition. It must therefore be the case that the threshold for inhibitory ac-

tivity is set high enough that weak stimuli do not trigger inhibitory effects, whereas

strong enough stimuli do trigger such effects. Indeed this is one of the possibilities

suggested by Carandini et al. in their papers. Thus inhibition blocks LFP (and VSD)

propagation.

This possibility is also consistent with the effects of stimuli on pair correlations.

We predict that the pair-correlation function should falloff more slowly in the case of

resting or weakly driven activity, than in the case of stronger stimuli. Such a result

would be consistent with the suggestions of Churchland et al. that one effect of stimuli

is to lower noise levels.

7 Discussion

7.1 Early Work

The main results described in this article concern the use of the Wilson–Cowan equa-

tions to analyze the dynamics of large populations of interconnected neurons. Early

workers, including Shimbel and Rapaport [20] and Beurle [21], appreciated the need

to use a statistical formulation of such dynamics, but lacked the techniques to go be-

yond mean-field theory. The Wilson–Cowan equations [24, 27] were the first major

attempt at a statistical theory, but still lacked a treatment of second and higher mo-

ments. However, what the equations did describe was mathematical conditions for at-

tractor dynamics. Further work by Ermentrout and Cowan [29–31] and by Borisyuk

and Kirillov [32], and Hoppenstaedt and Izhikevich [33, 34] used the mathematical

techniques of bifurcation theory to more fully analysis such dynamics. The main re-

sult was that neural population dynamics is organized around a Bogdanov–Takens

bifurcation point, in the neighborhood of which (in a phase space of two control

parameters) are saddle-node and Andronov–Hopf bifurcations. Thus neural network

dynamics contains locally stable equilibria in the form of stationary and oscillatory

attractors.

7.2 The System-Size Expansion

The problem of going beyond the mean-field regime proved to be very difficult. Some

progress was made by Ohira and Cowan [37] formulating stochastic neural dynamics

in the neighborhood of a stable stationary equilibrium as a random Markov process

and using the Van Kampen system-size expansion [36]. Further process along these

lines was made by Benayoun et al. [35] who formulated Eq. (7) as a random Markov

process. But Benayoun et al. went further, by incorporating some symmetries into
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Eq. (7) discovered by Murphy and Miller [39] which, in retrospect, located the sta-

tionary equilibrium of the equations near a Bogdanov–Takens point. The result was

that the stochastic version of Eq. (7) generates the random bursts of activity we now

refer to as avalanches. In addition the avalanche distribution was that of a power

law, with a slope exponent β = 1.6. This value is close to that observed by Beggs

and Plenz [9] in their observations of neural activity in an isolated cortical slab, of

avalanche distributions with a slope exponent of β = 1.5.

7.3 A Statistical Theory of Neural Fluctuations

There remained the problem of developing a statistical theory for the fluctuations

about a marginally stable critical point, such as a Bogdanov–Takens point. This prob-

lem was formulated by Cowan [42] and solved by Buice and Cowan [43, 44]. This is

a major result since it connects the theory of stochastic neural populations at a crit-

ical point, with many well studied examples of other populations of interconnected

units. Examples include percolation in random graphs, branching and annihilating

random walks, catalytic reactions, interacting particles, contact processes, nuclear

physics, and bacterial colonies. Many of these processes are subject to a phase tran-

sition, known as a directed percolation phase transition (DP). and all these processes

have the same statistical properties, including the appearance of random bursts or

avalanches.

7.4 Relation to Experimental Data

However, although the statistical theory is relevant to the pair-correlation problem, it

is the mean-field Wilson–Cowan equations that proved to be necessary and sufficient

to analyze neocortical responses to brief stimuli, both weak and strong. In our opin-

ion the close fit between the data and the simulations of the Wilson–Cowan equations

with fixed parameters is quite remarkable, especially given the fact that these equa-

tions were formulated some 45 to 50 years ago! More detailed papers dealing with

these and other results on neocortical responses to stimuli are in preparation.
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