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Abstract: Expectation values of Wilson loops define the nonperturbative properties of

the hot medium produced in heavy ion collisions that arise in the analysis of both radiative

parton energy loss and quarkonium suppression. We use the AdS/CFT correspondence

to calculate the expectation values of such Wilson loops in the strongly coupled plasma

of N = 4 super Yang-Mills (SYM) theory, allowing for the possibility that the plasma

may be moving with some collective flow velocity as is the case in heavy ion collisions.

We obtain the N = 4 SYM values of the jet quenching parameter q̂, which describes the

energy loss of a hard parton in QCD, and of the velocity-dependence of the quark-antiquark

screening length for a moving dipole as a function of the angle between its velocity and its

orientation. We show that if the quark-gluon plasma is flowing with velocity vf at an angle

θ with respect to the trajectory of a hard parton, the jet quenching parameter q̂ is modified

by a factor γf (1 − vf cos θ), and show that this result applies in QCD as in N = 4 SYM.

We discuss the relevance of the lessons we are learning from all these calculations to heavy

ion collisions at RHIC and at the LHC. Furthermore, we discuss the relation between our

results and those obtained in other theories with gravity duals, showing in particular that

the ratio between q̂ in any two conformal theories with gravity duals is the square root of

the ratio of their central charges. This leads us to conjecture that in nonconformal theories

q̂ defines a quantity that always decreases along renormalization group trajectories and

allows us to use our calculation of q̂ in N = 4 SYM to make a conjecture for its value in

QCD.
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1. Introduction

Understanding the implications of data from the Relativistic Heavy Ion Collider (RHIC)

poses qualitatively new challenges [1]. The characteristic features of the matter produced

at RHIC, namely its large and anisotropic collective flow and its strong interaction with

(in fact not so) penetrating hard probes, indicate that the hot matter produced in RHIC
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collisions must be described by QCD in a regime of strong, and hence nonperturbative,

interactions. In this regime, lattice QCD has to date been the prime calculational tool

based solely on first principles. On the other hand, analyzing the very same RHIC data on

collective flow, jet quenching and other hard probes requires real-time dynamics: the hot

fluid produced in heavy ion collisions is exploding rather than static, and jet quenching

by definition concerns probes of this fluid which, at least initially, are moving through it

at close to the speed of light. Information on real-time dynamics in a strongly interacting

quark-gluon plasma from lattice QCD is at present both scarce and indirect. Complemen-

tary methods for real-time strong coupling calculations at finite temperature are therefore

desirable.

For a class of non-abelian thermal gauge field theories, the AdS/CFT conjecture pro-

vides such an alternative [2]. It gives analytic access to the strong coupling regime of finite

temperature gauge field theories in the limit of large number of colors (Nc) by mapping non-

perturbative problems at strong coupling onto calculable problems in the supergravity limit

of a dual string theory, with the background metric describing a curved five-dimensional

anti-deSitter spacetime containing a black hole whose horizon is displaced away from “our”

3+1 dimensional world in the fifth dimension. Information about real-time dynamics within

a thermal background can be obtained in this set-up. The best-known example is the calcu-

lation of the shear viscosity in several supersymmetric gauge theories [3 – 10]. It was found

that the dimensionless ratio of the shear viscosity to the entropy density takes on the “uni-

versal” [4, 5, 8, 10] value 1/4π in the large number of colors (Nc) and large ’t Hooft coupling

(λ ≡ g2
YMNc) limit of any gauge theory that admits a holographically dual supergravity

description. Although the AdS/CFT correspondence is not directly applicable to QCD,

the universality of the result for the shear viscosity and its numerical coincidence with esti-

mates of the same quantity in QCD made by comparing RHIC data with hydrodynamical

model analyses [11] have motivated further effort in applying the AdS/CFT conjecture to

calculate other quantities which are of interest for the RHIC heavy ion program. This has

lead to the calculation of certain diffusion constants [12] and thermal spectral functions [13],

as well as to first work [14] towards a dual description of dynamics in heavy ion collisions

themselves. More recently, there has been much interest in the AdS/CFT calculation of

the jet quenching parameter which controls the description of medium-induced energy loss

for relativistic partons in QCD [15 – 22] and the drag coefficient which describes the energy

loss for heavy quarks in N = 4 supersymmetric Yang-Mills theory [23 – 27]. There have also

been studies of the stability of heavy quark bound states in a thermal environment [28 – 30]

with collective motion [30 – 39].

The expectation values of Wilson loops contain gauge invariant information about the

nonperturbative physics of non-abelian gauge field theories. When evaluated at temper-

atures above the crossover from hadronic matter to the strongly interacting quark-gluon

plasma, they can be related to a number of different quantities which are in turn accessible

in heavy ion collision experiments. In section 2 of this paper, which should be seen as an

extended introduction, we review these connections. We review how the expectation value

of a particular time-like Wilson loop, proportional to exp(−iS) for some real S, serves to

define the potential between a static quark and antiquark in a (perhaps moving) quark-
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gluon plasma. However, in order to obtain a sensible description of the photo-absorption

cross-section in deep inelastic scattering, the Cronin effect in proton-nucleus collisions, and

radiative parton energy loss and hence jet quenching in nucleus-nucleus collisions, the ex-

pectation value of this Wilson loop must be proportional to exp(−S) for some real and

positive S once the Wilson loop is taken to lie along the lightcone. In section 3, we present

the calculation of the relevant Wilson loops in hot N = 4 supersymmetric Yang-Mills the-

ory, using the AdS/CFT correspondence, and show how its expectation value goes from

exp(−iS) to exp(−S) (as it must if this theory is viable as a model for the quark-gluon

plasma in QCD) as the order of two non-commuting limits is exchanged. The jet quenching

parameter q̂, which describes the energy loss of a hard parton in QCD, and the velocity-

dependent quark-antiquark potential for a dipole moving through the quark-gluon plasma

arise in different limits of the same Nambu-Goto action which depends on the dipole ra-

pidity η and on Λ, the location in r, the fifth dimension of the AdS space, of the boundary

of the AdS space where the dipole is located. If we take η → ∞ first, and only then take

Λ → ∞, the Nambu-Goto action describes a space-like world sheet bounded by a light-like

Wilson loop at r = Λ, and defines the jet quenching parameter. If instead we take Λ → ∞
first, the action describes a time-like world sheet bounded by a time-like Wilson loop, and

defines the qq̄-potential for a dipole moving with rapidity η. We review the calculation

of both quantities. In section 4 we calculate the jet quenching parameter in a moving

quark-gluon plasma, and show that our result in this section is valid in QCD as in N = 4

SYM. In section 5 we return to the velocity-dependent screening length, calculating it for

all values of the angle between the velocity and orientation of the quark-antiquark dipole.

Section 6 consists of an extended discussion. We summarize our results on the velocity-

dependent screening length in section 6.1. In section 6.2, we comment on the differences

between the calculation of the jet quenching parameter and the drag force on a (heavy)

quark [23 – 27]. In section 6.3, we then compare our calculation of the jet quenching pa-

rameter to the value of this quantity extracted in comparison with RHIC data. The success

of this comparison motivates us to, in section 6.4, enumerate the differences between QCD

and N = 4 supersymmetric Yang-Mills (SYM) theory, which have qualitatively distinct

vacuum properties, and the rapidly growing list of similarities between the properties of

the quark-gluon plasmas in these two theories. A comparison between our result for the

velocity scaling of the quark-antiquark screening length and future data from RHIC and

the LHC on the suppression of high transverse momentum J/Ψ and Υ mesons could add

one more entry to this list. The single difference between N = 4 SYM and QCD which

appears to us most likely to affect the value of the jet quenching parameter is the difference

in the number of degrees of freedom in the two theories. We therefore close in section 6.5

by reviewing the AdS/CFT calculations to date of q̂ in theories other than N = 4 SYM,

and show that for any two conformal field theories in which this calculation can be done,

the ratio of q̂ in one theory to that in the other will be given by the square root of the ratio

of the central charges, and hence the number of degrees of freedom. This suggests that q̂

in QCD is smaller than that in N = 4 SYM by a factor of order
√

120/47.5 ∼ 1.6. This

conjecture can be tested by further calculations in nonconformal theories.

A reader interested in our results and our perspective on our results should focus on
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Figure 1: Schematic illustration of the shape of Wilson loops C, corresponding to a qq̄ dipole of

size L, oriented along the x1-direction, which is (i) at rest with respect to the medium (Cstatic), (ii)

moving with some finite velocity v = tanh η along the longitudinal x3-direction (Cboosted
static ), or (iii)

moving with the velocity of light along the x3-direction (Clight−like).

sections 4 and 6. A reader interested in how we obtain our results should focus on section

3.

2. Wilson loops in heavy ion collisions

In this section, we consider Wilson lines

W r(C) = TrP exp

[

i

∫

C
dxµ Aµ(x)

]

, (2.1)

where
∫

C denotes a line integral along the closed path C. W r(C) is the trace of an SU(N)-

matrix in the fundamental or adjoint representation, r = F,A, respectively. The vector

potential Aµ(x) = Aµ
a(x)T a can be expressed in terms of the generators T a of the corre-

sponding representation, and P denotes path ordering. We discuss several cases in which

nonperturbative properties of interest in heavy ion physics and high energy QCD can be

expressed in terms of expectation values of (2.1).

2.1 The quark-antiquark static potential

We shall use the Wilson loop

〈W F (Cstatic)〉 = exp [−iT (E(L) − Eren)] (2.2)

to furnish a working definition of the qq̄ static potential E(L) for an infinitely heavy quark-

antiquark pair at rest with respect to the medium and separated by a distance L. Here,

the closed contour Cstatic has a short segment of length L in the transverse direction, and a

very long extension T in the temporal direction, see figure 1. The potential E(L) is defined
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in the limit T → ∞. The properties of the medium, including for example its tempera-

ture T , enter into (2.2) via the expectation value 〈. . .〉. Here, Eren is an L-independent

renormalization, which is typically infinite. Eq. (2.2) is written for a Minkowski metric,

as appropriate for our consideration, below, of a quark-antiquark pair moving through the

medium. At zero temperature, the analytic continuation iT → T of (2.2) yields the stan-

dard relation between the static potential and an Euclidean Wilson loop [40]. In finite

temperature lattice QCD [41 – 43], one typically defines a quark-antiquark static potential

from the correlation function of a pair of Polyakov loops wrapped around the periodic

Euclidean time direction. (For a discussion of this procedure and alternatives to it, see

also ref. [44].) In these Euclidean finite temperature lattice calculations, the corresponding

quark-antiquark potential is renormalized such that it matches the zero temperature result

at small distances [43]. We shall use an analogous prescription. We note that while (2.2)

is difficult to analyze in QCD, its evaluation is straightforward for a class of strongly in-

teracting gauge theories in the large number of colors limit at both zero [45] and nonzero

temperature [28], as we shall see in section 3.

The dissociation of charmonium and bottomonium bound states has been proposed

as a signal for the formation of a hot and deconfined quark-gluon plasma [46]. Recent

analyses of this phenomenon are based on the study of the quark-antiquark static potential

extracted from lattice QCD [47]. In these calculations of E(L), the qq̄-dipole is taken to

be at rest in the thermal medium, and its temperature dependence is studied in detail. In

heavy ion collisions, however, quarkonium bound states are produced moving with some

velocity v = tanh η with respect to the medium. If the relative velocity of the quarkonium

exceeds a typical thermal velocity, one may expect that quarkonium suppression is enhanced

compared to thermal dissociation in a heat bath at rest [31]. For a calculation of the

velocity-dependent dissociation of such a moving qq̄-pair in a medium at rest in the x3-

direction, one has to evaluate (2.2) for the Wilson loop Cboosted
static , depicted in figure 1. The

orientation of the loop in the (x3, t)-plane changes as a function of η. This case is discussed

in section 3.1. In section 5, we discuss the generalization to dipoles oriented in an arbitrary

direction in the (x1, x3)-plane.

2.2 Eikonal propagation

We now recall cases of physical interest where, unlike in (2.2), the expectation value of a

Wilson loop in Minkowski space is the exponent of a real quantity. Such cases are important

in the high energy limit of various scattering problems. Straight light-like Wilson lines of

the form W (xi) = P exp{i
∫

dz−T aA+
a (xi, z

−)} typically arise in such calculations when —

due to Lorentz contraction — the transverse position of a colored projectile does not change

while propagating through the target. The interaction of the projectile wave function with

the target can then be described in the eikonal approximation as a color rotation αi → βi of

each projectile component i, resulting in an eikonal phase Wαiβi
(xi). A general discussion

of this eikonal propagation approximation can be found in refs. [48, 49]. Here, we describe

two specific cases, in which expectation values of a fundamental and of an adjoint Wilson

loop arise, respectively.

– 5 –



J
H
E
P
0
3
(
2
0
0
7
)
0
6
6

2.2.1 Virtual photoabsorption cross section

In deep inelastic scattering (DIS), a virtual photon γ∗ interacts with a hadronic target.

At small Bjorken x, DIS can be formulated by starting from the decomposition of the

virtual photon into hadronic Fock states and propagating these Fock states in the eikonal

approximation through the target [50 – 54]. However, in a DIS scattering experiment the

virtual photon does not have time to branch into Fock states containing many soft particles

(equivalently, it does not have time to develop a colored field) prior to interaction, as it

would if it could propagate forever. Instead, the dominant component of its wave function

which interacts with the target is its qq̄ Fock component:

|γ∗〉 =

∫

d2(x− y) dz ψ(x − y, z)
1√
N

δα ᾱ|α(x) , ᾱ(y), z〉 . (2.3)

Here, |α(x) , ᾱ(y), z〉 denotes a qq̄-state, where a quark of color α carries an energy fraction

z and propagates at transverse position x. The corresponding antiquark propagates at

transverse position y and carries the remaining energy. The Kronecker δα ᾱ ensures that

this state is in a color singlet. N is the number of colors; the probability that the photon

splits into a quark antiquark pair with any one particular color is proportional to 1/N .

The wave function ψ is written in the mixed representation, using configuration space

in the transverse direction and momentum space in the longitudinal direction. It can

be calculated perturbatively from the γ∗ → qq̄ splitting [53]. Given an incoming state

|Ψin〉 = |α(x) , ᾱ(y)〉, in the eikonal approximation the outgoing state reads |Ψout〉 =

W F
αγ(x)W F †

ᾱγ̄ (y)|γ(x) , γ̄(y)〉, and the total cross section is obtained by squaring |Ψtot〉 =

|Ψout〉 − |Ψin〉. From the virtual photon state (2.3), one finds in this way the total virtual

photoabsorption cross section [48]

σDIS =

∫

d2x d2y dz ψ(x − y, z)ψ∗(x − y, z)P qq̄
tot(x,y) , (2.4)

P qq̄
tot =

〈

2 − 1

N
Tr

[

W F (x)W F †(y)
]

− 1

N
Tr

[

W F (y)W F †(x)
]

〉

. (2.5)

This DIS total cross section is written in terms of the expectation value of a fundamental

Wilson loop:

1

N
〈Tr

[

W F †(y)W F (x)
]

〉 −→
〈

W F (Clight−like)
〉

= exp

[

−1

8
Q2

s L2

]

+ O
(

1

N2

)

. (2.6)

By the → we mean that in order to obtain a gauge-invariant formulation, we have connected

the two long light-like Wilson lines separated by the small transverse separation L = |x−y|
by two short transverse segments of length L, located a long distance L− À L apart. This

yields the closed rectangular loop Clight−like illustrated in figure 1. The expectation value

〈. . . 〉 denotes an average over the states of the hadronic target; technically, this amounts

to an average over the target color fields Aµ in the Wilson line (2.1). If we could do

deep inelastic scattering off a droplet of quark-gluon plasma, the 〈. . . 〉 would be a thermal

expectation value. We have parameterized 〈W F (Clight−like)〉 in terms of the saturation scale

Q2
s. This is the standard parametrization of virtual photoabsorption cross sections in the
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saturation physics approach to DIS off hadrons and nuclei [55 – 57]. Although we do not

know the form of the 1/N2 corrections to (2.6), we do know that they must be such that

〈W F 〉 → 0 in the L → 0 limit, since in this limit P qq̄
tot must vanish.

We note that for small L, the L2-dependence of the exponent in (2.6) follows from

general considerations. Since the transverse size of the qq̄-dipole is conjugate to the virtu-

ality Q of the photon, L2 ∼ 1/Q2, one finds P qq̄
tot = 1

4Q2
s L2 + O(L4) ∼ Q2

s/Q
2. This is the

expected leading Q2-dependence at high virtuality.

General considerations also indicate that the exponent in (2.6) must have a real part.

To see this, consider the limit of large L and small virtuality, when the virtual photon is

large in transverse space, and its local interaction probability should go to unity. Since

eq. (2.5) is the sum of the elastic and inelastic scattering probability, which are both

normalized to one, one requires P qq̄
tot → 2 in this large-L limit. This cannot be achieved

with an imaginary exponent in (2.6).

The saturation momentum Qs is a characteristic property of any hadronic target.

Qualitatively, the gluon distribution inside the hadronic target is dense (saturated) as seen

by virtual photons up to a virtuality Qs, but it is dilute as seen at higher virtuality. As

a consequence, a virtual photon has a probability of order one for interacting with the

target, if — in a configuration space picture — its transverse size is |x − y| > 1/Qs, and

it has a much smaller probability of interaction for |x − y| ¿ 1/Qs. This is the physics

behind (2.4) and (2.5).

2.2.2 The Cronin effect in proton-nucleus (p-A) collisions

In comparing transverse momentum spectra from proton-nucleus and proton-proton colli-

sions, one finds that in an intermediate transverse momentum range of pT ∼ 1−5 GeV, the

hadronic yield in p-A collisions is enhanced [58]. This so-called Cronin effect is typically

understood in terms of the transverse momentum broadening of the incoming partons in

the proton projectile, prior to undergoing the hard interaction in which the high-pT parton

is produced. On the partonic level, this phenomenon and its energy dependence have been

studied by calculating the gluon radiation induced by a single quark in the incoming pro-

ton projectile scattering on a target of nuclear size A and corresponding saturation scale

Qs [59 – 64].

One starts from the incoming wave function Ψα
in of a bare quark |α(0)〉, supplemented

by the coherent state of quasi-real gluons which build up its Weizsäcker-Williams field

f(x) ∝ g x
x2 . Here, g is the strong coupling constant and x and 0 are the transverse

positions of the gluon and parent quark [48]. Suppressing Lorentz and spin indices, one

has Ψα
in = |α(0)〉 +

∫

dx dξ f(x)T b
αβ |β(0); b(x, ξ)〉. The ket |β(0); b(x, ξ)〉 describes the

two-parton state, consisting of a quark with color β at transverse position 0 and a gluon

of color b at transverse position x. In the eikonal approximation, the distribution of the

radiated gluon is flat in rapidity ξ. The outgoing wave function differs from Ψα
in by color

rotation with the phases W F
αβ for quarks and W A

bc for the gluons:

Ψα
out = W F

α γ(0) |γ〉 +

∫

dx f(x)T b
α βW F

β γ(0)W A
b c(x) |γ ; c(x)〉 . (2.7)

– 7 –



J
H
E
P
0
3
(
2
0
0
7
)
0
6
6

(α, β and γ are fundamental indices; b, c and d below are adjoint indices.) To calculate an

observable related to an inelastic process, such as the number of gluons dNprod/dk produced

in the scattering, one first determines the component of the outgoing wave function, which

belongs to the subspace orthogonal to the incoming state |δΨ〉 = [1 − |Ψin〉〈Ψin|] |Ψout〉.
Next, one counts the number of gluons in this state [65, 49]

dNprod

dk
=

1

N

∑

α,d

〈

δΨα|a†d(k) ad(k)| δΨα

〉

(2.8)

=
αs CF

2π

∫

dx dy eik·(x−y) x · y
x2 y2

1

N2 − 1

[

〈

Tr
[

W A †(0)W A(0)
]〉

−
〈

Tr
[

W A †(x)W A(0)
]〉

−
〈

Tr
[

W A †(y)W A(0)
]〉

+
〈

Tr
[

W A †(y)W A(x)
]〉

]

.

Here, x and y denote the transverse positions of the gluon in the amplitude and com-

plex conjugate amplitude. The fundamental Wilson lines W F (0) at transverse position

0, which appear in (2.7), combine into an adjoint Wilson line via the identity W A
ab(0) =

2Tr
[

W F (0)T aW F †(0)T b
]

. We now see that the only information about the target which

enters in (2.9) is that encoded in the transverse size dependence of the expectation value

of two light-like adjoint Wilson lines, which we can again close to form a loop:

1

N2 − 1

〈

Tr
[

W A †(y)W A(x)
]〉

−→
〈

W A(Clight−like)
〉

=exp

[

−1

4
Q2

s L2

]

+O
(

1

N2

)

.(2.9)

Consistent with the identity Tr W A = Tr W F Tr W F −1, the parameterization of the expec-

tation values of the adjoint and fundamental Wilson loops in (2.6) and (2.9) respectively

differs in the large-N limit only by a factor of 2 in the exponent.

Inserting (2.9) into (2.9), Fourier transforming the Weizsäcker-Williams factors and

doing the integrals, one finds formally

dNprod

dk
=

4π

Q2
s

∫

dq exp

[

− q2

Q2
s

]

q2

k2 (q− k)2
. (2.10)

To interpret this expression, we recall the high energy limit for gluon radiation in single

quark-quark scattering. For a transverse momentum transfer q between the scattering

partners, the spectrum in the gluon transverse momentum k is proportional to the so-

called Bertsch-Gunion factor q2

k2(q−k)2
. Hence, eq. (2.10) indicates that the saturation

scale Qs characterizes the average squared transverse momentum q2 transferred from the

hadronic target to the highly energetic partonic projectile. We caution the reader that

the integrals in (2.9) are divergent and that the steps leading to (2.10) remain formal

since they were performed without proper regularization of these integrals. Furthermore,

a more refined parametrization of the saturation scale in QCD includes a logarithmic

dependence of Qs on the transverse separation L. Including this correction allows for a

proper regularization [65, 60]. The analysis of (2.9) is more complicated, but the lesson

drawn from (2.10) remains unchanged: the saturation scale Q2
s determines the average

squared transverse momentum, transferred from the medium to the projectile.

– 8 –
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The dependence of the saturation scale Q2
s on nuclear size A is Q2

s ∝ A1/3, i.e., Q2
s

is linear in the in-medium path-length. According to (2.10), transverse momentum is

accumulated in the hadronic target due to Brownian motion, q2 ∝ A1/3. In the discussion

of high-energy scattering problems in heavy ion physics, where the in-medium path length

depends on the geometry and collective dynamics of the collision region, it has proven

advantageous to separate this path-length dependence explicitly [66]

Q2
s = q̂

L−
√

2
, (2.11)

in so doing defining a new parameter q̂. Here, we have expressed the longitudinal distance

∆z = L−√
2

in terms of the light-cone distance L−. The parameter q̂ characterizes the

average transverse momentum squared transferred from the target to the projectile per

unit longitudinal distance travelled, i.e. per unit path length. Note that q̂ is well-defined

for arbitrarily large L− in an infinite medium, whereas Q2
s diverges linearly with L− and so

is appropriate only for a finite system. We shall see in section 2.3 that, when the expectation

value in (2.9) is evaluated in a hot quark-gluon plasma rather than over the gluonic states

of a cold nucleus as above, the quantity q̂ governs the energy loss of relativistic partons

moving through the quark-gluon plasma. The simpler examples we have introduced here

in section 2.2 motivate the need for a nonperturbative evaluation of the light-like Wilson

loop 〈W (Clight−like)〉 in a background corresponding to a hadron or a cold nucleus, as in so

doing one could calculate the saturation scale and describe DIS at small x and the Cronin

effect. Unfortunately, although hot N = 4 supersymmetric Yang-Mills theory describes a

system with many similarities to the quark-gluon plasma in QCD as we shall discuss in

section 6, it does not seem suited to modelling a cold nucleus.

2.3 BDMPS radiative parton energy loss and the jet quenching parameter

In the absence of a medium, a highly energetic parton produced in a hard process decreases

its virtuality by multiple parton splitting prior to hadronization. In a heavy ion collision,

this perturbative parton shower interferes with additional medium-induced radiation. The

resulting interference pattern resolves longitudinal distances in the target [67 – 69]. As a

consequence, its description goes beyond the eikonal approximation, in which the entire

target acts totally coherently as a single scattering center. As we shall explain now, this

refined kinematical description does not involve additional information about the medium

beyond that already encoded in the jet quenching parameter q̂ that we have already intro-

duced.

In the Baier-Dokshitzer-Mueller-Peigne-Schiff [67] calculation of medium-induced

gluon radiation, the radiation amplitude for the medium-modified splitting processes

q → q g or g → g g is calculated for the kinematic region

E À ω À |k|, |q| ≡ |
∑

i

qi| À T ,ΛQCD. (2.12)

The energy E of the initial hard parton is much larger than the energy ω of the radiated

gluon, which is much larger than the transverse momentum k of the radiated gluon or the
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transverse momentum q accumulated due to many scatterings of the projectile inside the

target. This ordering is also at the basis of the eikonal approximation. In the BDMPS

formalism, however, terms which are subleading in O(1/E) are kept and this allows for a

calculation of interference effects. To keep O(1/E)-corrections to the phase of scattering

amplitudes, one replaces eikonal Wilson lines by the retarded Green’s functions [68, 70, 69]

G(x−
2 , r2;x

−
1 , r1|p) =

∫ r(x−
2 )=r2

r(x−
1 )=r1

Dr(x−) exp

[

ip

2

∫ x−
2

x−
1

dx−
(

dr(x−)

dx−

)2

(2.13)

−i

∫ x−
2

x−
1

dx− A+(x−, r(x−))

]

.

Here, p is the total momentum of the propagating parton, and the color field A+ = A+
a T a

is in the representation of the parton. The integration goes over all possible paths r(x−)

in the light-like direction between r1 = r(x−
1 ) and r2 = r(x−

2 ). Green’s functions of the

form (2.14) are solutions to the Dirac equation in the spatially extended target color field

A+ [71, 70, 54]. In the limit of ultra-relativistic momentum p → ∞, eq. (2.14) reduces

to a Wilson line (2.1) along an eikonal light-like direction. In the BDMPS formalism, the

inclusive energy distribution of gluon radiation from a high energy parton produced within

a medium can be written in terms of in-medium expectation values of pairs of Green’s

functions of the form (2.14), one coming from the amplitude and the other coming from

the conjugate amplitude. After a lengthy but purely technical calculation, it can be written

in the form [69]

ω
dI

dω dk
=

αs CR

(2π)2 ω2
2Re

∫ ∞

ξ0

dyl

∫ ∞

yl

dȳl

∫

du e−ik·u exp

[

−1

4

∫ ∞

ȳl

dξ q̂(ξ)u2

]

× ∂

∂y
· ∂

∂u

∫ u=r(ȳl)

y=0
Dr exp

[∫ ȳl

yl

dξ

(

i ω

2
ṙ2 − 1

4
q̂(ξ)r2

)]

. (2.14)

Here, the Casimir operator CR is in the representation of the parent parton. In the con-

figuration space representation used in (2.14), ξ0 is the position at which the initial parton

is produced in a hard process and the internal integration variables yl and ȳl denote the

longitudinal position at which this initial parton radiates the gluon in the amplitude and

complex conjugate amplitude, respectively. (See refs. [69, 49] for details.) Since all partons

propagate with the velocity of light, these longitudinal positions correspond to emission

times yl, ȳl.

In deriving (2.14) [69, 49], the initial formulation of the q → q g radiation amplitude

of course involves Green’s functions (2.14) in both the fundamental and in the adjoint

representation. However, via essentially the same color algebraic identities which allowed

us to write the gluon spectrum (2.9) in terms of expectation values of adjoint Wilson loops

only, the result given in (2.14) has been written in terms of expectation values of adjoint

light-like Green’s functions of the form (2.14) only. These in turn have been written in

terms of the same jet quenching parameter q̂ defined as in (2.9) and (2.11), namely via [49]

〈

W A(Clight−like)
〉

= exp

[

− 1

4
√

2
q̂L− L2

]

+ O
(

1

N2

)

, (2.15)

– 10 –



J
H
E
P
0
3
(
2
0
0
7
)
0
6
6

now with the expectation value of the light-like Wilson loop evaluated in a thermal quark-

gluon plasma rather than in a cold nucleus. The quantity q̂(ξ) which arises in (2.14) is the

value of q̂ at the longitudinal position ξ, which changes with increasing ξ as the plasma

expands and dilutes. In our analysis of a static medium, q̂(ξ) = q̂ is constant.

In QCD, radiative parton energy loss is the dominant energy loss mechanism in the

limit in which the initial parton has arbitrarily high energy. To see this, we proceed as

follows. Note first that in this high parton energy limit the assumptions (2.12) under-

pinning the BDMPS calculation become controlled. And, given the ordering of energy

scales in (2.12), the quark-gluon radiation vertex should be evaluated with coupling con-

stant αs(k
2). The distribution of the transverse momenta of the radiated gluon is peaked

around k2 ∼ Q2
s = q̂L−/

√
2 [72] which means that, in the limit of large in-medium path

length L−/
√

2, the coupling αs is evaluated at a scale k2 À T 2 at which it is weak, justi-

fying the perturbative BDMPS formulation [67]. Next, we note that in the limit of large

in-medium path length the result (2.14) yields [67, 73]

ω
dI

dω
=

αsCR

π
2Re ln



cos



(1 + i)

√

q̂ L−2/2

4ω







 . (2.16)

Integrating this expression over ω, one finds that the average medium-induced parton

energy loss is given by

∆E =
1

4
αsCRq̂

L−2

2
, (2.17)

which is independent of E and quadratic in the path length L−.1 This makes the energy

lost by gluon radiation parametrically larger in the high energy limit than that lost due to

collisions alone, which grows only linearly with path length, and makes radiative energy loss

dominant in the high parton energy limit. Radiative parton energy loss has been argued

to be the dominant mechanism behind jet quenching at RHIC [68, 69, 75, 76], where the

high energy partons whose energy loss is observed in the data have transverse momenta

of at most about 20 GeV [1]. At the LHC, the BDMPS calculation will be under better

control since the high energy partons used to probe the quark-gluon plasma will then have

transverse momenta greater than 100 GeV [77].

Although the BDMPS calculation itself is under control in the high parton energy

limit, a weak coupling calculation of the jet quenching parameter q̂ is not, as we now

explain. Recall that q̂ is the transverse momentum squared transferred from the medium

to either the initial parton or the radiated gluon, per distance travelled. In a weakly

coupled quark-gluon plasma, in which scatterings are rare, q̂ is given by the momentum

squared transferred in a single collision divided by the mean free path between collisions.

Even though the total momentum transferred from the medium to the initial parton and

to the radiated gluon is perturbatively large since it grows linearly with the path length,

the momentum transferred per individual scattering is only of order g(T )T . So, a weak-

coupling calculation of q̂ is justified only if T is so large that physics at the scale T is

1For any finite L−, corrections to (2.14) can make the average energy loss ∆E grow logarithmically with

E at large enough E [74].
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perturbative. Up to a logarithm, such a weak-coupling calculation yields [67, 66, 78]

q̂weak−coupling =
8ζ(3)

π
α2

sN
2T 3 (2.18)

if N , the number of colors, is large. However, given the evidence from RHIC data [1] (the

magnitude of jet quenching itself; azimuthal anisotropy comparable to that predicted by

zero-viscosity hydrodynamics) that the quark-gluon plasma is strongly interacting at the

temperatures accessed in RHIC collisions, there is strong motivation to calculate q̂ directly

from its definition via the light-like Wilson loop (2.15), without assuming weak coupling.

If and when the quark-gluon plasma is strongly interacting, the coupling constant involved

in the multiple soft gluon exchanges described by the weak-coupling calculation of q̂ is in

fact nonperturbatively large, invalidating (2.18).

To summarize, the BDMPS analysis of a parton losing energy as it traverses a strongly

interacting quark-gluon plasma is under control in the high parton energy limit, with gluon

radiation the dominant energy loss mechanism and the basic calculation correctly treated as

perturbative. In this limit, application of strong coupling techniques to the entire radiation

process described by eq. (2.14) would be inappropriate, because QCD is asymptotically free.

The physics of the strongly interacting medium itself enters the calculation through the

single jet quenching parameter q̂, the amount of transverse momentum squared picked up

per distance travelled by both the initial parton and the radiated gluon. A perturbative

calculation of q̂ is not under control, making it worthwhile to investigate any strong coupling

techniques available for the evaluation of this one nonperturbative quantity.

3. Wilson loops from AdS/CFT in N = 4 super Yang-Mills theory

In section 2, we have recalled measurements of interest in heavy ion collisions, whose

description depends on thermal expectation values of Wilson loops. For questions related

to the dissociation of quarkonium, the relevant Wilson loop is time-like and 〈W (C)〉 is

the exponent of an imaginary quantity. Questions related to medium-induced energy loss

involve light-like Wilson loops and 〈W (C)〉 is the exponent of a real quantity.

In this section, we evaluate thermal expectation values of these Wilson loops for ther-

mal N = 4 super Yang-Mills (SYM) theory with gauge group SU(N) in the large N and

large ’t Hooft coupling limits, making use of the AdS/CFT correspondence [2, 45]. In the

present context, this correspondence maps the evaluation of a Wilson loop in a hot strongly

interacting gauge theory plasma onto the much simpler problem of finding the extremal

area of a classical string world sheet in a black hole background [28]. We shall find that the

cases of real and imaginary exponents correspond to space-like and time-like world sheets,

which both arise naturally as we shall describe.

N = 4 SYM is a supersymmetric gauge theory with one gauge field Aµ, six scalar

fields XI , I = 1, 2, · · · 6 and four Weyl fermionic fields χi, all transforming in the adjoint

representation of the gauge group, which we take to be SU(N). The theory is conformally

invariant and is specified by two parameters: the rank of the gauge group N and the ’t

Hooft coupling λ,

λ = g2
YM N . (3.1)
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(Note that the gauge coupling in the standard field theoretical convention gYM, which we

shall use throughout, is related to that in the standard string theory convention gM by

g2
YM = 2 g2

M .)

According to the AdS/CFT correspondence, Type IIB string theory in an AdS5 × S5

spacetime is equivalent to an N = 4 SYM living on the boundary of the AdS5. The string

coupling gs, the curvature radius R of the AdS metric and the tension 1
2πα′ of the string

are related to the field theoretic quantities as

R2

α′ =
√

λ , 4π gs = g2
YM =

λ

N
. (3.2)

Upon first taking the large N limit at fixed λ (which means gs → 0) and then taking

the large λ limit (which means large string tension) N = 4 SYM theory is described by

classical supergravity in AdS5 × S5. We shall describe the modification of this spacetime

which corresponds to introducing a nonzero temperature in the gauge theory below.

N = 4 SYM does not contain any fields in the fundamental representation of the

gauge group. To construct the Wilson loop describing the phase associated with a particle

in the fundamental representation, we introduce a probe D3-brane at the boundary of the

AdS5 and lying along ~n on S5, where ~n is a unit vector in R6 [45]. The D3-brane (i.e. the

boundary of the AdS5) is at some fixed, large value of r, where r is the coordinate of the

5th dimension of AdS5, meaning that the space-time within the D3-brane is ordinary 3+1-

dimensional Minkowski space. The fundamental “quarks” are then given by the ground

states of strings originating on the boundary D3-brane and extending towards the center

of the AdS5.
2 The corresponding Wilson loop operator has the form

W (C) =
1

N
TrP exp

[

i

∮

C
ds

(

Aµẋµ + ~n · ~X
√

ẋ2
)

]

(3.3)

which, in comparison with (2.1), also contains scalar fields ~X = (X1, · · ·X6). In the large

N and large λ limits, the expectation value of a Wilson loop operator (3.3) is given by

the classical action of a string in AdS5 × S5, with the boundary condition that the string

world sheet ends on the curve C in the probe brane. The contour C lives within the 3 + 1-

dimensional Minkowski space defined by the D3-brane, but the string world sheet attached

to it hangs “down” into the bulk of the curved five-dimensional AdS5 spacetime. The

classical string action is obtained by extremizing the Nambu-Goto action. More explicitly,

parameterizing the two-dimensional world sheet by the coordinates σα = (τ, σ), the location

of the string world sheet in the five-dimensional spacetime with coordinates xµ is

xµ = xµ(τ, σ) , (3.4)

and the Nambu-Goto action for the string world sheet is given by

S = − 1

2πα′

∫

dσdτ
√

−detgαβ . (3.5)

2By the standard IR/UV connection [79], the boundary of the AdS5 at some large value of r corresponds

to an ultraviolet cutoff in the field theory. The Wilson loop must be located on a D3-brane at this boundary,

not at some smaller r, in order that it describes a test quark whose size is not resolvable. Evaluating the

expectation value of a Wilson loop then corresponds to using pointlike test quarks to probe physics in the

field theory at length scales longer than the ultraviolet cutoff.

– 13 –



J
H
E
P
0
3
(
2
0
0
7
)
0
6
6

Here,

gαβ = Gµν∂αxµ∂βxν (3.6)

is the induced metric on the world sheet and Gµν is the metric of the 4+1-dimensional AdS5

spacetime. The action (3.5) is invariant under coordinate changes of σα. This will allow us

to pick world sheet coordinates (τ, σ) differently for convenience in different calculations.

Upon denoting the action of the surface which is bounded by C and extremizes the Nambu-

Goto action (3.5) by S(C), the expectation value of the Wilson loop (3.3) is given by [45]

〈W (C)〉 = exp [i {S(C) − S0}] , (3.7)

where the subtraction S0 is the action of two disjoint strings, as we shall discuss in detail

below.

To evaluate the expectation value of a Wilson loop at nonzero temperature in the

gauge theory, one replaces AdS5 by an AdS Schwarzschild black hole [80]. The metric of

the AdS black hole background is given by

ds2 = −fdt2 +
r2

R2
(dx2

1 + dx2
2 + dx2

3) +
1

f
dr2 = Gµνdxµdxν , (3.8)

f ≡ r2

R2

(

1 − r4
0

r4

)

. (3.9)

Here, r is the coordinate of the 5th dimension and the black hole horizon is at r = r0.

According to the AdS/CFT correspondence, the temperature in the gauge theory is equal

to the Hawking temperature in the AdS black hole, namely

T =
r0

πR2
. (3.10)

The probe D3-brane at the boundary of the AdS5 space lies at a fixed r which we denote

r = Λ r0. Λ can be considered a dimensionless ultraviolet cutoff in the boundary conformal

field theory. We shall call the three spatial directions in which the D3-brane is extended

x1, x2, and x3. The fundamental “quarks”, which are open strings ending on the probe

brane, have a mass proportional to Λ. In order to correctly describe a Wilson loop in the

continuum gauge theory, we must remove the ultraviolet cutoff by taking the Λ → ∞ limit.

Now consider the set of rectangular Wilson loops shown in figure 1, with a short side of

length L in the x1-direction and a long side along a time-like direction in the t− x3 plane,

which describe a quark-antiquark pair moving along the x3 direction with some velocity v.

Here, v = 0 corresponds to the loop Cstatic in figure 1 whereas 0 < v < 1 corresponds to

Cboosted
static in the figure. To analyze these loops, it is convenient to boost the system to the

rest frame (t′, x′
3) of the quark pair

dt = dt′ cosh η − dx′
3 sinh η , (3.11)

dx3 = −dt′ sinh η + dx′
3 cosh η , (3.12)

where the rapidity η is given by tanh η = v. The loop is now static, but the quark-gluon

plasma is moving with velocity v in the negative x′
3-direction. This Wilson loop can be
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used to describe the potential between two heavy quarks moving through the quark-gluon

plasma or, equivalently, two heavy quarks at rest in a moving quark-gluon plasma “wind”.

In the primed coordinates, the long sides of the Wilson loop lie along t′ at fixed x′
3. We

denote their lengths by T , which is the proper time of the quark-pair.3 We assume that

T À L, so that the string world sheet attached to the Wilson loop along the contour C can

be approximated as time-translation invariant. Plugging (3.11) and (3.12) into (3.8) and

dropping the primes, we find

ds2 = −Adt2 − 2B dt dx3 + C dx2
3 +

r2

R2

(

dx2
1 + dx2

2

)

+
1

f
dr2 (3.13)

with

A =
r2

R2

(

1 − r4
1

r4

)

, B =
r2
1r

2
2

r2R2
, C =

r2

R2

(

1 +
r4
2

r4

)

, (3.14)

where

r4
1 = r4

0 cosh2 η, r4
2 = r4

0 sinh2 η . (3.15)

To obtain the light-like Wilson loop along the contour Clight−like in figure 1, we must take

the η → ∞ limit. We shall see that the η → ∞ limit and the Λ → ∞ limit do not commute.

And, we shall discover that in order to have a sensible phenomenology, we must reach the

light-like Wilson loop by first taking the light-like limit (η → ∞) and only then taking the

Wilson loop limit (Λ → ∞). For the present, we keep both η and Λ finite.

We parameterize the two-dimensional world sheet (3.4), using the coordinates

τ = t, σ = x1 ∈ [−L

2
,
L

2
] . (3.16)

By symmetry, we will take xµ to be functions of σ only and we set

x2(σ) = const , x3(σ) = const , r = r(σ) . (3.17)

The Nambu-Goto action (3.5) now reads

S =
T

2πα′

∫ L
2

−L
2

dσ

√

A

(

(∂σr)2

f
+

r2

R2

)

, (3.18)

with the boundary condition r(±L
2 ) = r0Λ. This boundary condition ensures that when

the string world sheet ends on the D3-brane located at r = r0Λ, it does so on the contour C
which is located at x1 = ±L

2 . Our task is to find r(σ), the shape of the string world sheet

hanging “downward in r” from its endpoints at r = r0Λ, by extremizing (3.18). Introducing

dimensionless variables

r = r0y, σ̃ = σ
r0

R2
, l =

Lr0

R2
= πLT, (3.19)

3In terms of the time tlab in the rest frame of the medium, we have the standard relation T =√
1 − v2 tlab = tlab

cosh η
.
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where T is the temperature (3.10), we find that, upon dropping the tilde,

S(C) =
√

λT T

∫ l
2

0
dσ L (3.20)

with (y′ = ∂σy)

L =

√

(

y4 − cosh2 η
)

(

1 +
y′2

y4 − 1

)

(3.21)

and the boundary condition y
(

± l
2

)

= Λ. In writing (3.20) we have used the fact that, by

symmetry, y(σ) is an even function. It is manifest from (3.20) that all physical quantities

only depend on T and not on R or r0 separately. We must now determine y(σ) by extrem-

izing (3.21). This can be thought of as a classical mechanics problem, with σ the analogue

of time. Since L does not depend on σ explicitly, the corresponding Hamiltonian

H ≡ L− y′
∂L
∂y′

=
y4 − cosh2 η

L = const (3.22)

is a constant of the motion in the classical mechanics problem.

It is worth pausing to recall how it is that the calculation of a Wilson loop in a strongly

interacting gauge theory has been simplified to a classical mechanics problem. The large-

N and large λ limits are both crucial. Taking N → ∞ at fixed λ corresponds to taking

the string coupling to zero, meaning that we can ignore the possibility of loops of string

breaking off from the string world sheet. Then, when we furthermore take λ → ∞, we are

sending the string tension to infinity meaning that we can neglect fluctuations of the string

world sheet. Thus, the string world sheet “hanging down” from the contour C takes on

its classical configuration, without fluctuating or splitting off loops. If the contour C is a

rectangle with two long sides, meaning that its ends are negligible compared to its middle,

then finding this classical configuration is a classical mechanics problem no more difficult

than finding the catenary curve describing a chain suspended from two points hanging in a

gravitational field, in this case the gravitational field of the AdS Schwarzschild black hole.

Let us now consider keeping Λ fixed and À 1, while increasing η from 0 to ∞. We

see that the quantity inside the square root in (3.21) changes sign when y crosses
√

cosh η.

The string world sheet is time-like for real L (i.e. for y >
√

cosh η) and is space-like for

imaginary L (i.e. for y <
√

cosh η). Since y = Λ at the boundary C, the signature of

the world sheet depends on the relative magnitude of
√

cosh η and Λ: it is time-like when√
cosh η < Λ and becomes space-like when

√
cosh η > Λ. If the world sheet in (3.5) is

time-like (space-like), the expectation value (3.7) of the fundamental Wilson loop is the

exponent of an imaginary (real) quantity. We shall give a physical interpretation of this

behavior in section 3.3. Here, we explain that this behavior is consistent with all the

phenomenology described in section 2. For η = 0, the Wilson loop defines the static quark-

antiquark potential, see (2.2), and thus should and does correspond to a time-like world

sheet. If the quark-pair is not at rest with respect to the medium, but moves with a small

velocity v = tanh η, one still expects that the quark-pair remains bound and the world-

sheet action remains time-like. We shall see, however, that for large enough η a bound
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quark-antiquark state cannot exist. Once we reach η ≡ ∞, namely the light-like Wilson

loop which we saw in section 2 originates from eikonal propagation in high energy scattering

and is relevant to deep inelastic scattering, the Cronin effect, and jet quenching, in order

to have a sensible description of these phenomena we see from (2.15) or equivalently (2.6)

that the expectation value of the Wilson loop must be the exponent of a real quantity. This

expectation is met by (3.21) since the string world sheet is space-like as long as
√

cosh η > Λ.

This demonstrates that in order to sensibly describe any of the applications of Wilson loops

to high energy propagation, including in particular in our nonzero temperature context the

calculation of the jet quenching parameter q̂, we must take η → ∞ first, before taking the

Λ → ∞ limit.

In subsection 3.1, we shall review the calculation of the quark-antiquark potential

and screening length as a function of the velocity v. In subsection 3.2, we calculate the

jet quenching parameter. And, in subsection 3.3, we return to the distinction between

the time-like string world sheet of subsection 3.1 and the space-like string world sheet of

subsection 3.2, and give a physical interpretation of this discontinuity.

3.1 Velocity-dependent quark-antiquark potential and screening length

In this subsection we compute the expectation values of Wilson loops for
√

cosh η < Λ, from

which we extract the velocity-dependent quark-antiquark potential and screening length.

At the end of the calculation we take the heavy quark limit Λ → ∞. In fact, because we

are interested in the case
√

cosh η < Λ, in this subsection we could safely take Λ → ∞ from

the beginning. The results reviewed in this subsection were obtained in refs. [31, 32, 35].

We denote the constant of the motion identified in Eq, (3.22) by q, and rewrite this

equation as

y′ =
1

q

√

(y4 − 1)(y4 − y4
c ) (3.23)

with

y4
c ≡ cosh2 η + q2. (3.24)

Note that y4
c > cosh2 η ≥ 1. The extremal string world sheet begins at σ = −`/2 where

y = Λ, and “descends” in y until it reaches a turning point, namely the largest value of y

at which y′ = 0. It then “ascends” from the turning point to its end point at σ = +`/2

where y = Λ. By symmetry, the turning point must occur at σ = 0. We see from (3.23)

that in this case, the turning point occurs at y = yc meaning that the extremal surface

stretches between yc and Λ. The integration constant q can then be determined4 from the

equation l
2 =

∫
l
2

0 dσ which, upon using (3.23), becomes

l = 2q

∫ Λ

yc

dy
1

√

(y4 − y4
c )(y

4 − 1)
. (3.25)

The action for the extremal surface can be found by substituting (3.23) into (3.20)

and (3.21),

S(l) =
√

λT T

∫ Λ

yc

dy
y4 − cosh2 η

√

(y4 − 1)(y4 − y4
c )

. (3.26)

4For equation (3.23) to be well defined, we need 0 < q4 < Λ4 − cosh2 η.
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Equation (3.26) contains not only the potential between the quark-antiquark pair but also

the static mass of the quark and antiquark considered separately in the moving medium.

(Recall that we have boosted to the rest frame of the quark and antiquark, meaning that

the quark-gluon plasma is moving.) Since we are only interested in the quark-antiquark

potential, we need to subtract from (3.26) the action S0 of two independent quarks, namely

E(L)T = S(l) − S0 , (3.27)

where E(L) is the quark-antiquark potential in the dipole rest frame. The string configu-

ration corresponding to a single quark at rest in a moving hot medium in N = 4 SYM was

found in refs. [23, 24], from which one finds that

S0 =
√

λ T T

∫ Λ

1
dy . (3.28)

To be self-contained, in appendix A we review the solution of [23, 24], along with a family

of new drag solutions describing string configurations corresponding to mesons made from

a heavy and a light quark.

To extract the quark-antiquark potential, we use (3.25) to solve for q in terms of l and

then plug the corresponding q(l) into (3.26) and (3.27) to obtain E(L). We can safely take

the Λ → ∞ limit, and do so in all results we present. We show results at a selection of

velocities in figure 2. In the remainder of this subsection, we describe general features of

these results.

First, eq. (3.26) has no solution when l > lmax(η), where lmax is the maximum of l(q).

We see that lmax decreases with increasing velocity.

We see from the left panel in figure 2 that for a given l < lmax(η), there are two

branches of solutions. The branch with the bigger value of q, and therefore the larger

turning point yc, has the smaller E(L) — corresponding to the lower branches of each of

the curves in the right panel of the figure. The upper branches of each curve correspond to

the solutions for a given l < lmax with smaller q and yc. Because they have higher energy,

it is natural to expect that they describe unstable solutions sitting at a saddle point in

configuration space [32, 34]. This has been confirmed explicitly in ref. [36].

When η is greater than some critical value ηc, E(L) is negative for the whole upper

branch. When η < ηc, there exists a value lc(η) < lmax such that the upper branch has an

E(L) which is negative for l < lc and positive for l > lc. lc goes to zero as η goes to zero. If

η < ηc and l > lc, then if the unstable upper branch configuration is perturbed, after some

time it could settle down either to the lower branch solution or to two isolated strings each

described by the drag solution of ref. [23, 24] and appendix A. (Note that E > 0 means

that a configuration has more energy than two isolated strings.) On the other hand, if

E(L) is negative for the upper branch, when this unstable configuration is perturbed, the

only static solution we know of to which it can settle after some time is the lower branch

solution.

We see from figure 2 that using the action of the dragging string solution of refs. [23, 24]

as S0 as we do and as was considered as an option in ref. [35], ensures that the small-distance
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Figure 2: Left panel: the quark-antiquark separation l(q) as a function of the integration constant

q for a quark-antiquark dipole oriented orthogonal to the wind propagating at different velocities

v = tanh η. We discuss the case where the dipole is not orthogonal to the wind in section 5. Right

panel: The qq̄ static potential for the same quark-antiquark configurations as in the left panel. Note

that the potential is normalized such that the small-distance behavior of the potential is unaffected

by velocity-dependent medium effects.

behavior of the potential is velocity-independent. This seems to us a physically reasonable

subtraction condition; it is analogous to the renormalization criterion used to define the

quark-antiquark potential in lattice calculations, namely that at short distances it must

be medium-independent [43]. Choosing the velocity-dependent subtraction (A.12) instead,

considered as an option in ref. [35], makes the unstable upper branch have limL→0 E(L) = 0

for all velocities, but in so doing makes the stable lower-branch have a velocity-dependent

E(L) at all L, including small L.

One can obtain an analytical expression for lmax in the limit of high velocity. Expand-

ing (3.25) in powers of 1/y4
c gives

l(q) =
2
√

πq

y3
c

(

Γ
(

3
4

)

Γ
(

1
4

) +
Γ

(

7
4

)

8Γ
(

9
4

)

1

y4
c

+
3Γ

(

11
4

)

32Γ
(

13
4

)

1

y8
c

+ O

(

1

y12
c

)

)

. (3.29)
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Truncating this expression after the second term, we find for the maximum

lmax =

√
2π Γ

(

3
4

)

33/4Γ
(

1
4

)

(

2

cosh1/2 η
+

1

5 cosh5/2 η
+ · · ·

)

= 0.74333

(

1

cosh1/2 η
+

1

10 cosh5/2 η
+ · · ·

)

. (3.30)

Note that Lmax = lmax

πT can be interpreted as the screening length in the medium, beyond

which the only solution is the trivial solution corresponding to two disjoint world sheets

and thus E(L) = 0. The first term of this expression was given in [31] (see also [32]), the

second term in [35]. As we shall discuss further at the end of section 5, if we set η = 0

in (3.30), this expression which was derived for η → ∞ is not too far off the η = 0 result,

which is `max = 0.869. Hence, as discovered in ref. [31], the screening length decreases with

increasing velocity to a good approximation according to the scaling

Lmax(v) ' Lmax(0)

cosh1/2 η
=

Lmax(0)√
γ

, (3.31)

with γ = 1/
√

1 − v2. This velocity dependence suggests that Ls should be thought of as,

to a good approximation, proportional to (energy density)−1/4, since the energy density

increases like γ2 as the wind velocity is boosted.

If the velocity-scaling of Ls that we have discovered holds for QCD, it will have quali-

tative consequences for quarkonium suppression in heavy ion collisions [31]. For illustrative

purposes, consider the explanation of the J/Ψ suppression seen at SPS and RHIC energies

proposed in refs. [81, 82]: lattice calculations of the qq̄-potential indicate that the J/Ψ(1S)

state dissociates at a temperature ∼ 2.1Tc whereas the excited χc(2P) and Ψ′(2S) states

cannot survive above ∼ 1.2Tc; so, if collisions at both the SPS and RHIC reach temper-

atures above 1.2Tc but not above 2.1Tc, the experimental facts (comparable anomalous

suppression of J/Ψ production at the SPS and RHIC) can be understood as the complete

loss of the “secondary” J/Ψ’s that would have arisen from the decays of the excited states,

with no suppression at all of J/Ψ’s that originate as J/Ψ’s. Taking eq. (3.31) at face value,

the temperature Tdiss needed to dissociate the J/Ψ decreases ∝ (1− v2)1/4. This indicates

that J/Ψ suppression at RHIC may increase markedly (as the J/Ψ(1S) mesons themselves

dissociate) for J/Ψ’s with transverse momentum pT above some threshold that is at most

∼ 9GeV and would be ∼ 5 GeV if the temperatures reached at RHIC are ∼ 1.5Tc. The

kinematical range in which this novel quarkonium suppression mechanism is operational

lies within experimental reach of future high-luminosity runs at RHIC and will be studied

thoroughly at the LHC in both the J/Ψ and Upsilon channels. If the temperature of the

medium produced in LHC collisions proves to be large enough that the J/Ψ(1S) mesons

dissociate already at low pT , the pT -dependent pattern that the velocity scaling (3.31)

predicts in the J/Ψ channel at RHIC should be visible in the Upsilon channel at the LHC.

As a caveat, we add that in modelling quarkonium production and suppression versus

pT in heavy ion collisions, various other effects remain to be quantified. For instance, sec-

ondary production mechanisms such as recombination may contribute significantly to the
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J/Ψ yield at low pT , although the understanding of such contributions is currently model-

dependent. Also, at very high pT , J/Ψ mesons could form outside the hot medium [83].

Parametric estimates of this effect suggest that it is important only at much higher pT

than is of interest to us, and we are not aware of model studies which have been done that

would allow one to go beyond parametric estimates. The quantitative importance of these

and other effects may vary significantly, depending on details of their model implementa-

tion. In contrast, eq. (3.31) was obtained directly from a field-theoretic calculation and its

implementation will not introduce additional model-dependent uncertainties. For this rea-

son, the velocity scaling established here must be included in all future model calculations.

We expect that its effect is most prominent at intermediate transverse momentum, where

contributions from secondary production die out or can be controlled, while the formation

time of the heavy bound states is still short enough to ensure that they would be produced

within the medium if the screening by the medium permits.

3.2 Light-like Wilson loop and the jet quenching parameter

In order to calculate the jet quenching parameter we need to take the η → ∞ limit in

which the Wilson loop becomes light-like first, with the location of the boundary D3-brane

Λ large and fixed, and only later take Λ → ∞. As we approach the light-like limit, it is

necessary that
√

cosh η > Λ. In this regime, as we discussed below equation (3.22), the

world sheet is space-like, meaning that the expectation value of the Wilson loop is the

exponential of a real quantity. As we reviewed in section 2, this must be the case in order

to obtain sensible results for both medium-induced gluon radiation of eq. (2.9) and the

virtual photo-absorption cross section in deep inleastic scattering of eq. (2.4).

When
√

cosh η > Λ, the first order equation of motion, given by (3.22), reads

y′2 =
1

q2
(y4 − 1)(y4

m − y4) (3.32)

with

y4
m = cosh2 η − q2 . (3.33)

The consistency of (3.32) requires that ym > Λ, which implies that the integration constant

q is constrained to 0 ≤ q2 ≤ cosh2 η − Λ4. Equation (3.32) has a trivial solution

y(σ) = Λ = const, q2 = cosh2 η − Λ4 . (3.34)

However, one can check that (3.34) does not solve the second order Euler-Lagrange equation

of motion derived from (3.21) and thus should be discarded. Because ym > Λ, the nontrivial

solution of (3.32) which descends from y = Λ at σ = −l/2 descends all the way to y = 1,

where y′ = 0. Thus, for any value of l the string starts at y = Λ and descends all the way

to the horizon, where it turns around and then ascends back up to y = Λ. The integration

constant q can be determined from the equation l
2 =

∫
l
2

0 dσ, i.e

l = 2q

∫ Λ

1
dy

1
√

(y4
m − y4)(y4 − 1)

(3.35)
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upon using (3.32). The action (3.18) takes the form

S(l) = i
√

λT T

∫ Λ

1
dy

cosh2 η − y4

√

(y4 − 1)(y4
m − y4)

. (3.36)

This action is imaginary and corresponds to a space-like world sheet.

To extract q̂ introduced in (2.6), (2.11) and (2.15), we first take η → ∞, making the

contour C light-like, and only then take the Λ → ∞ limit needed to ensure that we are

evaluating W (C), with the end of the string on the D3-brane at y = Λ following the contour

C precisely. q̂ can be obtained by studying the small l-dependence of the action (3.36),

which can be done analytically. We start from the expansion of (3.35),

l =
2q

cosh η

∫ Λ

1
dy

1
√

y4 − 1
+ O

(

q3,
Λ4

cosh2 η

)

. (3.37)

Upon defining

α ≡ lim
Λ→∞

∫ Λ

1
dy

1
√

y4 − 1
=

√
π

Γ
(

5
4

)

Γ
(

3
4

) , (3.38)

we find that in the small l (equivalently, small q) limit

l =
2αq

cosh η
. (3.39)

In the same limit, the action (3.36) takes the form

S(l) = S(0) + q2S(1) + O(q4) , (3.40)

where

S(0) = i
√

λT T

∫ Λ

1
dy

√

cosh2 η − y4

y4 − 1
, (3.41)

q2S(1)(l) =
i
√

λT T

2
q2

∫ Λ

1
dy

1
√

(

cosh2 η − y4
)

(y4 − 1)

=
i
√

λT Tq2α

2 cosh η
= i

√
λπ2 T 3

8α
(T cosh η) L2 , (3.42)

where we have used (3.38), (3.39) and l = π LT . Also, we have kept the dominant large

η-dependence only. We identify (T cosh η) = L−/
√

2, where L− is the extension of the

Wilson loop in the light-like direction, entering in (2.11) and (2.15).

As in section 3.1, in order to determine the expectation of the Wilson line we need

to subtract the action of two independent single quarks, this time moving at the speed

of light. In appendix A, we analyze the string configuration corresponding a single quark

moving at the speed of light. There we find a class of solutions with space-like world sheets

and also a class of solutions with time-like world sheet. Our criterion to determine which

solution to subtract is motivated from the physical expectation discussed in section 2, i.e.

lim
l→0

[S(l) − S0] = S(0) − S0 = 0 . (3.43)
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Among the classes of solutions discussed in appendix A, the only one satisfying (3.43) is the

space-like world sheet described by eqs. (A.17) and (A.18) with p = 0. In this configuration,

S0 is the action of two straight strings extending from y = Λ to y = 1 along the radial

direction and is given by

S0 = i
√

λT T

∫ Λ

1
dy

√

cosh2 η − y4

y4 − 1
. (3.44)

The L2-term in the exponent of (2.15) can then be identified with the O(L2)-term (3.42)

of the action S(l), and we thus conclude that the jet quenching parameter in (2.15) is given

by

q̂SYM =
π3/2Γ

(

3
4

)

Γ
(

5
4

)

√
λ T 3 . (3.45)

We have used the fact that, as in (2.9), in the large-N limit the expectation value of the

adjoint Wilson loop which defines q̂ in (2.15) differs from that of the fundamental Wilson

loop which we have calculated by a factor of 2 in the exponent S.

In ref. [15], the result (3.45) was obtained starting directly from the loop Clight−like,

described in the rest frame of the medium using light-cone coordinates. Here, we showed

that one can obtain the same result by taking the v → 1 limit of a time-like Wilson loop.

It is also easy to check that the trivial solution (3.34) goes over to the constant solution

discussed in [15], which has a smaller action than (3.36). In [15] this trivial solution was

discarded on physical grounds. Here, we see that if we treat the light-like Wilson line as

the η → ∞ limit of a time-like one, this trivial solution does not even arise. We also note

that in the light-like limit, the coefficient in front of the scalar field term in (3.3) goes to

zero and (3.3) coincides with (2.1).

In section 4 we shall determine how q̂ changes if the medium in which the expectation

value of the light-like Wilson loop is evaluated has some flow velocity at an arbitrary

angle with respect to the direction of the Wilson loop. In section 6 we shall discuss the

comparison between our result for q̂ and that extracted by comparison with RHIC data,

as well as discuss how q̂ changes with the number of degrees of freedom in the theory.

3.3 Discussion: time-like versus space-like world sheets

We have seen that as we increase η from 0 to ∞ while keeping Λ fixed and large, the

behavior of the string world sheet has a discontinuity at
√

cosh η = Λ, below (above)

which the world sheet is time-like (space-like). Here we give a physical interpretation for

this discontinuity. Recall first from section 3.1 that if cosh η À 1 but
√

cosh η < Λ, the

screening length Lmax is given by

Lmax =
0.743

π
√

cosh η T
. (3.46)

Next, note that the size δ of our external quark on the D3-brane at y = Λ, i.e. at r =

r0Λ = πR2TΛ can be estimated using the standard IR/UV connection, namely [79]

δ ∼
√

λ

M
∼ 1

ΛT
, (3.47)
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where M = 1
2

√
λTΛ is the mass of an external quark as can be read from (3.28). (The

apparent T -dependence of (3.47) is due to our definition of Λ, with the ultraviolet cutoff

given by Λr0, and does not reflect genuine temperature-dependence.) Thus the condition√
cosh η = Λ corresponds to [32]

Lmax ∼ δ . (3.48)

When
√

cosh η ¿ Λ, meaning that δ ¿ Lmax, we expect that if instead of merely analyzing

Wilson loops we were to actually study mesons, we would in fact find a bound state of

a quark and anti-quark. In this regime, it is reasonable to expect that the expectation

value of the Wilson loop should yield information about the quark-antiquark potential,

meaning that it must be the exponential of an imaginary quantity meaning that the string

world sheet must be time-like, as indeed we find. On the other hand, when
√

cosh η À
Λ, meaning that δ À Lmax, the size of one quark by itself is much greater than the

putative screening length. This means that the quark and antiquark cannot bind for any

L, meaning that the transition at
√

cosh η ∼ Λ ∼ M/(
√

λT ) can be thought of as a

“deconfinement” or “dissociation” transition for quarkonium mesons made from quarks

with mass M . Furthermore, in a regime in which the size of one quark is greater than

the putative screening length, the concept of a quark-antiquark potential (and a screening

length) makes no sense. Instead, in this regime it is appropriate to think of the quark-

antiquark pair as a component of the wave function of a virtual photon in deep inelastic

scattering, and hence to think of the Wilson loop as arising in the eikonal approximation to

this high energy scattering process, as discussed in section 2. From our discussion there, it

is then natural to expect a space-like world sheet, which gives the desired 〈W 〉 ∼ exp[−S]

behavior with S real.

Our discussion explains the qualitative change in physics, but it does not explain the

sharpness of the discontinuity that we find at
√

cosh η = Λ, which likely has to do with

the classical string approximation (which corresponds to large N and large λ limit) we

are using. When
√

cosh η < Λ there is a discontinuity between L < Lmax and L > Lmax

where the quark-antiquark potential goes from being nonzero to zero. This discontinuity is

smoothed out by finite λ corrections, with the exponentially small quark-antiquark poten-

tial at large distances corresponding to physics that is nonperturbative in α′. Presumably

the discontinuity at
√

cosh η = Λ is also smoothed out at finite λ and N . Further insight

into this question could perhaps be obtained without relaxing the large-N and large-λ

limits by studying mesons rather than Wilson loops.

The operational consequences of the discontinuity at
√

cosh η = Λ are clear. To com-

pute the quark-antiquark potential and the screening length in a moving medium, we take

Λ to infinity at fixed η. To compute q̂, we must instead first take the η → ∞ limit at finite

Λ, and only then take Λ → ∞. The two limits do not commute.

4. The jet quenching parameter in a flowing medium

In section 3.2, we have evaluated the expectation value of a light-like Wilson loop specified

by the trajectory of a dipole moving in a light-like direction, kµ = (1, n̂) with n̂ a unit
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vector and hence k2 = 0. The world sheet defined by this light-like Wilson loop is space-

like and the behavior of the Nambu-Goto action in the limit of small dipole size determines

the jet quenching parameter q̂. It has been argued previously that the motion of the

medium orthogonal to the trajectory of the dipole can affect the value of q̂ in a nontrivial

fashion [84, 85]. Furthermore, if the medium is flowing parallel to or antiparallel to the

trajectory of the dipole with velocity vf = tanh ηf , there is a straightforward effect on q̂:

the calculation goes through unchanged, with L− understood to be the light-cone distance

in the rest frame of the medium, but the relation between L− and the distance ∆z travelled

in the lab frame is modified: ∆z = (L−/
√

2) exp(ηf ), where the sign convention is such

that ηf > 0 corresponds to the dipole velocity and flow velocity parallel (i.e. the dipole feels

a “tail wind”) while ηf < 0 means that the dipole feels a head wind. Correspondingly, q̂ is

multiplied by a factor of exp(−ηf ), meaning that it increases in a head wind and decreases

in a tail wind. In this section, we calculate how the jet quenching parameter q̂ depends

on the speed and direction of the collective flow of the medium, allowing for any angle

between the jet direction and the flow direction.

The calculation of the effect on jet quenching parameter q̂ due to the collective motion

of the medium turns out to be straightforward, once the geometry of the problem is set up.

We shall specify the light-like four-momentum kµ = (1, n̂) (the direction of motion of the

hard parton which is losing energy; the direction of propagation of the dipole moving at

the speed of light which defines the Wilson loop) by taking n̂ to point along the negative

x3-direction. According to the way the BDMPS energy loss calculation is set up, the dipole

is always perpendicular to the direction of its motion, so we choose the dipole orientation

to point in a direction m̂ which must lie in the (x1, x2)-plane. Now, we set the medium

in motion. The most general “wind velocity” has components parallel to and orthogonal

to the dipole direction n̂. We choose ~v = vl̂ to lie in the (x2, x3)-plane. Because we fix

the orthogonal component to lie along the x2-direction, we must leave the direction of the

dipole orientation m̂ in the (x1, x2)-plane unspecified. Thus the most general configuration

is described by four parameters, the transverse separation L of the Wilson loop in the lab

frame and

cosh ηf =
1√

1 − v2
, θ = ∠(l̂, n̂) , φ = ∠(m̂, ~x1) . (4.1)

In the lab frame, the trajectory of the end points of the dipole can be written as

Aµ
± = kµt ± L

2
mµ , (4.2)

where

kµ = (1, n̂), mµ = (0, m̂), k · m = 0, k2 = 0, m2 = 1 . (4.3)

Now, we boost Aµ with ~v = vl̂, boosting into a frame in which the medium is at rest. We

obtain

A′µ
± = k′µt ± L

2
m′µ , (4.4)

for some k′µ and m′µ which again satisfy

k′2 = 0, m′2 = 1, m′ · k′ = 0 . (4.5)
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In general, m′µ has a nonzero 0-th component and thus the two ends of the dipole do not

have the same time. To fix this we write

A′µ
± = k′µ(t ± t0) ±

L

2
m′′µ , (4.6)

where we have defined

m′′µ = m′µ − t0k
′µ , (4.7)

and choose t0 such that the zeroth component of m′′ is zero, making m”µ purely spatial.

It is easy to confirm that, given (4.6), we now have

k′2 = 0, m′′2 = 1, m′′ · k′ = 0 . (4.8)

We now have almost exactly the same Wilson loop configuration as we had in our original

calculation of section 3.2 when the medium was at rest from the beginning, with the only

difference being that the two long sides of the Wilson loop do not start and end at equal

times, due to the shift t0. This is immaterial when L− is big: in our evaluation of the Wilson

loop we always assumed time translational invariance anyway, neglecting the contribution

of the “ends of the loop” relative to that of the long, time translation invariant, mid-section

of the loop. We thus find that in the presence of a wind velocity

〈W A(C)〉 = exp [−S(C)] (4.9)

with

S(C) = − 1

4
√

2
q̂0(L

−)′L2 , (4.10)

where q̂0 is the value with no wind and where

(L−)′ =
√

2k′0t = k′0L− (4.11)

is the light-cone distance travelled in the rest frame of the medium whereas L− is the

corresponding quantity in the lab frame. We thus conclude that the only effect of the

collective flow of the medium on q̂ is what we called the straightforward effect above, namely

that due to the Lorentz transformation of L−. From the standard Lorentz transformation

rule,

k′0 = cosh ηf − sinh ηf (l̂ · n̂) = cosh ηf − sinh ηf cos θ . (4.12)

We thus find

q̂ = (cosh ηf − sinh ηf cos θ) q̂0 . (4.13)

This result is independent of φ.

We have established the transformation rule (4.13) by boosting to the rest frame of the

medium. This reduced the problem to one with no wind but with a Lorentz transformed

longitudinal extension (4.11). Alternatively, the same result (4.13) can be obtained by

starting from the metric corresponding to the medium having a velocity ~v and doing the

Wilson loop computation in this metric. We have confirmed by explicit calculation for

several examples that the same result (4.13) is obtained.
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Figure 3: Schematic picture of a qq̄-dipole, moving along the x3-direction. The dipole is oriented

along an arbitrary orientation θ in the (x1, x3)-plane. The trajectories, along which the quark and

antiquark propagate, specify the boundary C of a two-dimensional world sheet, which extends into

the 5-th bulk dimension y = r/r0. The shape of this world sheet is characterized by the functions

y(σ) and z(σ), where σ = x1. By symmetry, y has a turning point at y(σ = 0) = yc. For generic

values of the angle θ, the solution z(σ) deviates from a straight line.

The derivation of the scaling (4.13) relied only on properties of Lorentz transformations;

nothing in the calculation of the underlying q̂0 (which depends on T and N and λ in N = 4

SYM and varies from one theory to the next as we shall discuss in section 6) comes in.

We conclude that the scaling (4.13), which describes how the jet quenching parameter q̂

depends on the collective flow velocity of the medium doing the quenching, applies in QCD

also. R. Baier et al. have reached the same conclusion independently [86].

To get a sense of the order of magnitude of the effect, we note that transverse flow

velocities in excess of half the speed of light are generated by the time the matter produced

in a heavy ion collision freezes out. A velocity v = 0.5 corresponds to ηf = 0.549, which

yields q̂ = 1.732 q̂0 for a head wind (θ = π), q̂ = 1.155 q̂0 for θ = π/2, and q̂ = 0.577 for

a tail wind (θ = 0). An investigation of the quantitative consequences of (4.13) requires

modelling of the geometry and time-development of the collective flow in a heavy ion

collision, along the lines of the analysis in refs. [85 – 87].

5. The static qq̄ potential for all dipole orientations with respect to the

wind

In section 3.1, we analyzed the quark-antiquark potential for a qq̄-dipole which was oriented

in the x1 direction and which propagated orthogonal to its orientation along the x3 direction
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Figure 4: Solutions y(σ), z(σ) of the differential equations (5.7) and (5.8) with boundary con-

ditions (5.3) for different orientation angles θ and rapidity η. These solutions characterize the

two-dimensional world sheet bounded by the Wilson loop. For definitions, see figure 3 and text.

Left panel: y(σ) for η = 1 for varying θ. Middle panel: z(σ) − σ/ tan θ for η = 1 for varying θ. As

figure 3 illustrates, z(σ) − σ/ tan θ would be zero if the projection of the string onto the D3-brane

at y = Λ were a straight line. Third panel: z(σ) − σ/ tan θ for θ = π/4 for varying η.

with velocity v = tanh η. Here, we extend this analysis to the case where the dipole is tilted

by an arbitrary angle θ with respect to its direction of motion, see figure 3. For θ = π/2,

we recover the results obtained in section 3.1 above.

We work in the boosted metric (3.13), in which the dipole is at rest. The dipole lies

in the (x1, x3)-plane and the parametrization of the two-dimensional world sheet of the

corresponding Wilson loop is

τ = t , σ = x1 , x2 = const. , x3 = x3(σ) , r = r(σ) . (5.1)

For a dipole with length L whose orientation makes an angle θ with its direction of prop-

agation (the x3-direction) the projections of the dipole on the x1 and x3 axis are of length

L sin θ and L cos θ, respectively. We define dimensionless coordinates

y =
r

r0
, z = x3

r0

R2
, σ̃ = σ

r0

R2
, l = L

r0

R2
, (5.2)
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and drop the tilde. The boundary conditions on y(σ) and z(σ) then become

y

(

± l

2
sin θ

)

= Λ , z

(

± l

2
sin θ

)

= ± l

2
cos θ . (5.3)

Following the calculation of section 3.1, the Nambu-Goto action for (5.1) can be written

in the form (3.20), namely S(C) =
√

λT T
∫ l/2
0 dσL, with the Lagrangian reading

L =

√

(

y4 − cosh2 η
)

(

1 +
y′2

y4 − 1

)

+ z′2 (y4 − 1) , (5.4)

where y′ and z′ denote derivatives with respect to σ. The Hamiltonian is

H = L − y′
∂L
∂y′

− z′
∂L
∂z′

=
y4 − cosh2 η

L = q , (5.5)

a constant of the motion. The momentum conjugate to z

∂L
∂z′

=
y4 − 1

L z′ = p (5.6)

is also a constant of the motion. For a time-like world sheet, the constants of motion q and

p must be real. The equations of motion can be written in the form

q2y′2 = (y4 − cosh2 η)(y4 − 1 − p2) − q2(y4 − 1) , (5.7)

q2z′2 = p2

(

y4 − cosh2 η

y4 − 1

)2

. (5.8)

Generic features of their solutions have been pointed out in ref. [31] already. Figure 4 shows

numerical results. Since y′ depends only on y and since the boundary condition (5.3) for y

is symmetric under σ → −σ, y(σ) must be an even function of σ. It descends (y′ < 0) for

−l/2 sin θ < σ < 0 and then ascends for 0 < σ < l/2 sin θ. These features are clearly seen

in figure 4. The turning point yc = y(0) satisfies the condition

(

y4
c − cosh2 η

) (

y4
c − 1 − p2

)

− q2
(

y4
c − 1

)

≡ 0 . (5.9)

Connecting the qq̄-pair by a straight line in the (x1, x3)-plane would correspond to z(σ) =

σ/ tan θ. To test for deviations of the string world sheet away from this straight line, we

plot z(σ)−σ/ tan θ in figure 4. We find a deviation of sinusoidal form for all angles except

θ = 0, π/2. As an aside, we note that if one thinks of the two-dimensional world sheet

as a flat piece of paper, draws on it a straight line connecting q and q̄, and rolls it up as

depicted in figure 3, then the projection of this straight line on the (x1, x3)-plane would

show a qualitatively similar sinusoidal wiggle. However, the use of this analogy is limited,

since we cannot specify in which sense or to what extent the two-dimensional world sheet is

flat. Also, the observed deviation from the straight line behavior z(σ) = σ/ tan θ depends

on rapidity. For η = 0, no deviation is possible since no direction in the (x1, x3)-plane is

singled out. For increasing values of η, the deviation increases as seen in figure 4.
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Figure 5: The integration constant p as a function of the integration constant q for η = 1 and

several fixed values of the orientation angle θ. This relation is defined by eqs. (5.10) and (5.11).

Along one of these curves, ` changes with q as shown in figure 6.

The constants q and p must be related to the values of l and θ. The relationships are

obtained by integrating the equations of motion (5.7) and (5.8), giving

l

2
sin θ = q

∫ ∞

yc

dy
√

(

y4 − cosh2 η
)

(y4 − 1 − p2) − q2 (y4 − 1)
, (5.10)

l

2
cos θ = p

∫ ∞

yc

y4 − cosh2 η

y4 − 1

dy
√

(

y4 − cosh2 η
)

(y4 − 1 − p2) − q2 (y4 − 1)
. (5.11)

With q and p determined, the qq̄ static potential in a moving thermal background then

reads

E(l, θ; η) = S(C) − S0

=
√

λT T

∫ ∞

yc





(y4 − cosh2 η)
√

(

y4 − cosh2 η
)

(y4 − 1 − p2) − q2 (y4 − 1)
− 1



 dy

−
√

λT T (yc − 1) . (5.12)

Here, the subtraction term S0, given in (3.28) is the action for two isolated strings described

by the dragging solution of refs. [23, 24] and appendix A.

We have evaluated the potential E(l, θ; η) as a function of the size l of the dipole, its

orientation θ with respect to its direction of motion, and its velocity v = tanh η with respect
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Figure 6: Left panel: The size l of the dipole and its orientation angle θ define the integration

constants q and p, see eqs. (5.10) and (5.11). The plot shows l as a function of q for several fixed

angles θ. Along each of these curves p varies as shown in figure 5. Right panel: The static q q̄-

potential (5.12) for rapidity η = 1 and different orientation angles θ of the dipole with respect to

the direction of motion.

to the thermal heat bath. Since the potential in (5.12) is written in terms of the integration

constants q and p, it is useful to determine first how p depends on q for fixed θ and η. To do

this, we write tan θ as the ratio of eqs. (5.10) and (5.11). We find p(q) to be a monotonously

increasing function, whose slope decreases with increasing angle θ, see figure 5. For the

maximal angle θ = π/2, p vanishes independent of the value of q. This is the case of a

dipole oriented orthogonal to the wind, where eq. (5.10) reduces to eq. (3.25), and the

present calculation becomes that of section 3.1. For the opposite limit of a dipole oriented

parallel to the wind, θ = 0, the parametrization (5.1), (5.3) of the two-dimensional world

sheet does not apply. However, the Nambu-Goto action is reparametrization invariant and,

as described in appendix B, in a parametrization which is suitable for 0 ≤ θ < π/2 we find

that the measurable quantity E(l, θ, η) depends smoothly on θ for θ → 0.

Knowing p(q) for fixed η and θ, the rescaled dipole size l(q) = l(q, p(q)) can be written

as a function of q only. It takes values in the range l ∈ [0, lmax]. Here, the maximal dipole

size lmax is the screening length above which bound states do not exist. The value of q

at which the maximum of l(q) occurs depends strongly on the angle θ, as shown in the

left panel of figure 6. This is a feature of our parametrization: for smaller angle θ, p(q)
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Figure 7: The screening length lmax times its leading large-η dependence
√

cosh(η). The exact

results are given for dipoles oriented perpendicular to the wind (θ = π/2) and parallel to the wind

(θ = 0). The θ = π/2 curve is compared to the analytical large-η approximation (3.30). Keeping

only the first term in this analytical expression corresponds to a horizontal line on the figure;

including the term proportional to (cosh η)−5/2 improves the agreement with the exact result.

is a more steeply rising function (see figure 5), and most of the θ-dependence of l(q, p(q))

comes from the p(q)-dependence. The value of lmax decreases slightly with increasing angle

θ. This is consistent with the expectation that the dipole is easier to dissociate if it is

oriented orthogonal to the direction of the wind, but the effect is slight.

With p(q) determined, the qq̄-static potential E(l(q, p(q)), θ, η) also becomes a function

of q only. This defines curves {l(q), E(l(q))}, parametrized by the integration constant

q ∈ [0,∞]. The qq̄ static potential (5.12) is a double-valued function of l in the range

l ∈ [0, lmax], see the right panel of figure 6. The configurations whose energy is given by the

upper branch of E(l) are presumably unstable, as has been shown explicitly for θ = π/2

in ref. [36]. The lower branch displays the typical short-distance behavior of a qq̄ binding

potential. For fixed rapidity η, this potential shows the expected θ-dependence: the qq̄

pair is more strongly bound if the dipole is aligned with the direction of motion, and this

binding decreases as the dipole presents itself at a larger angle with respect to the wind,

see figure 5.

In figure 2 in section 3, we have explored the η-dependence of the qq̄ static potential

for a dipole oriented orthogonal to the wind. The screening length displays the dominant

Lorentz-γ dependence lmax ∝ 1/
√

cosh η = 1/
√

γ, as given in (3.30). This velocity depen-

dence is much stronger than the angular dependence displayed in figure 6. The velocity de-

pendence of the potential E(l), shown on the right hand side of figure 2, also shows clearly
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that the short distance behavior of the potential is not affected by velocity-dependent

medium effects. This is a consequence of choosing the regularization prescription (3.28).

Finally, we show in figure 7 the screening length lmax multiplied by
√

cosh η. We

include curves for θ = 0 and θ = π/2; those for other angles lie in between these two. Note

that both curves have the same value of lmax in the η → 0 limit as they must. The flat

behavior of these curves at large η illustrates that lmax ∝ 1/
√

cosh η is the leading large-η

dependence for all dipole orientations. This leading behavior provides a numerically very

accurate approximation (< 1% deviation) for η > 2, and even for η = 0, it is accurate to

within 20% (note the suppressed zero in figure 7). Including the (cosh η)−5/2 term in the

analytical expansion (3.30) improves the description.

6. Discussions and conclusions

In section 2, we reviewed the physical arguments why the expectation value of the time-like

Wilson loop which describes the quark-antiquark potential must be the exponential of an

imaginary quantity whereas the expectation value of the light-like Wilson loop which arises

in the physics of deep inelastic scattering, proton-nucleus collisions, and the calculation

of the jet quenching parameter relevant to parton energy loss in heavy ion collisions is

instead the exponential of a real quantity. In section 3, we saw how these results emerge

by direct calculation in N = 4 SYM theory at strong coupling, where via the AdS/CFT

correspondence the calculation of the expectation values of these two types of Wilson loops

reduces to the evaluation of the action of an extremal string world sheet, time-like in the

first case and space-like in the second. These aspects of our paper are discussed at length

in section 3 and we shall not discuss them further here.

This section incorporates several different discussions, while along the way summarizing

many of our conclusions. In section 6.1, we summarize what we have learned from our

calculations of screening in a hot wind. We compare our calculation of the jet quenching

parameter q̂ to the very different approach to energy loss in refs. [23 – 27] in section 6.2. In

section 6.3, we compare our calculation of q̂ in N = 4 SYM to that extracted from RHIC

data. Given that we find surprisingly good agreement between q̂SYM and that extracted

from RHIC data, in section 6.4 we enumerate the differences and similarities between N = 4

SYM and QCD. Finally, in section 6.5 we collect what is known about how q̂ changes from

the quark-gluon plasma of one gauge theory to that of another, including deriving a new

result which allows the determination of q̂ in any conformal theory with a gravity dual.

We use this result to estimate q̂QCD/q̂SYM.

6.1 Velocity dependence of screening length

We can summarize what we have learned from our calculation in sections 3 and 5 of the

quark-antiquark potential and screening length in a hot wind as follows. We find that

the screening length Lmax of an external quark in an N = 4 SYM plasma with velocity

v = tanh η can be written as

Lmax =
f(η, θ)

πT
√

cosh η
, (6.1)
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where θ is the angle between the orientation of the dipole and the velocity of the moving

thermal medium in the rest frame of the dipole. f(η, θ) is only weakly dependent on both

of its arguments. That is, it is close to constant. In fact, for any values of η and θ,

f(η, θ) lies between 0.74 and 0.87. The limiting cases are f(η = 0) ' 0.87 for all θ, and

f(∞, π
2 ) ' 0.74. For a given η, f(η, θ) is a monotonically decreasing function of θ as θ

varies from 0 to π/2. For a given θ, f(η, θ) is a monotonically decreasing function of η. As

η → ∞, we find f(η, θ) = f(∞, θ)(1 + O(1/ cosh2 η)).

For N = 4 SYM theory, since the energy density ε ∝ T 4, in the large η limit equa-

tion (6.1) can also be thought of as

Lmax ∝ 1

ε(η)
1
4

, (6.2)

where ε(η) = cosh2 η ε(0) is the energy density of the boosted medium.

As discussed in ref. [31], if the velocity scaling of Lmax that we have found, namely (6.1)

and (6.2), holds for QCD, it will have qualitative consequences for quarkonium suppression

in heavy ion collisions at RHIC and LHC. Since our discussion in earlier sections only

involves the AdS5 part of the geometry, the scaling (6.2) applies to any conformal field

theory with a gravity dual at finite temperature. To the extent that the QGP of QCD at

RHIC temperature is close to being conformal, one is tempted to view this as a support of

the applicability of (6.1) and (6.2) to QCD. The results of ref. [30] further support this view.

These authors studied large-spin mesons in a hot wind in a confining, nonsupersymmetric

theory and found that they dissociate beyond a maximum wind velocity. The relation

between the size L of these mesons and their dissociation velocity v is consistent with

L ∝ (1 − v2)1/4.

For more general theories with a gravity dual, one can use the generic metric (6.27)

which we introduce below to study the screening length. A nice argument presented by

Caceres, Natsuume and Okamura in ref. [33] indicates that in the large η limit, one would

generically have

Lmax ∝ 1

ε(η)ν
(6.3)

for some index ν. In particular, for any gauge theory which is dual to an asymptotically

AdS5 geometry, one would find ν = 1
4 as in (6.2). Examples include N = 4 SYM with

nonzero R-charge chemical potentials, studied in refs. [33, 35]. (Note that since chemical

potentials introduce additional mass scales, the dependence of Lmax on temperature is

rather complicated and it is (6.2) which generalizes, not (6.1).)

For non-conformal theories the scaling index ν can deviate from 1/4. One measure of

the deviation from conformality is the deviation of the sound velocity from the conformal

value of 1/
√

3. Following a similar argument in ref. [16] concerning the value of q̂ in non-

conformal theories, Caceres, Natsuume and Okamura suggested that for theories which are

close to being conformal, the index ν may profitably be written as

ν =
1

4
+ cδ + · · · , δ =

1

3
− v2

s (6.4)
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with c some constant. For the cascading gauge theories of ref. [88], c = −9/16 meaning

that if v2
s ' 0.27− 0.31 in these theories as is the case in QCD at T ∼ 1.5Tc [89], the index

is ν ' 0.21 − 0.24. This suggests that for QCD the scaling (6.2) with ν = 1/4 should be a

very good guide.

As discussed at the end of section 3.1, the velocity scaling (6.2) describes how screening

lengths and, correspondingly, dissociation temperatures drop for quarkonia moving through

the thermal medium with some relative velocity, and so should be included in the mod-

elling of quarkonium suppression. The pT -dependent pattern of quarkonium suppression

predicted by (6.2) will be tested in future heavy ion experiments at RHIC and the LHC.

6.2 Comparison with energy loss via drag

Before comparing our result for q̂ with that extracted from RHIC data, which we shall do

in section 6.3, we discuss the differences between our approach and recent calculations [23 –

27] of how an external quark loses energy while being dragged through an N = 4 SYM

plasma. In appendix A (see (A.9)) we have reproduced the “dragging string solution” of

refs. [23, 24] for a string attached to and trailing behind an isolated moving test quark,

since we need it as the subtraction term in our calculation of the quark-antiquark potential

in section 3.1.

To describe the results of refs. [23 – 25] in their proper context, let us start with the

relativistic generalization of the Langevin equations for a quark moving through some

thermal medium (see for example ref. [99, 25])

dpL

dt
= −µ(pL)pL + ξL(t) , (6.5)

dpT

dt
= ξT (t) , (6.6)

where pL and pT are the longitudinal and transverse momentum of the quark, respectively.

(We have simplified the notation by dropping the spatial indices on transverse quantities.)

Henceforth we shall denote pL by p. ξL and ξT are random fluctuating forces in the

longitudinal and transverse directions, which satisfy

〈ξL(t)ξL(t′)〉 = κL(p)δ(t − t′) , (6.7)

〈ξT (t)ξT (t′)〉 = κT (p)δ(t − t′) . (6.8)

κL(p) and two times κT (p) describe how much longitudinal and transverse momentum

squared is transferred to the quark per unit time. Note that at zero velocity, κL(0) =

κT (0) whereas for p > 0 one expects that κL(p) 6= κT (p). Also, upon assuming that the

momentum fluctuations of the particle are in equilibrium with the thermal medium, as

appropriate at zero velocity, a fluctuation-dissipation theorem relates µ(0) to κL(0) via the

Einstein relation

µ(0) =
κL(0)

2mT
, (6.9)

where m is the static mass of the quark. The relation (6.9) is also not expected to hold for

p > 0. (See ref. [99] for examples.)
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The central result of refs. [23, 24] is that an isolated quark moving through the N = 4

SYM plasma with its trailing, dragging, string feels a drag force proportional to p, described

by a momentum independent drag coefficient

µ(p) =
π
√

λ

2m
T 2 . (6.10)

Independently, κL(0) in the N = 4 SYM plasma was calculated directly in ref. [25]. These

authors found that κL(0) and µ(0) in (6.10) indeed satisfy (6.9), which can be considered

a new consistency check of the AdS/CFT framework.

eq. (6.10) demonstrates that in the high energy limit the energy loss mechanism in

strongly coupled N = 4 SYM theory is very different from that in QCD. The origin of the

difference is the fact that N = 4 SYM is not asymptotically free. In QCD, as discussed in

section 2, the average energy loss of a parton in the high energy limit is independent of p (or

at most logarithmically dependent on p) and it is proportional to the square of the distance

travelled through the medium. There, the dominant mechanism by which a high energy

parton loses its energy is through radiating gluons which have a high enough transverse

momentum kT (and an even higher energy) that αs evaluated at kT is weak, meaning that

the dominant energy loss processes can be described perturbatively, with nonperturbative

physics at scales of order the temperature coming in only via the description of the repeated

soft interactions between the radiated gluon and the medium, and between the original

high energy parton and the medium. The effect of these nonperturbative soft interactions

is encoded in the jet quenching parameter q̂, which can be defined nonperturbatively via a

light-like Wilson loop as described in section 2.

In ref. [15] and in the present paper, we seek insights about q̂ in QCD by calculating

the analogous quantity in N = 4 SYM. We do not attempt to describe the full process

of energy loss in N = 4 SYM because the asymptotic freedom of QCD is crucial to the

description of the radiative parton energy loss process which dominates at high energies,

making it impossible to model the physics of QCD parton energy loss at high energies in

a theory like N = 4 SYM which is strongly interacting at all scales.

Even though the drag coefficient (6.10) describes energy loss in a N = 4 SYM plasma

even for quarks moving relativistically [23], it cannot be used to extract q̂ or κT (p → ∞).

As we remarked after equation (6.8), except in the low-velocity limit one does not expect

κT (p) to be equal to κL(p) or κL(p) to be related to µ(p) via the Einstein relation. Indeed,

the direct calculation of κL in ref. [25] manifestly requires modification at nonzero p [100].

The κL(0) found in ref. [25] and indirectly in ref. [23] has the same parametric dependence

on λ and T as q̂ in (6.11), and is smaller than q̂ by a purely numerical factor of ∼ 1.20.

This is curious, since the quantity κL(0) = κT (0) has no evident relation to jet quenching

(since jets by definition are relativistic) or to the jet quenching parameter q̂.

To look for connections between N = 4 SYM energy loss described by (6.10) and data

from RHIC one should then seek circumstances in which all aspects of the energy loss

process are strongly coupled. Perhaps the energy loss of quarks which are slowly moving

and yet energetic — i.e. quarks which are heavy — is the best example, as stressed by

many of the recent papers [23 – 27], although extracting the contribution from energy loss
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to the medium modification of charmed meson production in the regime in which the parent

c-quark is slowly moving presents considerable challenges. Furthermore, precisely because

the entire energy loss process is treated in this approach, further questions like how the

N = 4 SYM medium responds to the dragging quark (i.e. “where does the lost energy

go?”) can be addressed [27].

6.3 Comparison of q̂ of N = 4 SYM with experimental estimate

We turn now to the comparison between q̂ in N = 4 SYM with that extracted from current

RHIC data. In eq. (3.45) we found that

q̂SYM =
π3/2Γ

(

3
4

)

Γ
(

5
4

)

√
λT 3 ≈ 26.69

√

αSYMNc T 3 . (6.11)

Taking N = 3 and αSYM = 1
2 , thinking αQCD = 1

2 reasonable for temperatures not far

above the QCD phase transition, we shall use λ = 6π to make estimates.5 From (6.11), we

find

q̂SYM = 4.5, 10.6, 20.7 GeV2/ fm for T = 300, 400, 500MeV . (6.12)

We have computed (6.11) in the large N and large ’t Hooft coupling λ limit and

thus it is only the leading order term in a double expansion in 1/
√

λ and 1/N2. There

are two sources of contributions to 1/
√

λ corrections: from the fluctuation of the string

world sheet (3.5) and from the modification of the background geometry (3.8) due to α′

corrections. The authors of ref. [21] find that the leading contribution of the second type

of correction is given by

q̂SYM(λ) = q̂SYM

(

1 − 1.765λ− 3
2 + · · ·

)

. (6.13)

5This qualitative comparison will suffice for our purposes. The question of how to relate the coupling

strengths of different thermal quantum field theories to each other is not guaranteed to have an unam-

biguous answer. Here we note that, unlike αSYM, the value of αQCD(T ) is not well-defined in a strongly

interacting quark-gluon plasma. It may thus be preferable to make this comparison using a quantity cal-

culated nonperturbatively in both theories, and compare the QCD value for the QGP at a few times the

QCD critical temperature Tc, without reference to any αQCD, to the λ-dependent SYM value, thus fixing

λ. Because we want to keep the question of how to fix λ separate from the question of how the difference

in the number of degrees of freedom in QCD and N = 4 SYM affects q̂, it is also important to choose a

quantity which is independent of the number of degrees of freedom. (For our purposes this rules out using

the Debye mass, as suggested in ref. [90] in a different context.) One recent proposal [91] is to compare the

shapes of the static quark-antiquark potential. The screening length Lmax is independent of λ in N = 4

SYM, so that cannot be used. Instead, one has to compare the shapes of the potentials themselves, which

is not straightforward. Another possibility is to use the lattice QCD calculation of the ratio of the energy

density of the QCD quark-gluon plasma to that of a non-interacting Stefan-Boltzmann gas of quarks and

gluons. According to lattice QCD calculations done with two or three flavors of quarks, this ratio rises to

about 0.78-0.82 for T ∼ (1.5 − 2)Tc and then flattens at higher T [92]. In SYM, it is 3

4
in the λ → ∞

limit [93] and, using the leading correction to this result which is + 45

32
ζ(3)λ−3/2 [94], the range 0.78-0.82

corresponds to 9 < λ < 15. The pressure in two- and three-flavor QCD also approaches about 0.8 times

its Stefan-Boltzmann value, but only at the higher temperature T ∼ (2.5 − 3)Tc [92], suggesting that a

comparison of this sort could be more appropriate at the LHC than at RHIC.
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If one uses αSYM = 1
2 , then the correction from (6.13) is about 2%. The corrections due to

fluctuations of the world sheet, the leading order term of which is expected to be of order

1/
√

λ, are harder to compute and are not known at the moment. 1/N2 corrections, which

require string loop calculations, are also beyond currently available technology. It is worth

noting, however, that the ratio of energy density and pressure to their Stefan-Boltzmann

values are both quite insensitive to changing N from 3 to 4 to 8 [95].

In a heavy ion collision, q̂ decreases with time τ as the hot fluid expands and cools.

The time-averaged q̂ which has been determined in comparison with RHIC data is q̂ ≡
4

(L−)2

∫ τ0+L−/
√

2
τ0

τ q̂(τ) dτ , found to be around 5-15 GeV2/fm [96, 97]. If we assume a

one-dimensional Bjorken expansion with T (τ) = T0

(

τ0
τ

)1/3
, take τ0 = 0.5 fm, and take

L−/
√

2 = 2 fm, the estimated mean distance travelled in the medium by those hard partons

which “escape” and are detected [97], we find that to obtain q̂ = 5GeV2/fm from (6.11)

we need T0 such that T (1 fm) ≈ 310 MeV, only slightly higher than that expected from

hydrodynamic modelling [98]. With L−/
√

2 = 1.5 fm, we find q̂ = 5GeV2/fm for T (1 fm) ≈
280 MeV, fully consistent with expectations. There are currently too many uncertainties in

the various components of this comparison to make a strong statement, but it seems clear

that the q̂ given by (6.11) that we have calculated in the quark-gluon plasma of N = 4

SYM is in qualitative agreement with q̂ = 5 GeV2/fm, which is in turn consistent with

RHIC data.

The value obtained from (6.11) assumes that the medium is static. However, in a rela-

tivistic heavy ion collision, the medium itself develops strong collective flow, meaning that

the hard parton is traversing a moving medium — it feels a wind. Thus to compare (6.11)

with the experimental estimate we should include the effects of the wind on q̂ that we

discussed in section 4. We found in eq. 4.13 that

q̂ = γf (1 − vf cos θ) q̂0 , (6.14)

where vf = tanh ηf is the velocity of the wind, γf = 1/
√

1 − v2
f , and θ is the angle

between the direction of motion of the hard parton and the direction of the wind. q̂0 is

the value of q̂ in the absence of a wind. The result (6.14) for the dependence of q̂ on

collective flow is valid in QCD and in N = 4 SYM and in the quark-gluon plasma of any

other gauge theory, since its derivation (see section 4) relies only on properties of Lorentz

transformations. If we crudely guess that head winds are as likely as tail winds, and that

the typical transverse wind velocity seen by a high energy parton is about half the speed

of light, q̂ is increased relative to that in (6.11) by a factor of 1.16. A credible evaluation

of the consequences of (6.14) for the time-averaged q̂ extracted from data will, however,

require careful modelling of the geometry of the collision and the time-development of the

collective flow velocity, as in refs. [85 – 87].

The weak-coupling QCD estimate of q̂ given in (2.18) is, when evaluated with αs = 1/2,

smaller than that in (6.12) by about a factor of 5. This means that in order to make the

weak-coupling estimate consistent with data from RHIC, we would have to choose αs > 1,

certainly beyond weak-coupling. The strong coupling calculation of q̂ in N = 4 SYM is

certainly in better agreement with data from RHIC than the weak-coupling calculation
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in QCD. The obvious question, then, is how much the strong coupling result will change

as one modifies the theory from N = 4 SYM towards, and ultimately to, QCD. We shall

describe the current state of our ability to answer this question in section 6.5.

The BDMPS description of radiative parton energy loss, with the nonperturbative

physics of the medium entering through the jet quenching parameter q̂, is appropriate in the

high parton energy limit. It is only by comparison to data that we can learn whether the jets

being quenched at RHIC are sufficiently energetic for their energy loss to be described well

by this formalism. To date this comparison has been broadly successful, albeit with q̂ seen

as a free parameter. If we understood the QCD prediction for q̂ as a function of temperature

in a strongly interacting quark-gluon plasma even at the factor of two level, this would

make this comparison more stringent. And, it would turn q̂ into a “thermometer” with a

calibration error of only a factor of 21/3, which would be an exceptionally valuable addition

since one of the biggest current weaknesses in our understanding of RHIC phenomena is

that we do not have an experimental measure of the temperature at, say, a time of 1 fm

after the collision. In the next two subsections, we first frame the questions that need to

be thought through if it is to be possible to go from our calculation of q̂ in N = 4 SYM to

a factor of two understanding of q̂ in QCD, and then review and extend the calculations

of q̂ in various other gauge theories, yielding a conjecture for how to estimate q̂ in QCD

at a semi-quantitative level, still with many caveats. Our conjecture is that q̂QCD/q̂SYM is

of the order of
√

47.5/120 ' 0.63, namely the square root of the ratio of the numbers of

degrees of freedom in the two theories.

6.4 N = 4 SYM versus QCD

We found in section 6.3 that q̂ calculated in N = 4 SYM theory is close to the value

extracted from RHIC data. Given that RHIC is probing the quark-gluon plasma of QCD,

is this agreement meaningful or accidental? In what respects can the strongly interacting

plasma of N = 4 SYM theory give a reasonable description of the quark-gluon plasma in

QCD? After all, at a microscopic level N = 4 SYM is very different from QCD:

• The theory is conformal, supersymmetric and contains additional global symmetry.

The coupling does not run and there is no confinement.

• No dynamic quarks, no chiral symmetry and no chiral symmetry breaking.

• Additional scalar and fermionic fields in the adjoint representation.

These features of course make the vacuum sectors of the two theories very different. How-

ever, if the quark-gluon plasma in QCD is strongly interacting, as indicated by data from

RHIC, then one may ask whether the macroscopic properties, both thermodynamic and

dynamic, of quark-gluon plasma at sufficiently strong coupling may be insensitive to dif-

ferences between the theories which seem stark in vacuum. It is often the case that macro-

scopic properties of a sufficiently excited many-body system are not sensitive to the detailed

underlying dynamics, with systems within the same universality class exhibiting similar

phenomena. We are used to the idea that all metals, or all liquids, or all ferromagnets
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have common, defining, characteristics even though they may differ very significantly at

a microscopic level. What we are asking here is what are the defining commonalities of

quark-gluon plasmas in different theories, and in what instances do these commonalities

allow qualitative or semi-quantitative lessons learned about the quark-gluon plasma of one

theory to be applied to that of another.

Returning to the differences between QCD and N = 4 SYM, many are obviously

irrelevant to a comparison between strongly-coupled plasmas in the two theories. After all,

supersymmetry is explicitly and badly broken at high temperature and, above Tc in QCD,

there is no confinement and no chiral condensate. Furthermore, in a strongly interacting

liquid there are, by definition, no well-defined, long-lived quasiparticles anyway, making it

plausible that observables or ratios of observables can be found which are insensitive to

the differences between microscopic degrees of freedom and interactions. Because N = 4

SYM is a conformal theory whereas QCD is not, N = 4 SYM cannot be used to describe

QCD at or below its phase transition at T ∼ Tc, and cannot be used to describe QCD

at asymptotically high temperatures. However, there are a variety of indications from

lattice QCD calculations (enumerated below) that QCD thermodynamics is reasonably

well approximated as conformal in a range of temperatures from about 2Tc up to some

higher temperature not currently determined. It is not currently known whether the quark-

gluon plasma of QCD, as explored at RHIC and in lattice QCD calculations, and that of

N = 4 SYM, as explored using AdS/CFT calculations, are in the same universality class,

or even in what sense this question could be made precise. However, given the rapidly

increasing list of similarities between the two quark-gluon plasmas, it does not seem too

far-fetched to imagine. Here is a list of some of the similarities between the quark-gluon

plasmas of the two theories, notwithstanding the stark differences between their vacua,

with thermodynamic comparisons listed first followed by dynamic comparisons:

• Above about 1.2Tc, the ratio of the energy density ε in 2- and 3-flavor QCD to that

in the absence of interactions is close to T -independent and takes on the value of

about 0.8 [101, 92, 89]. In zero-flavor QCD, this ratio is closer to 0.9 [102]. In N = 4

SYM, this ratio is 3/4 in the λ → ∞ limit [93] and is 0.8 for λ ∼ 11 [94].

• Above about 2.5Tc, the ratio of the pressure P in 2- or 3-flavor QCD to that in the

absence of interactions is also about 0.8. In zero-flavor QCD, this ratio is closer to

0.9 [102]. In N = 4 SYM, this ratio must be the same as that defined via the energy

density, a condition that is satisfied well in QCD. Note, however, that for T . 2.5Tc,

the deviation from conformality parametrized by ε− 3P is significant. This suggests

that the use of a conformal theory like N = 4 SYM as a model for the quark-gluon

plasma may be more quantitatively reliable for heavy ion collisions at the LHC than

at RHIC, since RHIC is likely exploring temperatures that are less than 2Tc whereas

the LHC can be expected to reach temperatures that are higher by about a factor of

two.

• All the results in N = 4 SYM have been obtained in the N → ∞ limit. Although

corrections are expected to be of order 1/N2, they have not been computed. It is
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therefore very useful to test how the quantities on the QCD side of these comparisons

change with N . One example of such a test is the calculation of ref. [95], which finds

that the ratio of the pressure to its noninteracting value changes very little as N is

changed from 3 to 4 to 8.

• The square of the speed of sound in the QCD quark gluon plasma is close to 1/3,

the value for a conformal theory, for T & 2Tc; at T = 1.5Tc, it is already ' 0.27 −
0.31 [102 – 105, 89].

• The screening length defined by the potential between a quark and antiquark at rest

is 0.869/πT ' 0.28/T in N = 4 SYM in the large N and λ limits, as calculated

in section 3 and as calculated first in refs. [28]. In QCD the screening length is not

sharply defined, since the potential does not change suddenly to zero, but operational

definitions exist in the literature. For QCD with zero [106] and two [107] flavors, it is

∼ 0.7/T and ∼ 0.5/T , respectively. QCD and N = 4 SYM are therefore qualitatively

comparable in this regard, with the quantitative difference between them plausibly

reflecting the larger number of degrees of freedom in N = 4 SYM.

• Turning now to dynamic quantities, the shear viscosity in units of the entropy density

is 1/4π in N = 4 SYM in the λ → ∞ limit [3], and is ' 1.25/4π for λ = 6π [7].

Given the degree to which data on the azimuthal anisotropy of RHIC collisions are

well-described by zero-viscosity hydrodynamics, the ratio of the shear viscosity to the

entropy density has been estimated to be comparably small in the quark-gluon plasma

at RHIC [11]. A quantitative extraction of η from RHIC data requires viscous hy-

drodynamic calculations, which are currently being pursued by various groups [108].

• In N = 4 SYM, the quark-antiquark screening length scales with velocity according to

Ls(v) ∼ Ls(0)/
√

γ, as discussed in ref. [31] and sections 3.1 and 5 above. Comparison

of this predicted scaling to QCD awaits data from RHIC on the pT -dependence of

J/Ψ suppression at RHIC at pT > 5 GeV and on the pattern of pT -dependence of

J/Ψ and Upsilon suppression at the LHC.

• As we have discussed in section 6.3, the jet quenching parameter q̂ in N = 4 SYM is

close to the value extracted from RHIC data [15].

To understand whether the above similarities are meaningful, one avenue is to study

strongly interacting quark-gluon plasmas in other non-Abelian gauge theories with dual

gravity descriptions and see whether a general picture emerges. In the case of the ratio of

the shear viscosity to the entropy density, it was indeed found that this ratio is the same

in a broad class of gauge theories [4, 5]. A necessary (but not sufficient) condition for this

striking lack of dependence on the nature of the microscopic theory is that the dependence

on the number of degrees of freedom cancels in the dimensionless ratio. In thinking about

how the value of q̂, a dimensionful quantity, may change in going from N = 4 SYM to

QCD, it seems to us that the two most pressing questions are how q̂ depends on the

number of degrees of freedom and on the fact that QCD includes fundamentals whereas all
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the degrees of freedom in N = 4 SYM are adjoints. These seem to have greater potential to

change q̂ significantly than do 1/
√

λ corrections, 1/N2 corrections or corrections due to the

deviation away from conformality. We cannot currently address the effect of fundamentals.

In section 6.5, we consider how q̂ depends on the number of degrees of freedom.

6.5 The jet quenching parameter and degrees of freedom

One qualitative feature of eq. (6.11) is that at strong coupling q̂ is proportional to
√

λ, not

to the number of degrees of freedom ∼ N2. This means that at strong coupling, q̂ cannot

be thought of as “measuring” either the entropy density s or what is sometimes described

as a “gluon number density” or ε3/4 as had been expected [76], since both s and the energy

density ε are proportional to N2λ0. Whereas the ratio of the shear viscosity to s turns

out to be universal in theories with gravity duals, the ratio q̂/s vanishes in the large-N

limit. Even though (6.11) upends prior intuition on this point, it nevertheless seems that q̂

should have some straightforward dependence on the number of degrees of freedom in the

theory. We shall now try to make this intuition precise.

We first examine how q̂ of different conformal field theories with a type IIB supergravity

dual compare to each other, using that of N = 4 SYM as a reference point. The ten-

dimensonal metric dual to a conformal field theory at zero temperature can be written in

the form

ds2
10 = Ω2(y)R2

(

ds2
AdS5

+ ds2
M5

(y)
)

, (6.15)

where R is the curvature radius of AdS5 and the metric for AdS5 inside the parenthesis is

normalized to have curvature radius unity. ds2
M5

is the metric of an internal five-dimensional

manifold. The warp factor Ω2(y) depends only on the coordinates y of the internal mani-

fold.6 To put the theory at finite temperature, one replaces ds2
AdS5

by the metric of (3.8)

of an AdS-Schwarzschild black hole. The computation of q̂ is identical to what we have

done before and we find that (cf. (3.45))

q̂ =
π3/2Γ

(

3
4

)

Γ
(

5
4

)

Ω2(y)R2

α′ T 3 . (6.16)

We shall compare different theories at fixed values of N , λ = 4πgsN and T . Note that the

N = 4 SYM relation
√

λ = R2/α′ is modified in this more general context, as we shall see

below in (6.17).

Let us first consider theories in which the warp factor is trivial, i.e. Ω = 1.7 In addition

to S5, which corresponds to N = 4 SYM theory, an infinite number of examples of such

dual pairs are now known [109, 110], with the boundary conformal field theories being

quiver gauge theories with product gauge groups. In the simplest example, the manifold

M5 is a manifold with the topology of S5 known as T 1,1 and the corresponding boundary

6The full supergravity solution also involves a self-dual five-form, which we will normalize to have the

flux of N D3-branes, and possibly three-forms (when Ω is nontrivial).
7In this case ds2

M5
is an Einstein manifold with curvature Rα

β = 4δβ
α. If one requires the boundary

theory be supersymmetric, then M5 needs to be a Sasaki-Einstein manifold.
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theory is the Klebanov-Witten CFT [111]. In general, Type IIB supergravity equations of

motion fix the curvature radius R in terms of the number N of D3-branes as

R4 = 4πgsNα′2 ωS5

ωM5

, (6.17)

where ωM5
and ωS5

= π3 are the volume of ds2
M5

and ds2
S5

respectively. Plugging (6.17)

into (6.16) we find that (with Ω = 1)

q̂CFT

q̂N=4
=

√

ωS5

ωM5

. (6.18)

Noting that the central charge a of a CFT can be written as [112, 113]

aCFT

aN=4
=

ωS5

ωM5

, (6.19)

we can rewrite (6.18) as
q̂CFT

q̂N=4
=

√

aCFT

aN=4
. (6.20)

For example, in the Klebanov-Witten theory [111],

q̂KW

q̂N=4
=

√

27

16
. (6.21)

As another example, note that if you start with N = 4 SYM, described by Type IIB string

theory on AdS5 × S5, and orbifold the S5 by Z2, the central charge of the CFT doubles

and q̂ increases by a factor of
√

2. To understand the implications of (6.18), recall that the

entropy density of a CFT is related to its central charge such that

sCFT

sN=4
=

aCFT

aN=4
, (6.22)

making it clear that the central charge counts the number of thermodynamic degrees of

freedom in the theory. We conclude that in any conformal theory with a gravity dual (6.15)

with Ω = 1,
q̂CFT

q̂N=4
=

√

sCFT

sN=4
. (6.23)

Note that even though q̂ ∝
√

λN0 and s ∝ N2λ0, these factors cancel in the ratios on the

left and right hand sides of (6.23). This equation should be read as saying that, in the

relevant class of theories, q̂/
√

λ is proportional to
√

s/N2.

When the warp factor Ω(y) in (6.15) is nontrivial, the value of q̂ depends on where in the

internal space M5 we put the probe brane. In these theories, different types of quarks, which

correspond to putting branes at different locations in the internal manifold, have different

values of q̂, as was first pointed out in ref. [17]. An example of (6.15) with nontrivial Ω

is the Pilch-Warner geometry [114] which is dual to the N = 1 superconformal CFT of

Leigh and Strassler [115]. In this case the computation of the normalization condition and
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central charge are more complicated (see, e.g., ref. [116]), but the result is again simple to

state:
q̂LS(y)

q̂N=4
= Ω2(y)

√

aLS

aN=4
, (6.24)

with the ratio of q̂’s again proportional to the square root of the ratio of central charges.

For the Pilch-Warner geometry,8 aLS

aN=4
= 27

32 and

Ω2(y) =

(

3 − cos 2θ

2

)
1
2

, 0 ≤ θ ≤ π

2
, (6.25)

where θ is an angle specifying a location within the internal M5.

Thus for any two CFTs with a holographic dual, the ratio of their jet quenching pa-

rameters q̂ is proportional to the square root of the ratio of their central charges, and hence

to the square root of the ratio of their number of degrees of freedom. “Proportional to”

becomes “equal to” if Ω = 1. In particular, if two CFTs are connected by a renormalization

group flow then q̂ for the UV theory is always larger than that of the IR theory.

Since QCD is not a CFT, we cannot directly apply the result we have just derived

to QCD. However, to the extent that the quark-gluon plasma of QCD is approximately

conformal, as we have discussed in section 6.4, perhaps our result for comparing CFTs can

be used as a guide. In doing so it seems fair to set Ω = 1 since there is no indication

that if QCD with Nf massless flavors of quarks had a holographic dual, there would be

quarks with differing physics corresponding to branes at differing locations in an internal

manifold. So, we conjecture that

q̂QCD

q̂N=4
∼

√

sQCD

sN=4
=

√

47.5

120
' 0.63 (6.26)

is a good estimate of the effect of the difference between the number of degrees of freedom

in the two theories on q̂. We have used N = 3 in both theories, and have used Nf = 3

in QCD.9 And, we make the comparison with λ chosen in the N = 4 SYM theory such

that the ratio of s to its value in a noninteracting theory is the same as that in the QCD

quark-gluon plasma. It would be good to ask how (6.26) is affected by the fact that some

of the degrees of freedom in QCD are fundamentals. Unfortunately, we do not currently

have any examples of calculations of q̂ in theories with fundamentals among the degrees of

freedom of the strongly interacting plasma.

Next, we ask how q̂ is affected by deviations from conformality. In a nonconformal

theory with a dual gravity description, the bulk metric in the string frame can generically

be written in the form

ds2 = g(r, y)
[

−(1 − f(r, y))dt2 + d~x2)
]

+
dr2

h(r, y)
+ ds2

M5
(y, r) , (6.27)

8Note that our normalization (6.15) is different from that in [114] and [116].
9In QCD, the gluons contribute 2(N2 − 1) and the Nf flavors of quarks contribute 7

8
4NNf . In N = 4

SYM, the gauge bosons, fermions, and scalars contribute 2(N2−1), 7

8
8(N2−1) and 6(N2−1), respectively.
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where y again denotes coordinates of the internal manifold. The corresponding q̂ can be

written as [16, 21]

q̂ =
1

πα′

(

∫ ∞

r0

dr
√

fhg3

)−1

. (6.28)

It appears hard to extract a general story from (6.28) directly, without studying more

examples. We can write q̂ in the form

q̂ =

√

a(λ,
µ

T
)
√

λT 3 (6.29)

with µ some mass parameter(s) of the nonconformal theory. Motivated from our discussion

of conformal theories it is tempting to speculate that a(λ, µ
T ) can be considered as a measure

of the number of degrees of freedom of a theory at an energy scale T . The jet quenching

parameter q̂ for the nonconformal cascading gauge theories of ref. [88] is known in the high

temperature limit and the result is consistent with the hypothesis that a(λ, µ
T ) decreases

with renormalization group flow [16]. It would also be interesting to compute q̂ for the

geometry discussed in [117] to see whether the function a(λ, µ
T ) decreases monotonically

with renormalization group flow. In other words, the function a(λ, µ
T ) defined by the jet

quenching parameter is a candidate resolution of the long-standing challenge to find a four

dimensional analogue of the c−function of two dimensional conformal field theory.

We can also ask seek to evaluate how much q̂ is affected if the theory is “as non-

conformal” as the quark-gluon plasma of QCD is at a few times its Tc. There is no one

prescription for quantifying nonconformality. However, the analysis of the cascading gauge

theories of ref. [88] provides a nice example, as the effect of the nonconformality on q̂ can

be written [16]

q̂cascading

q̂KW
=

(

1 − 3.12

(

1

3
− v2

s

))

, (6.30)

where vs is the speed of sound. For v2
s in the range 0.27-0.31, as in QCD at T = 1.5Tc [89],

the effect of the deviation from nonconformality on q̂ ranges from 6% to 18%.

We have obtained one nontrivial check in a nonconformal theory of our conjecture

that a, defined from the jet quenching parameter via (6.29), is a measure of the number of

degrees of freedom, as required if our specific conjecture (6.26) is to hold. Consider q̂ for

(p+1)-dimensional super-Yang-Mills theories (with 16 supercharges) living at the boundary

of the geometry describing a large number of non-extremal black Dp-branes [119]. We will

restrict to p < 5. The case p = 3 is N = 4 SYM; the cases p = 2 and p = 4 correspond to

nonconformal theories in 2 + 1- and 4 + 1-dimensions. The metric dual to these theories

can be written as

ds2 = α′ (dpλ̃z3−p)
1

5−p

z2

(

−f̃dt2 + ds2
p +

(

2

5 − p

)2 dz2

f̃
+ z2dΩ2

8−p

)

, (6.31)
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where10

λ̃ = g2
MN, f̃ = 1 −

(

z

z0

)
14−2p
5−p

, dp = 27−2pπ
9−3p

2 Γ

(

7 − p

2

)

. (6.32)

ds2
p is the metric for flat p-dimensional Euclidean space and dΩ2

d is the metric for a d-

dimensional sphere. Note that g2
M , and hence λ, have mass dimension 3 − p. The horizon

is at z = z0 and the boundary is at z = 0. The temperature can be obtained as

T =
7 − p

5 − p

1

2πz0
. (6.33)

The energy density ε and entropy density s of the systems can be written as

ε = N2 9 − p

14 − 2p
bpλ

p−3

5−p

eff (T )T p+1 , (6.34)

s = N2 bpλ
p−3

5−p

eff (T )T p , (6.35)

where

λeff(T ) = λ̃T p−3, bp =

(

216−3pπ
13−3p

2 Γ(7−p
2 )

(7 − p)7−p

)
2

5−p

. (6.36)

λeff(T ) is the effective dimensionless coupling at temperature T . Note that equation (6.35)

indicates that the quantity bpλ
p−3

5−p

eff (T ) characterizes the number of degrees of freedom at

temperature T . By following the procedure of ref. [15] or section 3 above, or by simply

applying (6.28) to (6.31), we find that

q̂ =
8π

1
2 Γ(6−p

7−p)

Γ( 5−p
14−2p )

b
1
2
p λ

1
2

p−3

5−p

eff (T )
√

λeff(T ) T 3 . (6.37)

We see from (6.37) that the quantity a(λeff ) defined as in (6.29) has the same dependence

on λeff that the entropy density (6.35) has.

The calculation of q̂ in the nonconformal p = 2 and p = 4 Dp-brane theories supports

our conjecture that a, defined from q̂ via (6.29), measures the number of degrees of freedom

at temperature T .11 This conjecture can be further tested by computing q̂ in other noncon-

formal theories, like for example the N = 2∗ theory of refs. [118, 6]. This would also allow

10Here we are following standard string theory convention and normalizing the gauge coupling constant

as g2
M = (2π)p−2gsα

′
3−p

2 . For p = 3, the gauge coupling in the standard field theoretical convention which

we have used elsewhere is g2
YM = 2g2

M , meaning that λ̃ = 1

2
λ. For p = 3, the relation between these

coordinates and those in (3.8) is z = R2/r with R2 = α′
√

λ, meaning that z0 = R2/r0 and f̃ = R2f/r2.
11A relation analogous to that between q̂ and the number of degrees of freedom may also be valid for

the longitudinal drag coefficient µL of refs. [23, 24], defined in (6.5) and given by (6.10) in N = 4 SYM. In

particular, following (6.29) we can introduce

µL =
1

m

r

ã(λ,
µ

T
)
√

λT 2 (6.38)

and ã(λ, µ
T

) and a(λ, µ
T

) could coincide up to some numerical constant. This holds for all the CFTs with
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us to test our conjecture that the function a(λ, µ
T ) decreases under renormalization group

flow, and it would test the conclusion indicated by (6.30) that deviations from conformality

with a magnitude comparable to those in the QCD quark-gluon plasma do not change q̂

much.

If our conjecture relating q̂ to the number of degrees of freedom, valid for any con-

formal theory, survives being further tested via the calculation of q̂ in more examples of

nonconformal theories with gravity duals and, even better, in theories with fundamentals

we will then have a new example of a common feature of strongly interacting quark-gluon

plasmas. Furthermore, the conjecture (6.26) together with our result (6.11) for q̂SYM will

then provide a theoretical prediction for the jet quenching parameter q̂ in the strongly

interacting quark-gluon plasma of QCD. In order to make quantitative contact with data,

we will further need to model the effects of collective flow on q̂, using the result (6.14)

which is valid in QCD. On the experimental front, we can look forward to studies of jet

quenching being extended to higher and higher transverse momentum jets as RHIC runs at

higher luminosities and as the LHC comes on line. Furthermore, particularly at the LHC

new observables sensitive to parton energy loss will be developed. Making these assump-

tions about (near) future theoretical and experimental developments, we can look forward

to a stringent comparison between experimental and theoretical determinations of the jet

quenching parameter in the strongly interacting quark-gluon plasma of QCD.

Note added. Shortly after the completion of our work, two papers [120, 121] appeared

which calculated the mean squared momentum transfer κT (p) in (6.8) for a heavy external

quark of mass M moving with a velocity v = tanh η through the N = 4 plasma. These

calculations are valid for the kinematic regime [120, 121]

√

cosh η <
M√
λT

= Λ , (6.40)

meaning that they can be extended to η → ∞ only if the M → ∞ limit has been taken

first. In the regime (6.40), one finds

κT =
√

cosh η
√

λπ T 3 . (6.41)

In contrast, as discussed in section 3.3 our calculation of q̂ requires
√

cosh η > Λ. Since

this kinematic region does not overlap with (6.40), a direct comparison of q̂ and κT is

difficult. However, we agree with refs. [120, 121] that it would be desirable to have a

better understanding of whether there is a connection between q̂ and κT , and what this

connection could be. To illustrate this open issue, let us make the following remarks. On

the one hand, it is obvious that κT cannot play the role of q̂ within the BDMPS energy

a IIB supergravity dual, meaning that in all these theories ã is proportional to the number of degrees of

freedom just as a is. This is also the case for the Dp-brane, where we find that

µL =
1

m

„

5 − p

2

«
7−p

5−p

b
1

2
p λ

1

2

p−3

5−p

eff (T )
p

λeff(T )T 2 . (6.39)
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loss formalism (2.14), on which the definition of q̂ is based. To see this, note first that q̂

in (2.14) is defined for a quark moving strictly along the light-cone, η → ∞, for which κT

in (6.41) diverges. Then, note that replacing q̂ in (2.14) by a divergent quantity leads to an

ill-defined expression. On the other hand, the value of q̂ in (2.14) is known to set the scale

of the transverse momentum broadening of the medium-modified gluon radiation. (For

example, see figure 1 of ref. [72].) So, while the value of q̂ is known to set the transverse

momentum scale of BDMPS energy loss, a direct connection between q̂ and κT may not

be straightforward.

We also stress that in the BDMPS formalism, the quantity q̂ which parameterizes

radiative energy loss of heavy quarks moving at high velocity is precisely the same as that

for massless quarks, and is defined in terms of the short distance behavior of a strictly

light-like Wilson loop (2.15). One way of seeing this is to recall from our discussion in

section 2 that the two adjoint light-like Wilson lines in the Wilson loop which defines q̂

can be thought of (loosely) as representing the radiated gluon (in the amplitude and in

the conjugate amplitude in the calculation of gluon emission) which is of course on the

light-cone independent of the mass of the quark. (See section 2 and references therein for

a more complete description.) Although q̂ itself is independent of the mass of the quark

which is losing energy, the relation between q̂ and ∆E, the average energy lost, does depend

on the quark mass. The relation (2.17), obtained from (2.14), is only valid for massless

quarks. (For the analogous expressions for massive quarks, see ref. [123].) The BDMPS

formalism which relates the energy lost by massless or massive quarks to q̂ is only valid to

leading order in 1/E. At higher order, i.e. at lower energies, the energy loss will depend on

more properties of the medium than just the single parameter q̂. The divergent quantity

κT computed in refs. [120, 121] cannot serve to define the jet quenching parameter q̂ in the

BDMPS radiation spectrum (2.14) for either massless or massive quarks.

Also after our paper appeared, Argyres et al. presented a study of “upward going”

space-like string configurations [122]. In the notation of our paper, these are found as

follows. First, extend the AdS5 spacetime above the (no longer appropriately named)

boundary D3-brane at r = Λr0, where the quark that defines the Wilson loop is located.

Then, solve (3.32) with the sign of y′ at σ = ±`/2 chosen so that the solution y(σ) to (3.32)

begins with y(−`/2) = Λ, then ascends to a turning point at y = ym (with ym defined

by (3.33) taking on a value which is just below
√

cosh η for small ` and hence small q), and

then descends back down to y(`/2) = Λ. We note that in the limit in which
√

cosh η → ∞
at fixed Λ, the turning point up to which this solution ascends is infinitely far above the

“boundary” at Λ.

Hence, according to the standard IR/UV connection [79], these strings are probing

physics at length scales infinitely shorter than the thickness of a Wilson line, in other

words infinitely far to the ultraviolet of what is normally considered to be the ultraviolet

cutoff in the field theory. It remains to be seen what field theory interpretation can be

given to these upward going strings, but they are certainly not relevant to the evaluation of

thermal expectation values of Wilson loops, which are located on D3-branes which bound

the AdS5 spacetime.

The results of ref. [122] themselves confirm the conclusion, reached above via the
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IR/UV connection, that the upward-going strings are not related to the light-like Wilson

loop which arises in the physics of deep inelastic scattering and radiative energy loss in

QCD and which we have calculated in N = 4 SYM. The action of the upward-going strings

of ref. [122] is the same as that of the configuration (3.36), namely S = i
√

λTLL−/2
√

2,

and is linear in L, the tranverse extent of the Wilson loop. If the expectation value of

the light-like Wilson loop were to have this behavior, it would yield a photoabsorption

probability (2.5) (for the thought-experiment of deep inelastic scattering off quark-gluon

plasma) which fell at large virtuality only like 1/Q, rather than the standard 1/Q2. [See our

discussion of eqs. (2.4) and (2.5).] Furthermore, if we subtract S0 from the action S, with

the finite S0 given by (A.18) for any choice of p, this yields a negative real L-independent

term in the exponent of 〈W (Clight−like)〉, making the photoabsorption probability nonzero

in the Q → ∞ limit, meaning that a dipole of zero size would have a nonzero absorption

probability.
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A. Single-string drag solutions and heavy-light mesons

The calculation of the expectation values of time-like and light-like Wilson loops in sections

3 and 5 required the subtraction of terms corresponding to the action of a quark and

antiquark which propagate independently along the long sides of the Wilson loop, i.e.

without seeing each other. In this appendix, we enumerate the different extremal string

world sheets that are possible (for different values of an integration constant) given a single

quark at rest on the D3-brane at r = r0Λ in the presence of a thermal medium moving

with rapidity η along the x3-direction.

If Λ >
√

cosh η, in addition to the drag solution of refs. [23, 24] we find solutions in

which the string which begins on the D3-brane at r = r0Λ ends on a D3-brane located at

r = r0
√

cosh η. Such solutions model mesonic bound states of a heavy quark and a light

quark in which the light quark drags behind the heavy quark.

We discuss a single quark moving along the x3-direction. The string world sheet of

this quark is of the form

τ = t, σ = r, x3 = x3(τ, σ) . (A.1)
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Calculating the components gαβ of the induced metric (3.6) within this ansatz, one finds

for the world-sheet action (3.5) of two independent strings

S0 =
2

2πα′

∫ r0Λ

r0

dr

√

A

f
− 2B

f
ẋ3 −

C

f
ẋ2

3 + (AC + B2)x′2
3 . (A.2)

Here, ẋ3 ≡ ∂x3/∂t and x′
3 ≡ ∂x3/∂r. The notational short hands f and A, B and C are

defined in (3.9) and (3.14), respectively. We seek static profiles x3 = x3(σ) that satisfy the

equations of motion from (A.2). We rescale the variables

r = r0y , x3 =
R2

r0
z , (A.3)

and we introduce the notational short hands

H = y4 − cosh2 η , D = y4 − 1 . (A.4)

The world-sheet action S0 takes the form (z′ ≡ ∂yz)

S0 = K

∫ Λ

1
dy

√

H

D
+ Dz′2 , (A.5)

with K =
√

λTT , where T is the extension of the Wilson loop in the t-direction. The

Euler Lagrange equations of motion imply ∂L
∂z′ = q = const., which leads to

z′2 = q2 1

(y4 − 1)2
y4 − cosh2 η

y4 − 1 − q2
. (A.6)

We now classify the solutions to these equations of motion which begin from y = Λ.

A.1 Solutions in the Λ >
√

cosh η regime

i) To have a solution stretching between y = Λ and y = 1, the only allowed value for q

is

q2 = sinh2 η , (A.7)

which leads to

z′ = sinh η
1

y4 − 1
. (A.8)

Integration of this equation gives the drag solution

z(y) = const. − sinh η [arctan(y) + arccoth(y)] . (A.9)

This is the solution in the rest frame of the quark and its string. In the rest frame

of the medium, (A.9) is multiplied by the Lorentz contraction factor
√

1 − v2 =

1/ cosh η, and agrees with the solution of ref. [23, 24]. For the solution (A.8), the

action (A.5) takes the form

S0 =
√

λ T T

∫ Λ

1
dy . (A.10)
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Since T is the proper time in the rest frame of the quark, it is related to the “labora-

tory” time in the rest frame of the medium via T = tlab/ cosh η. Hence, (A.10) is the

relativistic boost of the action of a static quark. This makes it the natural choice for

the subtraction term in our analysis of the quark-antiquark potential in sections 3.1

and 5. We saw in figure 2 that, with this choice of subtraction, the quark-antiquark

potential at small L is independent of the velocity of the medium, as is desirable on

physical grounds.

ii) Solutions of (A.6), which stop at y1 =
√

cosh η, exist for values of q satisfying

0 ≤ q2 < sinh2 η . (A.11)

The actions for such solutions are

S0 = K

∫ Λ

y1

dy

√

y4 − cosh2 η

y4 − 1 − q2
. (A.12)

These solutions describe “mesons” made from a heavy quark and a light quark with

the light quark dragging behind the heavy quark.

A.2 Solutions in the
√

cosh η > Λ regime

All solutions in this regime stretch between y = Λ and the horizon y = 1. In this regime,

y4 − cosh2 η < 0, since y ≤ Λ. Requiring z′2 ≥ 0, one finds from (A.6) that

q2

y4 − (1 + q2)
< 0 . (A.13)

This condition can be realized in two different ways:

i) Solutions with time-like world sheet.

Eq. (A.13) can be satisfied for

q2 > 0 , y4 − (1 + q2) < 0 −→ 1 + q2 > Λ4 . (A.14)

The action for these solutions of (A.6) is time-like

S0 = K

∫ Λ

1
dy

√

cosh2 η − y4

1 + q2 − y4
. (A.15)

For the value q2 = sinh2 η, this action coincides with (A.10).

ii) Solutions with space-like world sheet.

Eq. (A.13) is also satisfied for

q2 < 0 , y4 − (1 + q2) > 0 −→ 1 + q2 < Λ4 . (A.16)

In this case, q = i p is purely imaginary. The equation of motion (A.6) becomes

z′ =
p

y4 − 1

√

cosh2 η − y4

√

y4 + p2 − 1
, (A.17)
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which has well-defined solutions for real values p ≥ 0. The action is that of a space-

like world sheet and is imaginary

S0 = iK

∫ Λ

1
dy

√

cosh2 η − y4

y4 + p2 − 1
. (A.18)

In the calculation in section 3.2 of the expectation value of the light-like Wilson loop that

defines the jet quenching parameter, we used (A.18) with p = 0 as the L-independent

subtraction term because it satisfies (3.43).

B. Time-like Wilson loop with dipole parallel to the wind

In section 5, we calculated the static qq̄-potential for (almost) all dipole orientations with

respect to the wind. While the parameterization (5.1) of the two-dimensional world sheet

used there is applicable for arbitrarily small angles θ, it is not applicable for θ = 0, the

case where the dipole is parallel to the wind. In this appendix, we repeat the calculation

of section 5 with a new parametrization which works for θ = 0 and in fact for 0 ≤ θ < π/2

but which does not work for θ = π/2.

We start again from the boosted metric (3.13), but in contrast to (5.1), we parametrize

the world sheet by

τ = t, σ = x3, x2 = const, x1 = x1(σ), r = r(σ) . (B.1)

The role of x1 and x3 are interchanged in this parametrization relative to that in section 5.

We define dimensionless coordinates

y =
r

r0
, w = x1

r0

R2
, σ̃ = σ

r0

R2
, l = L

r0

R2
, (B.2)

and drop the tilde. The boundary conditions on y(σ) and w(σ) then become

y

(

± l

2
cos θ

)

= Λ , w

(

± l

2
cos θ

)

= ± l

2
sin θ . (B.3)

The Nambu-Goto action takes the form S(C) =
√

λT T
∫ l/2
0 dσL, with the Lagrangian now

given by

L =

√

(y4 − 1) + (y4 − cosh2 η)w′2 +
y4 − cosh2 η

y4 − 1
y′2 , (B.4)

where y′ and w′ denote derivatives with respect to σ. The constants of the motion are

H = L − y′
∂L
∂y′

− w′ ∂L
∂w′ =

y4 − 1

L ≡ q ,

∂L
∂w′ =

y4 − cosh2 η

L z′ ≡ p . (B.5)
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Note that the constants of the motion p and q here are not the same as in section 5. The

equations of motion can be written in the form

q2y′2 =

(

y4 − 1

y4 − cosh2 η

)2
[

(y4 − cosh2 η)(y4 − 1 − q2) − p2(y4 − 1)
]

, (B.6)

q2w′2 = p2

(

y4 − 1

y4 − cosh2 η

)2

. (B.7)

Since y′ becomes singular at y2 = cosh η, the turning point yc which satisfies

(y4
c − cosh2 η)(y4

c − 1 − q2) − p2(y4
c − 1) = 0 (B.8)

must also fulfill the condition
√

cosh η < yc < Λ . (B.9)

The constants q and p are related to the values of l and θ via

l

2
sin θ =

∫ Λ

yc

dw

dy
dy

= p

∫ ∞

yc

dy
√

(

y4 − cosh2 η
)

(y4 − 1 − q2) − p2 (y4 − 1)
, (B.10)

l

2
cos θ = q

∫ ∞

yc

y4 − cosh2 η

y4 − 1

dy
√

(

y4 − cosh2 η
)

(y4 − 1 − q2) − p2 (y4 − 1)
. (B.11)

We now see that the expressions (B.8), (B.10) and (B.12) differ from their analogues in

section 5 simply by exchanging q and p.

Results with 0 < θ < π/2 can be obtained with either the parametrization of the string

world sheet in this appendix or that in section 5. Let us now specialize to θ = 0, the case

that cannot be handled with the parametrization of section 5. We see from (B.10) that

θ = 0 corresponds to p = 0, which means that the turning point which solves (B.8) is given

simply by

y4
c = 1 + q2 . (B.12)

Now, the condition (B.9) becomes a restriction on the allowed values of q:

sinh2 η < q2 < Λ4 − 1 . (B.13)

In contrast to the situation for any nonzero value of θ, when θ = 0 the constant q cannot

be taken to zero: if we were to choose q < sinh η, then y4 would hit cosh2 η, at which

point y′ → ∞ and below which y′ is imaginary. Instead, when we choose q > sinh η we

find a solution in which y reaches a turning point at yc and safely begins to ascend, never

reaching these pathologies.

Notice that there is “almost” another choice of yc: yc =
√

cosh η does satisfy (B.8)

with p = 0, but it just barely fails to satisfy (B.9). For arbitrarily small but nonzero values

of p, however, if q < sinh η there is a legitimate turning point at a yc just above
√

cosh η,
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Figure 8: Same as figure 2, but now for dipole orientation θ = 0. Note that solutions with θ = 0

exist only for q > sinh η.

and a solution can be found. So, it is only for θ ≡ 0 and hence p ≡ 0 that there is an

inaccessible range of small values of q. If we sit at a q which is less than sinh η and take

p → 0, what happens to the solution is that the string world sheet develops a cusp at its

turning point. For p small but nonzero, the shape of the function y(σ) near its minimum

looks like a very slightly rounded “V”, with the amount of rounding controlled by p. So,

for p ≡ 0 there is no solution in this regime of small q. We shall see momentarily that this

regime of q corresponds to a part of the unstable higher energy branch of solutions.

Let us return to the case with θ = p = 0 keeping q > sinh η. The solution evidently

has w′ = 0 throughout. Furthermore, although there is no reason of symmetry to expect

it, given the wind blowing in the x3 direction, we can see that the solution y(σ) will be

σ → −σ symmetric. This follows from the fact that y′2 depends only on y, not explicitly

on σ, and from the symmetric boundary condition (B.3). This means that the descending

half of the y(σ) curve and the ascending half must have the same shape, implying that the

turning point at which y = yc must be at σ = 0, half way between the boundaries at which

the boundary condition (B.3) fixes y. q can be determined in terms of l from (B.11), which

with p = 0 is simply the equation l
2 =

∫
l
2

0 dσ and becomes

l = 2q

∫ Λ

yc

dy

√

y4 − cosh2 η

(y4 − 1)
√

(y4 − y4
c )

, (B.14)
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with yc given by (B.12). The action can be written as

S(l) =
√

λTT
∫ Λ

yc

dy

√

y4 − cosh2 η
√

y4 − y4
c

, (B.15)

from which the quark-antiquark potential E(L) can be obtained as in (3.27) using the

same subtraction S0 given in (3.28). In plotting figure 8, we have used (B.14) and (B.15)

to evaluate l and E for q > sinh η. We see that the stable, lower energy branch of solutions

is similar to those we have obtained previously. For this branch of solutions, the θ → 0

limit is smooth. The inaccessible range of q, namely q < sinh η, where as described above

the string world sheet develops a cusp in the θ → 0 limit, corresponds to the “missing

parts” of the unstable high energy branch of solutions in figure 8.
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