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The critical dynamics of the chiral symmetry breaking induced by a gauge interaction is
examined in the Wilson renormalization group framework in comparison with the Schwinger-
Dyson approach. We derive the beta functions for the four-fermi couplings in the sharp
cutoff renormalization group scheme, from which the critical couplings and the anomalous
dimensions of the fermion composite operators near criticality are immediately obtained. It
is also shown that the beta functions lead to the same critical behavior found by solving
the so-called ladder Schwinger-Dyson equation, if we restrict the radiative corrections to a
certain limited type.

§1. Introduction

Chiral symmetry breaking phenomena represent one of the key issues in under-
standing the non-perturbative dynamics of gauge theories. The analytical study of
this problem has been initiated by the Nambu-Jona-Lasinio (NJL) model, 1) which
was introduced as the effective theory with four-fermi interactions. For gauge theo-
ries, in particular the Schwinger-Dyson (SD) equations in the ladder approximation
with Landau gauge 2), 3) have been intensitively studied and applied not only to QCD
but also to the various models of dynamical electroweak symmetry breaking. 4), 5) In
QCD, the ladder SD equation with the running gauge coupling constant, the im-
proved ladder, 6) was found to give good results even quantitatively. 7) However, the
ladder SD equations are known to suffer from some serious problems, in particu-
lar the strong gauge dependence 8) and the difficulty to proceed beyond the ladder
approximation. 9)

The Wilson renormalization group (RG) 10) has been known to offer a powerful
method to analyze critical phenomena and has been applied to various dynamical
problems, mainly in statistical mechanics. The so-called exact RG equations, 10) - 12)

which are the concrete formulation of the Wilson RG in momentum space, have re-
cently been applied to numerical study of non-perturbative dynamics in field theories.
Application to the QCD dynamics has also been considered in this framework. 13)

The advantageous features of this method, compared with the SD approach, are that
the critical behavior is analyzed directly from the RG equations, and that it pro-
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duces a systematic improvement of the approximation obtained from the derivative
expansion and truncation of the Wilsonian effective action. 14), 15) Interestingly, very
recently the RG method has been applied to the fermi liquid theory of superconduc-
tivity, 16) which the NJL model was considered in analogy with. Also, it should be
noted that the fermi liquid theory of high density QCD was studied with the RG
analyses. 17)

In this paper we examine the chiral critical dynamics in gauge theories by using
the exact RG equations, especially focusing on the comparison with the SD approach.
There are several formulations of exact RG. Here we simply employ the Wegner-
Houghton RG equations, 11) which are derived with a sharp momentum cutoff, in
the so-called local potential approximation for our present purpose. Analyses with
the exact RG equations with smooth cutoff may be performed as well. 18) It is found
that the critical behavior is determined from the beta functions of the effective four-
fermi couplings induced by gauge interactions with a remarkably simple calculation.
The phase boundary and also the anomalous dimensions of the composite operators
of fermions near the criticality will be evaluated. Our approximation scheme adopted
here is even better than the ladder approximation used with the SD equations for
critical behavior. Actually, as seen below, if we make further approximations so as
to pick up only a few types of the radiative corrections, then the critical behavior is
reduced to be identical to that obtained by solving the ladder SD equation.

§2. Scheme of the RG equations

The ladder SD equation for the fermion mass function is given in the form of
an integral equation, where the momentum integration is carried out with a sharp
cutoff. In order to see the direct relation between the critical dynamics obtained
with the two methods; the SD equation and the RG equation, we consider the exact
RG equation defined with a sharp cutoff in this paper. There are several formalisms
of exact RG. 10), 12) Here we adopt the so-called Wegner-Houghton RGE 11) derived
as follows.

If we divide the freedom of the quantum field φ(p) into higher frequency modes
with |p| > Λ and lower frequency modes with |p| < Λ by introducing the cutoff
scale Λ in the Euclidean formalism, then the Wilsonian effective action at this scale,
Seff[φ;Λ], may be defined by integrating out the higher frequency modes in the par-
tition function:

Z =
∫ ∏

|p|<Λ0

dφ(p) e−S0[φ;Λ0] =
∫ ∏

|p|<Λ

dφ(p) e−Seff[φ;Λ]. (1)

Here S0 denotes the bare action with the bare cutoff Λ0. This effective action contains
the general operators invariant under the original symmetries in the bare action, for
example the chiral symmetry of our present concern.

The Wegner-Houghton RGE determines the variation of the Wilsonian effective
action under the infinitesimal change of the cutoff Λ. For example, the RGE for the
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D-dimensional scalar field theory is found to be given exactly as

∂Seff

∂t
= DSeff +

∫
dDp

(2π)D
φp

(
2 −D − η

2
− pµ ∂′

∂pµ

)
δSeff

δφp

−1
2

∫
dDp

(2π)D
δ(|p| − 1)


δSeff

δφp

(
δ2Seff

δφpδφ−p

)−1
δSeff

δφ−p
− tr ln

(
δ2Seff

δφpδφ−p

)
 ,
(2)

where t = ln(Λ0/Λ) is introduced as a scale parameter. The 1st line of the RGE
represents the canonical scaling of the effective action, while the 2nd line comes
from the radiative corrections, which correspond to the tree and the 1-loop Feynman
diagrams including only the propagators with the momentum of the scale Λ.

In practical analyses it is necessary to simplify this RGE by some approximation.
Here we examine the RGE in the so-called local potential approximation. 11), 19) In
this approximation the radiative corrections to any operators containing derivatives
are ignored in the RGE (2). Therefore, only the potential part of Seff, Veff, may be
evolved with the shift of Λ. It should be noted that the wave function renormalization
is ignored in this scheme. The RGE for the scalar theory is given explicitly by

∂Veff

∂t
= DVeff − D − 2

2
φ
∂Veff

∂φ
+
AD

2
ln

(
1 +

∂2Veff

∂φ2

)
, (3)

where AD = 2/(4π)D/2Γ (D/2) is the factor from the momentum integration. This
equation offers us a set of the infinitely many beta functions for the general couplings
appearing in Veff. However, it should be noted here that each beta function may be
evaluated through just one loop corrections with the general effective interactions.
The non-perturbative nature of the RGE is assumed to be maintained by solving
infinitely many coupled renormalization equations. Actually, it is known that this
approximated RGE is quite effective in the case of scalar theories. 14), 15) The gener-
alization of this RGE to include fermions has also been studied in relation with the
triviality-stability bound for the Higgs boson mass in the Standard Model. 20)

Now let us consider application of this formulation to the massless fermions
coupled by the gauge interaction. For example we may take the action of the massless
QED as the bare action

S0 =
∫
d4x

{
ψ̄∂/ψ + eψ̄A/ψ +

1
4
F 2

µν +
1

2α
(∂µAµ)2

}
, (4)

where α is the gauge parameter. As is well known, the gauge invariance is no
longer maintained, once the momentum cutoff is made. Therefore the generic gauge
non-invariant operators are generated in the Wilsonian effective action. Then we
must encounter the rather complicated problem of picking up the special RG flows
corresponding to the gauge invariant theories in the infinite-dimensional coupling
space. Recently it has been discussed how to deal with the gauge theories in the
framework of the Wilson RG by using the modified Slavnov-Taylor identities. 21)
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Here, however, we simply ignore the corrections to the operators including the
gauge fields, as well as imposing the local potential approximation, as the first step
towards the analysis of the chiral symmetry breaking phenomena. Then we may
avoid the intriguing problem of the gauge invariance, since no gauge non-invariant
operator appears in the effective action. This approximation is indeed so rough as to
make the beta function of the gauge coupling vanish identically. Therefore it cannot
be supposed to give any picture of the real dynamics of the gauge theories. However,
on the other hand, the so-called ladder approximation used in the SD approach also
totally ignores the vertex corrections as well as the corrections to the gauge kinetic
functions. Therefore it would be meaningful to examine the RGE in this scheme in
comparison with the SDEs in the ladder approximation. The effect of the running
gauge coupling will be discussed in §4. Although this approximation scheme is rather
crude, it is seen that the chiral critical behavior may be described well. Actually,
it is found that this approximation is even better than the ladder approximation
applied to the SD equations.

The Wilsonian effective action to be solved with the RGE in this scheme is now
reduced to the form

Seff[ψ, ψ̄;Λ] =
∫
d4x

{
ψ̄∂/ψ + Veff(ψ, ψ̄;Λ) + eψ̄A/ψ +

1
4
F 2

µν +
1

2α
(∂µAµ)2

}
, (5)

where Veff(ψ, ψ̄) denotes the general potential composed of the chiral symmetric
multi-fermion operators. These multi-fermion operators are induced by exchange
of the “photon” with higher momentum. The so-called gauged NJL model is often
examined in the SD approach, and the phase diagram in the two-parameter space
of the gauge coupling and the four-fermi coupling has been examined. 3) However,
from the RG point of view, this coupling space should be regarded as a subspace of
the infinite-dimensional coupling space of the Wilsonian effective action. It should
be noted also that these multi-fermi operators are irrelevant or non-renormalizable,
and therefore, are not considered in the perturbative QED. However, they cannot
be simply discarded in the strong coupling region. It will be seen in the next section
that the four-fermi coupling turns out to be relevant near the criticality and plays a
crucial role in the critical dynamics of the chiral symmetry breaking.

§3. Critical dynamics of the chiral symmetry

In this section we examine explicitly the Wegner-Houghton RGE in the approx-
imation discussed in the previous section. The form of the effective potential Veff

written in terms of the fermions is found to be restricted to a polynomial composed
of the following parity and chiral invariant operators, which are mutually indepen-
dent:

O1 = (ψ̄ψ)2 + (ψ̄iγ5ψ)2 = −1
2

{
(ψ̄γµψ)2 − (ψ̄γ5γµψ)2

}
,

O2 = (ψ̄γµψ)2 + (ψ̄γ5γµψ)2,

O3 =
{
(ψ̄γµψ)(ψ̄γ5γµψ)

}2
. (6)
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Therefore the 4-fermi part of the effective potential may be written as

Veff(ψ, ψ̄; t) = −GS(t)
2Λ2

{
(ψ̄ψ)2 + (ψ̄iγ5ψ)2

}
+
GV (t)
2Λ2

{
(ψ̄γµψ)2 + (ψ̄γ5γµψ)2

}
.

(7)
Hereafter let us call GS the “scalar four-fermi coupling” and GV the “vector four-
fermi coupling”.∗)

Now let us evaluate the radiative corrections to these four-fermi operators, since
it will be sufficient to examine only these couplings for the purpose of understanding
the critical dynamics. By using the propagator of the gauge field in the Landau
gauge (α = 0), the RG equations for the four-fermi couplings are found to be

d

dt
gS = −2gS +

3
2
g2
S + 4gSgV + gSλ+

1
6
λ2,

d

dt
gV = −2gV +

1
4
g2
S − gV λ− 1

12
λ2, (8)

where we have introduced the rescaled couplings, gS = GS/(4π2), gV = GV /(4π2),
λ = 3e2/(4π2). Here we should note that no multi-fermi couplings more than four-
fermi take part in the radiative corrections for the four-fermi couplings, owing to
the 1-loop nature of the RGE. Therefore we may obtain the RG flows within the
2-dimensional coupling space (or 3-dimensional, if the gauge coupling is also taken
into account) irrespective of other couplings.

In Fig. 1 the Feynman diagrams representing the one-loop corrections to the
four-fermi couplings are shown. Let us call the corrections given by the diagrams in
the dashed box in Fig. 1 the “ladder” type, and the others the “non-ladder” type
hereafter. If we approximate the RGE by restricting to the “ladder type” correction,
then the beta function for the scalar four-fermi coupling is found to be given by

+

δ = ++ +

+

+

+++

Fig. 1. Feynman diagrams of the radiative corrections to the four-fermi couplings gS and gV con-

sidered in the RGE (8). The diagrams surrounded by the dashed box show the “ladder” type

corrections.

∗) The sign of the scalar four-fermi coupling introduced here is the conventional one in the
literature.
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d

dt
gS = −2gS + 2(gS + λ/4)2, (9)

where it is noted that the RGE for the scalar four-fermi decouples from that for the
vector four-fermi coupling.

Before examining the full RGEs (8), let us consider the RG flows in the subspace
of λ = 0. The beta functions give the “fixed points” at (g∗S , g

∗
V ) = (0, 0), (1, 1/8),

(−4, 2). The point (0, 0) is the IR trivial fixed point, and (1, 1/8) is the UV fixed
point on the critical surface.∗) The RG flows are found as is shown in Fig. 2. It is
seen that there are two phases divided by a critical surface. The chiral symmetry is
supposed to be spontaneously broken in the upper region in Fig. 2. Then we may
realize that the chiral symmetry breaking is caused essentially by the strong scalar
four-fermi interaction, not by the vector four-fermi interaction.

It is also easy to evaluate the exponents which are important physical quantities
in the critical dynamics. By linearlizing the RG equations around the UV “fixed
point”, the dimensions of the relevant four-fermi coupling and the irrelevant four-
fermi coupling are found to be 2 and −5/2, respectively. The relevant four-fermi
operator is given by the combination of Orel = O1 − (1/8)O2. The renormalized
trajectory in Fig. 2 is given by the straight line passing through the non-trivial fixed
point. Indeed we may deduce from the RGEs (8)

0.0 0.25 0.5
gV (vector four fermi)

0.0

1.0

2.0

g S
 (

sc
al

ar
 fo

ur
 fe

rm
i)

Fig. 2. RG flow diagram of the four-fermi cou-

plings (gV , gS) in the e = 0 plane. The crit-

ical surface and the renormalized trajectory

are indicated by the dashed lines.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
λ (gauge coupling)
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g S
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Fixed line in LPA
Critical surface in LPA
Fixed line in Ladder
Critical surface in Ladder

Fig. 3. The fixed lines projected on the (λ, gS)

plane and the critical couplings of the

scalar four-fermi obtained from the beta

functions given in Eq. (8) and in Eq. (9).

∗) Strictly speaking, (g∗
S , g∗

V ) = (1, 1/8) is not a fixed point, since the beta function for the

eight-fermi coupling does not vanish there. However, it turns out to be a non-trivial fixed point for

space-time dimensions satisfying 2 < d < 4. We do not consider the point (−4, 2), since it seems to
be created by the approximation.
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d

dt
(gS − 8gV ) = −

(
2 +

1
2
gS

)
(gS − 8gV ), (10)

which implies that once the combination of (gS −8gV ) is vanishing at a point, then it
remains null along the renormalization flow. Therefore the renormalized trajectory
is precisely given by the line gS = 8gV . Namely, the effective four-fermi operator at
low energy is just Orel irrespective to the phases.

Next let us examine the RG equations (9) given by the “ladder type” corrections.
For each gauge coupling λ there are the UV fixed point and the IR fixed point, which
are found to be

g∗S(λ) =
(
1 ±√

1 − λ
)2
/4, (11)

where + is for the UV fixed point and − is for the IR fixed point. They form a
line of fixed points in the (λ, gS) space, as shown in Fig. 3. The phase boundary is
also shown in Fig. 3. The upper region is considered as the chiral symmetry broken
phase. The critical gauge coupling is given by

λcr = 1. (12)

Indeed this critical surface just coincides with that obtained by solving the SDE in
the ladder approximation. 2), 3)

The anomalous dimension of the four-fermi coupling gS , γG = 2 + dim[gS ] near
criticality is immediately deduced from the RGE (9) as

γG = 4g∗S(λ) + λ = 2
(
1 +

√
1 − λ

)
, (13)

which is also found to coincide with the result by the ladder SDE. 3) Therefore it is
seen that our approximation used to derive the RGEs (8) is certainly better than
the ladder approximation. Moreover it is easy to take all the corrections shown by
Fig. 1 including the “ladder type” ones in our framework. It should be noted that
the sum of corrections of the “ladder” diagram and the “crossed ladder” given in the
last line of Fig. 1 is found to be free from gauge parameter dependence. Thus this
extension of the approximation beyond the “ladder” is significant to obtain gauge
independent results. 18) We would like to stress here that the exact RG equations
allow us to examine the critical dynamics with remarkably simple calculation, which
is in clear contrast with the situation in the SD approach.

Now we are in a position to go beyond the “ladder” by examining the full RG
equations (8). The fixed line (g∗S(λ), g∗V (λ)), which is given by the solution of the
3rd order equation in turn, is shown in Fig. 3 and also in Fig. 4 by projection
into the (λ, gS)-plane and (gV , gS)-plane, respectively. It is seen that the critical
gauge coupling is now found to be slightly larger than the value in the “ladder”
approximation, (λcr = 1.0409). In Fig. 4 the critical surface separating the two
phases is also indicated by the cross sections at various gauge couplings up to the
critical one. The critical surface given in the case of the “ladder” type should be
compared with the cross section between the critical surface and the gV = 0 plane,
which is found as shown in Fig. 3. It is seen that the phase boundary obtained with
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Fixed line in LPA

Fig. 4. Cross sections of the critical surface at

λ = 0, 0.1, 0.2, · · · , 1.0, λcr and the fixed
line projected on the plane.
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0.5γG in LPA
γm in LPA
γm=0.5γG in Ladder 

Fig. 5. Anomalous dimensions γm and γG ob-

tained in our LPA scheme and in the ladder

approximation.

our scheme is shifted towards the outside compared with the phase boundary, which
has been previously seen in the ladder SD approach.

The exponents at the fixed line are similarly obtained. The exponent or the
dimension of the relevant operator, which was found to be 2 in the previous analysis
for λ = 0, decreases as the gauge coupling becomes larger. Then it eventually
vanishes at λ = λcr, which is also seen directly from Eq. (8). In Fig. 5 the anomalous
dimension of the relevant four-fermi coupling γG is presented in comparison with the
“ladder” value given by Eq. (13).

Before ending this section let us mention the anomalous dimension of the fermion
mass operator, which we denote γm. In order to evaluate it we may incorporate the
mass term in the effective action. Then the beta function for the mass m may be
derived by one-loop diagrams. It is found to be

d

dt
m = m+

2m
1 +m2

(gS + λ/4). (14)

Here it should be noted that the contribution from the “non-ladder”-type corrections
vanishes. Therefore the vector four-fermi coupling does not appear in this beta
function. The anomalous dimension on the fixed line is simply given by

γm = 2g∗S(λ) +
λ

2
, (15)

which is shown in Fig. 5 as well. In the “ladder” case it is seen that the anomalous
dimensions satisfy the relation, γm = γG/2, which has been found also in the analysis
of the ladder SDE. 3) In our analysis, however, γm turns out to be significantly larger
than γG/2 and also than γm obtained in the ladder SD approach.
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§4. RG flow with running gauge coupling

To this point the effect of the renormalization of the gauge coupling has been
completely ignored. For this reason the obtained phase diagrams are not in agree-
ment with realistic ones for gauge theories. In the SD approach, the so-called im-
proved ladder approximation, 6) in which the gauge coupling is simply replaced by
the running coupling subject to the perturbative RGE apart from the SD framework,
has been often used. However, this prescription cannot be regarded as a systematic
improvement of the approximation. On the other hand, in the Wilson RG framework
it is possible to include the correction to the gauge coupling naturally by improve-
ment of the previous approximation. This is a clear contrast with the improved
ladder approximation.

If we attempt to treat the non-perturbative dynamics with strong gauge interac-
tions faithfully in the Wilson RG framework, we will encounter the difficult problems
such as extraction of the gauge invariant theories, development of simple approxi-
mation scheme, incorporation of the topological excitations and so on. However, as
a primitive approximation, we may evaluate the Wilson beta function of the gauge
coupling with the 1st order correction, namely the perturbative one. Then it is
enough to solve the RG equations given by (8) in turn coupled with the perturbative
RG equation for the gauge coupling λ. In Fig. 6 the RG flows for QED obtained
in this manner are shown in the (λ, gS)-plane. The critical surface separating the
spontaneously broken and the unbroken phases is maintained, while the non-trivial
fixed points disappear. Note that the point (λ, g∗S , g

∗
V ) = (0, 1, 1/8) is not a fixed

point in 4 dimensions.

0.0 1.0 2.0
λ (gauge coupling)

0.0

0.5

1.0

g S
 (

sc
al

ar
 fo

ur
 fe

rm
i)

broken phase

unbroken phase

Fig. 6. RG flow diagram for QED. There ap-

pears the two phase structure. The upper

(lower) region is supposed to be (un)broken

phase.
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Fig. 7. RG flow diagram for the QCD like

gauge theory. There appears no phase

boundary.
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The RG flows for the QCD-like asymptotically free gauge theory is shown in
Fig. 7. These results should be compared with those obtained by solving the SD
equations. 22) It is seen that the phase structure is completely swept off. The en-
tire region is considered to be in the broken phase of the chiral symmetry, since
the 4-fermi coupling keeps growing in the infrared direction. The effective theories
represented by the attracting line coming out from the trivial fixed point correspond
to the continuum limit of QCD. Namely, this line gives the so-called renormalized
trajectory of QCD. However, other flows of the gauged NJL models, especially start-
ing at the critical point of the NJL model in the UV limit, do not converge on
the renormalized trajectory. Therefore it may be supposed that these flows exhibit
other renormalized trajectories. If this is the case, the gauged NJL model offers non-
perturbatively renormalizable theories different from QCD. Indeed the existence of
a non-trivial continuum limit other than QCD, or renormalizability of some kinds
of the gauged NJL models, has been previously claimed. 22), 23) In our framework of
the non-perturbative RG, the renormalizability of the gauged NJL model may be
shown by examining whether these flows are really the renormalized trajectories or
not. Such studies will be reported separately. 24)

§5. Discussion

In this paper we examined the chiral critical behavior of the gauge theories in
the Wilson RG framework. We considered the evolution of the effective potential
composed of the chirally invariant multi-fermi operators by the exact RG equation
with sharp cutoff in the local potential approximation. The RG flow of the four-
fermi couplings was found to determine the phase structure. It is straightforward
and remarkably easy to find the critical surface and the anomalous dimensions of the
composite operators of fermions in this framework. Moreover, the critical dynamics
obtained by solving the ladder SD equations are exactly reproduced by restricting
the radiative corrections taken in the beta functions to the “ladder” type. While our
RG equations also contain the “non-ladder” type corrections, which are necessary
to obtain gauge independent physical results, 18) we have considered only the case of
the Landau gauge in this paper.

However, we cannot assert with this analysis that the chiral symmetry is indeed
spontaneously broken in the region considered to be the broken phase. In order to
clarify this we need to evaluate the order parameters such as the dynamical mass
of the fermion, the condensation of the composite operator of fermion, and so on.
Evaluation of these order parameters is especially important in QCD, because they
are the physical quantities that show the dynamical chiral symmetry breaking. In
the Wilson RG picture, however, the spontaneous generation of the fermion mass
itself seems to be even non-trivial , since the Wilsonian effective action remains chiral
symmetric in evolution and, therefore, there is no room for the mass term to show
up. These issues as well as the method to evaluate the order parameters in the
Wilson RG framework will be also studied in a separate publication. 25)

In our analyses the RG equation for the gauge coupling was approximated by
the perturbative one. Of course the fully non-perturbative treatment for the RGE is
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Wilson Renormalization Group Equations 1161

required to see the dynamics of a strong gauge interaction in the infrared region. It
is still an open question whether the Wilson RG approach gives a useful framework
in this non-perturbative region. However, as shown in this paper, non-perturbative
RG seems to have a good chance to seek for the dynamical chiral symmetry breaking
phenomena in gauge theories further by going beyond the level examined so far in
the SD approach.
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