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WIMAN-VALIRON THEORY FOR ENTIRE FUNCTIONS

OF FINITE LOWER GROWTH

BY

P. C. FENTON

Abstract. A general method of Wiman-Valiron type for dealing with entire

functions of finite lower growth is presented and used to obtain the

lower-order version of a result of W. K. Hayman on the real part of entire

functions of small lower growth.

1. Introduction and statement of results. Techniques of Wiman-Valiron type

for entire functions of finite upper growth have been well developed by

various authors (especially [1], [2], [5], [6]) but until recently the application of

these ideas to functions of finite lower growth has been hampered by the

absence of a uniform method. In [3] the author applies a method-the general

plan of which may be followed (at least in principle) in other cases-to

functions of finite lower order. The intention here is to prove two results

which make this method general-at once thereby opening a wide range of

results to functions of finite lower growth-and in addition to apply them to

sharpen a result due to W. K. Hayman.

Hayman's survey [4] begins with a fundamental result, depending on

Kövari's idea of comparison functions [6], from which the subsequent appli-

cations are deduced. Let us call the negative-valued function a(t) a compari-

son function if a'(t) < 0 for t > 0 and \a'(t)\ is decreasing for t > 0. Set

A„ = expi f"a(t) dt\       n = 0,1,2,..., (1.1)

p„ = exp{-a(n)},       « = 1,2,3,- (1.2)

It follows from the properties of a(f) that

AnPZ<ANp»   for n*N, (1.3)

The reader is referred to the opening sections of [4] for details of this as well

as other basic relations and definitions.

Given an entire function

f(z)=f1a„z" (1.4)
o
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222 P- C. FENTON

with central index N (r), a number r > 0 is said to be normal with respect to a

comparison function a(t) if there exists an integer N such that

\aN\ AN

for all n > 0, where An and p„ are given by (1.1) and (1.2). If r is normal then

it follows from (1.3) that the integer N of (1.5) is actually N(r). A positive

number which is not normal is called exceptional.

We have

Theorem A ([4, Theorem 1, p. 319]). Given the entire function (1.4), let rN

be the smallest value of r at which the central index of f is N. Then

(i) '/ Pn ,j bounded above the set of exceptional r has finite logarithmic

measure;

(»)'/

hm       logr      =8<1» O'6)

the set of exceptional r has upper logarithmic density at most 8;

(iii) // pN/rN ->0 as N —> oo the set of normal r has infinite logarithmic

measure.

All results in which conclusions about density occur stem from (ii) and it is

with a lower order version of this part of Theorem A that we shall be

concerned. We shall prove:

Theorem 1. Suppose that a(t) is a comparison function which satisfies

ta'(t)
——->0   ast^xx. (1.7)
a(t)

Iff(z) is the entire function (1.4) and if

,. log PN(r) .■
hm   —;-= 8 < 1, (1.8)

f^>      log' V    '

where N = N(r)= N(r,f), then

^rn-N  <AJLpn-N (0<„<2A) (1.9)
a\\ AN

outside a set E of r of lower logarithmic density at most 8. Further, outside the

same set E,

^-{(tf- fa")an\r" < n(r,f)max    f^       , T^"" (n>2N).      (1.10)
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WTMAN-VALIRON THEORY FOR ENTIRE FUNCTIONS 223

The condition 0 < n < 2 A of (1.9) is arbitrary to the extent that 2 may be

replaced by any K > 1 without affecting the conclusion about E.

If the condition (1.7) is omitted a more limited result may be obtained

which involves

_ a(Kn)
X = X(K)=lim -±r¿. (1.11)

n->oo    "t   /

Theorem 2. Let a(t) be a comparison function and let f(z) be the entire

function (1.4) satisfying (1.8). Given K > 1 satisfying 0 < X(K) < 8~x we have

pL r"-N < ^L pn-n       (o < „ < KN), (1.12)
\aN\ AN

where N = N(r,f), outside a set E of r of lower logarithmic density at most

8/(1 + 8 — X8). Further, outside this same set E,

\a„\r"< p(r,/)maxn^-j 'J^pli)       (" > KN)'    (U3)

For fixed 8 and X such that 1 < X < 8 "', the quantity 8/(1 + 8 - X8)
cannot be replaced by any smaller quantity. IfX>8~x then all sufficiently large

r can be exceptional.

Finally we shall prove

Theorem 3. Suppose thatf(z) is a transcendental entire function satisfying

loglog M(r,f)
hm   -j—j-=p. (1.14)

r-^5        log log r

Let

B(r,f) = max Re/(z),       A(r,f) = min Re/(z)

and define a(p) to be 0 if p <2,(p- l)/p // 2 < p < oo, a(oo) = 1. Then

given K > 1

/        KTT2a(p) + o(l) \
B(r.f) >Ji(^,-___^j, (,,5)

/        KTT2a(p) + o(l) \

-A(r,f»M(r,f){,-    2 loeM(f>//)■ (U*

for r in a set of upper logarithmic density at least 1 — K~x.

Hayman [4, Theorem 15] obtains these beautiful inequalities subject to the

stronger condition
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224 P. C. FENTON

-   log log M (r,/)
P =  hm     -:-:- ,

r^œ log log r

and shows that the constant ir2a(p) is sharp [4, Theorem 16]. The proof of

Theorem 3 is thus chiefly concerned with replacing the upper limit by the

lower limit.

2. Proofs of Theorems 1 and 2. The idea of the proofs is contained

essentially in [3] but certain considerations of growth occurring there are in

fact extraneous and by dispensing with them we are able to shorten the

proofs considerably.

Let Rn be an unbounded, increasing sequence such that

hm —¡-— = 5 < 1, (2.1)
n^oo       logR„

and set M = [KN(Rn,f)], where K = 2 for Theorem 1 and 0 < X(K) <8~x

for Theorem 2. Then

Lemma 1. For 0 < t < Rn/pM there exists a nonnegative integer Nn = Nn(t)

such that Nn(t) < A(R„) and for which

— -£■ tm-N- < 1   forO < m < M. (2.2)
Kl     Am

Given any t satisfying 0 < t < R„/Pm> let o < Ai be the largest integer for

which

\am\ Kl
-i-p tm < -j-1"   for 0 < m < M. (2.3)

m q

Then (2.2) holds with Nn = q and we aim to show that q < N(Rn,f).

For N = N(Rn,f) < m < M we have, from (1.3),

. m-N

M   Am ' - p^n»   AmPZ \ Rn )

t)

\AN\RJ?   AmP'n

m-N

1 <L

It follows from this, together with (2.3) with m = N, that q < N and this

proves the lemma.

Concerning the numbers Nn(t) of Lemma 1 we have:

Lemma 2. Let tn = R„/pM, where M = [KN(Rn,f)]. Then the numbers

^„(tj of Lemma 1 are unbounded.

It is evidently sufficient to show that tn -> oo  as n -> oo.  Under the
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WIMAN-VALIRON THEORY FOR ENTIRE FUNCTIONS 225

hypotheses of Theorem 1 it follows from the properties of a(t) that

tn = Rn/pM = R„cxp{a(2N(Rn))}

> R„ exp{«(A(R„)) + N(Rn)a'(N(Rn))}

= exp{log R„ - (1 + o(l))log pN{K))

-> oo    as n -» oo,

from (1.7) and (2.1).

Under the hypotheses of Theorem 2

tn > K exp{a(KN(Rn)))

a(KN(R„)) '
= Rn exp a(N(Rn))

«(#(*„))

>   Rn/(PN(R„))'

—» oo    as n —»• oo

A + o(l)

from (2.1), since X < 8~x.

We shall prove now the inequalities (1.9), (1.10), (1.12) and (1.13) outside

an exceptional set E, leaving the estimation of the size of E to the following

section.

It follows from Lemma 1 that, with Nn = Nn(t) for 0 < t < t„ = R„/pM,

g {<e»f- "'< ̂  #*-*      (o < - < **(*))        (2-4)

and the right-hand side of (2.4) is less than one unless m = Nn. Since

N„ < N(R„) and tpK < RnpNJpM < R„, we have Nn(t) = N(tpNM,f) and

thus (2.4) becomes

löml  rm-N  < Am nm-N

kvT" <ÄZP»
(0 < m < KN), (2.5)

where N = N(r, f), for any r in the set

S = U {/:/• = tpNnU) and 0 < i < t„). (2.6)

This gives (1.9) and (1.12). Concerning (1.10) and (1.13), suppose that r =

tpNM, 0< t < t„. Then, with N„ = N„(t),

W =\aJR? tP"A    <«*»/)('
R R_
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and

Also

p(R„,/)<|7^| p(r,/).

„ Rn
1Pk < 7-Pa.

Pxw(J?„ ) UawJ
and therefore, recalling that N„ = Nn(t) = N(r,f) = N, we have, for m >

KN(R„),

Finally, if ÄW(r) < m < KN(Rn) then

A.
K\rm< ¡x(r,f)-^pr> (2-8)

and (1.10) and (1.13) are immediate.

3. Estimate for the exceptional set. The argument is standard. Precisely as in

[3, p. 250], the lower logarithmic density of the exceptional set is no more

than

log P*.(».)          ,,    /           log*.    \"' ,,n
A = hm —;- = hm   1 + -¡-       . (3.1)

n"=^   log(ínPAr„(,„)) n-^, \ lQg Pn„(Q )

In the case of Theorem l,t„ = R„/Pin(r„)> so

logi„ = logRn + «(2A(RJ)

= logRn + (l + 0(l))«(A(R„))

= logRn-(l + o(l))logp„(Äj

-logPArOoí*"1- 1+0(1» (3-2)

from (2.1). Since N„(t„) < N(Rn),A < 8.

In the case of Theorem 2 we obtain

a(KN(Rn))
log^logR.-   a{N{Rn))   logpNW

> log PMÄj(5_1 - À + °(1))

and this together with (3.1) gives A < 5/(1 + 8 - X8).
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4. An example. Given k > 1 and a satisfying 0 < a < 1 let g(z) be the

entire function

*(*) = I <V*" (4-1)
n=0

where

a„ = exp{-fcn(a+1)}. (4.2)

Given 8 satisfying 0 < 5 < 1 we introduce the comparison function

«(0--*'(*71~l1)- (4.3)
Since the central index of g is A:" for

*("~1)a(^zr1 ) < i°g|^l< *""( k"k-"ij ) <44>

(as is readily verified) it follows that

..       logout/*)      „
lrm   —¡-— = 8

so that the hypotheses of Theorem 2 are satisfied for all k and a in the

allowed ranges. We shall show that, given any e > 0, 5 and a can be found

for which the exceptional set of Theorem 2 has lower logarithmic density

greater than max{(l - e)5/(l + 8 - X8), 8}.

A short calculation yields that

^n+l     k"*'-k" _      k" + l      kn + '-k"

~a~ T -~A      Pk"
an Akn

when

(^)('

8(ka+x - 1)   \

"8-(a+l)(k-l)j <«>

so that the logarithmic measure of the exceptional set within the interval (4.4)

is

-«■.(ÎÇ^)(,-_^L
0

The logarithmic measure of the exceptional set in [1, r0], where r0 is the

solution of (4.5) is thus

»/ km - ka \( ka+x - 1 \l. ka+x - 1      \

I   k" - 1   )\    k - 1    )\       (a + l)(k - 1) )

and the lower logarithmic density of the exceptional set is
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228 P. C. FENTON

A =
ka -  1

r"+\ 1

1

k" - 1

>_!_
> k'-i

-•(-1

1 + 5-5

(a + i)(/c -1) ;

(Aa+1 - 1)

(a + l)(k - 1)

1 + 5-5

- 1

(ka+l - 1)

(« + 1)(* - O

1 + 5_J^_ + fa + 1       A:

_4_!_V
1      (a + l)(fca - 1)       k(ka - 1) /V

1 + 5
5A:a        5

a + 1      A:)■'■

(4.6)

We now allow k to tend to infinity and a to tend to zero in such a way that

k" = X remains constant, so that 1 < X < 8~x. Then it is clear that the

right-hand side of (4.6) approaches 5/(1 + 5 - AS). Thus if r/ < 5/(1 + 5 -

\5) we can make A > tj, and this proves the last statement of Theorem 2,

when A < 5_l.

The same example shows that, if X > 8 ~ ', all large values of r may be

exceptional. In view of (4.4) and (4.5) we see that this will be the case if for

all«

(^)(
1 + 5-5

(k< 1)

(a + 1)(* - 1)

that is if

5 >(1 - k'a) 1

(4.7)

(4.8)(a + l)(ft - 1)

If we set k" = X and let k tend to infinity as before, then the right-hand side

of (4.8) approaches a-1. Thus if 5 > X"1 and k is large enough, all values of r

are exceptional and the proof of Theorem 2 is complete.

5. Proof of Theorem 3: a lemma. Suppose that fiz) is an entire function

satisfying (1.14). Then

hm   -¡—-=p - 1,
r-^¿   log log/-

where N(r) = N(r,f) is the central index of /at r. For certainly

lim{log log p(r)/log log r} = p

(5.1)
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WIMAN-VALIRON THEORY FOR ENTIRE FUNCTIONS 229

and also (see [4, p. 318])

J-r iy I í I
-~ dt+ 0(l) < N(r) logr + 0(1), (5.2)

i      «

from which it follows that

logA(r)
lim    ,     , > p - 1. (5.3)

r^S5   log logr

On the other hand, if there is strict inequality in (5.3) then from (5.2),

hm{log log p(r)/log log r} > p,

a contradiction, so we must have (5.1).

We shall prove:

Lemma 3. Let e be any positive number.  Then  there is an  increasing,

unbounded sequence Rn such that both

N(R„) < (log R„)p-X + C (5.4)

and

logp(RJ       logR„

We set log r = x, log p(r) = <p(x), so that it is enough to prove that there

exist arbitrarily large x such that

<p'(^)<^"1+e (5.6)

and

We note that <p(x) is positive for x > x0 say. Given xx > x0 we now choose tj

positive but so small that

tjO» +• e) <■!

and

a>(x)
-^p-+7 >n>    x0 < x < x,.

Since by hypothesis

*m4ë-0,

there exists a smallest x2, where x2 > x,, such that

qp(x2)

**2
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230 P. C. FENTON

Clearly at x = x2,

i.e.,

<p'(x2)     p + e

<p(x2) x2

which yields (5.7). Further

*'(*a) < ̂ vw = (p + t)vxrl+t<xrl+c
x2

which yields (5.6).

6. Hay man's inequality. We may assume thatp < oo, since the casep = oo

was proved by Hayman [4], and we consider first the case 2 < p < oo. Let

a(t) be the comparison function

a(t)= - ,1/^-1+1), (6.1)

where tj is a positive number, and let R„ be the sequence of Lemma 3

corresponding to e, where 0 < e < tj. Then (2.1) holds with 5 = 0. We

conclude from (the proof of) Theorem 2 that the inequalities (1.12) and (1.13)

hold, with K = 2 (say), for r in [1, tnpNM] outside a set of logarithmic

measure o(log (t„pNM)). However tnpNM < Rn and also

fnPNnU„)  >   fn = Rn/P2N(.K)

= Rnexp(-(2N(Rn))x/(p-x+*) = R^

from (2.1) with 5 = 0. It follows that t„pNM = Rx+"m and therefore (1.12)

and (1.13) hold, with K = 2, in [1, RJ outside a subset of logarithmic measure

e(R„)log R„, where e(R„) -» 0 as n -» oo.

We quote the following result, the proof of which is virtually identical to

that of the corresponding result in [4, p. 338], depending only on Theorem 2.

The single modification needed is the separate incorporation of (1.13) as an

estimate for the tail terms of the Taylor series of / but since (1.13) leads to a

better estimate than the one already dealt with in [4] the change in the proof

is minimal.

Lemma 4. Suppose that f(z) satisfies (1.14) and that r is a number at which

(1.12) and (1.13) hold. If z0, |z0| = r, is such that

f(z0) = M(r)e'\

where X is real, then

logf(z0ew) = log/(z0) + ia(r)9 - <p202 + 8(9) (6.2)
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for -±k < 9 <±k, where a(r) = r(d/dr) log M(r) and

k=[lON(p-2+r>V(P-x+7>HogN]l/2.

Moreover   \<p2\ < \b(r),   where   b(r) = (r d/dr)2   log M(r),   and   \8(9)\ <

4(lik\9\f.

Following Hayman [4, p. 350] we obtain from this

(1 + o(l))TT2b(r)
B(r) > M(r) 1

Mrf
+0(k3a(ry:>) (6.3)

for all r for which (1.12) and (1.13) hold. Since log M(r) is an increasing

convex function of log r which satisfies (1.14) we deduce that, for all r,

logM(r) = O {a(r) log r) = O {a(r)p/<p'x)+oW};

and since N(r) ~ a(r) as r -» oo through values for which (1.12) and (1.13)

hold (see [4, pp. 352, 353]) we readily obtain

k3a(r)~3= o(logM(r))'X

and therefore

B(r) > M(r)
(I + o(l))TT2b(r)

1-——2-+o(logA/(r))
2a(r)

(6.4)

for all r in [1, RJ outside a subset of logarithmic measure e(Rn) logR„. It

remains now only to estimate b(r)/a(r)2 which we do by means of (5.5)

together with Lemma 9 of [4, p. 351].

We select a normal value of r, say r„, from [R„1_2£W, R„]. Then

log p(R„) - log p(r„) = pMí! dt < 2N(Rn)t(Rn) log R„
"r.        '

so that, from (5.5),

N(rn)      ^   N(R„)
<

N(R„)
<

p + e'

Rn)-2N(Rn)e(R„) •  logrn

ber of Lemma 3.

(1 + o(l))N(rn)

for all large n, where e' > e, the number of Lemma 3. Since r„ is normal we

have

<rn) <rH)
<

p + e

logA/(r„)    Mogp(r„) log p(r„) log rn

for all large n, where e" > e'. It follows from (6.5) (see [4, p. 351]) that

b(r) log M(r)

a(r)2
< K(l -(p + £")"')

(6.5)

(6.6)
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for all r in [1, r„] outside a subset of logarithmic measure no more than K~l.

The set of normal values in [1, r„] for which (6.6) holds thus has logarithmic

measure at least (1 - K~x + o(l)) log rn and from this together with (6.4) we

deduce that for these normal values

B(r) > M(r)
(1 + o(1))Ktt2(1 - (p + e")-1)

1 2 log M (r) (6.7)

From (6.7) we obtain by a standard argument-constructing a new sequence

from the various sequences (rn) corresponding to arbitrarily small values of e'

(and so of e)-the inequality (1.15). The second part follows from the

consideration of —f(z).

There remains only the case p < 2. The proof follows exactly that of the

corresponding case in [4], except that Hayman's Lemma 4 is replaced by its

lower order analogue. The proof of the latter is effected by straightforward

modifications.
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