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Abstract. Simple models of weakly interacting massive particles (WIMPs) predict dark mat-
ter annihilations into pairs of electroweak gauge bosons, Higgses or tops, which through their
subsequent cascade decays produce a spectrum of gamma rays. Intriguingly, an excess in
gamma rays coming from near the Galactic center has been consistently observed in Fermi
data. A recent analysis by the Fermi collaboration confirms these earlier results. Taking into
account the systematic uncertainties in the modelling of the gamma ray backgrounds, we
show for the first time that this excess can be well fit by these final states. In particular, for
annihilations to (WW , ZZ, hh, tt̄), dark matter with mass between threshold and approxi-
mately (165, 190, 280, 310) GeV gives an acceptable fit. The fit range for bb̄ is also enlarged
to 35GeV . mχ . 165GeV. These are to be compared to previous fits that concluded only
much lighter dark matter annihilating into b, τ , and light quark final states could describe the
excess. We demonstrate that simple, well-motivated models of WIMP dark matter including
a thermal-relic neutralino of the MSSM, Higgs portal models, as well as other simplified
models can explain the excess.
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1 Introduction

The weakly interacting massive particle (WIMP) is a well-motivated scenario for dark matter.
It explains the observed abundance of dark matter as arising from thermal freeze out of the
WIMP — a particle with a mass and annihilation cross section at the weak scale. Taken lit-
erally, this picture suggests that dark matter (DM) particles participate in weak interactions
and/or the mechanism for electroweak symmetry breaking. This motivates the annihilation
of dark matter to W and Z bosons, and to the particle responsible for electroweak symme-
try breaking, the Higgs boson. In models motivated by the hierarchy problem dark matter
interactions could be mediated by top-partners which would lead to annihilation into tops.
In this work, we study the consequence of dark matter annihilations to electroweak bosons
and top quarks.

Gamma rays are a promising signal of a W , Z, Higgs or top produced in the sky. The
decay products of these particles yield photons through final state radiation and neutral pion
decays, which travel unimpeded to our telescopes. In the left panel of figure 1 we show
the differential gamma ray flux from W , Z, h and top decaying at rest, multiplied by the
photon energy squared. The spectra are generated by PYTHIA [1]. The multiplication by E2 is
traditional for astrophysical fluxes and accounts for the steeply falling spectra of astrophysical
backgrounds. All three fluxes are qualitatively similar, with a peak in the vicinity of 2–5GeV.
A notable difference is the sharp peak, at mh/2, coming from the decay h → γγ. Though
this decay is rare, the photons it produces are hard and this spectral feature is enhanced by
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Figure 1. Left: the γ-ray spectrum produced by a singleW , Z, Higgs boson, and top quark, decaying
at rest, weighted by E2

γ . Right: the residual spectrum of the Galactic center excess taken from [13].
The error bars only show the diagonal part of the covariance matrix, and have a large degree of
correlation between them. We also show the four best-fit spectra from the Fermi analysis [14] which
fit the excess well. We will dub these, from softest to hardest, as Fermi spectra (a) through (d). The
normalization N corrects for the difference in the region of interest between the two analyses.

the factor of E2. This feature, however, is highly sensitive to small boosts of the Higgs and
to the energy resolution of the detector.

Interestingly, repeated analysis of Fermi data, starting from Goodenough and Hooper [2,
3] and by many subsequent groups [4–13], has uncovered an excess in gamma rays from the
center of the Milky Way, peaking around 2–3GeV. This is known as the Galactic Center
Excess (GCE), or the Gooperon. Though the excess is highly statistically significant, it relies
on a diffuse background model developed by the Fermi collaboration. This background model
provides a reasonble fit to the diffuse emission over the whole sky, but it is not clear that
it is appropriate for the Galactic center. This systematic uncertainty on the background
dominates the statistical one and is difficult to quantify. A first attempt at accounting for
systematics was made by Calore, Cholis and Weniger (CCW) [13] through the study of a
large number of Galactic diffuse emission models and analysis of the residuals in test regions
along the signal poor regions of the Galactic disk.

Very recently, the Fermi collaboration has performed an analysis of a region around
the Galactic center considering several different dedicated background models [14]. For each
background model, the fits improve significantly when a spherically symmetric component —
with a morphology and spectrum similar to that of annihilating dark matter — is added. In
the right panel of figure 1 we show the DM-like spectra found by Fermi assuming four different
background models. Their envelope is a good representation of the systematic uncertainties,
but does not account for the fit uncertainties. In the same plot we also show the residual
spectrum found by CCW which includes both statistical as well as some systematic effects.
We see that the two spectra are consistent with one another once we account for the difference
in their region of interest. They are also broadly consistent with the 2–3GeV excess reported
in earlier analyses. However, in a continuing trend, inclusion of systematic uncertainties has
allowed for an increasingly harder spectrum in the new analyses. It is thus important to
consider a broad array of motivated dark matter models which can explain the excess once
full uncertainty on the spectrum is taken into account.

It is interesting to notice the rough similarity between the two panels of figure 1. This
observation leads to the consideration of dark matter models that could explain the GCE

– 2 –



J
C
A
P
0
5
(
2
0
1
5
)
0
1
1

channel from to [GeV]

WW mW 165

ZZ mZ 190

hh mh 280

tt̄ mt 310

bb̄ 35GeV 165

Table 1. The allowed dark matter mass range for χχ → XX, with X = {h,W±, Z, t, b}, found by
combining the preferred regions from the results of our fits to the GCE.

with dark matter annihilating to electroweak bosons or to tops. In most previous dark
matter interpretations of the GCE, starting with [2, 3], the dark matter was assumed to
annihilate into bottom quarks or τ leptons. Assuming these annihilation channels (and
without including the new Fermi uncertainties), the mass of dark matter that best fits the
excess is in the region of 30 to 50GeV for b’s and around 10GeV for τ leptons. In addition,
dark matter annihilation into new particles which decay further to b’s or jets have been
considered. All of of these options present interesting model building challenges and several
interesting attempts have been made [15–61], mostly for annihilation to b’s, τ ′s and jets.

We find that WIMP dark matter annihilating to W ’s, Z’s, Higgses, or tops, can fit
the observed excess reasonably well. We show that this is the case for the spectra found
in [13], and this result is reinforced by the recent Fermi result. In particular, if we take
the union of the preferred regions for each analysis, we find that the range of DM masses
can extend well above what was previously thought. We show a summary of the results in
table 1. This opens up several simple dark matter model building avenues for the GCE.
It was noted that the simplest supersymmetric models with a thermal relic fail to fit the
signal [56] assuming annihilation into bottom quarks. We will find that once electroweak
gauge bosons are considered, the signal may be explained within the MSSM.

We begin by reviewing features of the photon flux from dark matter annihilation in
section 2, focusing on relevant inputs which affect the rate and shape of the flux. In section 3
we describe the excess seen by the CCW [13] and Fermi [14] analyses, and present fits to
the GC excess in the mass versus cross section plane for the final states described above. In
section 4 we discuss several simple models which lead to dark matter annihilation into weak
gauge bosons, Higgses or tops. We conclude in section 5.

2 Dark matter annihilation at the galactic center

While DM can annihilate directly to a pair of hard photons, this process is typically loop
suppressed. The production of photons is dominated by production of SM particles which
subsequently produce photons through decays, or to a lesser extent bremsstrahlung. The
differential flux of such photons from a given direction ψ is given by,

dN

dΩdE
(ψ) =

1

4πη

f2χJ(ψ)

m2
χ

∑

i

〈σv〉i
dN i

dEγ
, (2.1)

with η = 2(4) for self-conjugate (non-self-conjugate) DM. The quantity dN i/dEγ is the
spectrum of photons obtained per annihilation for the final state i. The line-of-sight integral,
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J(ψ), is given by

J(ψ) =

∫

l.o.s.
ds ρ(r)2 , (2.2)

where r is the distance from the Galactic center. The quantity fχ is the fraction of dark
matter that is doing the annihilation. For simplicity we will assume only one species χ is
annihilating, but the formalism can be trivially generalized to many by taking a sum.

In this section we will discuss each of the factors in (2.1) in turn, paying attention to
the uncertainties and their relation to dark matter properties. We will begin with the line-of-
sight integral, J(ψ), continue with the annihilation fraction fχ, and then discuss the spectra
dN i/dEγ in section 2.3.

2.1 The line-of-sight integral and halo uncertainties

Since the dark matter density peaks sharply towards the center of the Galaxy, the Galactic
center is a promising place to look for dark matter annihilations. In practice, the backgrounds
near the center of the Galaxy are poorly understood, and it is not possible to perform a model
independent subtraction. One approach that is commonly used is to include an additional
dark matter component to the fit in addition to the various background components. It is
found that the fit improves dramatically when such a dark matter component is included.
The photons absorbed by the dark matter template are the residuals, to which different
hypotheses can be compared.

The current sensitivity to different dark matter profiles is somewhat poor. In order to
compare results across different analyses, it is convenient to define a canonical dark matter
profile. A typical choice is the (generalized) Navarro-Frenk-White (NFW) [62] profile,

ρ(r) = ρ0
(r/rs)

−γ

(1 + r/rs)
3−γ . (2.3)

As our canonical profile we choose the local dark matter density (at r = r⊙ ≡ 8.5 kpc)
to be ρ⊙ = 0.4GeV/cm3, the scale radius rs = 20 kpc and γ = 1.2. This is a convenient
parametrization of a spherically symmetric diffuse component. The observational constraints
on the actual dark matter halo profile have relatively large uncertainty, especially near the
center of the Galaxy. This has implications for extracting particle physics information —
particularly the annihilation rate — from the signal.

There are a number of measurements of the dark matter density using different tech-
niques; however, the uncertainty on the dark matter distribution near the center of the
Galaxy remains large. A complete modeling of the uncertainty in J(ψ) is far beyond the
scope of the paper. We adopt the following method to estimate this uncertainty. CCW
found the range of the inner slope for a variety of Galactic Diffuse Emission (GDE) models
to be γ = 1.2±0.1 [13]. We use this range as the uncertainty on γ. The normalization of the
profile is not fixed by the GCE observation. We use the range ρ⊙ = 0.4±0.2GeV/cm3 [63] to
parametrize the normalization. We keep the values for rs = 20 kpc and r⊙ = 8.5 kpc fixed.

The total rate depends on the quantity,

J̄ =
1

∆Ω

∫

∆Ω

J(ψ)dΩ ≡ J × J̄canonical . (2.4)

Here ∆Ω is the region of interest (ROI) for a given analysis, and J̄canonical is the central value
of J̄ . J characterizes the profile uncertainty as the deviation from the canonical profile.
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J̄canonical and the range of J depend on the ROI of a particular analysis. The relevant ranges
for analyses we consider will be defined below.

We stress that we consider the NFW profile as a parametrization of the dark matter
profile towards the Galactic center. In particular, we do not assume in our analysis that ρ⊙
is the actual local dark matter density. A proper analysis of the dark matter profile would
involve considering all the observational constraints on the dark matter together with the
Galactic center excess, along the lines of [64]. Measurements from Gaia [65, 66] would help
reduce the uncertainty in a model independent way.

2.2 The annihilation fraction fχ

In general, an annihilation signal does not necessarily originate from all of dark matter. We
parametrize this possibility as the fraction,

fχ =
Ωχ

ΩDM

, (2.5)

where ΩDM ≈ 0.27 is the total DM energy density [67] and fχ ≤ 1. The normalization of the
excess observed is proportional to f2χJ̄〈σv〉. Direct detection and constraints from neutrino
fluxes from the sun are weakened linearly with fχ, whereas other indirect constraints such as
anti-proton fluxes scale quadratically with fχ.

If the dark matter is produced thermally, then its relic abundance is directly tied to
its annihilation rate in the early universe. Thus, for a thermal dark matter population
we can predict its current fraction in the Galaxy from the annihilation rate at freeze out.
Furthermore, if the annihilation occurs in the s-wave (i.e. independent of initial velocities)
and there are no additional (co-)annihilation channels available in the early universe, then
the annihilation rate in the early universe and in the Galactic center today are essentially
the same. Thus, within uncertainties, such a thermal relic can unambiguously predict the
normalization of the photon spectrum observed.

For a non-thermal population of dark matter, fχ is independent of the value of
〈σv〉freezeout. Further, there are many known examples where the annihilation rate in the
early universe is different from the rate today. For example, this correspondence fails if the
annihilation rate is velocity dependent (p-wave, Sommerfeld enhanced), or if there are other
annihilation channels available in the early universe (co-annihilation). These caveats open
up a wide class of models which can be consistent with the observed signal.

2.3 The spectrum of annihilating dark matter and the GCE

Here we discuss the differential energy spectrum produced by dark matter annihilation,
dN/dEγ . For the final states we consider, the dominant source of photons in dark matter
annihilation is through the decay of neutral pions formed in the hadronization and subse-
quent decay of the annihilation products. The final states are either color singlets (W , Z, h)
or heavy (top) and thus there is no significant amount of QCD radiation in the annihilation
interaction itself. As a result, in order to get the photon energy spectrum we can go to the
rest frame of the decay product and boost the distribution back to the rest frame of the
annihilation. Since the dark matter particles themselves are non-relativistic, the boost of the
final state directly correlates with the mass of the dark matter.

In figure 1 we have shown the gamma-ray spectrum produced by X decaying at rest,
where X is a W , Z, h, or t. The spectra are dominated by neutral pion decays but the small
contribution from bremsstrahlung is included as well. By eye, all of these shapes produce
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a reasonable fit to the observed excess. The shapes of these spectra correspond to the case
where the dark matter happens to be very nearly degenerate with X. In a more generic case
the annihilation product will be boosted with a γ factor of mDM/mX . The γ-ray distribution
must thus also be boosted by this amount.

The direction of a photon emitted in the rest frame of X can be parametrized by
the angle θ it makes with the velocity of X. Assuming X is not polarized, it will decay
isotropically, yielding a flat distribution in cos θ. This implies that photons of a given energy
E0 in the rest frame of X lie in a uniform distribution in the DM rest frame, between energies
E− and E+, with,

E± = E0γ(1± β) = E0

(
mDM

mX
±
√
m2

DM

m2
X

− 1

)
. (2.6)

Operationally this means that the distributions in figure 1 (divided by the factor of E2) are
convolved with a unit normalized “box” between E− and E+. If the photon spectrum in the
rest frame of X is ΦX(E), in the DM rest frame the spectrum, ΦDM(E), will be,

ΦDM(E) =
1

2

∫ 1

−1

dcθ
1

γ(1− βcθ)
ΦX

(
E

γ(1− βcθ)

)
=

∫ Ex+

Ex−

dE′ ΦX(E′)

(x+ − x−)E′
, (2.7)

where x± = E±/E0, are the smearing factors in equation (2.6) which are independent of
photon energy.

As the dark matter mass grows the boost has the effect of broadening the peak in
figure 1 and pushing the peak to higher energies. In figure 2 we show how the E2dN/dE
spectrum evolves as a function of the mass of dark matter for the examples of annihilation to
Higgs boson and bb̄ final states. Comparing this to the various spectra in the right panel of
figure 1, we anticipate that the excess will be well fit over a large region in dark matter mass,
particularly once we take into account the range of spectra shown by Fermi. However, even
without the new Fermi spectra it is worth noting that dark matter at 130GeV annihilating
to Higgses is quite similar in shape to DM at 50GeV annihilating to bb̄. Given that the latter
is considered a good fit to the GCE, we expect the former to be a good fit as well.

In order to compare annihilations into W , Z, h, or t to previous interpretations we will
also show spectra for annihilation into bb̄. Because the b is colored and light, the approxima-
tion of going to the rest frame of the b-quark and boosting is not valid. However, the γ-ray
spectrum can be crudely modeled as a log-normal distribution. The position of the peak in the
flux (E2 dN

dE ) scales linearly with the mass of dark matter. Additionally, the value of the flux at
the peak also scales linearly with the dark matter mass. The total fraction of energy carried
by the photons is roughly constant, ∼ 1

4
. To correctly account for hadronization effects, we

simulate bb̄ production in PYTHIA [1] with a center of mass energy of 2mχ to get the spectrum.

3 Fits to the galactic center excess

Even though the presence of the excess is relatively robust, in order to make conclusions
about its particle physics origins we need to understand more detailed properties of the
excess. However, the spectral shape and even the normalization of the excess is somewhat
sensitive to the modeling of the Galaxy, and the dominant uncertainty in the residual signal
is systematic. Correctly estimating the systematic uncertainties in the background modeling
is a challenging task. The understanding of these backgrounds is continually evolving, and
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Figure 2. Spectra of photons arising from χχ → hh (χχ → bb̄) annihilation shown in dashed red
(solid yellow) for a number of different masses of the dark matter.

with that the spectrum of the excess is changing as well. Therefore, in this analysis we will
be conservative in ruling out models which do not seem to fit the excess perfectly.

As discussed above, the astrophysical constraints on the parameters that determine J
are somewhat weak and allow a large range for J , which translates into a large range in the
determination of 〈σv〉 from the observed annihilation rate. Here we adopt a slightly different
presentation from what is usually seen. We define the quantity

〈σv〉eff = J 〈σv〉f2χ , (3.1)

which is directly proportional to the number of annihilations and thus to the observed flux.
Fits in the mχ–〈σv〉eff plane are thus not sensitive to these uncertainties. Instead, deviations
of J or fχ from 1 affect the extracted 〈σv〉 values. Thus, a WIMP with thermal annihilation
cross section of 〈σv〉 = 2.2 × 10−26 cm3/s maps on to a band in 〈σv〉eff , see figure 3. For
ease of comparison with the earlier analyses [13, 14] we normalise such that J = 1, fχ = 1
corresponds to the case where our 〈σv〉eff is the equal to the 〈σv〉 used previously.

We note that we have assumed that the uncertainty on J , particularly the range of al-
lowed slopes γ “factorizes” from the fit. Namely, we assume that as one varies γ, the spectral
shape of the excess does not change significantly. It was found [13] that within the range of
dark matter profiles we consider this is indeed the case. We will now consider two fits to the
GCE, the first was done by CCW [13] and the second is a very recent analysis by the Fermi
collaboration [14]. These analyses made different assumptions about backgrounds and in the
end we consider the union of the preferred regions from these analyses as allowed. We will
first assume that all of the dark matter is made up of the relevant component, which is annihi-
lating, namely fχ = 1. We will return to interpretations of our result for fχ < 1 in section 3.3.

3.1 The CCW fit

We use as one benchmark the recent analysis by [13], which analyzes Fermi-LAT data in the
inner Galaxy over the energy range 300MeV–500GeV. The ROI in [13] extended to a ±20◦
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square around the Galactic center, with the inner 2◦ latitude masked out. We find that for
the canonical profile (r⊙ = 8.5 kpc, ρ⊙ = 0.4GeV/cm3, rs = 20 kpc, γ = 1.20), the value
of J̄canonical = 2.0× 1023GeV2 / cm5. Taking into account profile uncertainties discussed in
section 2.1 the uncertainty in J̄ = J J̄canonical, yields J ∈ [0.19, 3].

The analysis of CCW attempts to quantify some of the systematic uncertainties for
the GCE signal, by studying 60 different GDE background models for diffuse emission in the
Galaxy. They also study the correlations in the spectrum along the signal poor Galactic disk.
From this study they extract the residual signal and a set of systematic uncertainties which are
correlated across energy bins. We show their residual spectrum in the right panel of figure 1
obtained for their best fit GDE model (called “model F” in their analysis). The systematic
errors dominate over most of the energy range. Furthermore, the systematic errors have a
large degree of correlation, making it difficult to visually evaluate the fit quality of the spectra.

This large degree of correlation among the systematic errors is encapsulated by a co-
variance matrix. The total error matrix, Σ, which contains uncorrelated statistical, as well
as correlated systematic uncertainties, has been made available by CCW [13, 68]. The sys-
tematic uncertainties are well-modeled by expected errors in known background shapes (for
instance π0+ Bremsstrahlung) [13].

Using Σ it is possible to determine how well a candidate DM model fits the residual
spectrum. To do so we define the goodness-of-fit with a χ2 test statistic,

χ2 =

[
dN

dE
(mχ, σv)−

(
dN

dE

)

obs

]
· Σ−1 ·

[
dN

dE
(mχ, σv)−

(
dN

dE

)

obs

]
, (3.2)

where mχ is the mass of the dark matter and σv is its annihilation rate.
We calculate a number of benchmark spectra for dark matter particles of varying masses

and annihilation cross sections to electroweak bosons. Given the specific final state, we can
fit the mass of the dark matter from the shape information in the GCE. The normalization
of the excess can be used to determine the rate of annihilation in the region of interest. The
results of the fit are shown in figure 3.

In the top panel of figure 3 we show the ∆χ2 values for a variety of SM final states as
a function of the dark matter mass and 〈σv〉eff . We see that the bb̄ and the hh final state
spectra have the lowest χ2 values. The spectra for other electroweak bosons1 also fit within
3σ. While CCW estimate the systematic uncertainties from the Galactic disk we expect
there to be additional, presently unknown, contributions. This leads us to view the spectra
shown as an acceptable fit to the data. We also show the range of 〈σv〉eff which corresponds
to a thermal relic cross section. Within the uncertainty in J we see that all final states are
compatible with a thermal WIMP.

In the bottom of figure 3 we show the best fit spectrum for each of the final states
considered, along with the corresponding p-values. We can see that the hh spectrum is very
similar to the bb̄ spectrum, while the spectra from (W+W−, tt̄, ZZ) are somewhat harder.
This difference in spectrum shape leads to the slightly better fit for Higgs with respect to
the other final states.

3.2 The Fermi analysis

Very recently the Fermi collaboration has also weighed in on the GCE [14]. Due to the
preliminary nature of their result not all of the information regarding the analysis is presently

1A subsequent analysis performed in [69] has confirmed that electroweak final states can be good fits to
the data. They include an additional 10% systematic uncertainty over the CCW errors.
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Figure 3. Top: we show the ∆χ2 contours, corresponding to 1,2 and 3σ, obtained for the hypotheses
χχ → XX for X = {h,W±, Z, t, b}. Vertical dashed lines indicate the threshold for each of these
final states. The best fit point in each case is indicated. Bottom: we show the spectra of photons
obtained for the corresponding best fit values in the upper plot. The central values and the error bars
are extracted from [13]. Note that the errors are correlated, and the plotted spectra indeed fit the
data reasonably well, as indicated by the χ2 at the best fit.
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available. However, it is known that an additional contribution with an NFW morphology
improves the fit to the Galactic center data significantly. Fermi has shown the best fit energy
spectra which fit the excess, for four qualitatively different background models which we
dub Fermi spectra (a)-(d), and which are shown in figure 1. The span of these spectra is
significantly larger than the uncertainties derived by [13] and is thus a more conservative
measure of the systematic uncertainties.

The fit uncertainties associated with the best-fit spectra are not yet presented and thus
we cannot do a proper fit to the data. Nonetheless, we can use the Fermi spectra to locate
regions in the mχ–〈σv〉eff plane which reproduce the Fermi best fit spectra. Doing this will
not give us a correct estimate of the expected fit uncertainty. It will, however, give us an idea

as to the range of possibilities that the Fermi spectra allow, given the systematic uncertainties.

Since we are not truly fitting to the Fermi data we have several choices about how
to present our result which we will now describe. The analysis carried out by Fermi made
two different assumptions about the spectrum of the GCE. In one case they simply let the
normalization of the excess float in each energy bin, in the other they assumed the spectrum
had the form of an exponentially cut-off power law, i.e. E2dN/dE = N0E

−γe−E/Ec . The
final states we consider are remarkably well fit by this simple form and so we choose to use
the GCE spectra Fermi derived under this assumption. Also, there are various possible ways
to determine the best fit region in the m − 〈σv〉eff plane e.g. one could allow any spectrum
which fits in the envelope between the 4 presented spectra, or one could fit each spectrum
separately to get a feel for the systematic uncertainty. Here, we take the latter approach.

Out of the 4 spectra Fermi (a,b,c,d) present, one (a) has a shape very different from that
of heavy DM annihilating to electroweak final states. Furthermore, fitting to (a) gives results
similar, although with smaller allowed regions, to the CCW fit presented above. Also, it is
quite possible that spectrum (a) will be compatible with our spectrum shapes once the Fermi
fit uncertainties are released. Of the other spectra, (c) and (d) are very similar. We therefore
choose to present results for two of the spectra presented (b and d) in [14]. Each of the
spectra will give us a preferred region in the mχ–〈σv〉eff plane. The systematic uncertainty
is then quantified by “sliding” one preferred region to the other.

In order to fit each individual spectrum we must estimate its associated uncertainties.
We take this uncertainty to be the statistical uncertainty on the total event rate in every
energy bin (also given in [14]). Making a different choice (or, for that matter, using the
correct uncertainty, once available) will only change the size of each allowed region, but
will not change the off-set between the two allowed regions, which quantifies the systematic
uncertainty and which is the main point of this exercise. With this choice we can now carry
out a χ2 fit to the Fermi spectra, but we point out that because we are fitting to a best fit
spectrum with a prescribed functional form, the values of the “χ2” will not carry rigorous
statistical significance.

As for the the DM profile and the resulting uncertainties on J , the Fermi analysis con-
siders a region of 15◦×15◦ around the Galactic center, smaller than that of CCW. However the
Fermi analysis does not mask-out the Galactic center. It was performed for NFW profiles with
slopes of 1.0 and 1.2, finding good fits for both (with similar spectra). The larger uncertainty
in γ is to be expected because that analysis does not extend as far out from the Galactic cen-
ter and thus has a smaller “lever-arm”. To be conservative, we will use the more constrained
range of γ ∼ 1.2 ± 0.1 from the CCW analysis in presenting our results. This choice leads
to a line-of-sight integral of J̄canonical = 1.58 × 1024GeV2/cm5. Once we include the ρ⊙ =
0.4± 0.2GeV/cm3 uncertainty we get a range for the line-of-sight integral of J ∈ [0.14, 4.0].
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The results of this fitting procedure are shown in the top panel of figure 4, with the
lower (higher) mass region in each case corresponding to the fit to spectrum b (d). We have
only studied Fermi spectra (b) and (d) but the region that lies between them is also viable
and thus we expect that the region of parameter space that lies between the two fit regions
to also provide a good fit, we denote this in the plot with dashed arrow-lines. Notice that the
low and high mass regions are also separated in cross section, and the cross section needed to
fit the GCE scales as ∼ 1/mχ. This is as expected given the behavior seen in figure 2, since,
although the DM number density scales as ∼ 1/m2

χ, the number of photons per annihilation
scales as mχ.

These results are qualitatively similar to the CCW fits, figure 3. The result reinforces
our conclusion from the CCW fit and takes them further: once uncertainties are taken into
account, the allowed region extends to higher DM masses than previously realised, and allows
for a greater range of final states. The growth in the range of masses brought about by the
Fermi analysis is particularly striking for the bb̄ final state which was in the neighborhood
of 30-60GeV in most previous studies. One may consider the union of the regions allowed
by the CCW and the Fermi studies as spanning the range of possibilities, and the large size
simply reflects our present lack of understanding of the backgrounds and thus on the exact
form of the excess. This expanded range of possibilities and new set of final states has a
significant impact on the range of particle physics models that can explain the GCE. We will
explore some examples in section 4.

The bottom panels of figure 4 show the best fit spectra for each of our channels
compared to Fermi spectra (b) and (d) (on the left and right respectively) along with the
statistical uncertainties we took for the fit. We see that the Fermi power-law-with-cutoff
parametrization can be matched by many well motivated particle physics models. For
spectrum (b) the fits are remarkably good, for the best fit points in (bb̄ ,W±W∓ , ZZ , hh , tt̄)
final state the χ2, for the 20 bins of the Fermi result, are (2.6 , 1.8 , 2.6 , 4.6 , 2.0). For
spectrum (d) the corresponding χ2 are (44 , 15 , 15 , 20 , 21).

3.3 Considering multi-component dark matter — fχ < 1

So far we have been considering the case where all of the DM contributes to the GCE. It is
also possible that the DM that is responsible for the GCE is not the only species of DM in
the Galaxy, so called multi-component DM i.e. fχ < 1. We now address the question of how
little of the DM need be in this component to still give a sufficiently large photon signal.

As the fraction of DM involved in producing photons drops the annihilation cross section
must grow, such that f2χ〈σv〉J is approximately constant. At the same time if DM is a
thermal relic its abundance is set by the annihilation cross section and fχ ∼ 1/〈σv〉. As can
be seen in figures 3 and 4 there is some overlap, due to the uncertainty in J , between the
fχ = 1 thermal cross section and the cross section required by the signal. As the cross section
increases the amount of (thermal) DM drops and at some point the abundance will be too
small to explain the GCE.

In figure 5, we show the deviation from fχ = 1. The various colored bands are the regions
that can explain the Fermi excess, where f2χ〈σv〉J lies within the “1σ” contours of the Fermi
fits, the left-hand plot is for spectrum (b) and the right-hand plot is for spectrum (d). The
dashed gray line shows how the thermal abundance changes as 〈σv〉 varies, assuming J = 1
and the band around it encapsulates the uncertainty, i.e. J ∈ [0.14, 4.0]. Regions where the
colored bands overlap the gray band show regions where the DM is not all of the DM, but
can be a thermal relic, and can explain the GCE. We see that for bb̄ both spectrum (b) and
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Figure 4. Top: regions of parameter space which reproduce the Fermi best fit spectra. We do not
fit to Fermi data, but rather to their reported best-fit spectra with statistical uncertainties only. We
show the “∆χ2” contours obtained for the hypotheses χχ → XX for X = {h,W±, Z, t, b} fitting to
Fermi’s spectrum (a) (low mass) and spectrum (d) (high mass). Uncertainties from a full fit are likely
to grow. Parameter space that is between the best fit regions, along the diagonal dashed lines, are
also likely allowed by variations of the background model. Bottom: we show the spectra of photons
obtained for the corresponding best fit values in the upper plot. Fermi spectrum (b) is on the left and
spectrum (d) is on the right. The Fermi spectra are shown as a dashed line and the gray envelope
shows the statistical uncertainty we used in the fits.

(d) can have a thermal, but fχ < 1, explanation. For other final states only spectrum (b) is
open to this interpretation.

An alternative possibility is that DM is not a thermal relic, its abundance is set by other
means e.g. late decay of another particle. For this case the colored bands show that there is
a large region of parameter space where the current signal can be obtained, for both spectra.
In section 4 we will present very simple models which realize this possibility.

This discussion has assumed that the annihilation cross section in the early universe,
which determines the relic abundance, and the annihilation cross section now, which deter-
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Figure 5. The fraction, fχ, of the relevant component of dark matter as a function of its annihilation
cross section, including the uncertainty in J . Colored bands correspond to 1σ preferred regions for
the Galactic center excess. The gray band indicates the region where the dark matter is populated
thermally. On the left (right) the regions are shown for the fit to Fermi spectrum b (d).

mines the photon flux, are the same. If this is not the case the gray band will move. For
instance if there is co-annihilation in the early universe, the gray band will shift down, but
if the annihilation is Sommerfeld enhanced the band will shift up.

4 Models

We have seen that dark matter annihilation to W ’s, Z’s, h’s and t’s can provide a good
fit to the Gooperon excess in a large window of masses as summarized by table 1. We
will now consider some models of dark matter which annihilate to these final states. The
importance of investigating these models in addition to the more studied low-mass bb̄ final
state is the new possibilities this opens up for model building. For example, assuming the
GCE comes from bb̄ it was concluded that the excess cannot be accommodated within the
MSSM and that the addition of a singlet and ten new parameters was needed [56]. Although
we will not carry out a comprehensive study, we shall see by example that there are simple
supersymmetric models able to account for the GCE with annihilations to W ’s or tops. In
addition, we suspect that the enlarged window of mass opened by the Fermi analysis allows
for simple SUSY models with annihilations into bb̄.

We will consider several examples of dark matter models which produce these annihila-
tion channels. For each model we will derive constraints from direct detection experiments,
high energy solar neutrino searches, and collider experiments. We will also estimate the pa-
rameters for which the thermal relic density matches observation. The thermal relic region
will coincide with the preferred Gooperon region in some cases, but we note that non-thermal
dark matter production can be invoked when it does not.

In addition, there can be important constraints from correlated indirect detection sig-
nals. In particular, the recent studies of ref. [70–72] have examined the constraints from
cosmic ray antiproton measurements on possible DM interpretations for the GCE (for the bb̄
final state). Unfortunately these limits strongly depend on the assumptions made in the mod-
eling of the cosmic ray propagation and solar modulation [71], and reasonable choices exist
which allow compatibility with a GCE explanation. We note the heavy final states that are
the focus of our work will lead to even harder antiproton spectra, and thus could potentially
provide a handle in distinguishing them from other DM interpretations. A complementary
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indirect probe comes from gamma-rays from DM-dominated dwarf spheroidal galaxies. The
limits on DM annihilation to hadronic final states are starting to probe the interesting re-
gions favored by the GCE [73]. We note that a careful analysis of the compatibility of the
GCE and dwarf limits should take into account the uncertainties related to the dark matter
halo, such as the ones discussed in section 2.1. A dedicated study of these and other related
indirect detection signals is warranted, which we leave to future work.

4.1 The MSSM neutralino

We begin by studying the canonical example of a WIMP — the neutralino of the MSSM.
Depending on its content (bino, wino, higgsino) and the presence of other light SUSY states
in the spectrum, the neutralino can exhibit a variety of annihilation channels, includingWW ,
ZZ, hh and tt̄ as well as bb̄. Therefore, in addition to being a theoretically motivated WIMP
candidate, the neutralino provides a versatile scenario in which to explore various final states
from DM annihilation.

We first consider the situation in which the electroweakinos are the only light super-
symmetric states available and decouple all squarks, sleptons, and the second Higgs doublet.
In this limit, the relevant parameters are µ, the higgsino mass parameter, the bino and wino
mass parameters, M1 and M2, as well as the ratio of the Higgs vevs, tanβ. We will begin by
considering scenarios where all of the mass scales are O(100)GeV and the dark matter is an
admixture of higgsinos and bino and wino. Later we will explore other options, including the
case when the LSP is an almost pure state, as well as the effects of a light stop in the spectrum.

4.1.1 Mixed neutralino

Even within our simplified limit of the MSSM, the dark matter can exhibit a wide range
of phenomenological possibilities. We begin here by considering the simple case of a mixed
neutralino annihilating to electroweak gauge bosons. Here we will present a few sample slices
of parameter space in which the mass and annihilation rate suggested by the GCE can be
obtained while simultaneously satisfying the relevant phenomenological constraints. This is
not intended to be exhaustive but rather meant to motivate more thorough studies. We will
begin by assuming that all other particles are heavy. In this case WW is often one of the
dominant annihilation channels.

Our fits in section 3 tell us that in order to describe the GCE a neutralino annihilating
into W ’s must have a mass between mW and 165GeV, and an annihilation cross section in
the Galaxy today that is close to the thermal value, 〈σv〉 ≈ 2.2×10−26 cm3 s−1. For such light
LSPs, the annihilation cross section of a pure higgsino or wino is much too large, while that of
a pure bino is too small (see section 4.1.2). However, as is well-known, the appropriate cross
section can be obtained if the neutralino is “well-tempered” [74], i.e., is a mixed state lying
close to the boundary between a bino LSP and a wino or higgsino LSP. We will mostly focus
on the case in which the LSP is primarily a bino/wino mixture,M1 ∼M2,∼ O(100GeV) and
|µ| > O(200GeV), such that the dominant annihilation channel is indeed WW . We reserve
some comments for the bino/higgsino option for the end of this section.

In the well-tempered regime, the splittings between the LSP and the next lightest states
in the spectrum are typically small, and therefore co-annihilation processes are active in the
early universe. This implies that the effective annihilation cross section governing thermal
freezeout is always larger than the late-time annihilation cross section relevant for the GCE.
Thus, we typically expect a slight mismatch between regions favored by the GCE and those
suggested by a thermal relic. In our results below, we will keep track of the relic abundance
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Figure 6. Mixed MSSM neutralino. We display the 1,2,3σ best-fit GCE regions for the WW final
state in the M2 − M1 plane for CCW (green) and Fermi spectrum (b) (orange). We also overlay
constraints from LEP chargino searches (brown) and LUX (gray). In the (red) region denoted ΩDM

the thermal relic abundance for the DM is within 3σ of the observed value. For convenience, we also
show the mass of the DM and the annihilation cross section to WW as blue and yellow contours in
units of GeV and 10−26 cm2/s respectively. In the left plot we have fixed µ = 700GeV, tanβ = 3,
while in the right plot we have fixed µ = −250GeV, tanβ = 1.5.

calculation, paying attention to whether the thermal abundance overlaps with the region that
fits the GCE. We note however that the abundance of dark matter could be set by a non-
thermal mechanism, so models that do not thermally produce the observed DM abundance
are by no means ruled out.

To compute the neutralino cross sections, relic abundance, and light electroweakino
spectrum we have used the MSSM implementation of the MicrOMEGAs package [75–77]
and the SuSpect package [78], with all additional SUSY states decoupled. These results
were cross checked with a private code. In figure 6 we show two example regions that can
account for the GCE. The best-fit regions of the GCE for the WW final state as discussed
in section 3 are shown for both the CCW analysis (green) and Fermi spectrum (b) (orange).
To derive these regions, we have chosen J within the allowed range such that the χ2 value
is minimized. We reiterate however, that this later region can “slide” up to higher masses
as shown by the systematic uncertainties in figure 4. In both plots the (red) region denoted
ΩDM predicts a thermal relic abundance for the LSP within 3σ of the preferred value, i.e.
ΩDMh

2 = 0.1198± 3× 0.0026 [67]. We have also overlaid the limits on the spin-independent
WIMP-nucleon cross section from LUX [79] and the limits from LEP chargino searches
(mχ± & 103.5GeV) [80]. In the left (right) plot, we have fixed µ = 700 (−250)GeV and
tanβ = 3(1.5). Here, and throughout this discussion, we are agnostic about how the Higgs
mass of 126GeV is obtained, although we fix it to this value in all calculations. One simple,
although tuned, possibility that would result in the correct Higgs mass, without altering any
of the electroweakino physics, is heavy stops.

In both examples we find that a significant range of parameters can account for the
GCE while obeying the LEP and LUX constraints. Moreover, in the right plot of figure 6
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we observe a small region where the thermal relic abundance agrees with observation and
furthermore overlaps with the region favored by the fit to the GCE. This is in contrast to
the left plot where the two regions are separated, and the GCE explanation requires DM to
be produced non-thermally. This difference can be understood as a consequence of the mass
splittings between the LSP and the NLSP in the regions favored by the GCE. Smaller values
of |µ| and tanβ, such as those in the right plot, tend to increase the mass splitting between
the LSP and NLSP. This in turn reduces the effect of co-annihilation, allowing the GCE and
thermal relic regions to overlap. In fact, for negative values of µ the increase in the mass
splitting is more pronounced while simultaneously the higgsino fraction of the LSP is further
suppressed, allowing compatibility with the LUX bounds as is seen in figure 6.

The two examples in figure 6, while sampling only a small portion of the parameter space,
provide existence proofs that a light neutralino making up all of the DM, either thermally
or non-thermally, can account for the GCE. They are also illustrative of the general issues
at stake in a potential DM model interpretation of the GCE. In addition to the constraints
examined above, the LHC experiments are starting to extend limits on electroweakinos be-
yond the LEP limits in some cases, and we refer the reader to the recent study of ref. [81].
While the LHC limits cannot exclude a neutralino explanation of the GCE at this stage, it
would be very interesting to examine the prospects for Run II; for recent work along these
lines, see refs. [82–90].

We have also explored, though not exhaustively, the case in which the LSP is primarily
a bino/higgsino mixture. While one can find regions satisfying the GCE, there are generally
competitive constraints from LUX due to the sizable LSP higgsino content. One exception
is the direct detection “blind spot” where the neutralino-Higgs coupling vanishes [91, 92].
However, in this region, there are further constraints from IceCube’s search for solar neutri-
nos [93], which in turn limits the spin-dependent scattering cross section mediated by the Z
boson, again challenging a GCE explanation. Keeping in mind that the systematic uncertain-
ties in the GCE are likely even larger than we have estimated here, it would be worthwhile
to explore the bino/higgsino option in a systematic fashion.

4.1.2 Pure winos and higgsinos with fχ < 1

We now consider the edges of the MSSM neutralino parameter space where the neutralino is
an almost pure wino or almost pure higgsino. We will find that in these cases the neutralino
can produce a good fit to the GCE if it is not all of the dark matter and if it is abundance
is set non-thermally.

Consider first the case M2 ≪ |µ|,M1 such that the spectrum contains a light wino with

nearly degenerate neutral and charged states (W̃ 0, W̃±). A pure wino LSP is predicted, for

example, in models of anomaly mediation [94, 95]. In the Galaxy today, the neutral W̃ 0

annihilates to W bosons via W̃± exchange. The annihilation cross section is given by

〈σv〉W̃WW =
g4

8πM2
2

(1−m2
W /M

2
2 )

3/2

(1−m2
W /2M

2
2 )

2
. (4.1)

The tree-level formula above is quite accurate for such low mass winos, with corrections at
the few percent level coming from higher-order electroweak and Sommerfeld effects [96–99].
The annihilation for such light winos is very efficient, with a cross section (4.1) of order
4 × 10−24 cm3 s−1. Thus, if the wino is populated thermally it will make up only a small
fraction of the dark matter.
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Figure 7. An extension of figure 5 to higher values of the effective cross section which include the
expected cross sections of a higgsino (purple) and wino (pink). We show regions where a pure higgsino
or wino can explain the GCE provided they are populated non-thermally, and make up O(10%) of
the total dark matter.

In fact, once co-annihilation effects are considered the effective annihilation rate in the
early Universe is even larger. Including co-annihilation and using MicrOMEGAs we find that
for a 95GeV mass the relic density of winos is ΩW̃h

2 ∼ 2.5×10−4 and the predicted gamma-
ray signal will be much too faint to explain the GC excess. On the other hand, a non-thermal
wino that saturates the dark matter density will yield a much larger gamma-ray signal than
that observed by Fermi and is thus excluded [100, 101]. However, there is a third possibility.

Since the gamma-ray flux, equations (2.1) and (2.2), scales as Φ ∝ f2
W̃ 0

〈σv〉
W̃ 0 , it

follows that a wino can still explain the gamma-ray signal if it is populated non-thermally

with just a sub-dominant DM fraction f
W̃ 0 ≈

√
〈σv〉fitWW /〈σv〉W̃ 0 ≈ 0.1, where 〈σv〉fitWW ∼

4× 10−26 cm3 s−1 is the value inferred from, for example, the CCW fit (see figure 3) for the
WW channel assuming the DM saturates the observed relic density. The non-thermal origin
of the wino could, for example come from the decay of moduli (as reviewed, for example,
in [101]). We show the wino dark matter region in the 〈σv〉J –fχ plane in figure 7.

The most important constraints on a light wino come from from collider experiments.
These bounds depend sensitively on the mass splitting between the charged and neutral
states, ∆M = M

W̃± − M
W̃ 0 . If tree-level mixing is negligible, µ ≫ M2, there is still an

irreducible radiatively generated mass splitting ∆M ≈ 150MeV (for M2 ≈ 100GeV), which
has been computed to two-loop order in ref. [102]. For such a small splitting, the lifetime of

the charged state W̃± is of order cτ
W̃± ≈ 10 cm, such that production of W̃± at colliders will

lead to the signature of a disappearing charged track. An ATLAS search for this signature
excludes pure winos with radiatively generated mass splittings for M2 < 270GeV [103].
However, if one arranges a slightly larger mass splitting, ∆M & 220MeV by, for instance,
a small mixing with the higgsino, then the ATLAS bound does not apply since the χ̃±

lifetime is adequately shortened. Therefore, to evade the ATLAS disappearing track search,
an additional O(100MeV) contribution to the chargino-neutralino mass splitting can be
obtained through tree-level wino-higgsino mixing. In the limit M1 ≫ |µ| ≫ M2, the tree-
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level contribution to the splitting is given by

mχ± −mχ0 ≃ M2m
4
W cos2 2β

2(M2
2 − µ2)2

(4.2)

≈ 80MeV ×
(

M2

100GeV

)(
400GeV

µ

)4

,

where the second line is valid in the large-tanβ limit. Thus, provided |µ| . 400GeV, this
tree-level splitting, in tandem with the ∼ 150MeV radiative splitting from gauge boson loops,
is sufficient to evade the ATLAS search.

We also note that in this regime of small O(100MeV−1GeV) mass splittings, the LEP
limits are slightly weaker than the naive kinematic limit, and neutralinos as light as 95GeV
are allowed [104]. Other searches, such as mono-jets and mono-photons, place no additional
exclusions on the parameter space.

What about other constraints on this scenario? A pure wino has a spin-independent
WIMP-nucleon scattering cross section σp ∼ 10−47 cm2 [105, 106], which is currently uncon-
strained even if the wino comprises all of the dark matter. However, with additional tree-level
mixing with the higgsino as discussed above, the neutralino obtains a sizable coupling to the
Higgs boson, which leads to a cross section σp ∼ 10−45−10−44 cm2, in the range currently
being probed by LUX. However, since we require a wino comprising only a fraction f

W̃ 0 ≈ 0.1
of the dark matter, LUX does not currently constrain this scenario. Similarly, other indi-
rect astrophysical probes that depend on the dark matter density, such as solar neutrinos,
gamma-rays, or antiprotons from DM annihilation, do not constrain our scenario since the
neutralino comprises a subdominant fraction of the total dark matter.

The case |µ| ≪M1,M2 — a “pure” higgsino2 — is very similar to the case of the wino
just described. The lightest neutralino annihilates to W and Z bosons with cross sections
given by

〈σv〉H̃WW =
g4

128πµ2
(1−m2

W /µ
2)3/2

(1−m2
W /2µ

2)2
,

〈σv〉H̃ZZ =
g4

256πc4Wµ
2

(1−m2
Z/µ

2)3/2

(1−m2
Z/2µ

2)2
. (4.3)

For a 100GeV higgsino, the total annihilation cross section is 〈σv〉H̃ ≈ 3 × 10−25 cm3 s−1.
This is a factor of 10 to 25 to large to account for the GCE excess if the higgsino was all
of the dark matter. However, due to coannihilation effects, the thermal abundance of the
higgsino is suppressed, of order Ωh2 ∼ 3 × 10−3. A thermal higgsino would thus contribute
negligibly to the GCE. As was the case for the wino, a non-thermal origin of higgsinos which
comprise ∼ 40% of the total dark matter could account for the GCE as shown in figure 7.

In contrast to the case of a pure wino, the only collider limits on a pure higgsino come
from LEP2. The ATLAS disappearing track search places no constraints on higgsinos. This
is because 1) the production cross sections of higgsinos is smaller that of winos by roughly a
factor of two, and 2) the higgsino lifetime is shorter than the wino lifetime by roughly a factor
of 6. The latter fact is due to the larger radiative splitting, which for a 100GeV higgsino is
about ∆M ≈ 260MeV [108, 109]. The LEP2 combined limits allow for higgsinos as light as

2We assume a small mixing with the bino or wino such that the Z-boson mediated scattering with nuclei
is inelastic [107].
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92GeV for mass splittings of order 200MeV. No further constraints from direct or indirect
dark matter searches exist for this scenario.

4.1.3 Bino-stop

If there is a light top squark (stop) in the spectrum the neutralino can efficiently annihilate
to top quarks via t-channel stop exchange. Consider the simplifying limit in which the LSP is
purely bino and the lightest stop is purely right-handed, t̃1 = t̃R, while the heavy left-handed
stop is decoupled. The bino-stop-top coupling in this case is

L =
2
√
2 g′

3
t̃1 B̃ t̄+ h.c., (4.4)

and the annihilation cross section for B̃B̃ → tt̄ is given by

〈σv〉 = 2Nc g
′4m2

t

81π(M2
1 +m2

t̃1
−m2

t )
2

(
1− m2

t

M2
1

)1/2

, (4.5)

where Nc = 3. When both the bino and the stop are light, with masses of order 200GeV,
the annihilation cross section (4.5) is in the range 〈σv〉 ≈ (1 − 3) × 10−26 cm3 s−1. Given
the uncertainties in the spectrum of the gamma-ray excess as well as J , this scenario can
yield an annihilation rate large enough to account for the GCE. In figure 8 we display the tt̄
best-fit regions of the CCW analysis (figure 3) in the mt̃1

−M1 plane.
The cross section (4.5) is required to be close to the canonical thermal relic value to ex-

plain the GCE. Since the bino-stop mass splitting is small, additional stop co-annihilation pro-
cesses are important in the early universe [111–114]. We have estimated the bino relic abun-
dance including the annihilation to tt̄ via eq. (4.5) as well as the effects of stop co-annihilation
(including the Sommerfeld enhancement) using the results of ref. [115], cross checked with
MicrOMEGAs. In figure 8 we show the parameters for which a thermal relic bino makes up all
of the dark matter. This region overlaps with a portion of the region explaining the GCE.
Outside this region the bino must be non-thermally produced but still can explain the GCE.

The most important constraints on this scenario come from direct searches for stops at
the LHC. In this region of neutralino-stop mass parameter space, there are typically two stop
decay channels that are considered: 1) the two-body flavor violating decay to charm and neu-
tralino, t̃1 → cχ0, and 2) the four body off-shell decay t̃1 → bff ′χ0. ATLAS and CMS have
performed searches optimized to these decay modes [116–118], which, under the assumption
that the branching ratio to either final state is 100%, challenge a possible GCE explanation.

These limits are, however, very sensitive to the branching ratios of the two final states,
and this dependence has recently been examined in detail in ref. [110]. For example, with a
∼ 50% branching ratio to both the two- and four-body final states, there is still a significant
region of stop-neutralino mass parameter space that is not covered by the ATLAS and CMS
searches. From a low energy perspective, these branching ratios are essentially free parame-
ters since they depend crucially on the effective stop-scharm mixing angle. This mixing angle
can be large enough for the two branching ratios to be competitive without running afoul of
flavor constraints; see e.g. [119, 120]. In addition, there have been several studies recasting
existing analyses to constrain stops in this mass region [115, 119–121], although again the
limits depend crucially on the branching ratios and stop-neutralino mass splitting. Although
beyond our current scope, it would be very interesting to perform a careful study of the
existing limits and prospects for LHC Run-II, while taking into account the freedom in the
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Figure 8. Bino-stop parameter space: we display the 1,2,3σ tt̄ best-fit regions for the CCW analysis
of the GCE (brown). In the favored region, the annihilation cross section to top quarks lies in the
range of 〈σv〉 ≈ (1 − 3) × 10−26 cm3 s−1 (blue contours). We also display the region in which the
bino is a thermal relic saturating the observed DM abundance (red), which overlaps with the GCE
favored region. Assuming a branching ratio Br(t̃1 → cχ0) = Br(t̃1 → bff ′χ0) = 50%, the ATLAS
stop searches exclude the gray region [110].

stop branching ratio. Beyond these two decay modes, one can also contemplate a possible
decay mode to t̃1 → uχ0, which could be probed by monojet searches.

Beyond the constraints from direct searches at the LHC, there are indirect constraints
on light stops from precision electroweak data, flavor physics, and Higgs signal strength mea-
surements, but these depend on the details of the spectrum and mixings of other sparticles,
and no firm bounds can be placed. Furthermore, direct detection experiments place no lim-
its on this scenario due to the bino nature of the dark matter and its negligible coupling
to quarks other than the top. Within the MSSM, a 126GeV Higgs boson favors somewhat
heavier stops than the one considered here. There exist simple extensions of the MSSM
which can accommodate light stops with a 126GeV Higgs [122–128]. It would be interesting
to further investigate the bino-stop scenario in the context of a fully fledged SUSY model.

4.2 Higgs portal dark matter

A well motivated class of WIMP dark matter models is the so-called Higgs portal dark
matter, where the dark matter couples to the standard model via the Higgs boson. The
minimal example of such a model consists of a new scalar singlet χ which couples to the
Higgs with a renormalizable interaction [129–131]

− L ⊃ 1

2
λχχH†H +

1

2
m2χχ (4.6)
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Figure 9. Dark matter annihilation to Higgs bosons generally implies annihilation to other SM final
states, and scattering at direct detection experiments.
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Figure 10. Left: parameter space of Higgs-portal DM. The red region is where the annihilation cross
section is with 10% of 2.2× 10−26 cm3 s−1. The contours denote the total annihilation cross section
of DM into a combination of WW , ZZ, hh and tt̄ final states. The shaded region is excluded by
LUX assuming χ makes up all the dark matter, fχ = 1. The spectrum for the marked point in the
parameter space is shown on the right. Right: spectrum for the candidate point. The annihilation
branching fractions are 48%, 22%, 28%, and 2% for WW , ZZ, hh, and tt̄ respectively, and J = 3.
The grey region represents the envelope of the four Fermi spectra shown in figure 1.

Naively this may be a good candidate for dark matter annihilating to Higgses, however,
generically, and as illustrated in figure 9 annihilation into Higgses also implies annihilation
into the other final states we consider, W ’s, Z’s and tops (if the dark matter is above
threshold). For example, for a dark matter mass of mχ =170GeV and a portal coupling
λ . 0.1, the annihilation fraction into (WW : hh: ZZ) is roughly (51%: 26%: 23%). It is
interesting to note that if we interpret the region preferred by Fermi, figure 4, quite loosely,
there is significant overlap between the dark matter masses preferred by these final states. As
we will now show, dark matter which annihilates to an order one admixture of these states
could also fit the observed spectrum.

In the left panel of figure 10 we show the parameter space for this model. The annihila-
tion cross section into the various channels, as well as the direct detection cross section, can be
found in [132]. For direct detection we show the limits assuming the effective Higgs-nucleon
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coupling from [133] which is fN = 0.29, with a few percent uncertainties. We see that a ther-
mal relic scalar dark matter is consistent with direct detection limits so long as the dark mat-
ter mass is above ∼125GeV. From figure 4 we see that for DM masses above 150GeV the re-
quired cross section to be consistent with the Fermi best fit spectra is significantly higher than
the thermal cross section, even after the uncertainty in the line-of-sight integral J is consid-
ered. We note however, that figure 4 is not a proper fit to Fermi data and that once all uncer-
tainties are considered lower cross sections may be allowed. Even if the Fermi region remains
at higher cross section the GCE can easily be consistent with Higgs portal DM if the couplings
λ is taken to be larger than its thermal value. In this case the thermal abundance of χ is
lower, but the full DM abundance may come from a non-thermal source, such as a late decay
of another thermal relic. Such a scenario is consistent with limits from direct detection, if fN
is sufficiently small. This is seen in figure 10, where the right panel shows the spectrum pro-
duced by DM annihilations at the parameter point marked as a blue dot on the left for J = 3.

It is interesting to ask — is it possible to get dark matter annihilating dominantly to
Higgs bosons? In the framework of the minimal Higgs portal model the annihilation into
gauge bosons scales as λ2. For large values of λ the annihilation into Higgs bosons scales
as λ4 because of a diagram in which χ is exchanged in the t-channel. We find that for
mχ = 170GeV the Higgs branching fraction goes above 50% for λ ∼ 1.2 and climbs quickly
for larger values of the coupling. As is clear from figure 10, such large values of λ are in
conflict with direct detection limits.

It is possible to get a dominant annihilation into Higgs pairs while evading LUX limits
by setting the hχχ coupling to be small while keeping a large hhχχ coupling. Because
the Higgs field gets a vev, this can be achieved via tuning, for example, between a quartic
interaction and a higher dimension operator. Consider, for example, the following couplings
to the Higgs portal, including dimension 6 terms:

− L ⊃ 1

2
λ′ χχ

(
H†H − v2

2

)
+

1

2Λ2
χχ

(
H†H − v2

2

)2

+ . . . (4.7)

where Λ is the new physics scale at which the effective operator is generated. Notice that while
the renormalizable coupling λ′ leads to a trilinear hχχ coupling, the dimension 6 coupling
does not, and instead the leading interaction is the quartic hhχχ coupling. Thus, if one
assumes λ′ is small in comparison to v2/Λ2, then the dominant annihilation channel will be
χχ → hh and limits from direct detection experiments are evaded. We emphasize that the
small λ′ regime indeed corresponds to a tuning of the parameters in the effective theory, as it
requires a coincidental relation between the χ2|H|2 and χ2|H|4 operators in the Lagrangian.
Still, it would be interesting to investigate in more detail scenarios of this kind in relation to
a possible explanation of the gamma-ray excess.

4.2.1 The h → γγ line

Since we have discussed models in which DM annihilates into Higgses, it is worthwhile to
pause to discuss the line feature from h→ γγ at 62.5GeV. Because the line is very sensitive
to small boosts of the Higgs, a photon line is only present in a sliver of parameter space,
at best. In order for a line-search to be effective, the feature being searched for cannot be
broader than the energy resolution of the instrument. We point out that the dark matter
mass would need to be less than 0.1% above the mass of the Higgs in order for the boost not
to broaden the line width beyond 10%, the energy resolution of the Fermi instrument around
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63GeV. However the signal it produces is sufficiently interesting to consider its observability
in the hopes that a mechanism for production of Higgs at rest would be found.

Observation of such a line at ∼ 62.5GeV would be a spectacular smoking gun signal of
DM annihilation to a Higgs. One could have worried that the branching fraction of Higgs
to 2 photons is too small to be observed. However the photons produced in this decay are
harder and the cosmic ray backgrounds in this region are small. In figure 1 this is accounted
for by the factor of E2 which accentuates the line.

The recent line search by the Fermi collaboration [134] places constraints on such spec-
tral features. The search is optimized for a variety of dark matter profiles (following [135]).
Among these is a contracted NFW profile (dubbed NFWc) which corresponds to our equa-
tion (2.3) with a slope of γ = 1.3 and with a local dark matter density of 0.4GeV/cm3. Fortu-
nately this profile is compatible with that which is suggested by the GC excess. The bound for
a line at 62GeV is expressed as a limit on the annihilation cross section of dark matter with
this mass annihilating to photons. The NFWc Fermi limit is 〈σv〉χχ→γγ < 3×10−29 cm2/sec
for a line at half the Higgs mass.

Assuming DM annihilates only to hh at rest we can translate the rate to 62.5GeV
photons into an effective cross section of χχ→ γγ at that mass

〈σv〉χχ→γγ
eff

=
1

4
〈σv〉χχ→hh × 2BR(h→ γγ) (4.8)

what the factor of 1/4 accounts for the fact that dark matter at 125GeV is twice as dilute
at DM at half that mass. The factor of two accounts for the presence of two Higgses in the
final state. Using 〈σv〉χχ→hh ∼ 5× 10−26 and BR(h → γγ) = 2.3× 10−3 we get an effective
γγ cross section of

〈σv〉χχ→γγ
eff

∼ 5× 10−29 cm2/sec (4.9)

We see that despite the tiny branching fraction, the Fermi line search is probing the predicted
rate for DM going to Higgses at rest. We stress however, that even if one were to tune the
mass of the dark matter to be exceedingly close to the Higgs mass, the phase space for
this annihilation process would be tiny and the required rate would not be achievable for a
perturbative model. We leave the construction of models that would produce an h→ γγ line
while explaining the GC excess for future work.

4.3 Other models

There are of course many other possibilities for WIMPs annihilating to electroweak bosons
and tops besides the well-motivated SUSY and Higgs portal scenarios discussed above. Here
we mention a few of these possibilities:

• Singlet-Doublet Dark Matter.

Another simple scenario leading to thermal relic DM candidates that can explain the
GCE is the singlet-doublet model [136–140], in which scalar or fermionic dark matter is
an admixture of an electroweak singlet and a doublet. There are important differences
to the MSSM neutralino discussed in section 4.1.1, which is tightly constrained by
SUSY. In particular, in the MSSM the gaugino-Higgs-higgsino couplings are gauge
interactions. This implies, for example, that mass splittings among charged and neutral
state cannot be too large and that co-annihilation is often important. As a result a
thermal relic neutralino can satisfy the required rate for the GCE in small regions of
parameter space. In contrast, for a generic singlet-doublet scenario, we are free to take
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the singlet and doublet coupling to the Higgs to be large, giving larger mass splittings
and reducing the amount of co-annihilation.

• SUSY with Large tanβ.

Though we have focused on annihilations to heavier states, it is interesting to remember
that the Fermi uncertainties also expand the mass window in which annihilations to
bottom quarks can explain the excess. It is known that if dark matter interactions
are mediated by a pseudo-scalar one can account for the Gooperon rate while evading
direct detection limits [26, 28, 29, 32, 46]. If dark matter can indeed be heavier, we
may be able to use the MSSM’s pseudo-scalar Higgs as the mediator. In this case,
with large tanβ, dark matter would annihilate into bottom quarks. It is interesting
to explore whether one can build such a model while satisfying LHC bounds from
A → ττ searches, limits on charged Higgses, and direct detection limits coming from
the exchange of the heavy scalar Higgs.

• Flavored Dark Matter.

A model which is qualitatively similar to the bino-stop model considered earlier is top-
flavored dark matter [30, 42, 141–149]. In this framework DM is the lightest component
of a flavor multiplet, and under the assumption of minimal flavor violation [150], there
is an accidental Z3 flavor triality symmetry that is responsible for the DM stability.
Bottom-flavored dark matter has previously been investigated as a model of χχ̄ → bb̄
which can explain the GCE [30]. For the tt̄ final state, top flavored dark matter provides
a well-motivated candidate. The basic interaction governing the phenomenology is L ⊃
λt̄Rφχt +h.c., which is similar to the bino-stop-top coupling (4.5) although here λ is a
free parameter. Because of this freedom, it is possible to obtain larger annihilation cross
sections such as those preferred by the Fermi GCE models. Also, since top flavored dark
matter is Dirac, there is vector coupling to the Z-boson induced at one-loop, leading
to a detectable SI scattering cross section at LUX and future ton-scale experiments.

• Two-Stage Annihilation.

Finally, besides the direct annihilation of dark matter to SM final states which has been
the focus of this work, there is the class of models in which dark matter first annihilates
to an unstable intermediate state, χχ→ φφ, and then φ decays to WW , ZZ, hh, or tt̄.
This mechanism has already been explored in the literature as an explanation for the
GCE with light SM final states such as b-quarks or jets [34, 36, 39, 41]. This will allow
for even heavier dark matter in the few hundred GeV range to account for the GCE.
However, since the coupling of the intermediate state to the SM can be very small it
is difficult to make any firm predictions for direct detection or collider signatures.

5 Conclusions

Many well-motivated WIMP models feature DM annihilation to weak gauge bosons, Higgs
bosons, and top quarks. In this paper we have explored possible connections between these
final states and a potential gamma-ray signal. This signal was first observed in the Fermi
data by Goodenough and Hooper [2, 3], and has been confirmed by a number of other
groups — most recently by the Fermi collaboration. While the presence of an excess has
remained robust, the characterization of the GCE has steadily evolved in recent years as
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it has been subjected to increasingly sophisticated analyses. In particular, recent studies
of the systematic uncertainties in the gamma-ray background models indicate that GCE
gamma-rays may be significantly harder than previously thought. In contrast to previous
DM interpretations of this signal, which have focused on bb̄, τ τ̄ , and light quark final states, in
this paper we have argued that a much broader range final states and model interpretations,
including the annihilation of weak-scale DM to WW ,ZZ , hh, and tt̄ can explain the GCE.

Our DM interpretations require a quantitative estimate of the systematic uncertainties
in the Fermi GCE, for which we have utilized two complementary approaches. First, we
have used the spectra determined in the recent study of CCW [13], in which the background
systematics were estimated by a thorough study of a large range of diffuse emission models
and an analysis of the residuals in several test regions along the Galactic plane. Second, we
have used the preliminary results of the Fermi analysis of the Galactic center gamma-ray
emission [14]. This analysis employed four distinct diffuse emission models, finding in all
cases that additional NFW templates with cutoff power law spectra significantly improve the
agreement with data. These four best-fit spectra differ dramatically at energies above 2GeV,
providing a second independent estimate of the systematic uncertainties in the GCE.

With these spectra in hand, we have explored several well-motivated WIMP models
predicting annihilation to WW ,ZZ , hh, and tt̄, including the MSSM neutralino and Higgs
portal DM. We have identified parameters where thermal or non-thermal DM making up all
or a subdominant component could describe the excess. In particular, for thermal WIMPs
saturating the DM abundance, we have found that within the MSSM a mixed neutralino
annihilating to W bosons, or a bino annihilating to tops via light stop exchange, can explain
the GCE. Interestingly, a light, nonthermal (almost-pure) wino or higgsino, that forms a
subdominant fraction of the cosmic DM, can also explain the GCE due to its large annihilation
cross section to weak gauge bosons. While we have explored only a few slices of the MSSM,
it would be very interesting to investigate in more detail the parameter space that can
describe the GCE. The WIMP models we have investigated in this work also lead to rich and
complementary signatures in direct detection and collider experiments. Furthermore, these
new final states predict associated indirect detection signals, such as antiprotons and (non-
GCE) gamma-rays such as those emanating from dwarf galaxies, whose spectra are different
from those expected for bb̄ or ττ . We have only scratched the surface of this exciting interplay,
and much remains to be done to correlate these signatures with the GCE explanation.

The Galactic center is of course a complex region and much work remains to better
characterize the various sources of gamma-rays. With these developments, we expect further
refinement of the morphological and spectral properties of the GCE, which in turn will
affect any potential DM interpretation. At the moment however, if we take seriously a dark
matter interpretation of the excess, then it is too early to conclude whether this signal comes
from light DM in the 10-50GeV range or heavier weak scale DM. We encourage the Fermi
collaboration to test all well-motivated interpretations of this signal, including dark matter
annihilating to SM final states such light quarks and leptons, top quarks, weak gauge bosons,
and Higgs bosons.
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