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Abstract—3G networks are currently facing severe traffic
overload problems caused by excessive demands of mobile users.
Offloading part of the 3G traffic through other forms of networks,
such as Delay Tolerant Networks (DTNs), WiFi hotspots, and
Femtocells, is a promising solution. However, since these networks
can only provide intermittent and opportunistic connectivity to
mobile users, utilizing them for 3G traffic offloading may result
in a non-negligible delay. As the delay increases, the users’
satisfaction decreases. In this paper, we investigate the tradeoff
between the amount of traffic being offloaded and the users’
satisfaction. We provide a novel incentive framework to motivate
users to leverage their delay tolerance for 3G traffic offloading.
To minimize the incentive cost given an offloading target, users
with high delay tolerance and large offloading potential should
be prioritized for traffic offloading. To effectively capture the
dynamic characteristics of users’ delay tolerance, our incentive
framework is based on reverse auction to let users proactively
express their delay tolerance by submitting bids. We further take
DTN as a case study to illustrate how to predict the offloading
potential of the users by using stochastic analysis. Extensive trace-
driven simulations verify the efficiency of our incentive framework
for 3G traffic offloading.

I. INTRODUCTION

The recent commercialization and popularization of 3G

networks provide smartphone users with ubiquitous Internet

access, and significantly enhance mobile user’s capability of

accessing web content. However, the explosive growth of user

population and their demands for bandwidth-eager multimedia

content raise big challenges to the 3G network infrastructure. A

huge amount of 3G data traffic has been generated by mobile

users, which exceeds the capacity of 3G network and hence

deteriorates the network quality provided to mobile users [1].

To address such challenges, the most straightforward solution

is to increase the capacity of 3G networks, which however is

expensive and inefficient. In contrast, it would be desirable if

part of 3G traffic can be effectively offloaded.

Some recent research efforts have been focusing on offload-

ing 3G traffic to other forms of networks, such as DTNs,

WiFi hotspots, and Femtocells [2], [3], [4], and they generally

focus on maximizing the amount of 3G traffic that can be

offloaded. In most cases, due to user mobility, these networks

available for 3G traffic offloading only provide intermittent and

opportunistic network connectivity to the users, and the traffic

offloading hence results in non-negligible data downloading

delay1. In general, more offloading opportunities may appear

by requesting the mobile users to wait for a longer time before

actually downloading the data from the 3G networks, but this

will also make the users become more impatient and hence

reduce their satisfaction.

In this paper, we focus on investigating the tradeoff between

the amount of traffic being offloaded and the users’ satisfaction,

and further propose a novel incentive framework to motivate

users to leverage their delay tolerance for 3G offloading. Users

are provided with incentives, i.e., receiving discount for their

service charge if they are willing to wait longer for data

downloading. During the delay, part of the 3G data traffic may

be opportunistically offloaded to other networks mentioned

above, and the user is assured to receive the remaining part

of the data via 3G network when the delay period ends.

The major challenge of designing such an incentive frame-

work is to minimize the incentive cost of 3G operator which

includes the total discount provided to the mobile users, subject

to an expected amount of traffic being offloaded. To achieve

this goal, two important factors should be taken into account,

i.e., the delay tolerance and offloading potential of the users.

The users with high delay tolerance and large offloading

potential should be prioritized in 3G traffic offloading.

First, with the same period of delay, the users with higher

delay tolerance require less discount to compensate their

satisfaction loss. In order to effectively capture the dynamic

characteristics of the users’ delay tolerance, we propose an

incentive mechanism based on reverse auction which is proved

to conduct a justified pricing. In our mechanism, the users act

as sellers to proactively send bids, which include the delay that

they are willing to experience and the discount that they want

to obtain for this delay. Such discount requested by users is

called “coupon” in the rest of the paper. The 3G operator then

acts as the buyer to buy the delay tolerance from the users.

Second, with the same period of delay, users with larger

offloading potential are able to offload more data traffic. For

example, the offloading potential of the user who requests

popular data is large, because it can easily retrieve the data

pieces from other contacted peer users during the delay period.

To effectively capture the offloading potential of the users, we

1Without loss of generality, we consider that most of the 3G traffic is
generated in the downlink.



take DTN as a case study and propose an accurate prediction

model by using stochastic analysis.

The optimal auction outcome is determined by considering

both the delay tolerance and offloading potential of the users to

achieve the minimum incentive cost, given an offloading target.

The auction winners set up contracts with the 3G operator for

the delay they wait and the coupon they earn, and the other

users directly download data via 3G at the original price. More

specifically, the contribution of the paper is three-fold:

• We propose a novel incentive framework to motivate users

to leverage their delay tolerance for 3G offloading.

• We design an incentive mechanism based on reverse

auction, named Win-Coupon, which dynamically determines

the traffic offloading solution based on the delay tolerance

and offloading potential of the users. We formally prove the

three desirable properties of Win-Coupon: 1) truthfulness, 2)

individual rationality, and 3) polynomial time computability.

• Taking DTNs as a case study, we provide an accurate

model using stochastic analysis to predict users’ offloading

potential based on their data access and mobility patterns.

The rest of the paper is organized as follows. In Section II

we briefly review the existing work. Section III provides

an overview of our approach and the related background

knowledge. Section IV describes the details of our incentive

framework, and proves its desirable properties. Section V

evaluates the performance of Win-Coupon through trace-driven

simulations and Section VI concludes the paper.

II. RELATED WORK

To deal with the traffic overload problem in 3G networks,

some studies propose to utilize DTNs to conduct offloading.

Whitbeck et al. [5] design a framework, called Push-and-

Track, which includes multiple strategies to determine how

many copies should be injected by 3G and to whom, and

then leverages DTNs to offload 3G traffic. Han et al. [2]

provide three simple algorithms to exploit DTNs to facilitate

data dissemination among mobile users, in order to reduce the

overall 3G traffic. Many research efforts have focused on how

to improve the performance of data access in DTNs. In [6], the

authors provide theoretical analysis to the stationary and tran-

sient regimes of data dissemination. Some later works [7] [8]

disseminate data among the mobile users by exploiting their

social relations. Data replication is another way to facilitate

data access in DTNs, which has been studied in [9] [10].

Being orthogonal with how to improve the performance of data

access in DTNs, in this paper, we propose an accurate model to

capture the expected volume of 3G traffic that can be offloaded

to DTNs to facilitate our incentive framework design.

Public WiFi can also be utilized for 3G traffic offloading.

In [4], the authors measure the offloading potential of the

public WiFi based on city wide vehicular traces. Compared

to the vehicle based high mobility scenario in [4], Lee et

al. [3] consider a more general mobile scenario, and present

a quantitative study on the performance of on-the-spot and

delayed offloading by using WiFi. The prediction of future

WiFi availability is important to the offloading scheme design,

and has been studied in [11] [12]. In [11], the authors propose

to enable mobile users to schedule their data transfers when

higher WiFi transmission rate can be achieved based on the

prediction. In [12], a Lyapunov framework based algorithm,

called SALSA, is proposed to optimize the energy-delay trade-

off of the mobile devices with both 3G and WiFi interfaces.

All the existing offloading studies have not considered the

satisfaction loss of the users when a longer delay is caused

by traffic offloading. To motivate users to leverage their delay

tolerance for 3G offloading, we propose an auction based

incentive framework. Auction has been widely used in network

design. Applying auction in the spectrum leasing is one of

the most practical applications. FCC has already auctioned the

unused spectrum in the past decade [13], and there are a large

amount of works on wireless spectrum auctions [14] [15] [16].

Moreover, auction has also been applied for designing incentive

mechanism to motivate selfish nodes to forward data for

others [17] [18]. However, none of them has applied auction

techniques to 3G traffic offloading.

III. OVERVIEW

A. The Big Picture

In this section, we give an overview of the Win-Coupon

framework. By considering the users’ delay tolerance and

offloading potential, Win-Coupon uses a reverse auction based

incentive mechanism to motivate users to help 3G offloading.

Fig. 1 illustrates the main idea. The 3G operator acts as the

buyer, who offers coupons to users in exchange for them to wait

for some time and opportunistically offload the traffic. When

users request data, they are motivated to send bids along with

their request messages to the 3G operator. Each bid includes

the information of how long the user is willing to wait and how

much coupon he wants to obtain as a return for the extra delay.

Then, the 3G operator infers users’ delay tolerance. In addition,

users’ offloading potential should also be considered when

deciding the auction outcome. Based on the priori information

collected, such as users’ data access and mobility patterns, the

3G operator predicts users’ offloading potential.

Fig. 1. The main idea of Win-Coupon

The optimal auction outcome is to minimize the 3G opera-

tor’s incentive cost subject to a given offloading target accord-

ing to the bidders’ delay tolerance and offloading potential. The

auction contains two main steps: allocation and pricing. In the

allocation step, the 3G operator decides which bidders are the

winners and how long they need to wait. In the pricing step, the



3G operator decides how much to pay for each winner. Finally,

the 3G operator returns the bidders with the auction outcome

which includes the assigned delay and the value of coupon for

each bidder. The winning bidders (e.g. user u1 and u2 shown

in Fig. 1) obtain the coupon, and are assured to receive the

data via 3G when their promised delay is reached. For example,

suppose p is the original data service charge, if user u1 obtains

the coupon with value c in return for delay t, it only needs to

pay p�c for the data service. During the delay period, u1 may

retrieve some data pieces from other intermittently available

networks, e.g., by contacting other peers which cache the data

or moves into the wireless range of APs. Once delay t passes,

the 3G network pushes the remaining data pieces to u1 to

assure the promised delay. The losing bidders (e.g. user u3
shown in Fig. 1) immediately download data via 3G at the

original price.

B. User Delay Tolerance

With the increase of downloading delay, the user’s satisfac-

tion decreases accordingly, the rate of which reflects the user’s

delay tolerance. To flexibly model users’ delay tolerance, we

introduce a satisfaction function S(t), which is a monotonically

decreasing function of delay t, and represents the price that

the user is willing to pay for the data service with the delay.

The satisfaction function is determined by the user himself, his

requested data, and various environmental factors. We assume

that each user has an upper bound of delay tolerance for each

data. Once the delay reaches the bound, the user’s satisfaction

becomes zero, indicating that the user is not willing to pay for

the data service. Fig. 2 shows an example of the satisfaction

function S(t) of a specific user for a specific data, where tbound
is the upper bound of the user’s delay tolerance. p is the original

charge for the data service, and the satisfaction curve represents

the user’s expected price for the data as the delay increases.

For example, with delay t1 the user is only willing to pay p1
instead of p. p� p1 is the satisfaction loss caused by delay t1.

Fig. 2. User’s satisfaction function Fig. 3. User’s private value

C. Auctions

In economics, auction is a typical method to determine the

value of a commodity that has an undetermined and variable

price. It has been widely applied to many fields. Most auctions

are forward auction which involves a single seller and multiple

buyers, and the buyers send bids to compete for obtaining the

commodities sold by the seller. In this paper, our incentive

mechanism is based on reverse auction [19] which involves

a single buyer and multiple sellers, and the buyer decides its

purchase based on the bids sent by the sellers. To begin with,

we introduce some notations.

Bid (bi): It is submitted by bidder i to express i’s valuation on

the resource for sale, which is not necessarily true.

Private value (xi): It is the true valuation made by bidder i for

the resources; i.e., the true price that bidder i wants to obtain

for selling the resource. This value is only known by the bidder.

Market-clearing price (pi): It is the price actually paid by the

buyer to bidder i. This price cannot be less than the bids

submitted by i.

Utility (ui): It is the residual worth of the sold resource for

bidder i, namely the difference between i’s market-clearing

price pi and private value xi.

The bidders in the auction are assumed to be rational and

risk neutral. A common requirement for auction design is the

so-called individual rationality.

Definition 1: An auction is with individual rationality if all

bidders are guaranteed to obtain non-negative utility.

The rational bidders decide their bidding strategy in order to

maximize their utility. Let N denote the set of all bidders. The

concept of weakly dominant strategy is defined as follows.

Definition 2: bi = βi is a weakly dominant strategy for user

i if and only if: ui(βi,β�i) � ui(β
0
i,β�i), 8β0

i 6= βi.

Here β�i = {β1,β2, · · · ,βi�1,βi+1, · · · ,β|N |} denotes the

set of strategies of all other bidders except for bidder i. We can

see a weakly dominant strategy maximizes i’s utility regardless

of the strategies chosen by all other bidders. If for every

bidder, truthfully setting its bid to its private value is a weakly

dominant strategy, the auction is truthful (strategyproof).

Definition 3: An auction is truthful if each bidder, say i, has

a weakly dominant strategy, in which bi = xi.

The truthfulness eliminates the expensive overhead for bid-

ders to strategize against other bidders and prevents the market

manipulation. Also, it assures the efficient allocation by en-

couraging bidders to reveal their true private values. Vickrey-

Clarke-Groves (VCG) [20], [21], [22] is the most well-studied

auction format, due to its truthful property. However, VCG only

ensures truthfulness when the optimal allocation can be found,

and it usually cannot assure the truthfulness when applied to

non-optimal approximate algorithms [23]. Unfortunately, the

allocation problem in Win-Coupon is NP-hard. We aim to

solve this challenge and design a novel incentive mechanism

which possesses three important properties: 1) truthfulness, 2)

individual rationality, and 3) polynomial time computability.

IV. MAIN APPROACH OF WIN-COUPON

In this section, we illustrate the details of Win-Coupon. In

the reverse auction based Win-Coupon, the buyer is the 3G

operator who pays coupon in exchange for longer delay of the

users. The sellers are the 3G users who sell their delay tolerance

to win coupon. The right side of Fig. 1 shows the flow chart

of Win-Coupon. At first, the 3G operator collects the bids to

derive the delay tolerance of the bidders, and predicts their

offloading potential. Then, based on the derived information, a

reverse auction is conducted, which includes two main steps:

allocation and pricing. Finally, the 3G operator returns the

auction outcome to the bidders.



In the rest of this section, we first introduce the bidding

process. Then we present the main algorithms of auction and

prove its desirable properties. Finally, we use DTN as a case

study to show how to predict bidders’ offloading potential.

A. Bidding

To obtain coupon, the users attach bids with their data

requests to reveal their delay tolerance. For each user, the

upper bound tbound of its delay tolerance can be viewed

as the resources that it wants to sell. The user can divide

tbound into multiple time units, and submit multiple bids

b = {b1, b2, · · · , bl} to indicate the value of coupon it wants

to obtain for each additional time unit of delay, where l equals

b tbound

e
c, and e is the length of one time unit. By receiving

these bids, the 3G operator knows that the user wants to obtain

coupon with value no less than
Pki

k=1 b
k by waiting for ki time

units. The length of time unit e can be flexibly determined

by the 3G operator. Shorter time unit results in larger bids

with more information, which increases the performance of the

auction, but it also induces more communication overhead and

higher computational complexity. To simplify the presentation,

in the rest of the paper delay t is normalized by time unit e.

As shown in Fig. 2, p � S(t) is the satisfaction loss of the

user due to delay t. Then, p�S(t) represents the private value

of the user to the delay, namely the user wants to obtain the

coupon with value no less than p�S(t) for delay t. Thus, the

private value of the user to each additional time unit of delay

is x = {x1, x2, · · · , xl}, where xk (k 2 {1, · · · , l}), equals

S(k � 1) � S(k). For example, as shown in Fig. 3, the user

wants to obtain the coupon with value no less than x1 if it waits

for one time unit, x1+x2 for two time units, and x1+x2+x3

for three time units. Generally, the user can set its bids with

any value at will, however we will prove that the auction in

Win-Coupon is truthful, which guarantees that the users would

bid their private value; that is, bk = xk, for all k.

B. Auction Algorithms

Win-Coupon is run periodically in each auction round.

Usually, the auction would result in an extra delay for the

bidders to wait for the auction outcome. However, different

from other long-term auctions, such as the FCC-style spectrum

leasing, the auction round in our scenario is very short, since

hundreds of users may request 3G data service at the same time.

Also, because the bidders who are willing to submit bids are

supposed to have a certain degree of delay tolerance, the extra

delay caused by auction can be neglected. Next, we describe

two main steps of the auction: allocation and pricing.

1) Allocation: In traditional reverse auction, the allocation

solution is purely decided by the bids; i.e., the bidders who

bid the lowest price win the game. However, in our scenario,

besides the bids which express the bidders’ delay tolerance, the

offloading potential of the bidders should also be considered.

Let {t1, t2, · · · , t|N |} represent the allocation solution, where

ti denotes the length of delay that 3G operator wants to buy

from bidder i. Note that since each bidder is asked to wait for

integer multiples of time unit, ti is an integer. If ti equals zero,

bidder i loses the game. The allocation problem in Win-Coupon

can be formulated as follows:

Definition 4: The allocation problem is to determine the

optimal solution {t1, t2, · · · , t|N |} which minimizes the total

incentive cost, subject to a given offloading target.

minti
X
i2N

tiX
k=1

bki (1)

s.t.
X
i2N

V d
i (ti) � v0 (2)

8i, ti 2 {0, 1, 2, · · · , li}. (3)

In Eq.(1),
Pti

k=1 b
k
i denotes the value of the coupon that the

3G operator needs to pay bidder i in exchange for its delay

ti. V
d
i (t) in Eq.(2) denotes the expected volume of traffic that

can be offloaded, if bidder i downloads data d and is willing to

wait for delay t. We will provide the details on how to predict

V d
i (t) in Section IV-C. We assume that within a short auction

round, each bidder only requests one data item, so that each

i is mapped to a single d. Thus, this constraint ensures that

the total expected volume of offloaded traffic is no less than

the offloading target v0. Eq.(3) ensures that the delay that each

bidder i waits does not exceed li, the maximum number of

time units that i is willing to wait.

It is easy to prove that our allocation problem can be reduced

to the 0-1 knapsack problem, under the assumption that li =
1, for all i. The 0-1 knapsack problem is proved to be NP-hard,

and thus our problem is also NP-hard. Next, we transform the

original problem, and derive the optimal solution of the new

problem by dynamic programming.

We transform the original problem by replacing constraint

(2) with
P

i2N bV d
i (ti)Mc � bv0Mc, where M = 10n

is a common scalar. With a larger M , the optimal solution

of the new problem becomes closer to that of the original

problem, and the former converges to the latter when M

is large enough. On the other hand, larger M increases the

computational complexity of the algorithm. In the following,

we define V̂ d
i (ti) = bV d

i (ti)Mc, and v̂0 = bv0Mc.

Let T v
i denote the minimum time units of delay that bidder

i needs to wait to offload v volume of traffic, and Cv
i denote

the corresponding value of coupon that i requests. Note that

here and in the rest of this section, traffic volume v is scaled

by M without specification. Then, we have:

T v
i = argmin

k
{V̂ d

i (k) � v} (4)

Cv
i =

Tv
iX

k=1

bki (5)

We use B = {b1,b2, · · · ,b|N |} to denote the bid set

including all the bids sent by the bidders in set N , and use

Bi = {b1,b2, · · · ,bi} to denote the bid set including all the

bids sent by the first i bidders in N . Assume only the first

i bidders join the auction, we define Cv
Bi

to be the minimal

incentive cost incurred to achieve a given offloading target v

with the bid set Bi, and define T v
Bi

= {t1, t2, · · · , ti} to be



the corresponding optimal allocation solution. Our allocation

algorithm is illustrated in Algorithm 1 with T v̂0

B giving the

optimal allocation solution. In Algorithm 1, line 4 to 8 update

T v
Bi

, Cv
Bi

to include a new bidder at each iteration. Line 6

searches for the optimal allocation solution T v
Bi

to obtain

minimal Cv
Bi

. The complexity of the algorithm is O(|N |v̂20).
2) Pricing: The VCG-style pricing is generally used in

forward auction, which involves single seller with limited

resources for sale, and multiple buyers. The bidders who have

the highest bid win the game, and each winning bidder pays

the “opportunity cost” that its presence introduces to others. It

is proved that this pricing algorithm provides bidders with the

incentives to set their bids truthfully. Based on the basic idea,

in our pricing algorithm, the 3G operator also pays bidder i the

coupon with value equal to the “opportunity cost” exerted to

all the other bidders due to i’s presence. Given the offloading

target v̂0, let c1 = Cv̂0

B\{bi}
denote the total value of coupons

requested by all the bidders under the optimal allocation

solution without the presence of i. Let c2 = (Cv̂0
B �

Pti
k=1 b

k
i )

denote the total value of coupons requested by all the bidders

except for i under the current optimal allocation solution. Then,

i’s “opportunity cost” is defined as the difference between c1
and c2. Thus, i’s market-clearing price can be derived as:

pi = c1� c2 = Cv̂0

B\{bi}
� (Cv̂0

B �

tiX
k=1

bki ). (6)

The pricing algorithm is illustrated in Algorithm 2, and

the computational complexity of the algorithm is O(A|N |v̂20),
where A is the number of winning bidders.

Algorithm 1: Win-Coupon-Allocation (N ,B)

1 for v = 0 to v̂0 do

2 T v
B1

= {Tv
1 };

3 Cv
B1

= Cv
1 ;

4 for i = 2 to |N | do

5 for v = 0 to v̂0 do

6 s⇤ = argmins2[0,v]{C
s
Bi�1

+ C
v�s
i

};

7 T v
Bi

= T s⇤
Bi�1

[ {Tv�s⇤
i

};

8 Cv
Bi

= Cs⇤
Bi�1

+ C
v�s⇤
i

;

9 return T
v̂0
B , C

v̂0
B ;

Algorithm 2: Win-Coupon-Pricing (N ,B, T v̂0

B , Cv̂0
B )

1 for i = 1 to |N | do

2 if i is the winning bidder then

3 Win-Coupon-Allocation(N \ {i},B \ {bi});

4 pi = C
v̂0
B\{bi}

� (C
v̂0
B �

Pti
k=1 bki );

5 else

6 pi = 0;

7 return pi, for all i;

3) Properties: In Section IV-B1, IV-B2, we have shown that

Win-Coupon can be solved in polynomial time, if a suitable

scalar M is selected. Next, we prove that Win-Coupon also

has the properties: truthfulness and individual rationality.

Theorem 1: In Win-Coupon, for each bidder, say i, setting

its bids truthfully, i.e., bi = xi, is a weakly dominant strategy.

Proof: We assume that when bidder i sets its bids truth-

fully, i.e., bi = xi, 3G operator would buy delay ti from it, and

its market-clearing price is pi = Cv̂0
B\{bi}

� (Cv̂0
B �

Pti
k=1 b

k
i ).

Then, the utility obtained by i is ui = Cv̂0
B\{bi}

� (Cv̂0
B �Pti

k=1 b
k
i )�

Pti
k=1 x

k
i . Now, suppose that bidder i sets its bids

untruthfully, i.e., b0
i 6= xi. Then, the length of delay t0i that 3G

operator would buy from i falls into two cases: 1) t0i = ti and

2) t0i 6= ti.

In case 1), the market-clearing price paid to bidder i would

become p0i = Cv̂0

B\{b0

i
} � (Cv̂0

B �
Pt0i

k=1 b
0k
i ). Due to the

sub-problem optimality in deriving the incentive cost Cv̂0

B ,

Cv̂0
B = C

v̂0�V̂ d
i (t0i)

B\{b0

i
} +

Pt0i
k=1 b

0k
i . Then we have p0i = Cv̂0

B\{b0

i
} �

C
v̂0�V̂ d

i (t0i)

B\{b0

i
} , where Cv̂0

B\{b0

i
} and C

v̂0�V̂ d
i (t0i)

B\{b0

i
} are independent of

the bids sent by bidder i. Therefore, if t0i = ti, then p0i = pi,

which is unaffected and the utility of bidder i has no change.

In case 2), similarly the market-clearing price paid to bidder

i would be changed to p0i = Cv̂0
B\{b0

i
} � C

v̂0�V̂ d
i (t0i)

B\{b0

i
} . Then, the

new utility obtained by i equals u0
i = Cv̂0

B\{b0

i
} � C

v̂0�V̂ d
i (t0i)

B\{b0

i
} �Pt0i

k=1 x
k
i . The utility gain obtained by bidder i by setting b

0
i 6=

bi can be calculated as:

∆ui = u0
i � ui = (Cv̂0

B\{b0

i
} � C

v̂0�V̂ d
i (t0i)

B\{b0

i
} �

Pt0i
k=1 x

k
i )

�(Cv̂0

B\{bi}
� C

v̂0�V̂ d
i (ti)

B\{bi}
�

Pti
k=1 x

k
i )

= (C
v̂0�V̂ d

i (ti)

B\{bi}
+
Pti

k=1 x
k
i )� (C

v̂0�V̂ d
i (t0i)

B\{b0

i
} +

Pt0i
k=1 x

k
i ).

When bidder i sets its bids truthfully as bi = xi, Buying

delay with length ti from it is the optimal solution of the 3G

operator to minimize the incentive cost. Therefore, keeping

other settings unchanged, the solution with buying delay t0i
instead of ti from bidder i leads to larger incentive cost. Thus

we have (C
v̂0�V̂ d

i (ti)

B\{bi}
+
Pti

k=1 x
k
i ) < (C

v̂0�V̂ d
i (t0i)

B\{bi}
+
Pt0i

k=1 b
k
i ).

Since C
v̂0�V̂ d

i (t0i)

B\{bi}
is independent of bi, and bi = xi, we

have C
v̂0�V̂ d

i (t0i)

B\{bi}
+

Pt0i
k=1 b

k
i = C

v̂0�V̂ d
i (t0i)

B\{b0

i
} +

Pt0i
k=1 x

k
i . Thus

∆ui < 0, under this case, bidder i also cannot obtain higher

utility by setting bi 6= xi.

Theorem 2: In Win-Coupon, all bidders are guaranteed to

obtain non-negative utility.

Proof: We have proved that for each bidder, say i, if it

participates the auction game, setting its bids truthfully as bi =
xi, is a weakly dominant strategy. The utility that i obtains

equals ui = Cv̂0

B\{bi}
�C

v̂0�V̂ d
i (ti)

B\{bi}
�
Pti

k=1 x
k
i = Cv̂0

B\{bi}
�Cv̂0

B ,

where ti is the optimal length of delay that the 3G operator

would buy from i to minimize the incentive cost. Since Cv̂0

B\{bi}
is the incentive cost incurred by the solution with 3G operator

buying delay with length of 0 instead of ti from bidder i, we

have Cv̂0

B\{bi}
� Cv̂0

B . Therefore, Win-Coupon guarantees that

all bidders would obtain non-negative utility.
4) Reserve Price: In forward auction, the seller has the

option to declare a reserve price for its resources. The reserve

price means that the seller would rather withhold the resources

if the bids are too low (lower than the reserve price). In Win-

Coupon, to guarantee the 3G operator obtaining non-negative



profit, we also provide it with the option to set a reserve price

to indicate the highest incentive cost it is willing to pay for

offloading one traffic unit. If the value of coupon asked by

the bidders exceeds the reserve price, the 3G operator would

rather not trade with them. Suppose that the 3G operator sets

a reserve price c0, which means that it is willing to spend at

most c0 for offloading one traffic unit. Adding the reserve price

c0 can be understood as adding a virtual bidder in the auction

round. The bids sent by the bidder is {c0, c0, · · · , c0}, and it

can offload one traffic unit per one time unit of delay.

C. Predicting the Bidders’ Offloading Potential

By motivating users to wait for some time, part of the

3G traffic can be offloaded to other intermittently available

networks. One such example is DTN which generally coexists

with 3G networks, and does not rely on any infrastructure.

Mobile users can share data via DTNs by contacting each

other. In urban area with higher user density, mobile users have

more chances to contact other users who have their requested

data. Large data requests such as video clips tend to drain

most of the 3G resource, and such requests can also tolerate

some delay. By offloading them via DTNs, the 3G payload can

be significantly reduced. In this section, we illustrate how to

predict the potentials of the users to offload their traffic via

DTNs. Note that we use “user” and “node” interchangeably.

1) Models: Due to high node mobility, large data items

such as video are hard to be completely transmitted when two

nodes contact. In [24], it has been proved that the Random

Linear Network Coding (RLNC) techniques can significantly

improve the data transmission efficiency, especially when the

transmission bandwidth is limited. Thus, in our model, RLNC

is adopted to encode the original data into a set of coded

packets. As long as the requester collects enough number of

any linearly independent coded packets of its requested data,

the data can be reconstructed. A desirable property of RLNC

is that besides the data source, any node can independently

generate new coded packets from its received ones to further

diversify the coded packets. Due to page limit, we omit the

details of RLNC and suggest interested readers to refer to [25].

In the following analysis to simplify the presentation, we

assume that the contact process between each node pair follows

i.i.d. Poisson distribution with rate λ, and exactly one packet

can be transmitted when two nodes contact. Our analysis based

on these assumptions can be extended to more general cases

such as node pairs follow contact processes other than Poisson,

and they can transmit arbitrary number of packets during a

contact.

2) The Basic Idea of Prediction: We describe the rationale

of prediction in one auction round. The starting time of this

round is denoted by t0. The objective of the prediction is

to calculate the expected volume of traffic V d
i (t) that can

be offloaded to DTNs, if node i requests data item d and

is willing to wait for delay t. By using RLNC, data item

d has been encoded into a set of coded packets, and any s

linear independent packets can be used to reconstruct d. We

say that a node retrieves an innovative coded packet, if the

packet is linearly independent to all the coded packets cached

in the node. We make an assumption that when a node contacts

another node which has cached some coded packets of its

requested data, it can always retrieve an innovative packet with

very high probability. This assumption has been commonly

used in prior works [24], [26]. In practice, if the size of the

finite field to generate the coding coefficients is large enough,

the probability is very close to 1.

Node i can retrieve one packet by contacting a node which

has some coded packets of data item d, until it has collected all

s packets. We use variable Tr (1  r  s) to represent the time

that node i retrieves r packets of d, and let FTr
(t) denote the

Cumulative Distribution Function (CDF) of Tr. Thus, V d
i (t)

can be computed as follows:

V d
i (t) = h

Z t

0

R(t)(1� FTs
(t))dt (7)

where h is the size of one coded packet. 1 � FTs
(t) is the

probability that node i has not received all s packets at time t.

R(t) represents the receiving rate of node i at time t. Due to the

i.i.d Poisson contact processes with rate λ between node pairs,

R(t) equals λNd(t), where Nd(t) denotes the total number of

nodes that has at least one packet of data d at time t. Next, we

describe how to calculate Nd(t) and FTs
(t).

3) Calculation of Nd(t): Based on nodes’ interests to data

d, all the nodes in the network except for node i can be divided

into two classes: D and I, where D contains all the non-

interesters and I contains all the interesters. The interesters

include both the nodes which are downloading the data, and

those which have already downloaded the data. To facilitate

our analysis, we further divide class I into s + 2 subclasses:

I0, I1, · · · , Is, IE , based on the nodes’ current downloading

progress of data d. Specifically, Ij (j 2 [0, s]) includes all the

nodes in the network other than node i which have already

downloaded j packets of data d, and IE includes all the

nodes which have finished data downloading before and already

deleted the data from their buffer.

Based on our description of Win-Coupon in Section IV, each

node in class I has a promised delay. When the delay ends,

the 3G operator would automatically push the remaining data

packets to the node. For the nodes which lose the auction or

choose to directly download data without bidding, their waiting

delay is zero. To characterize the different waiting delays of the

nodes, we further decompose each class Ij (j 2 [0, s�1]) into

g + 1 subclasses Ij1, Ij2, · · · , Ijg, Ij1, where g denotes the

maximal remaining delay of the current downloading nodes.

Ijk (j 2 [0, s � 1], k 2 [1, g]) includes the nodes in class Ij
whose remaining delay is k time slots. For the new requesters

which transit from class D to class I after time t0, we assume

they prefer waiting a long delay to retrieve the complete data

d via DTNs. Such new requesters in class Ij are classified into

the subclass Ij1. Under this assumption, the derived V d
i (t) is

a lower bound of the actual value, due to the following reason.

If the delays of the new requesters are limited, after the delay,

the 3G operator would directly push the traffic to them, which



potentially increases the data copies in the network, and results

in a larger V d
i (t).

Next, we analyze how the defined network states vary with

time. Let NC(t) denote the number of nodes in class C at time

t > t0. For example, NIjk
(t) represents the number of nodes

in class Ijk at time t. We model the class transition process

as two types: active transition and passive transition.

• Active transition: A node would actively transit from one

class to another class by three ways: 1) The node is in class

D, and transits to class I01 by generating a request for data

d; 2) The node is in class Ij (j 2 [0, s � 1]) and transits to

class Ij+1 by retrieving a packet from a contacted node; 3)

The node is in class Is, and transits to class IE by deleting d

from its buffer. The active transition processes are marked as

the black arrows in Fig. 4.

• Passive transition: A node would passively transit from

class Ijk (j 2 [0, s�1], k 2 [2, g]) to class Ij(k�1), and transit

from class Ij1 (j 2 [0, s � 1]) to class Is, when one time

slot passes. Note that the latter transition is caused by the

3G operator pushing the remaining traffic to the node when

its promised delay ends. The passive transition processes are

marked as the blue dotted arrows in Fig. 4.

Fig. 4. Class transition processes

In the following, we use ODEs to first analyze the active

transition process. We assume that there are qdt portion of the

nodes in class D that transit to class I01 between time t and

t+dt, where dt is infinitesimal, and q is the query rate decided

by the popularity of data d. As a node in class Ij (j 2 [0, s�1])
contacts another node in class Ij0 (j0 2 [1, s]), the former node

retrieves a packet from the latter and transit into class Ij+1.

Let RIj
(t) (j 2 [0, s�1]) denote the receiving rate of the node

in class Ij at time t, and we have:

RI0
(t) = λ(

sX
y=1

NIy
(t)) (8)

RIj
(t) = λ(

sX
y=1

NIy
(t)� 1), 8j 2 [1, s� 1] (9)

where 1 in Eq.(9) represents the node itself, since the node

cannot retrieve new packet from itself. After a node has com-

pletely downloaded data d, it may delete it from its local buffer.

We assume that there are γdt portion of the nodes in class Is
that delete data d and transit to class IE , between time t and

t+dt. Given all the initial value of the number of nodes in each

classes at the starting time, NIjk
(t) (j 2 [0, s], k 2 [1, g][1)

can be computed by solving the following ODEs.

d(NI01(t))

dt
= ND(t)q �NI01

(t)RI0
(t) (10)

d(NI0k
(t))

dt
= �NI0k

(t)RI0(t), 8k 2 [1, g] (11)

d(NIjk
(t))

dt
= NI(j�1)k

(t)RIj�1(t)�NIjk
(t)RIj

(t),

8j 2 [1, s� 1], k 2 [1, g] [1 (12)

d(NIs
(t))

dt
=

X
8k

NI(s�1)k
(t)RIs�1(t)�NIs

(t)γ. (13)

Eq.(10) characterizes the varying rate of NI01
(t) which is

composed of two parts: 1) ND(t)q nodes transit to this class

from class D by generating a request for d, 2) NI01(t)RI0(t)
nodes transit from the class to class NI11

(t) by retrieving a

packet from its contacted node. Eq.(11) depicts the varying

rate of NI0k
(t). NI0k

(t)RI0
(t) nodes transit from class I0k to

class I1k by retrieving a packet from others. Eq.(12) shows the

varying rate of NIjk
(t) (j 2 [1, s� 1], k 2 [1, g] [1), which

also consists of two parts: 1) NI(j�1)k
(t)RIj�1(t) nodes join

the class from class I(j�1)k, 2) NIjk
(t)RIj

(t) nodes leave

from the class to class I(j+1)k. Eq.(13) shows the varying rate

of NIs
(t), where the first term denotes the number of nodes

that join the class from class I(s�1)k (k 2 [1, g] [ 1), and

the second term denotes the number of nodes which delete the

data and transit to class IE .

Besides the active transition, the passive transition would

happen at the end of each time slot. At the end of each time

slot, we update the number of nodes in each class as follows:

NIjk
(t) = NIj(k+1)

(t�), 8j 2 [0, s� 1], k 2 [1, g � 1] (14)

NIs
(t) = NIs

(t�) +
s�1X
j=0

NIj1
(t�). (15)

The number of nodes in the rest of the classes which are not

listed in Eq.(14) and (15) remains the same. Also, at the end of

each time slot, the maximal delay of the existing downloading

nodes would minus 1 (i.e., g = g�1). By combining the active

and passive transition processes, the network state at any time

t (t > t0) can be derived. Thus, we can calculate Nd(t), the

number of nodes which has at least one packet of data d at

time t, as Nd(t) =
Ps

j=1 NIj
(t).

4) Calculation of FTs
(t): The derivative of FTr

(t) (r 2
[2, s]) is represented as follows by using ODEs:

dFTr
(t)

d(t)
=

Pr(Tr  t+ dt)� Pr(Tr  t)

dt
(16)

=
R(t)dt(Pr(Tr�1  t)� Pr(Tr  t))

dt
(17)

= R(t)(FTr�1(t)� FTr
(t)), 8r 2 [2, s]. (18)

We ignore the probability that node i receives more than

one packets during a very short time interval dt. Thus, the

probability that Tr, the time for node i receives r packets, is

between the range of [t, t+dt] equals the probability that node



i exactly receives r� 1 packets before time t, and receives the

rth packet during time t to t+dt. Thus, we derive Eq.(17) from

Eq.(16). Similarly, we also derive
dFT1

(t)

d(t) = R(t)(1�FT1(t)).

Therefore, given the initial values that FTr
(t0) = 0 (r 2 [1, s]),

FTs
(t) can be derived by solving the following ODEs:

dFT1
(t)

d(t)
= R(t)(1� FT1(t)) (19)

dFTr
(t)

d(t)
= R(t)(FTr�1(t)� FTr

(t)), 8r 2 [2, s].(20)

5) Numerical Results: To verify the accuracy of our pre-

diction model and analyze the impacts of the system pa-

rameters, we numerically solve the ODEs and compare the

prediction results to the actual values derived from the Monte-

Carlo simulations. In the simulations, we generate 300 nodes

following i.i.d. Poisson contact process, and one data item

with 16 packets and query rate q = 0.001. The same set

of parameters is imported to the ODEs. We focus on the

number of downloaded packets along time t on a specific node,

and compare the results derived in the simulation with that

from solving the ODEs. The results given by the simulation

are averaged over 200 runs. Fig. 5(a) shows the results with

different contact rate λ. We can see that the prediction results

are very close to the values given by the simulations, which

verifies the accuracy of our prediction model. The larger the

contact rate is, the earlier the node collects all 16 packets. We

further compare the results when the query rate q varies, as

shown in Fig. 5(b). The prediction also achieves results close

to that of the simulations. As the query rate increases, the node

collects more packets from other peers as time passes. This

implies that if a node requests a popular item, its offloading

potential is large.
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Fig. 5. Comparison of predicted results and actual results

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of Win-Coupon

through trace-driven simulations. First, we introduce the sim-

ulation setup. Then, we evaluate the performance of Win-

Coupon under different system parameters: the number of

bidders, the reserve price, and the users’ delay tolerance.

The scale of the trace, in terms of the number of users and

their contact frequencies, is generally smaller than that of the

realistic scenarios. In our evaluation, this results in a long

auction round for the 3G operator to collect enough bids, as

well as long downloading delay experienced by the users. To

reveal the faithful parameter values under real scale, we further

generate a large-scale trace by replicating the nodes in the

original trace 10 times. The evaluation results of Win-Coupon

on the large-scale trace are given at the end of this section.

A. Simulation Setup

Our performance evaluation are conducted on the UCSD

trace [27], which records the contact history of 275 HP Jornada

PDAs carried by students over 77 days. Based on the trace,

we generate 50 data items, and each contains 8 packets. The

query rate q and delete rate γ for each data item are randomly

generated within the range of [1.0 ⇥ 10�8, 1.0 ⇥ 10�6] and

[1.0 ⇥ 10�8, 5.0 ⇥ 10�8]. When nodes request data, they can

choose to attach bids with the request message based on their

satisfaction function. In the simulations, we model the user

satisfaction function as: S(t) = p�atb, where p is the original

data service charge, and we assume that all the data items

have the same charge p = 0.8. a determines the scale of S(t),
and a smaller a results in higher delay tolerance. b determines

the shape of S(t). When b > 1, b = 1 and b < 1, S(t)
is a concave, linear and convex function respectively. In the

simulations, we randomly generate parameter a and b within

the range of [0.08, 0.32] and [0.8, 1.2] for each node to each

data unless specified differently. In the simulations, the trace for

the first five days is used for warmup, during which some nodes

can directly download data without bidding. The presented

results are averaged over 10 runs. To evaluate Win-Coupon,

the following performance metrics are used:

• Offloaded traffic: The total amount of traffic in terms of

the number of packets that are actually offloaded.

• Allocated coupon: The total incentive cost spent by the 3G

operator for offloading purpose.

• Average downloading delay: The average time a bidder

spends to get the complete data after he sends the data request.

B. Simulation results

1) Impact of the number of bidders: First, we evaluate the

performance of Win-Coupon for different number of bidders.

The results are shown in Fig. 6(a) 6(b) 6(c). The number of

bidders is set to 40, 80, and 120 by varying the length of

one auction round. The reserve price is set to 0.25, i.e., the 3G

operator is willing to pay at most 0.25 for offloading one traffic

unit. As can be seen from Fig. 6(a), the actual offloaded traffic

by adopting Win-Coupon keeps close to the offloading target,

until a certain upper bound reaches. The bound represents

the upper limit of the traffic that can be offloaded by fully

utilizing the delay tolerance and the offloading potential of the

bidders given the reserve price. More traffic can be potentially

offloaded if more bidders participate in the auction.

As can be seen from Fig. 6(b) 6(c), with the increase

of offloading target, the allocated coupon and the average

downloading delay increase accordingly, until reaching the

offloaded traffic bound. The total value of coupon allocated by

the 3G operator is strictly controlled by the reserve price which

is marked as the black dotted line in Fig. 6(b). With the same

amount of traffic that is actually offloaded, the increase in the

number of bidders results in less allocated coupon and shorter
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Fig. 6. Performance of Win-Coupon under different number of bidders and reserve prices

average delay. For example, when the number of bidders set

to 40, 80 and 120, the 3G operator spends 9.8, 5.8, and

3.9 to actually offload 40 units of traffic, and the average

downloading delay is 19.5, 9.3, and 6.9 hours. The reason

behind this phenomenon is that when more bidders participate

in the auction, it is more likely to have more bidders with high

delay tolerance or large offloading potential. To offload the

same amount of traffic, the bidders with high delay tolerance

request less coupon to compensate their satisfaction loss, and

the bidders with large offloading potential need to wait for

shorter delay. Thus, the incentive cost and the average delay

decrease when more bidders participate in the auction.

2) Impact of the reserve price: To evaluate the impact of

reserve price on performance of Win-Coupon, we pick the

contact history of three days (6th day – 8th day) from the

trace to run the simulations. We fix the auction round to be

one hour, and set the reserve price to 0.2, 0.4, 0.6, and 0.8
respectively. The results are shown in Fig. 6(d) 6(e) 6(f). As

can be seen, with the increase of reserve price, more traffic can

be offloaded. This is because the higher reserve price indicates

larger willingness of the 3G operator to pay for offloading one

unit of traffic, and then potentially motivates more users for

offloading. When the reserve price is set to 0.8, almost 40%
of the traffic can be offloaded as shown in Fig. 6(d). However,

higher reserve price results in higher incentive cost as shown

in Fig. 6(e). To balance this tradeoff, the 3G operator can set

the reserve price appropriately according to its budget. Also,

as shown in Fig. 6(f), the average downloading delay increases

as the reserve price increases, since more users are selected as

the winning bidder and are motivated to wait.

3) Impact of the delay tolerance of the users: To evalu-

ate the impact of users’ delay tolerance, we generate three

scenarios with high, middle and low delay tolerance, by ran-

domly setting the parameter a within the range of [0.04, 0.16],
[0.08, 0.32], and [0.16, 0.64]. The reserve price is set to 0.4,

and other settings remain the same as that used in the last

subsection. The simulation results are shown in Fig. 7. As

can be seen from Fig. 7(a) 7(c), when the delay tolerance

becomes larger, more traffic can be offloaded, and the average

downloading delay increases. When the offloading target is set

to 100, more than 50% of the traffic is offloaded to DTNs in

the scenario of high delay tolerance.

Fig. 7(b) 7(d) show the value of allocated coupon and the

percentage of winning bidders with different offloading targets.

When the offloading target is as low as 20, as the users’ delay

tolerance gets higher, the incentive cost of the 3G operator

drops, since less coupon is requested by the bidders. Also,

fewer bidders win the game in the scenarios with higher delay

tolerance, since more traffic can be offloaded by each winning

bidder. As the offloading target further increases, the amount

of traffic that is actually offloaded almost remains the same

in the low delay tolerance scenario. This is because the users

in this scenario are not willing to wait longer and the traffic

being offloaded is bounded. Then, both the allocated coupon

and the percentage of winning bidders in this scenario remain

the same. However, in the scenarios with middle and high delay

tolerance, as the offloading target increases, more traffic can be

offloaded by better exploiting users’ delay tolerance, then both

the two metrics increase accordingly.

4) Large-scale trace: In the previous simulations on the

UCSD trace, the impacts of the system parameters on the

performance of Win-Coupon are presented, but the duration of

one auction round and the downloading delay of the bidders

are set to be long. This is due to the small scale of the trace.

In reality, however, the network scale would be much larger.

It is easier for the 3G operator to collect enough bids and

for the users to contact more peers, within a short period

of time. To validate Win-Coupon for more practical use, we

generate a large-scale trace including 2750 nodes by replicating

the nodes in the UCSD trace 10 times. The contact rate
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Fig. 7. Performance of Win-Coupon under different bidders’ delay tolerance

between the nodes in the same copy remains the same as the

original trace, and the contact rate between the nodes in the

different copies is set to the average aggregated contact rate

derived in the original trace. The parameter a is set randomly

within the range of [1, 1.6], and the duration of one auction

round is reduced to 10 minutes. Fig. 8 shows the evaluation

results. Similar trend is captured as in previous simulations.

As the offloading traffic target increases, more traffic can be

actually offloaded. When the offloading traffic target reaches

120, almost 40% of the traffic can be offloaded, which provides

comparable performance to that derived from the UCSD trace.

More importantly, the average delay is only 4.38 hours. As

can be seen, both the duration of one auction round and the

average delay becomes reasonable for practical use when the

network scale becomes large.
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Fig. 8. Performance of Win-Coupon on large-scale trace

VI. CONCLUSION

In this paper, we propose a novel incentive framework for

3G traffic offloading. The basic idea is to motivate the mobile

users with high delay tolerance and large offloading potential

to offload their traffic to other intermittently available networks

such as DTN. To capture the dynamic characteristics of users’

delay tolerance, we design an incentive mechanism based on

reverse auction. Our mechanism is proved to guarantee truthful-

ness, individual rationality, and low computational complexity.

Moreover, we take DTN as a case study, and design an accurate

model to predict the offloading potential of the users by using

stochastic analysis. Extensive trace-driven simulations validate

the efficiency and practical use of our incentive framework in

3G traffic offloading.
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