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Abstract. Renewable energy sources, especially wind energy, are to play
a larger role in providing electricity to industrial and domestic con-
sumers. This is already the case today for a number of European coun-
tries, closely followed by the US and high growth countries, e.g., Brazil,
India and China. There exist a number of technological, environmen-
tal and political challenges linked to supplementing existing electric-
ity generation capacities with wind energy. Here, mathematicians and
statisticians could make a substantial contribution at the interface of
meteorology and decision-making, in connection with the generation of
forecasts tailored to the various operational decision problems involved.
Indeed, while wind energy may be seen as an environmentally friendly
source of energy, full benefits from its usage can only be obtained if
one is able to accommodate its variability and limited predictability.
Based on a short presentation of its physical basics, the importance of
considering wind power generation as a stochastic process is motivated.
After describing representative operational decision-making problems
for both market participants and system operators, it is underlined that
forecasts should be issued in a probabilistic framework. Even though,
eventually, the forecaster may only communicate single-valued predic-
tions. The existing approaches to wind power forecasting are subse-
quently described, with focus on single-valued predictions, predictive
marginal densities and space-time trajectories. Upcoming challenges
related to generating improved and new types of forecasts, as well as
their verification and value to forecast users, are finally discussed.
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2 P. PINSON

1. INTRODUCTION

Increased concerns related to climate evolution and energetic independence
have supported the necessary technological and regulatory developments to broaden
the energy mix all around the world, with a particular emphasis placed on re-
newable energy sources (Letcher, T. M., 2008). Among the various candidates,
wind energy showed the most rapid and consistent deployment of power gen-
erating capacities. By June 2012, the cumulative installed wind power capacity
worldwide had reached 254 GW, and is still increasing at a rapid pace (WWEA,
2012). Besides all the mathematical and statistical challenges in the development
of turbines (aerodynamics, materials and structures, etc.), and in the deployment
of wind energy capacities (e.g. wind resource estimation, logistics optimization),
those relating to power systems operations and electricity markets have attracted
substantial and growing interest over the last 3 decades. This is since, in contrast
with conventional generation means, wind power generation cannot be sched-
uled at will, except maybe by curtailing the output of the wind turbines. Wind
power is produced as the wind blows: the dynamics of wind power generation are
the result of a nonlinear conversion and filtering of wind dynamics through the
turbines’ rotor and electric generator. It makes that the traditional operational
methods used for conventional generators cannot directly apply to wind energy.
For that reason, of the various renewable energy sources, wind, solar, wave and
tidal energy are often referred to as stochastic power generation, owing to their
inherent variability and uncertainty.

Wind energy is by far the renewable energy source that attracted the most
attention of researchers and practitioners. It is clear, however, that a number of
operational and economic issues will be the same for the other forms of renewable
energy sources. In practice such challenges require the modeling and forecasting
of the wind power generation process at various temporal and spatial scales, to
be subsequently used as input to decision-making. Our objective here is to give
an overview of these forecasts and of challenges stemming from their generation
and verification. It is to be noted that forecasting is only one aspect of better
accommodating renewable energy generation, such as that from the wind into
existing power systems and electricity markets. For instance, from a more gen-
eral perspective of investment, regulation and policy, even the way wind energy
should be compared to conventional technologies challenges traditional practice
(Joskow, P. L., 2011). Similarly, when assessing resource adequacy (i.e., making
sure that the overall generating capacity is sufficient to meet demand at all times)
and competition in electricity markets, it is argued that the impact of renewable
energy sources on market dynamics ought to be accounted for (Wolak, F. A.,
2013).

The most classical statistical problem involving wind energy is that of resource
assessment, i.e., focusing on unconditional distributions of wind speed and the
corresponding potential power generation. In practice this is based on estimating
marginal wind distributions given a (potentially limited) sample of wind mea-
surements on site and/or in the vicinity of the sites of interest. Even though
these marginal distributions are highly valuable for the optimal siting and de-
sign of wind farms, they have nearly no value for the operational management of
wind power generation: they give an unconditional picture only, hence they do
not give information on the volatile and conditional characteristics of wind and
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WIND ENERGY: FORECASTING CHALLENGES 3

power dynamics at the relevant spatial and temporal scales. A succession of two
papers published in the Journal of Applied Meteorology in 1984 is a symbol of the
transition from models for limiting distributions only to dynamic models. There,
the seminal work of Conradsen, K. et al. (1984) on fitting Weibull distributions
to samples of wind speed measurements of various lengths, is literally followed
by that of Brown, B. G. et al. (1984), which certainly was the first paper look-
ing at dynamic (linear time-series) models for the prediction of wind speed and
corresponding power generation. Not so long after, Haslett, J. and Raftery, A.E.
(1989) bridged the gap between the two, by focusing on the dynamic spatio-
temporal structure of wind speed over Ireland and its implications for the wind
energy resource. Since then, ample research was performed on stochastic dynamic
models for the the prediction of wind power generation at lead times between a
few minutes and up to several days ahead, accounting or not for spatial effects. For
an exhaustive review of the state of the art in that field, the reader is referred to
Giebel et al. (2011), while a solid introduction to the physical concepts involved
can be found in Lange, M. and Focken U. (2006). Our state of knowledge today
is that optimal decision-making involving wind power generation calls for predic-
tions generated in a probabilistic framework. These should inform of uncertainties
through predictive marginal densities, but also potentially of spatio-temporal de-
pendencies through trajectories, which are known as scenarios in the operations
research literature. As a very recent example of how forecasts in their most sim-
ple deterministic form, or as space-time trajectories, may be used as input to
operational problems, the reader is referred to Papavasiliou, A. and Oren, S. S.
(2013), focusing on a unit commitment problem (i.e., the least-cost dispatch of
available generation units) under transmission network constraints.

Wind power generation is first introduced in Section 2 as a stochastic pro-
cess observed at discrete points in space and in time. Subsequently in order to
underline the importance of probabilistic forecasts (in contrast to determinis-
tic, single-valued forecasts), Section 3 describes representative decision problems
involving wind energy in power systems operations and its participation in lib-
eralized electricity markets. Section 4 then covers the various types of forecasts
used today and to be employed in the future for optimal decision-making. The
paper ends in Section 5 with a discussion that covers (i) the current and foreseen
challenges for forecast improvement, (ii) the proposal of thorough and appropri-
ate verification frameworks, and (iii) the importance of bridging the gap between
forecast quality and value.

2. WIND POWER GENERATION AS A STOCHASTIC PROCESS

Some of the early works on dynamic modeling and forecasting of wind power
generation were cast in a physical deterministic framework, as for instance Landberg, L. and Watson, S. J.
(1994) on local wind conditions, and similarly for the follow-up study (Landberg,
1999) on power generation. Today however, there is a broad consensus that wind
power generation should be modeled as a stochastic process, whatever the spa-
tial and temporal scales involved. A part of uncertainty comes from our lack of
knowledge of all the physical processes involved, combined to our limited ability
to account for all of them in mathematical and statistical models. There may
also be some inherent uncertainty in the data generating process. The choice for
appropriate distributions may not be straightforward.
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4 P. PINSON

The physical basics of wind power generation are presented in Section 2.1.
Definitions and notations are introduced subsequently in Section 2.2. Finally,
the Western Denmark dataset is described in Section 2.3. It will be used for
illustrating the different forms of forecasts that will be described throughout the
paper.

2.1 Physical basics of wind power generation

The generation of electric power from the wind relies on atmospheric processes.
The power output of a single wind turbine is a direct function of the strength
of the wind over the rotor swept area. Coarsely simplifying the meteorological
aspects involved, winds originate from the movement of air masses from high to
low pressure areas: the larger the difference in pressure, the stronger the result-
ing winds. On top of that come the boundary layer effects, complexifying winds
behavior due to natural obstacles, friction effects, the nature of the surface itself,
temperature gradients, etc. The boundary layer is formally defined as the lower
part of the atmosphere where wind speed is affected by the surface. The resulting
level of complexity makes that the characteristic features of wind variability may
be better described in the frequency domain (Mur Amada, J. and Bayod Rújula, A.,
2010). Our state of the knowledge on wind dynamics in the boundary layer, and
more generally mesoscale meteorology, is today still limited: resulting models of
wind characteristics have systematic and random errors.

Wind speed exhibits fluctuations over a wide range of frequencies. Those in the
order of days are induced by the movement of synoptic weather patterns, i.e., by
general changes in weather situations. These are modeled within global weather
models such as those run at the European Centre for Medium-range Weather
Forecasts (ECMWF, in the UK) and at the National Centers for Environmental
Prediction (NCEP, in the US) among others. Those models encompass well-known
dynamics of state variables for the global weather, while wind components are
a by-product derived from the evolution of these state variables. In terms of
forecasting, several directions are thought of today for improving the estimation
of the initial state of the Atmosphere and also to better account for potential
uncertainties in the model and its parametrization (Palmer, T. N., 2012).

Fluctuations referred to as diurnal and semi-diurnal cycles (with periods of
24 and 12 hours) are mainly induced by thermal exchanges between the sur-
face (land or sea) and the Atmosphere. Their magnitude varies as a function
of local climate and seasons. At these time scales, the phenomena involved are
fairly well known, though certain aspects like their impact on wind profiles (that
is, the way wind evolves with height) still are a subject of active research, e.g.
(Peña Diaz, A. et al. , 2010b). At frequencies in the order of minutes to hours,
local effects potentially including the presence of cumulus clouds, convective cells,
precipitation, waves (for offshore sites), etc., are the drivers of wind speed varia-
tions. Here, the physical and mathematical aspects may become more challeng-
ing owing to the combination of a substantial number of interacting physical
processes. Higher frequencies (seconds to a few minutes, not considered in the
present paper) see a dominance of turbulence effects, which are a particular con-
cern for the structural design of turbines, fatigues studies, and potentially con-
trol. Finally at the other end of the spectrum, very low frequencies also seen as
long-term wind trends, have attracted increased attention recently since human
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activity and climate evolution may potentially impact surface winds at these time
scales, see Vautard, R. et al. (2010) for instance. In the following, emphasis is
placed on time scales in the order of minutes to days, where existing meteoro-
logical challenges include the better understanding of the physical processes and
their interaction, as well as their modeling.

Wind speed is the meteorological variable of most relevance to power gener-
ation. The process of the conversion of wind to electric power for a single wind
turbine is described by its power curve. It is also influenced by air density (be-
ing a function of temperature, pressure and humidity) to a minor extent. Power
curves for different turbines roughly have the same shape for all manufacturers
and turbine types. In order to discuss and illustrate how manufacturer’s (i.e.,
theoretical) and observed power curves may look like, let us take the example of
the Klim wind farm in Western Denmark. It is composed of 35 Vestas V44 wind
turbines having a capacity of 600 kW each, yielding a nominal capacity of 21 MW.
The nominal capacity of a wind turbine or of a wind farm is the power output
it generates within the range of wind conditions over which it was designed to
operate, ideally. Figure 1 depicts the power curve for a V44 turbine. The power
production is null below the cut-in wind speed (4 m/s), then sharply augments
between the cut-in and rated wind speeds (16 m/s). At rated speed, it reaches its
nominal power Pn. The power production is nearly constant between rated and
cut-off wind speeds (here 25 m/s). At cut-off speed, the turbine stops for security
reasons. This power curve example is for a fairly old wind turbine model, since
this wind farm started operating in 1996. Various technological improvements
have permitted to lower cut-in and rated wind speeds, which are today between
2 and 4 m/s for the former one and between 12 and 15 m/s for the latter one.
Moreover, cut-off wind speeds may reach up to 34 m/s. In a general manner there
may also be a difference between the maximum (peak) and nominal power values
(up to 10-20%). Most importantly, the nominal capacity of today’s wind turbines
is up to 7-8 MW.

A power curve such as in Figure 1 is a theoretical one, since it gives the
power output of a single turbine exposed to ideal wind conditions as if in a wind
tunnel (that is, not altered by obstacles, without turbulence, and for the turbine
always perfectly facing the wind), for a given air density. In practice however,
wind turbines are almost always gathered in wind farms with potentially a mix
of different turbine types. The combination of these individual power curves will
not be the same as that of any of the individual turbine types. Besides, depending
upon the prevailing wind direction, some of the turbines within a wind farm may
mask the others—the so-called shadowing effect, therefore reducing the wind
seen by these turbines. This combines with additional surrounding topographic
and orographic effects (i.e., hills, forest, etc.), making that the various turbines
within a wind farm are constantly seeing different wind conditions, which also
are different from the free-stream wind at a reasonable distance away from the
wind farm. Consequently, the resulting wind farm power curve has features far
more complex than the theoretical power curves provided by the manufacturers
for individual wind turbines.

Figure 2 depicts the empirical power curve of the Klim wind farm based on
hourly wind speed (at 10 m above ground level) and power measurements col-
lected over the first 6 months of 2002. For both types of measurements, a record
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Fig 1. Power curve of the Vestas V44 (600kW) wind turbines installed at the Klim wind farm,
for an air density of 1.225 kg/m3.

for a given point in time corresponds to the average value over the preceding hour.
Measurement errors in power and wind speed observations certainly contribute
to the scatter of data observed. However, the main reason for that scatter is the
impact of other meteorological variables, as e.g., wind direction and air density,
on the power generation from the wind farm. For measured wind speeds of 5 m/s
the observed power output of the wind farm varies between 0 and 7 MW, while for
wind speeds of 10 m/s, that same power output may be between 6 and 15 MW.
Other reasons for these variations include natural changes in the environment of
the wind farm, ageing of turbine components, etc. At the turbine, wind farm or
portfolio (i.e., a group of geographically distributed wind farms, though jointly
operated) level, all empirical power curves exhibit characteristics differing from
those of theoretical ones, also with a substantial scatter of observations. Other
interesting empirical power curves for wind farms in Crete, as well as challenges
related to their modeling, were recently discussed by Jeon, J. and Taylor, J. W.
(2012).

2.2 Preliminaries and definitions

Owing to the combination of complex physical processes, and since we may not
have a perfect understanding of all these processes anyway, it is acknowledged that
one should account for a random uncertainty component in the modeling of energy
generation from wind turbines. Wind power is therefore considered as a discrete
stochastic process, i.e., as a set of random variables Ys,t observed at discrete points
in time t and in space s. Depending upon the practical setup, it may reduce to
a temporal process with a set of random variables Yt for successive times, for
instance if concentrating on a single wind farm or on a fixed (geographically
spread) portfolio, or to a spatial process with a set of random variables Ys for
a given time but for various locations, for instance if looking at maps of wind
energy resource over a region. The corresponding realizations of the process are
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Fig 2. Example empirical power curve for the Klim wind farm over a 6-month period in 2002,
based on hourly measurements of wind speed and corresponding power output. Marginal distri-
butions of wind speed and power are also represented above, and respectively right of, the power
curve itself.

denoted by ys,t in the more general spatio-temporal case, or more simply by yt
and ys in the temporal and spatial cases, respectively. The notations f and F are
used for probability density and cumulative distribution functions (abbreviated
pdf and cdf) of the random variables involved, with appropriate indices.

Wind power generation as a stochastic process exhibits features that can be
seen as fairly unique, even though relevant parallels with stochastic processes for
other renewable energy sources, in meteorology and hydrology, or in economics
and finance, exist. Some of these characteristic features come from the very na-
ture of wind, while some others are directly linked to the process of converting
the energy in the wind to electric power. First of all, wind components and result-
ing wind speed have a combination of dynamic and seasonal features, which may
vary depending on local wind climates and regions of the world. Besides, when
focusing on spatial and temporal scales of relevance to power systems operations
and electricity markets, the various meteorological phenomena involved induce
switches in the dynamic behavior of wind fluctuations and in their predictabil-
ity, yielding a nonstationary process (see the discussion by Vincent, C. L. et al.
(2010) for instance). Inspired by models developed in the econometrics literature,
the existence of successive periods with different levels of predictability of wind
speeds was first captured with a Generalised Auto Regressive Conditional Het-
eroscedastic (GARCH) model by Tol, R. S. J. (1997), though focusing on coarser
daily wind records.

In parallel, the conversion of the energy in the wind to electric power acts as a
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8 P. PINSON

nonlinear transfer function (as represented in Figure 2) making wind power gen-
eration a nonlinear and bounded stochastic process. There may even be smooth
temporal changes in this nonlinear transfer function owing to, e.g., ageing of
equipment, changes in external environment, etc. The transfer function shapes
the predictability of wind power generation. Consequently, conditional densi-
ties of wind power generation should be seen as non-Gaussian, with their mo-
ments of order greater than 1 directly influenced by their mean (Lange, M., 2005;
Bludszuweit, H. et al. , 2008). Truncated Gaussian, Censored Gaussian, Gener-
alized Logit-Normal distributions were proposed as relevant candidates for the
modeling of conditional densities of wind power generation (Pinson, P., 2012).
In terms of stochastic differential equations, this would translate to having a
state-dependent diffusion component. The flat parts of the transfer function also
yield concentration of probability mass at the boundaries, potentially requiring
to consider wind power generation as a discrete-continuous mixture, similarly to
precipitation for instance.

After proposing a suitable model structure, and estimating its parameters, such
a model may be employed to simulate time-series of wind power generation for one
or several locations, for instance as input to power systems and market-related
analyzes. In most cases however, forecasting is the final application. Predictions
fed into operational decision problems always are for future points in time, and
rarely for new locations at which no observations are available. Consequently,
even though spatial aspects are of crucial interest, the problem at hand is mainly
seen as a temporal forecasting problem. The set of m locations is denoted by

(2.1) s = {s1, s2, . . . , sm}.

In parallel, the set of n lead times is

(2.2) t+ k = {t+ 1, t+ 2, . . . , t+ n},

where n is the forecast length. Lead times are spaced regularly and with a tem-
poral resolution equal to the sampling time of the process observations. Since the
power generation process is bounded, it can be marginally normalized, so that

(2.3) ys,t+k ∈ [0, 1]mn.

At time t the aim is to predict some of the characteristics of

(2.4) Ys,t+k = {Ys,t+k; s = s1, . . . , sm, k = 1, . . . , n},

a multivariate random variable of dimension m × n in the complete spatio-
temporal case, or of

(2.5) Yt+k = {Yt+k; k = 1, . . . , n},

a multivariate random variable of dimension n, in the simpler setup where spatial
considerations are disregarded.

In the most general case, the forecaster issues at time t for the set of lead times
t+k a probabilistic forecast F̂s,t+k|t (here a predictive cdf) describing as faithfully
as possible the cdf Fs,t+k of the random variable Ys,t+k, given the information
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WIND ENERGY: FORECASTING CHALLENGES 9

available up to time t. It hence translates to a full description of marginal den-
sities for every location and lead time, as well as spatio-temporal dependencies
among the set of m locations and n lead times. This clearly comprises a difficult
problem, both in terms of generating such forecasts, but also for their verification.
Consequently since degenerate versions of that problem may be more tractable,
a number of them have been dealt with in the literature, for instance for the fore-
casting of marginal densities for each location and lead time individually, or even
by forecasting some summary statistics (more precisely, mean and quantiles) of
these marginal densities only.

The combination of all uncertainties, related to physical aspects to be ac-
counted for in the models, but also in connection with the data-generating pro-
cess, obviously is going to impact the quality of the resulting forecasts. In Sec-
tion 4, some of the most common approaches to forecasting will be reviewed. They
all tend to disregard the specific contributions of physical and data-generating
processes to forecast quality. Alternative proposals in a robust forecasting frame-
work could therefore be beneficial.

2.3 The Western Denmark dataset

A dataset for the Western Denmark area is used as a basis for illustration.
It consists of wind power measurements as collected by Energinet.dk, the trans-
mission system operator in Denmark. This region has one of the highest wind
power penetrations (that is, the share of wind power in meeting the electric en-
ergy demand) in the world, consistently between 25 and 30% over the last few
years.

Wind power measurements are originally available at more than 400 geograph-
ically distributed grid-connection points. Observations have a hourly resolution
over a period between 1 January 2006 and 24 October 2007. They represent av-
erage hourly power values. For operational purposes, these are gathered in 15 so-
called control zones depicted in Figure 3 along with their identification numbers.
The total nominal capacity slightly evolved during this period though generally
being around 2.5 GW. In order to additionally simplify this case-study, the orig-
inal 15 control zones are aggregated into 5 zones only (see Figure 3), each having
a different share of the overall wind power capacity for that region. All power
measurements are normalized by the respective nominal capacities of the 5 ag-
gregated zones. This aggregation is for the sake of example only, and could be seen
as wind power generation portfolios operated by a set of power producers in that
region. Working at such a coarse spatial resolution certainly is sufficient for some
decision problems, also simplifying modeling and estimation challenges. However,
it may be that for some applications the statistician and forecaster has to work
with the original 400-location dataset, so that he has to finely analyze and model
the observed spatio-temporal dynamics (see Girard, R. and Allard, D. (2013) for
instance). This would be the case if all the owners/operators of these individual
wind farms ask for predictions in order to design market offering strategies, or
for the network operator to perform very detailed system simulations based on
the impact of spatially distributed wind power generation.

Some of the features of this data at such temporal and spatial scales can be
observed from the example episode with 24 hours of hourly wind power measure-
ments in Figure 4, for the 5 aggregated zones of Western Denmark. Especially, the
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Agg. zone Orig. zones % of capacity

1 1, 2, 3 31
2 5, 6, 7 18
3 4, 8, 9 17
4 10, 11, 14, 15 23
5 12, 13 10

Fig 3. The Western Denmark dataset: original locations for which measurements are available,
15 control zones defined by Energinet.dk, as well as the 5 aggregated zones. The total nominal
capacity for Western Denmark was 2.5 GW over the period covered by this dataset.

spatio-temporal interdependence structure of the wind power generation process,
as induced by the inertia in weather phenomena and resulting winds, results in
smooth temporal variations at each zone, individually, as well as in similarities
in the patterns observed at the various zones. These spatio-temporal dependen-
cies are necessarily strengthened by the aggregation procedure employed. For
instance, the drop in power generation observed in zone 4 on 19 March 2007 at
8:00 UTC (i.e., the 20th time step) is also visible for zone 5, at the same time and
with a similar magnitude, while it may potentially be related to a drop of lesser
magnitude observed in zones 2 and 3 around the same time. Note that UTC (for
Coordinated Universal Time) is the most common standard for referring to time
in the meteorological and wind energy communities.

3. SOME REPRESENTATIVE OPERATIONAL DECISION-MAKING

PROBLEMS INVOLVING WIND ENERGY

Some of the representative operational decision problems are described here,
while a more extensive overview of such problems may be found in Ackermann, T.
(2012). The side of power producers is taken first, by considering the issue of de-
signing optimal offering strategies in electricity markets. Subsequently taking the
side of the system operator instead (like Energinet.dk, the transmission system
operator for Western Denmark), an issue of rising importance is that of quan-
tifying the necessary backup generation to accommodate variability and limited
predictability of wind power generation. These two decision-making problems are
somehow inter-related, since the quantification of necessary backup capacities is
performed in a dynamic way, conditional on the clearing of the electricity mar-
ket. For both types of problems, forecasts for other quantities than wind power
generation may be necessary, like load and prices. There exists substantial liter-
ature on the statistical modeling and forecasting of these market variables. The
interested reader is referred to Weron, R. (2006) for an overview.
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Fig 4. Example episode with normalized wind power measurements for the 5 zones of the Western
Denmark dataset over 24 hours, starting from the 18 March 2007 at 12 UTC.

3.1 Participation of wind energy in electricity markets

In a number of countries with significant wind power generation, electricity
markets are organized as electricity pools, gathering production and consump-
tion offers in order to dynamically find the quantities and prices for electricity
generation and consumption that permit to maximize social welfare. These elec-
tricity pools typically have two major stages which are the day-ahead and the
balancing markets. The electricity pool for Scandinavia, used as example here,
is commonly known as the Nord Pool. For an overview of some the European
electricity markets and of the way they deal with wind power generation, see
Morthorst, P. E. (2003). A parallel overview for the case of US electricity mar-
kets can be found in Botterud, A. et al. (2010).

Electricity exchanges first take place in the day-ahead market for the next
delivery period, that is, the next day. Production offers and consumption bids are
to be placed for every time unit before gate closure, occurring 12 hours before
delivery in the Nord Pool, where market time units are hourly. At the time t of
gate closure, wind power producers shall propose energy offers based on forecasts
with lead times t+ k, k ∈ {12, 13, . . . , 36}. The market clearing is there to match
production offers and consumption bids through a single auction process, yielding
the system price πc

t+k and the program of the market participants, i.e. a set of
energy blocks yct+k to be delivered by wind power producers1, for every market
time unit. The superscript c indicates that this combination of energy quantity
and price defines a contract. Power producers are financially responsible for any
deviation from this contract. Indeed in a second stage, the balancing market
managed by the system operator ensures the real-time balance between generation

1Note that the notation yc
t+k is used abusively, for simplification. This is since the energy

block for hour t + k is necessarily equal to the average power production value yc
t+k over that

one-hour period.

imsart-sts ver. 2012/08/31 file: windstat.tex date: July 11, 2013



12 P. PINSON

and load, while translating to financial penalties for those who deviate from their
contracted schedule. The prices for buying and selling on the balancing market
are denoted by πb

t+k and πs
t+k, respectively. They are generally less advantageous

than those in the day-ahead market, fairly volatile, and substantially different
from one another in a two-price settlement system like that of the Nord Pool.
The combination of the inherent uncertainty of wind power predictions and of
the asymmetry of balancing prices encourages market participants to be more
strategic when designing offering strategies (Skytte, K., 1999).

Simplifying the decision problem for clarity, potential dependencies among
time units and in space throughout the network are disregarded. A wind power
producer is seen as participating with a global portfolio of wind power generation
in the electricity market. The overall market revenue Rt+k is a random variable,
which, given the decision variable yct+k and the random variable Yt+k, can be
defined as

(3.1) Rt+k = st+k(y
c
t+k) + Bt+k(Yt+k, y

c
t+k),

where the first part corresponds to the revenue from the day-ahead market,
st+k(y

c
t+k) = πc

t+ky
c
t+k, while the second is that from the balancing market, to be

detailed below. Following Pinson, P. et al. (2007) (among others), this revenue
can be reformulated as a combination of revenues and costs in a way that the
decision variable appears in the balancing market term only

(3.2) Rt+k = S̃t+k(Yt+k) − B̃t+k(Yt+k, y
c
t+k),

i.e., as the sum of a stochastic, though fatal since out of the control of the decision-
maker, component S̃t+k from selling of the energy actually produced through the
day-ahead market, minus another stochastic component B̃t+k, whose characteris-
tics may be altered through the choice of a contract yct+k. The imbalance is also a

random variable, given by Yt+k − yct+k, yielding the following definition for B̃t+k,

(3.3) B̃t+k(Yt+k, y
c
t+k) =

{

π
↓
t+k(Yt+k − yct+k), Yt+k − yct+k ≥ 0

−π
↑
t+k(Yt+k − yct+k), Yt+k − yct+k < 0

where π
↓
t+k and π

↑
t+k are referred to as the regulation unit costs for downward

and upward balancing, respectively. They are readily given by

π
↓
t+k = πc

t+k − πs
t+k(3.4)

π
↑
t+k = πb

t+k − πc
t+k.(3.5)

For most electricity markets regulation unit costs are always positive, making
that B̃t+k ≥ 0, while the overall market revenue has an upper bound obtained
when placing an offer corresponding to a perfect point prediction, yct+k = ŷt+k|t =
yt+k. As this is not realistic, and accounting for the uncertainty in wind power
forecasts, optimal offering strategies are to be derived in a stochastic optimization
framework. Assuming that the wind power producer is rational, his objective is to
maximize the expected value of his revenue for every single market time unit, since
this permits to maximize revenues in the long run. Additionally considering the
market participant as a price-taker (that is, not influencing the market outcome

imsart-sts ver. 2012/08/31 file: windstat.tex date: July 11, 2013
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by his own decision), and having access to forecasts of the regulation unit costs

(π̂↓
t+k|t and π̂

↑
t+k|t), the optimal production offer y∗t+k at the day-ahead market is

given by

(3.6) y∗t+k = argmin
yc
t+k

E
[

Bt+k(Yt+k, y
c
t+k)

]

.

This stochastic optimization problem has a closed-form solution, as first described
by Bremnes, J. B. (2004), i.e., for any market time unit t+ k, the optimal wind
power production offer is given by

(3.7) y∗t+k = F̂t+k|t
−1





π̂
↓
t+k|t

π̂
↓
t+k|t + π̂

↑
t+k|t



 ,

where F̂t+k|t is the predictive cdf issued at time t (the decision instant) for time
t + k. In other words, the optimal offer corresponds to a specific quantile of
predictive densities, whose nominal level α is a direct function of the predicted
regulation unit costs for this market time unit. That problem is a variant of
the well-known linear terminal loss problem, also called the newsvendor prob-
lem (Raiffa, H. and Schaifer, R., 1961). It was recently revisited by Gneiting, T.
(2010), who showed that for a more general class of cost functions (i.e., generaliz-
ing that in (3.3)), optimal point forecasts are quantiles of predictive densities with
nominal levels readily determined from the utility function itself, analytically or
numerically. Note that appropriate forecasts of regulation unit costs are here also
needed. It was shown by Zugno, M. et al. (2013), and references therein, that
these may be obtained from variants of exponential smoothing (in its basic form,
or as a conditional parametric generalization), and then directly embedded in
offering strategies such as those given by (3.7).

In their simplest form, market participation problems involving wind energy
rely on a family of piecewise linear and convex loss functions, for which optimal
offering strategies are obtained in a straightforward manner, as in the above.
These only require quantile forecasts for a given nominal level, or maybe predic-
tive densities of wind power generation for each lead time, individually. However,
when complexifying the decision problem by adding dependencies in space (e.g.,
spatial correlation in wind power generation, network considerations) and in time
(for instance accounting for the temporal structure of forecast errors), it then re-
quires a full description of Ys,t+k (ideally in the form of trajectories), instead of
marginal densities for the whole portfolio and for each lead times individually.
The same goes for alternative strategies of the decision-makers, for instance if
one aims to account for risk aversion. The resulting mathematical problems do
not rely on studying specific families of cost functions, but instead translate to
formulating large scenario-based optimization problems, in a classical operations
research framework. Some of the resulting stochastic optimization problems may
be found in Conejo, A. et al. (2010). The price-taker assumption is also to be
relaxed to a more general stochastic optimization framework, where wind-market
dependencies are to be described and accounted for (Zugno, M. et al. , 2013b).

3.2 Quantification of necessary power systems’ reserves

On the other side, the electric network operator has the responsibility to ensure
a constant match of electricity generation and consumption, outside of the mar-
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ket framework described before. It involves the quantification of so-called reserve
capacities, prior to actual operations, to be readily available if needed. This may
be either for supplementing generation lacking in the system, e.g., in case of asset
outages, general loss of production and unforeseen increase in electricity demand;
or alternatively for lowering the overall level of generation in the system when de-
mand is less than production. For an overview, see Doherty, R. and O’Malley, M.
(2005).

For simplicity and clarity, the timeline is here the same as for the market partic-
ipation problem described earlier. Potential dependencies among time units and
in space throughout the network (as induced by potential network congestion)
are disregarded. The system operator has to make a decision at time t (market
gate closure) for all time units t+k of the following day. Reserves are to be quan-

tified as two numbers q
↓
t+k and q

↑
t+k for the whole power system, for downward

(when consumption is less than production) and upward (conversely) balancing,
respectively. The choice of optimal reserve levels is linked to a random variable
Ot+k describing all potential deviations from the chosen dispatch (consisting in
the reference values for generation and consumption at every time t + k). This
random variable is commonly referred to as the system generation margin.

Ot+k can be defined as a sum of random variables representing all uncertainties
involved. These include (i) potential forecast errors ǫL for the electric load, (ii)
the probability of generation loss through asset outages (assets being conventional
generators, transmission lines and other equipment), and (iii) potential forecast
errors ǫY for the various forms of stochastic power generation. For simplicity,
we only consider wind power here, corresponding to the operational situation
where, as in most countries, wind power is the prominent form of stochastic power
generation. In a more general setup the combination of uncertainties with, e.g.,
solar and wave energy, should also be accounted for. These various uncertainties
are fully characterized by probabilistic forecasts available at time t: f̂ ǫL

t+k|t for the

load, f̂G
t+k|t for generation losses, and f̂

ǫY
t+k|t for wind power generation. This means

that, besides the wind generation forecasts discussed in this paper, additional
predictions of potential generation losses (e.g., the probability of failure of various
equipment) are to be issued, for instance based on reliability models in the spirit
of Billinton, R. and Allan, R. N. (1984). Forecasts for the electric load can in
addition be obtained from one of the numerous methods recently surveyed by
Hahn, H. et al. (2009), though very few of them look at full predictive densities.

Assuming independence of the various random variables, the overall uncer-
tainty, represented by a predictive marginal density f̂O

t+k|t, is obtained through
convolution,

(3.8) f̂O
t+k|t = f̂

ǫL
t+k|t ∗ f̂

G
t+k|t ∗ f̂

ǫY
t+k|t.

This predictive density is split into its positive and negative parts, yielding f̂O+

t+k|t

and f̂O−

t+k|t, since decisions about downward and upward reserve capacities are to
be made separately.

After such a description of system-wide uncertainties, the system operator can
plug this density into a cost-loss analysis (Matos, M. A. and Bessa, R. J., 2010),
similar in essence to the market participation problem presented in the above.
Based on cost functions g↓ and g↑ for the downward and upward cases, the optimal
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WIND ENERGY: FORECASTING CHALLENGES 15

amounts of reserve capacities (in an expected utility maximization sense) are the
solution of stochastic optimization problems of the form

(3.9) q
↑∗
t+k = argmin

q
↑

t+k

E

[

g↑(O−
t+k, q

↑
t+k)

]

,

and

(3.10) q
↓∗
t+k = argmin

q
↓

t+k

E

[

g↓(O+
t+k, q

↓
t+k)

]

,

which may be solved analytically or numerically, depending upon the complexity
of the cost functions. Here the optimal reserve levels relate to specific quantiles of
the predictive densities for the system margin Ot+k. However, it would be difficult
to link the optimal reserve levels to specific quantiles of the input predictive
densities of wind power generation.

In its more complex form the reserve quantification problem requires account-
ing for dependencies in space and in time, similarly to the trading problems, with
many more considerations relating to operational constraints, e.g., unit charac-
teristics (capability to increase or decrease power output over a predefined period
of time—so-called ramping characteristics, non-convexities in costs, etc.), and po-
tentially risk aversion. The resulting stochastic optimization problems take the
general form of those described and analyzed in Ortega-Vazquez, M. A. and Kirschen, D. S.
(2009). They require space-time trajectories for all input variables.

4. MODELING AND FORECASTING WIND POWER IN A

PROBABILISTIC FRAMEWORK

Decision-making problems relating to an optimal management of wind power
generation in power systems and electricity markets require different types of
forecasts as input. The lead forecast range considered in the above is between
12 and 36 hours ahead, with a hourly temporal resolution for the forecasts. In
practice various forecast ranges, spatial and temporal resolutions, are of relevance
depending upon the decision problem. For instance, the shorter lead times, say,
between 10 minutes and 2 hours ahead, are also crucial for a number of dispatch
and control problems. Below are presented the leading forms of forecasts for wind
power generation, as well as example approaches to generate them.

4.1 Point predictions

The traditional deterministic view of a large number of power system operators
translates to preferring single-valued forecasts. These so-called point predictions
are seen as easier to appraise and handle at the time of making decisions.

When describing at time t the random variable Ys,t+k of a set of locations s

and lead times k, point forecasts comprise a summary value for each and every
marginal distribution of Ys,t+k in time and in space. Typically, if one aims at
minimizing a quadratic criterion (i.e., in a Least Squares sense), a point forecast
for location s and lead time k corresponds to the conditional expectation for
Ys,t+k given the information set available up to time t, the chosen model and

estimated parameters. With respect to a predictive density f̂s,t+k|t for location s
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and lead time k, that point forecast therefore corresponds to

(4.1) ŷs,t+k|t =

∫ 1

0
yf̂s,t+k|t (y) dy.

Integration is between 0 and 1 since one is dealing with power values normalized
by the nominal capacity of the wind farm or group of wind farms of interest.

To issue point predictions at time t, the forecaster utilizes an information set
Ωt, a set containing measurements Ωo

t (including observations of power and of
relevant meteorological variables, the notation ‘o’ meaning ‘observation’) over

the area covered, as well as meteorological forecasts Ωf
t (with ‘f ’ for ‘forecast’)

for these relevant variables, Ωt ⊆ Ωo
t ∪ Ωf

t . Based on this wealth of available
information, different types of models of the general form

(4.2) Ys,t+k = h(Ωt) + εs,t+k,

were proposed, where εs,t+k is a noise term with zero mean and finite variance.
Indeed when focusing on a single location (a wind farm), it may be that point

forecasts can be issued in an inexpensive way based on local measurements only,
and in a linear time-series framework. The first proposal in the literature is that
of Brown, B. G. et al. (1984), using Auto-Regressive Moving Average (ARMA)
models for wind speed observations, and for lead times between a few hours and
a few days. When focusing on wind power directly for very short-range (say, for
lead times less than 2 hours), even simpler Auto-Regressive models of order p,
i.e.,

(4.3) Ys,t+k = θ0 +
∑

i∈L

θiYs,t−i+1 + σεs,t+k,

are difficult to outperform, possibly after data transformation (Pinson, P., 2012).
In the above, L ⊂ N

+ is a set of lag values of dimension p, while εs,t+k is a standard
Gaussian noise term, scaled by a standard deviation value σ. In addition, k = 1
if the AR model is for 1-step ahead prediction only, or to be used in an iterative
fashion for k-step ahead prediction, while k > 1 if one uses the AR model for
direct k-step ahead forecasting.

These models were generalized by a few authors by accounting for off-site
observations and/or by accounting for regime-switching dynamics of the time-
series. A regime-switching version of the model in (4.3) assumes different dynamic
behaviors in the various regimes, as expressed by

(4.4) Ys,t+k = θ
(rt)
0 +

∑

i∈L

θ
(rt)
i Ys,t−i+1 + σ(rt)εt+k,

where rt is a realization at time t of a regime sequence defined by discrete ran-
dom variables, with rt ∈ {1, 2, . . . , R}, ∀t, and R is the number of regimes.
The number of lags and the noise variance may differ from one regime to an-
other. The regime sequence can be defined based on an observable process, like
wind direction at time t or a previous wind power measurement, yielding models
of the Threshold Auto-Regressive (TAR) family, which are common in econo-
metrics (Tong, H., 2011). As an example for wind speed modeling and forecast-
ing, Reikard, G. (2008) proposed to consider temperature as driving the regime-
switching behavior in wind dynamics. In contrast, the class of Markov-Switching
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Auto-Regressive (MSAR) models, also popular in econometrics since the work
of Hamilton, J.D. (1989), assumes that the regime sequence relies on an unob-
servable process. MSAR models were shown to be able to mimic the observable
switching in wind power dynamics, especially offshore, that cannot be explained
by available meteorological measurements (Pinson, P. and Madsen, H., 2012).

Incorporating off-site information in regime-switching models of the form of (4.4)
was proposed by Gneiting, T. et al. (2006) and subsequently in a more general
form by Hering, A. and Genton, M. (2010), when focusing on a dataset for the
Columbia Basin of eastern Washington and Oregon in the US. The model in the
regime-switching space-time (RST) approach originally proposed by Gneiting, T. et al.
(2006) can be formulated as

(4.5) Ys,t+k = θ
(rt)
0 +

∑

i∈L

θ
(rt)
i Ys,t−i+1 +

∑

sj∈S

∑

i∈Lj

ν
(rt)
j,i Ysj ,t−i+1 + σ(rt)εt+k,

i.e., in the form of a TARX model (TAR with exogenous variables), where a set
of terms are added to the regime-switching model of (4.4), for observations at
off-site locations sj ∈ SX and for a set of lagged values i ∈ Lj at this location.
Such models allow considering advection and diffusion of upstream information,
but require extensive expert knowledge for optimizing the model structure.

Conditional parametric AR (CP-AR) models are another natural generaliza-
tion of regime-switching models,

(4.6) Ys,t+k = θ0(xt) +
∑

i∈L

θi(xt)Ys,t−i+1 + σ(xt)εs,t+k,

where instead of considering various regimes with their own dynamics, the AR co-
efficients are replaced by smooth functions of a vector (of low dimension, say, less
than 3) of an exogenous variable x, for instance wind direction only in Pinson, P.
(2012). The noise variance can be seen as a function of x, or as a constant, for sim-
plicity. CP-AR models are relevant when switches between dynamic behaviors are
not that clear. Meanwhile, they also require fairly large datasets for estimation,
which are more and more available today. Their use is motivated by empirical
investigations at various wind farms, where it was observed that specific meteo-
rological variables (e.g., wind direction, atmospheric stability) can substantially
impact power generation dynamics and predictability in a smooth manner.

Other forms of conditional parametric models were proposed for further lead
times, also requiring additional meteorological forecasts as input. As an example,
a simplified version of the CP-ARX model (CP-AR with exogenous variables) of
Nielsen, T. S. (2002) writes

Ys,t+k = θc0(xt) cos

(

2πht+k

24

)

+ θs0(xt) sin

(

2πht+k

24

)

(4.7)

+ θ1(xt)Ys,t + θ2(xt)g(ût+k|t, v̂t+k|t, k) + σεs,t+k,

where ût+k|t and v̂t+k|t are forecasts of the wind components (defining wind speed
and direction) at the level of the wind farm of interest. The vector xt includes
wind direction and lead time. In addition, g is used for a nonlinear conversion
of the information provided by meteorological forecasts to power generation, for
instance modeled with nonparametric nonlinear regression (local polynomial or
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spline-based). The model in (4.7) finally includes diurnal Fourier harmonics for
the correction of periodic effects that may not be present in the meteorological
forecasts, with ht+k the hour of the day at lead time k.

Besides (4.7), a number of alternative approaches were introduced in the past
few years for predicting wind power generation up to 2-3 days ahead based on
both measurements and meteorological forecasts. Notably, neural networks and
other machine learning approaches became popular after the original proposal of
Kariniotakis, G. N. et al. (1996) and more recently with the representative work
of Sideratos, G. and Hatziargyriou, N. D. (2007). For all of these models, param-
eters are commonly estimated with Least Squares (LS) and Maximum Likelihood
(ML) approaches (and a Gaussian assumption for the residuals εs,t+k), potentially
made adaptive and recursive so as to allow for smooth changes in the model pa-
rameters (accepting some form of nonstationarity), while reducing computational
costs. It was recently argued that employing entropy-based criteria for parameter
estimation may be beneficial, as in Bessa, R. J. et al. (2009), since they do not
rely on any assumption for the residual distributions. A more extensive review of
alternatives statistical approaches to point prediction of wind speed and power
can be found in Zhu, X. and Genton, M. (2012).

As an illustration, Figure 5 depicts example point forecasts for the 5 aggregated
zones of Western Denmark, issued on 16 March 2007 at 06 UTC based on the
methodology described by Nielsen, T. S. (2002). These have a hourly resolution
up to 43 hours ahead, in line with operational decision-making requirements. The
well-captured pattern for the first lead times originates from the combination of
the trend given by meteorological forecasts with the autoregressive component
based on local observational data. For the further lead times, the dynamic wind
power generation pattern is mainly driven by the meteorological forecasts, though
nonlinearly converted to power and recalibrated to the specific conditions at these
various aggregated zones.

In contrast with the introductory part of this section, where it was men-
tioned that point forecasts corresponded to conditional expectation estimates,
Gneiting, T. (2010, and references therein) discussed the more general case of
quantiles being optimal point forecasts in a decision-theoretic framework. Indeed,
in view of the operational decision-making problems described in Section 3, it is
the case that if one accounts for the utility function of the decision-makers at the
time of issuing predictions, such forecasts would then become specific quantiles,

(4.8) ŷs,t+k|t = F̂s,t+k|t
−1(α),

whose nominal level α is determined from the utility function and the structure
of the problem itself. The information set and models to be used for issuing
quantile forecasts are similar in essence to those for point predictions in the
form of conditional expectations. The estimation of model parameters is then
performed based on the check function criterion of Koenker, R. and Bassett, G.
(1978) or any general scoring rules for quantiles (Gneiting, T. and Raftery, A. E.,
2007), instead of quadratic and likelihood-based criteria. An example approach
to point forecasting of wind power generation where point forecasts actually are
quantiles of predictive densities is that of Møller, J. K. et al. (2008), based on
time-adaptive quantile regression.
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Fig 5. Example episode with point forecasts for the 5 aggregated zones of Western Denmark, as
issued on 16 March 2007 at 06 UTC. Corresponding power measurements, obtained a posteriori,
are also shown.

4.2 Predictive marginal densities

Point forecasts in the form of conditional expectations are somewhat ‘just the
mean of whatever may happen’. These are not optimal inputs to a large class
of decision problems. Since the nominal level of quantile forecasts to be used
instead may vary in time while depending upon the problem itself, or might be
even unknown, issuing predictive densities certainly is more relevant. Given the
random variable Ys,t+k whose characteristics are to be predicted, these actually

are predictive marginal densities f̂s,t+k for all locations and lead times involved,

individually, with F̂s,t+k the corresponding predictive cdfs.
Today such a type of wind power forecasts are issued in both parametric and

nonparametric frameworks. In the former case, based on an assumption for the
shape of predictive marginal densities (for instance, motivated by an empirical
investigation), one has

(4.9) f̂s,t+k|t = f(ys,t+k; θ̂s,t+k),

where f is the density function for power to be generated at location s and time
t + k, for the chosen probability distribution, e.g., truncated/censored Gaussian
or Beta. In (4.9), θ̂s,t+k is the predicted value for the vector of parameters fully
characterizing that distribution. For instance, a vector of parameters consist-
ing of location and scale parameters for the truncated/censored Gaussian and
Beta distributions. For these classes of distributions characterized by such lim-
ited sets of parameters only, point forecasts as conditional expectations, comple-
mented by a variance estimator, e.g., using exponential smoothing or based on an
ARCH/GARCH process, permit to directly obtain location and scale parameters
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of predictive marginal densities. This reliance on a limited number of parame-
ters may be seen as desirable since it eases subsequent estimation and related
computational cost.

Models for the density parameters take a general form similar to that in (4.2)
(and subsequent models in Section 4.1), that is, based on linear or nonlinear mod-
els with input a subset Ωt from the information set at time t. Example parametric
approaches include the RST approach of Gneiting, T. et al. (2006) for predicting
wind speed with truncated Gaussian distributions, and that of Pinson, P. (2012)
using Generalized Logit-Normal distributions for wind power, also compared with
censored Gaussian and Beta assumptions. Similarly, Lau, A. and McSharry, P.E.
(2010) proposed employing Logit-Normal distributions for aggregated wind power
generation for the whole Republic of Ireland.

In contrast, nonparametric approaches, since they do not rely on any assump-
tion for the shape of predictive densities, translate to focusing on sets of quantile
forecasts defining predictive cdfs. These are conveniently summarized by such
sets of quantile forecasts,

(4.10) F̂s,t+k|t = {q̂
(αi)
s,t+k|t ; 0 ≤ α1 < . . . < αi < . . . < αl ≤ 1},

with nominal levels αi spread over the unit interval, though in practice, F̂s,t+k|t

is obtained by interpolation through these sets of quantile forecasts. Actually,
nonparametric approaches to quantile forecasts may suffer from a limited num-
ber of relevant observations for the very low and high nominal levels α, say,
α, 1− α < 0.05, therefore potentially compromising the quality of resulting fore-
casts. This was observed by Manganelli, S. and Engle, R.F. (2004) when focusing
on risk quantification approaches in finance, and more particularly on dynamic
quantile regression models for very low and high levels. Even though the appli-
cation of interest here is different, the numerical aspects of estimating models for
quantiles of wind power generation for very low and high levels are similar. It
may therefore be advantageous under certain conditions to define nonparamet-
ric predictive densities for their most central part, say, α, 1 − α > 0.05, while
parametric assumptions could be employed for the tails.

A number of approaches for issuing nonparametric probabilistic forecasts of
wind power were proposed and benchmarked over the last decade. In the most
standard case, these are obtained from already generated point predictions and,
potentially, associated meteorological forecasts. Maybe the most well-documented
and widely applied methods are the simple approach of Pinson, P. and Kariniotakis, G.
(2010) consisting in dressing the available point forecasts with predictive den-
sities of forecast errors made in similar conditions, as well as the local quan-
tile regression of Bremnes, J. B. (2004) and time-adaptive quantile regression of
Møller, J. K. et al. (2008), to be used for each of the defining quantile forecasts.
The approach of Møller, J. K. et al. (2008) comprises an upgraded version of
the original proposal of Nielsen, H. Aa. et al. (2006), where quantile forecasts of
wind power generation are conditional to previously issued point forecasts and
to input wind direction forecasts. As for point predictions, neural network and
machine learning techniques became increasingly popular over the last few years
for generating nonparametric probabilistic predictions based on a set of quan-
tiles (Sideratos, G. and Hatziargyriou, N. D., 2012). In contrast to these meth-
ods using single-valued forecasts of wind power and meteorological variables as
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input, a relevant alternative relies on meteorological ensemble predictions, i.e.,
sets of multivariate space-time trajectories for meteorological variables as issued
by meteorological institutes (see Leutbecher, M. and Palmer, T. N. (2008) and
references therein), which are then transformed to the wind power space. Ensem-
ble forecasts attempt at dynamically representing uncertainties in meteorological
forecasts (as well as spatial, temporal and inter-variable dependencies), by jointly
accounting for misestimation in the initial state of the Atmosphere and for param-
eter uncertainty in the model dynamics. To obtain probabilistic forecasts of wind
power generation from such meteorological ensembles, conventional approaches
combine nonlinear regression and kernel dressing of the ensemble trajectories, as
in the alternative proposals of Roulston, M. S. et al. (2003), Taylor, J. W. et al.
(2009) and Pinson, P. and Madsen, H. (2009). In a similar vain, a general method
for the conversion of probabilistic forecasts of wind speed to power based on
stochastic power curves, thus accounting for additional uncertainties in the wind-
to-power conversion process in a Bayesian framework, was recently described by
Jeon, J. and Taylor, J. W. (2012).

Example nonparametric forecasts are shown in Figure 6 for the same period as
in Figure 5, as obtained by applying the method of Pinson, P. and Kariniotakis, G.
(2010) to the already issued point predictions and their input meteorological fore-
cast information. The characteristics of these predictive densities smoothly evolve
as a function of a number of factors, e.g., lead time, geographical location, time
of the year, level of power generation (since nonlinear and bounded power curves
shape forecast uncertainty). By construction, and through adaptive estimation,
these predictive densities are probabilistically calibrated, meaning that observed
levels for the defining quantile forecasts correspond to the nominal ones. This is a
crucial property of probabilistic forecasts to be used as input to decision problems
such as those of Section 3, since a probabilistic bias in the forecasts would yield
suboptimality of resulting operational decisions. Actually in addition, probabilis-
tic calibration is also a pre-requisite for application of the methods described in
the following in order to generate trajectories.

4.3 Spatio-temporal trajectories

Both point forecasts and predictive densities are suboptimal inputs to decision-
making when spatial and temporal dependencies are involved. It is then required
to fully describe the density of the spatio-temporal process Ys,t+k. Following
a proposal by Pinson, P. et al. (2009) for wind power and more recently by
Möller, A. et al. (2013) for multiple meteorological variables, the probabilistic
forecast F̂s,t+k|t can be fully characterized under a Gaussian copula by the pre-

dictive marginal cdfs F̂s,t+k|t, ∀s, k, and by a space-time covariance matrix Ĉt

linking all locations and lead times. In that case, using notations similar to those
of Möller, A. et al. (2013),

(4.11) F̂s,t+k|t(ys,t+k|Ĉt) = Φmn

(

{Φ−1(F̂s,t+k|t(y))}s,k|Ĉt

)

,

where ys,t+k was defined in (2.3), Φ is the cdf of a standard Gaussian variable,
while Φmn is that for a multivariate Gaussian of dimension m×n. Going beyond
the Gaussian copula simplification, one could envisage employing more refined
copulas, though at the expense of additional complexity. The interested reader
may find an extensive introduction to copulas in Nelsen, R. B. (1961).

imsart-sts ver. 2012/08/31 file: windstat.tex date: July 11, 2013



22 P. PINSON

lead time [h]

po
w

er
 [p

.u
.]

1 6 12 18 24 30 36 42

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

zone 1

lead time [h]

po
w

er
 [p

.u
.]

1 6 12 18 24 30 36 42

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

zone 2

lead time [h]

po
w

er
 [p

.u
.]

1 6 12 18 24 30 36 42

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

zone 3

lead time [h]

po
w

er
 [p

.u
.]

1 6 12 18 24 30 36 42

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

zone 4

lead time [h]

po
w

er
 [p

.u
.]

1 6 12 18 24 30 36 42

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

zone 5

10−90% pred. intervals
point forecasts
observations

Fig 6. Example episode with probabilistic forecasts for the 5 aggregated zones of Western Den-
mark (and corresponding measurements obtained a posteriori), as issued on 16 March 2007 at 06
UTC. They take the form of so-called river-of-blood fan charts (termed coined after Wallis, K. F.
(2003)), represented by a set of central prediction intervals with increasing nominal coverage
rates (from 10% to 90%).

This type of construction of multivariate probabilistic forecasts for wind power
generation in space and in time has clear advantages. Indeed, given that all pre-
dictive densities forming the marginal densities are calibrated, it may be assumed
that one deals with a latent space-time Gaussian process consisting of successive
multivariate random variables Zt (each of dimension m × n) with realizations
given by

(4.12) zt = {Φ−1(F̂s,t+k|t(ys,t+k)); s = s1, s2, . . . , sm, k = 1, 2, . . . , n}.

Consequently, this latent Gaussian process can be used for identifying and esti-
mating a suitable parametric space-time structure, or alternatively if m × n is
low and the sample size large, for the tracking of the nonparametric (sample)
covariance structure, for instance using exponential smoothing.

Similarly, one of the advantages of this construction of multivariate proba-
bilistic forecasts based on a Gaussian copula is that it is fairly straightforward
to issue space-time trajectories. Remember that these are the prime input to a
large class of stochastic optimization approaches, such as the advanced version
of the problems presented in Sections 3.1 and 3.2, where representation of space-
time interdependencies is required. Such trajectories also are a convenient way
to visualize the complex information conveyed by these multivariate probabilistic
forecasts, as hinted by Jordà O. and Marcellino, M. (2010) among others. Let us
define by

(4.13) ŷ
(j)
s,t+k|t = {ŷ

(j)
s,t+k; s = s1, s2, . . . , sm, k = 1, 2, . . . , n}, j = 1, 2, . . . , J,
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a set of J space-time trajectories issued at time t. As an illustrative example,
Figure 7 gathers a set of J = 12 space-time trajectories of wind power generation
for the same episode as in Figures 5 and 6. The covariance structure Ĉt used to
fully specify the space-time interdependence structure is obtained by exponential
smoothing of the sample covariance of the latent Gaussian process. The trajecto-
ries are then obtained by first randomly sampling from a multivariate Gaussian
variable with the most up-to-date estimate of the space-time covariance struc-

ture. Denote by z
(j)
t the jth sample, whose components z

(j)
s,t+k will directly relate

to a location s and a lead time k in the following. These multivariate Gaussian
samples are converted to wind power generation by a transformation which is the
inverse of that in (4.12). This yields

(4.14) ŷ
(j)
s,t+k = F̂s,t+k|t

−1
(

Φ(z
(j)
s,t+k)

)

, ∀s, k, j.

This type of visualization allows to appraise the temporal correlation in wind
power generation and potential forecast errors through predictive densities, giv-
ing an extra level of information if compared to the probabilistic forecasts of
Figure 6. There are obvious limitations stemming from the dimensionality of the
random variable of interest. For instance here, the spatial interdependence struc-
ture, though serving to link these trajectories, is nearly impossible to appreciate.

lead−time [h]

po
w

er
 [p

.u
.]

1 6 12 18 24 30 36 42

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

zone 1

lead−time [h]

po
w

er
 [p

.u
.]

1 6 12 18 24 30 36 42

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

zone 2

lead−time [h]

po
w

er
 [p

.u
.]

1 6 12 18 24 30 36 42

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

zone 3

lead−time [h]

po
w

er
 [p

.u
.]

1 6 12 18 24 30 36 42

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

zone 4

lead−time [h]

po
w

er
 [p

.u
.]

1 6 12 18 24 30 36 42

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

zone 5

o

scenarios
point forecasts
observations

Fig 7. Set of 12 space-time trajectories of wind power generation for the 5 aggregated zones of
Western Denmark, issued on the 16 March 2007 at 06 UTC.
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5. DISCUSSION: UPCOMING CHALLENGES

Three decades of research in modeling and forecasting of power generation
from the wind have led to a solid understanding of the whole chain from taking
advantage of available meteorological and power measurements, as well as mete-
orological forecasts, all the way to using forecasts as input to decision-making.
Today, methodologies are further developed in a probabilistic framework, even
though forecast users may still prefer to be provided with single-valued predic-
tions. Some important challenges are currently under investigation or identified
as particularly relevant for the short- to medium-term. These are presented and
discussed below, with emphasis placed on new and better forecasts, forecast ver-
ification, as well as bridging the gap between forecast quality and value.

5.1 Improved wind power forecasts: extracting more out of the data

Improving the quality of wind power forecasts is a constant challenge, with
strong expectations linked to the increased commitment of the meteorological
community to issue better forecasts of relevant weather variables, mainly surface
wind components. This will come, among other things, from a better description
of the physical phenomena involved, especially in the boundary layer, as well as
from an increased resolution of the numerical schemes used to solve the systems
of partial differential equations.

Meanwhile for statisticians, there are paths towards forecast improvement that
involve a better utilization of available measurement data, combining measure-
ments available on site and additional observations spatially distributed around
that site. Wind forecasts used to issue power forecasts over a region seldom cap-
ture fully the spatio-temporal dynamics of power generation owing to, e.g., a
too coarse resolution (spatial and temporal) and timing errors with respect to
passages of weather fronts. However, all distributed meteorological stations and
wind turbines may serve as sensors in order to palliate for these deficiencies. For
the example of the Western Denmark dataset, Girard, R. and Allard, D. (2013)
explored the spatio-temporal characteristics of residuals after capturing local dy-
namics at all individual sites, hinting at the role of prevailing weather conditions
on the space-time structure. For the same dataset, Lau, A. (2010) investigated an
anisotropic space-time covariance model based on a Lagrangian approach, condi-
tional to prevailing wind direction over the region. Based on such analyzes, it is
required to propose nonlinear and nonstationary spatio-temporal models for wind
power generation, for instance using covariance structures conditional to prevail-
ing weather conditions, in the spirit of Huang, H.-C. and Hsu, N.-J. (2004). An
advantage will be that, instead of having to identify and estimate models for
every single site of interest (more than 400 for the Western Denmark dataset),
and at various spatial and temporal resolutions of relevance to forecast users,
a single model would fit all purposes at once. Even though more complex and
potentially more costly in terms of parameter estimation, they could lead to a sub-
stantial overall reduction in computational time and expert knowledge necessary
to setup and maintain all individual models. Alternatively, approaches relying on
stochastic partial differential equations ought to be considered owing to appeal-
ing features and recent advances in their linkage to spatio-temporal covariance
structures, as well as improved computational solving (Lindgren, F. et al., 2011).
Challenges there, however, relate to the complexity of the stochastic processes
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involved, requiring to account for the state-dependent diffusion part, but also for
changes in the very dynamics of wind components, as induced by a number of
weather phenomena. It is not clear how all these aspects could be accounted for
in a compact set of stochastic differential equations, which could be solved with
existing numerical integration schemes.

The increasing availability of high-dimensional datasets, with a large number
of relevant meteorological and power systems variables, possibly at high spatial
and temporal resolutions, gives rise to a number of challenges and opportunities
related to data aggregation. These challenges have already been identified in other
fields, e.g., econometrics, where aggregation has shown its interest and potential
limitations. A relevant example work is that of Giacomini, R. and Granger, C. W. J.
(2004), which looks at the problem of pooling and forecasting spatially correlated
datasets. On the one hand, considering different levels of aggregation for the wind
power forecasting problem can permit to ease the modeling task, by identifying
groups of turbines with similar dynamic behavior which could be modeled jointly.
On the other hand, this would lower the computational burden by reducing model
size and complexity. Proposals related to aggregation should, however, fully con-
sider the meteorological aspects at different temporal and spatial scales, which
may dynamically condition how aggregate models would be representative of ge-
ographically distributed wind farms. One could build on the classical Space-Time
Auto-Regressive (STAR) model of Cliff, A. D. and Ord, J. K. (1975), by enhanc-
ing it to having dynamic and conditional space-time covariance structures. In a
similar vain, dynamic models for spatio-temporal data such as those introduced
by Stroud, J. R. et al. (1999) and follow-up papers are appealing, since they
provide an alternative approach to data aggregation by seeing the overall spa-
tial processes as a linear combination of a limited number of local (polynomial)
spatial processes in the neighborhood of appropriately chosen locations. Overall,
various relevant directions to space-time modeling could be explored, based on
the substantial literature existing for other processes and in other fields.

5.2 New forecast methodologies and forecast products

As a result of these efforts, new types of forecasts will be available to decision-
makers in the form of continuous surfaces and trajectories, from which predictions
with any spatial and temporal resolution could be dynamically extracted. Simi-
larly to the development of meteorological forecasting, the need for larger com-
putational facilities might call for centralizing efforts in generating and issuing
wind power predictions. Actually, in the opposite direction, a share of practi-
tioners request predictions of lower complexity, that could be better appraised
by a broader audience and more easily integrated into existing operational pro-
cesses. For instance, since accommodating the variability of power fluctuations
with successive periods of fast-increasing and fast-decreasing power generation,
is seen as an issue by some system operators in the US and in Australia, method-
ologies were proposed for the prediction of so-called ramp events, where the def-
inition of these “ramp events” is based on the very need of the decision-maker
(Bossavy, A. et al. , 2013; Gallego, C. et al. , 2013).

Besides, even though alternative parametric assumptions for predictive marginal
densities have been analyzed and benchmarked, e.g., Beta (Bludszuweit, H. et al. ,
2008), truncated and censored Gaussian, Generalized Logit-Normal (Pinson, P.,
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2012), there is no clear superiority of one over the others, for all potential lead
times, level of aggregation and wind dynamics themselves. This certainly orig-
inates from the nonlinear and bounded curves representing the conversion of
wind to power, known to shape predictive densities. Such curves may addition-
ally be time-varying, uncertain and conditional on various external factors. This
is why future work should consider these curves as stochastic power curves, also
described by multivariate distributions, as a generalization of the proposal of
Jeon, J. and Taylor, J. W. (2012). Their impact on the shape of predictive densi-
ties ought to be better understood. Then, combined with probabilistic forecasts of
relevant explanatory variables, for instance from recalibrated meteorological en-
sembles, stochastic power curves would naturally yield probabilistic predictions of
wind power generation, in a Bayesian framework. This is since stochastic power
curves comprise models of the joint density of meteorological variables and of
corresponding wind power generation. Predictive densities of wind power genera-
tion would then be obtained by applying Bayes rule, i.e., by passing probabilistic
forecasts of meteorological variables through such stochastic power curve models.

To broaden up, and since operational decision-making problems are based
on interdependent variables (power generation from different renewable energy
sources, electric load, and potentially market variables), multivariate probabilis-
tic forecasts for relevant pairing, or for all of them together, should be issued
in the future, with the weather as the common driver. Similarly to the proposal
of Möller, A. et al. (2013) for multivariate probabilistic forecasts of meteorolog-
ical variables, one could generalize the space-time trajectories of Section 4.3 to
a multivariate setup. Alternatives should be thought of, allowing to directly ob-
tain such spatio-temporal and multivariate predictions, instead of having to go
through predictive marginal densities first.

5.3 Verifying probabilistic forecasts of ever-increasing dimensionality

Forecast verification is a subtle exercise already for the most simple case of
dealing with point forecasts, to be based on the joint distribution of forecasts and
observations (Murphy, A. H. and Winkler, R. L., 1987). Focus is today on veri-
fying forecasts in a probabilistic framework, for instance following the paradigm
of Gneiting, T. et al. (2007b) originally introduced for the univariate case, based
on calibration and sharpness of predictive marginal densities. The nonlinear and
double-bounded nature of the wind power stochastic process (possibly also a
discrete-continuous mixture) renders the verification of probabilistic forecasts
more complex, especially for their calibration. It generally calls for an exten-
sive reliability assessment conditional on variables known to impact the shape of
predictive densities: level of power, wind direction, etc. In addition, the bench-
marking and comparison of forecasting methods ought to account for sample size
and correlation issues, since evaluation sets often are of limited size (though of
increasing length now that some wind farms have been operating for a long time),
while correlation in forecast errors and other criteria (skill score values, probabil-
ity integral transform) is necessarily present for forecasts with lead times further
than one step ahead. Verifying high-dimensional forecasts, like space-time trajec-
tories in the most extreme case, based on small samples will necessarily yield score
values that may not fully reflect actual forecast quality even though the score used
is proper. Indeed the deviations from the expected score value, which could be
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estimated better with larger samples, would be substantial. Correlation issues
may only magnify this problem, since they somewhat reduce the effective sample
size for estimation. An illustration of the combined effect of sampling and correla-
tion on the verification of probabilistic forecasts can be found in Pinson, P. et al.
(2010b).

Going from univariate to multivariate aspects, Gneiting, T. et al. (2008) ex-
plained how the previously introduced paradigm can be readily generalized for
multivariate probabilistic predictions, yielding an evaluation framework including
skill scores and diagnostic tools. An application to the verification of temporal
trajectories of wind power generation in Pinson, P. and Girard, R. (2012) illus-
trated its potential limitations stemming from the high-dimensionality (there,
n = 43 lead times) of the underlying random variables. Following the discussion
in Section 5.1, it is clear that new views on forecast verification ought to be in-
troduced and evaluated as dimensionality increases. For instance, recent work by
Hering, A. and Genton, M. (2011) showed how to compare spatial predictions in
a framework inspired by the Diebold-Mariano test and with limited assumptions
on the spatial processes themselves, thus permitting to deal with high-dimensional
predictions by focusing on their spatial structure.

5.4 Bridging the gap between forecast quality and value

Murphy, A. H. (1993) introduced 3 types of goodness for weather forecasts,
also valid and relevant for other types of predictions like for wind power. Out of
these 3, quality and value play a particular role: (i) quality relates to the objective
assessment of how well forecasts describe the stochastic process of interest (and
its realizations), regardless of how the forecasts may be used subsequently, while
(ii) value corresponds to the economic/operational gain from considering fore-
casts at the decision-making stage. Through the introduction of representative
operational decision problems in Section 3, it was shown that optimal forecasts as
input to decision-making in a stochastic optimization framework take the form of
quantiles, predictive marginal densities, or finally trajectories describing the full
spatio-temporal process. However, it is not clear today how improving the quality
of these forecasts, for instance in terms of reduced skill score values or increased
probabilistic calibration, may lead to added value for the decision-makers, espe-
cially when they might use these forecasts sub-optimally. In practice, this will
call for more analytic work in a decision-theoretic framework, by better linking
skill scores of the forecasters and utility of the decision-makers, as well as for a
number of simulation studies in order to simulate the usage of forecasts of varying
quality as input to a wide range of relevant operational problems. Full benefits
from integrating wind power generation into existing power systems and through
electricity markets will only be obtained by optimally integrating forecasts in
decision-making.
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