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Wind Power Forecasts using Gaussian Processes
and Numerical Weather Prediction

Niya Chen, Zheng Qian, Ian T. Nabney, Xiaofeng Meng

Abstract—Since wind at the earth’s surface has an intrinsically
complex and stochastic nature, accurate wind power forecasts are
necessary for the safe and economic use of wind energy. In this
paper, we investigated a combination of numeric and probabilistic
models: a Gaussian Process (GP) combined with a Numerical
Weather Prediction (NWP) model was applied to wind-power
forecasting up to one day ahead. First, the wind-speed data
from NWP was corrected by a GP, then, as there is always a
defined limit on power generated in a wind turbine due to the
turbine controlling strategy, wind power forecasts were realized
by modeling the relationship between the corrected wind speed
and power output using a Censored GP. To validate the proposed
approach, three real-world datasets were used for model training
and testing. The empirical results were compared with several
classical wind forecast models, and based on the Mean Absolute
Error (MAE), the proposed model provides around 4% to 11%
improvement in forecasting accuracy compared to an Artificial
Neural Network (ANN) model, and nearly 17% improvement on
a third dataset which is from a newly-built wind farm for which
there is a limited amount of training data.

Index Terms—Wind power forecasting, Gaussian Process, Nu-
merical weather prediction, Censored data

I. INTRODUCTION

As a green and renewable energy resource, the utilization of
wind energy has been growing rapidly around the world [1].
In China, the current total capacity of wind farms is approx-
imately 75.6 GW, with a growth rate of 21.2% in 2012 [2].
However, the intrinsically variable and uncontrollable char-
acteristics of wind pose several operational challenges. Thus
wind power prediction is an essential process for the mainte-
nance of wind power units and energy reserve scheduling [3],
[4].

Accurate short-term wind power forecasts with a predic-
tion horizon from one hour to several days are critical to
optimise the scheduling of wind farm maintenance and re-
serve electricity generation: these have an impact on grid
reliability and market-based ancillary service costs. Broadly
speaking, there are three approaches for short-term wind power
forecasting: physical Numerical Weather Prediction (NWP)
models, statistical models based purely on historical data, and
statistical models with NWP data as additional exogenous
inputs. Physical models have advantages over longer horizons
(from several hours to dozens of hours), because they include
(3D) spatial and temporal factors in a full fluid-dynamics
model of the atmosphere. However, such models have limi-
tations, such as the limited observation set for calibration (a
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serious issue given the extremely large number of variables in
these models), the relatively limited spatial resolution possible
over such a wide area (typically the whole earth), and the
impossibility of accounting for local topography [5]. Statistical
models which use only historical wind speed and power
data and do not include any explicit model of the physical
processes have been developed based on single models or
hybrids of several methods, such as autoregressive integrated
moving average (ARIMA) [6], [7], Kalman filters [8], artifi-
cial neural networks [9], [10], support vector machines [11],
[12] and Bayesian theory [13]. Since wind has an intrinsic
non-stationary character, these purely statistical models are
effective only for very short-term forecasts (about 1-4 hours
ahead), and generally present very inaccurate predictions as the
forecast horizon grows [14]. To overcome these limitations and
obtain longer forecast horizons, some authors have combined
both types of model, by using NWP (Numerical Weather
Prediction) data from a physical model as inputs to a statistical
model [15], [16].

Two forecasting systems based on artificial neural networks
using NWP data and measured power generation from Super-
visory Control And Data Acquisition (SCADA) systems as
inputs for short-term wind power prediction (over a horizon
of 72 hours) are presented in [17]: they can be used for
electricity market bid offers and wind-farm maintenance tasks.
The average RMS errors of the two presented forecast systems
vary from 14% for the 12-24 hour horizon to 19.7% for
the 48-72 hour horizon. Another forecast model combined
with NWP data is proposed by Vaccaro [18], in which one-
day-ahead wind power forecasting is based on information
amalgamation from a local atmospheric model and measured
data. De Giorgi [19] developed a series of forecast systems by
combining Elman and MLP neural networks, and predicted
power production of a wind farm with three wind turbines for
5 time horizons: 1, 3, 6, 12 and 24 hours. The normalized
absolute average error of the presented systems vary from
5.67% to 15.50% depending on forecast time and different
combinations of networks.

Recently, as an effective non-linear prediction method,
Gaussian Processes (GP) have been applied in many domains,
both in regression [20] and classification [21], including wind
energy prediction. Jiang and Dong focused on very short
term (< 30min) wind-speed prediction using GPs [22]. They
evaluated their model on real-world datasets, and found that
the GP performs better than ARMA and the Mycielski algo-
rithms [23].

In this paper, wind-farm datasets including NWP results and
measured data from SCADA system are analyzed and applied
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to wind power forecasting over a horizon of up to one day,
using a Gaussian Process. The main innovations in this paper
are:

1) The predicted wind speed from an NWP model is
corrected using a GP with predicted wind speed, wind
direction, temperature, humidity and pressure as inputs.
The simplification of the regression task (by modeling
a correction to the NWP data) helps to improve perfor-
mance compared with earlier methods.

2) Automatic Relevance Determination (ARD) is used for
feature selection in order to improve generalization
performance.

3) A censored Gaussian Process (CGP) method is applied
to build the relationship between corrected wind speed
and wind power, as wind power generation is censored
due to the controlling strategy of the wind turbine.

4) A subset of high-wind speed data is treated separately,
because of its different characteristics as shown on
analysis of the initial models.

5) Historical wind-speed data from a SCADA system is
used as an additional input to the forecasting model for
1-4 hours-ahead prediction, since we have proved this
to be effective in this range of time horizons.

6) The influence on forecast accuracy of training set history
is investigated, and empirical results show that the GP
method is able to obtain better prediction performance
when there is limited data for model training than other
techniques.

Section II describes the NWP model used to provide daily
forecasts of meteorological variables. Section III defines the
Gaussian Process, Automatic Relevance Determination (ARD)
and censored GP methods applied to build all the regression
models. Section IV describes the whole detailed modeling
process from NWP data to forecast wind power results.
Simulation results are presented and analyzed in Section V.
Finally, Section VI includes the overall conclusions.

II. NWP MODEL

Numerical weather prediction uses hydrodynamic and ther-
modynamic models of the atmosphere to predict weather based
on certain initial-value and boundary conditions. Though there
were attempts since the 1920s, reliable numerical weather
prediction was not achieved until the development of powerful
computers. Nowadays, a number of global and regional NWP
forecast models have been developed. In our research, we use
the WRF (Weather Research and Forecasting) NWP model.
WRF was created through a partnership that includes NCAR
(National Center for Atmospheric Research), NOAA (National
Oceanic and Atmospheric Administration), and more than 150
other organizations and universities in the United States and
internationally, and is released as a free model for public
use [24].

In general, short-term wind-power forecasting needs pre-
dictions from an NWP model with high spatial resolution. In
our case, the WRF model with the Advanced Research WRF
(ARW) core is used. First, the accurate geographical position
and hub height of one wind turbine or wind mast in a wind

farm is chosen as a reference point, then a 3-layer nested grid
is built centered around this point. Finally, using the initial
data provided by Global Forecast System (GFS) model, the
NWP data can be abstracted from the corresponding point in
the 3rd layer. The NWP data used in our paper is available
at 20:00 GMT every day. The data including wind speed and
direction, temperature, humidity and pressure, is provided at
an interval of 10 minutes for the following 72 hours.

The Chinese government imposes very specific demands on
wind-power forecasting in the energy sector, which include
the following conditions: the forecast error of 1-4 hour ahead
should be less than 10% of wind turbine’s installed capacity;
the 5-24 hour-ahead forecasting error should be below 20%
of installed capacity. All the forecast errors contained in this
paper are calculated using hourly data. Therefore, we focus on
forecasting for a horizon from 1 to 24 hours for wind power,
based on hourly sampled NWP data.

III. GAUSSIAN PROCESS METHODS

Recently, there has been much activity concerning the
application of Gaussian process to machine learning tasks.
Because a systematic and detailed explanation of Gaussian
process regression and Automatic Relevance Determination
(ARD) can be found in Rasmussen’s book [25], and the model
of censored GP was proposed by Groot [26], here we only
provide a brief description of these methods.

A. Standard Gaussian Process

A Gaussian process f(x) can be completely specified
by its mean function and covariance function, written as
f(x) ∼ GP(m(x), k(x, x′)), where the mean function m(x)
and covariance function k(x, x′) are defined as

m(x) = E[f(x)]

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))].
(1)

Usually, the mean function is assumed to be zero and the target
variable is normalised to have zero mean.

Consider the GP in a classic regression problem: assume
we have a training set D of n observations, D = {(xi, yi)|i =
1, ..., n}, where x denotes an input vector of dimension D
and y denotes a scalar output. As we have n cases of x, the
whole input data is represented by a D × n matrix, and with
targets collected in a vector y, we can write D = (X, y).
Therefore, the key point of the regression problem is to model
the relationship between inputs and targets, that is to build a
function to satisfy,

yi = f(xi) + εi, (2)

where the observed values y differ from the function values
f(x) by additive noise ε, which is assumed to be an indepen-
dent, identically distributed Gaussian distribution with zero
mean and variance σ2

n, i.e. ε ∼ N (0, σ2
n). Note that y is a

linear combination of Gaussian variables and hence is itself
Gaussian [27]. The prior on y becomes

E[y] = E[f + ε] = 0

cov[y] = K(X,X) + σ2
nI,

(3)
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where K is a matrix with elements Kij = k(xi, xj), which is
also known as the kernel function.
Given a training set D = (X, y), our goal is to make
predictions of the target variable f∗ for a new input x∗. Since
we already have p(y|X, k) = N (0,K+σ2

nI), the distribution
with new input can be written as[

y
f∗

]
∼ N

(
0,

[
K(X,X) + σ2

nI k(X,x∗)
k(x∗, X) k(x∗, x∗)

] )
, (4)

where k(X,x∗) = k(x∗, X)T = [k(x1, x∗), ..., k(xn, x∗)],
which we will abbreviate as k∗. Then according to the prin-
ciple of joint Gaussian distributions, the prediction result for
the target is given by

f̄∗ = kT∗ (K + σ2
nI)−1y

V [f∗] = k(x∗, x∗)− kT∗ (K + σ2
nI)−1k∗.

(5)

Now, the whole regression model based on Gaussian process
is completed.

B. Automatic Relevance Determination

In practice, rather than fixing the covariance function for a
Gaussian process model, we may prefer to use a parametric
function and infer the parameter values from the observed data.
This learning process, which is usually called ‘learning the
hyperparameters’, can be accomplished by maximizing the log
likelihood function

ln p(y|θ) = −1

2
ln |K| − 1

2
yTK−1y − n

2
ln(2π). (6)

This function is maximized using a standard non-linear
gradient-based optimization algorithm. A detailed description
can be found in [25].

As the maximum likelihood can be used to determine the
parameter values in the Gaussian process, we can extend this
technique by incorporating a separate lengthscale parameter
for each input variable, and hence the relative importance
of different inputs can be inferred from the observed data,
which is known as Automatic Relevance Determination. For
example, the covariance function used in our model is the
rational quadratic

k(x, x′) = θ0

(
1 +

D∑
i=1

li(xi − x′i)2
)−v

+ b, (7)

where b represents a bias, and all the hyperparameters can
be contained in a vector θ = (θ0, L, b)

T , where L denotes
the vector of all the lengthscale parameters L = {l1, ..., lD}.
The hyperparameters {l1, ..., lD} are used to implement ARD:
as li becomes larger, the function becomes relatively more
sensitive to the corresponding input variable xi. Therefore,
the importance of each input variable is revealed, and inputs
with a small value of li can be discarded.

C. Censored Gaussian Process

As a result of the wind-turbine control strategy, there is
always a defined upper limit to the power generation of each
turbine type. Denote the upper limit of power generation by
C, the unrestricted power output by y∗ (a latent variable

since it is not observed directly), and the observed output
of wind turbine as y, then with the physical non-negative
property of power also considered, we have

y =

 0 if y∗ ≤ 0
y∗ if 0 < y∗ < C
C if y∗ ≥ C.

(8)

In statistical terminology, the true values are ‘censored’ in
that they are not observed directly but instead a different
value is substituted. Exploratory analysis of the data shows
that 1.1% percent of the data is approximately (within 1% of)
the upper limit C and a further 5.4% percent is within 5%
of the upper limit (and is thus in the range where the noise
distribution of the unrestricted prediction overlaps significantly
with the censored range). Thus it is important to account
for this constraint in the model itself rather than simply pre-
process the predictions of a ‘standard’ regression model by
thresholding them at C.

Following Groot’s paper [26], we assume that the latent
values y∗ = f(x) can be realized by a Gaussian process
regression model, and use φ(.), Φ(.) to denote the standard
normal density and cdf respectively, then the likelihood can
be expressed as a mixture of Gaussian and probit likelihood
terms

L =

n∏
i=1

p(yi|fi) =
∏
yi=0

[
1− Φ

(
fi
σ

)]
∏

0<yi<C

[
1

σ
φ

(
yi − fi
σ

)]
∏
yi=C

[
Φ

(
fi − C
σ

)]
.

(9)

By Bayes’ theorem, the posterior distribution over the latent
variables is the product of the prior and the likelihood

p(f |X, y) =
1

Z
p(f |X)

n∏
i=1

p(yi|fi), (10)

where Z = p(y|X) is a normalization term called the marginal
likelihood. However, this posterior is analytically intractable
because of the form of the likelihood in equation (9): thus one
has to use approximate techniques for computing it. Here we
use an Expectation Propagation (EP) method: assume that the
likelihood of latent variable fi is p(yi|fi) ' ti(fi|Z̃i, µ̃i, σ̃

2
i ),

and abbreviate it as ti. Then the posterior p(f |D) is approxi-
mated by q(f |D) where

q(f |D) =
1

ZEP
p(f)

n∏
i=1

ti(fi|Z̃i, µ̃i, σ̃
2
i )

=
1

ZEP
p(f)N (µ̃, Σ̃)

n∏
i=1

Z̃i,

(11)

where ZEP is the normalization term. Then we update the
ti approximations sequentially by the EP algorithm, finally
the approximation to the posterior is computed, and the
predictive distribution q(f∗) of input x∗ can be written as
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q(f∗) = N (µ∗, σ
2
∗), where

µ∗ = kT∗ (K + Σ̃)−1µ̃

σ2
∗ = k(x∗, x∗)− kT∗ (K + Σ̃)−1k∗,

(12)

where k∗ = [k(x1, x∗), ..., k(xn, x∗)], as defined in Sec-
tion III-A.

IV. MODELING PROCESS

The forecasting framework proposed in this paper uses
GP models and three additional features: 1. ARD is used to
select model inputs; 2. predicted wind speed from the NWP
model is corrected before modelling the mapping from wind
speed to wind power; 3. detailed adjustments were applied to
improve forecast accuracy, such as including historical data
and building a separate model for high wind speed.

The NWP data usually includes several kinds of meteoro-
logical information: wind speed, wind direction, temperature,
air pressure, and humidity. It is clear that wind power mainly
depends on the actual wind speed, however, we don’t know for
sure if any other variable plays an important role too. The ARD
toolbox in Netlab [28] was used to determine the appropriate
inputs for each model mentioned in this paper.

Since wind power generation is mainly determined by wind
speed, the most important practical task for companies operat-
ing wind farms is to get accurate wind speed prediction. There
are two ways to obtain wind power from NWP data: directly
learning the model between NWP data and wind power using
a censored GP; or correcting the error in NWP wind speed
prediction first and then using this corrected wind speed to
replace original NWP speed for forecasting power generation.
The second method is based on the belief, underpinned by a
large body of empirical analysis, that there are some systematic
and stochastic biases present in the original NWP speed
forecasts – the detailed empirical analysis is illustrated in
Section V-B. We denote the first way of modeling wind power
as GP-Direct, and the second as GP-CSpeed (meaning based
on corrected speed).

A schematic of the whole modeling process of the proposed
GP-CSpeed model, including ARD inputs selection and NWP
speed correction, is shown in Figure 1. Firstly, an ARD model
(ARD I) is applied to determine which features in NWP
are most relevant to predict measured wind speed, then the
corrected wind speed is obtained using a GP model with
the selected inputs. Second, the wind speed in NWP data
is replaced with the corrected speed from the first step, and
another ARD model (ARD II) is used to choose features that
are relevant to power generation. Finally, with the data of
selected features used as inputs, a censored GP-based model
is built for forecasting wind power.

Figure 2 shows the detailed structure of the proposed
correction process, which obtains corrected wind speed from
selected NWP variables as shown in the dashed line box in
Figure 1. Certain constraints are used to improve the accuracy
of modeling. Since the character of wind changes with the
diurnal cycle, the prediction error of the NWP model shows
different properties depending on the forecast horizon (1–24
hours). Therefore, we built a separate model for each of the 24

Ⅰ

Ⅱ

Fig. 1. Modeling process of the proposed GP-CSpeed model.

hourly forecast horizons and the training dataset was divided
into 24 subsets. Secondly, as mentioned before, historical
data of measured wind speed turns out to be useful for
very short-term forecasting, 1–4 hours ahead for our datasets
according to empirical analysis (refer to SectionV-B), and is
therefore included as an input for models 1–4 only (i.e. 1–4
hours forecast horizon). Thirdly, the prediction error of the
NWP model is larger and more related to humidity when the
predicted wind speed is high, thus we developed a separate GP
model (labeled Model A in the figure) specifically to improve
the correction accuracy when the predicted wind speed is
larger than H m/s, where H denotes the threshold value of
high speed and depends on the location of the wind farm.

NWP data

Historical data

Model 1: Step = 1 h

Model4 : Step = 4 h

Subset of NWP data

( Wind speed > Hm/s)

Corrected

wind

speed

Model5 : Step = 5 h

Model 24 : Step = 24 h

S
elector

Model A : Step = 1 -24 h

Fig. 2. Structure of correction process.

As shown in Figure 2, models 1–24 give results of correc-
tion for 1–24 hours-ahead predicted wind speed, while model
A gives corrected wind speed for high speeds. The reason
for just building one model for high wind speed, is that such
data only accounts for about 5% of the whole dataset, and
thus there is not enough data for training several high-speed
models separately. The ‘selector’ component means that when
the original predicted wind speed in the NWP data is larger
than H m/s, then the corresponding corrected wind speed in
the result of model 1–24 is replaced by the output of model
A.

V. EXPERIMENTAL VALIDATION

Three real-world datasets based on wind farms were used
in this paper to evaluate our approach. The first one is from
a wind farm in Gansu province (denoted as Farm-G), which
is located in the windy western part of China. The second,
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denoted by Farm-J, is from Jiangsu province, a coastal area
located in southern China. These two farms are about 2400km
apart, and therefore the weather conditions are independent
from each other. The third one is a recently built wind farm
nearby Farm-J, denoted by Farm-R.

TABLE I
WIND TURBINE PROPERTIES.

Location Installed Capacity (kW) Height (m) Number

Farm-G1 850 55 58
Farm-G2 1500 65 33
Farm-J 1500 80 67
Farm-R 1500 80 48

As shown in Table I, Farm-G is a large wind farm with 91
wind turbines, which are divided into two groups: the installed
capacity of one kind is 850kW, and the other is 1500kW.
Actually, the NWP data of Farm-G were obtained from two
different models separately developed for these two groups,
because of the difference in turbine height. Correspondingly,
all the prediction models established in this paper are devel-
oped separately for different wind turbine groups. Datasets
from Farm-G and Farm-J have a time scale from April 2010
to April 2013: we have used a whole year from April 1st 2010
to April 1st 2011 as a training set, and the remainder as a test
set. The newly built Farm-R only has 2 and a half months’
data, and is specially modeled in subsection V-D, to illustrate
the performance of the proposed GP-CSpeed model on a small
dataset.

A. Forecasting accuracy evaluation

Several criteria were used to evaluate the accuracy of the
proposed approach. This accuracy is computed as a function of
the measured wind speed or power. Four error measures were
employed for model evaluation and model comparison: the
Root Mean Square Error (RMSE), the Normalized Root Mean
Square Error (NRMSE), the Mean Absolute Error (MAE),and
Normalized Mean Absolute Percentage Error (NMAPE). The
error measures are defined as follows

et = yt−
∧
yt (13)

RMSE =

√√√√ 1

n

n∑
i=1

e2i (14)

NRMSE =

√√√√ 1

n

n∑
i=1

e2i ×
100

C
(15)

MAE =
1

n

n∑
i=1

|ei| (16)

NMAPE =
1

n

n∑
i=1

∣∣∣ei
C
× 100

∣∣∣ (17)

where yt represents the actual observation value at time t,
ŷt represents the forecast value for the same period, n is the
number of forecasts, and the installed capacity of wind turbine
is denoted by C.

The NMAPE is used for wind power as a requirement of
the Chinese government, and it is also a suitable expression to
interpret the quality of forecast, since without normalization,
the same value of |e| may imply very different performance
according to different type of wind turbines with variant
installed capacity.

As specified requirements are made separately for 1-4 hours
(NMAPE ≤ 10%) and 5-24 hours (NMAPE ≤ 20%) fore-
cast, we define an extra criterion to determine the prediction
performance

Px =
1

m
|{|ei| ≤ x · C}| × 100%, (18)

where m denotes the size of the corresponding test dataset,
and x denotes the threshold NMAPE value, i.e. x = 0.1 for
1–4 hours forecast and x = 0.2 for 5–24 hours forecast. In
this way the percentage of points which meet the requirements
can be calculated.

B. Effectiveness of proposed model

First of all, ARD was applied to determine which NWP
variables should be included as inputs to the speed correction
model. Using the difference between measured wind speed
and NWP predicted speed as the target variable, the relevance
values are listed in Table II.

TABLE II
ARD RESULTS ON TWO FARMS.

Location Wind
speed

Wind di-
rection

Temperature Air
pressure

Humidity

Farm-G1 1.5696 0.0002 3.4872 9.6381 2.5239
Farm-G2 0.3882 0.0463 2.2647 3.5917 0.9233
Farm-J 0.1203 0.0014 3.2269 0.0383 0.3569

We note that wind speed, temperature and humidity impact
the prediction accuracy of 3 groups of wind turbines in 2
wind farms. For Farm-G, air pressure plays a much more im-
portant role, which is reasonable considering its high altitude.
Therefore, we choose these three features as inputs to the GP
correction process for Farm-J, and add air pressure for Farm-
G. By the same selection process, ARD is applied to choose
features that are relevant to wind power: corrected speed and
humidity for Farm-G, corrected speed and wind direction for
Farm-J.

In order to illustrate the effectiveness of the whole modeling
process, we show the detailed results for a single wind turbine
from Farm-J. A comparison of the original NWP wind speed
error and the results of two correction models (both with
and without historical data) is displayed in Figure 3. It can
be clearly observed that both corrected results are much
better than the original NWP data, and for the short-horizon
forecasts, the addition of historical data successfully reduced
prediction error, but introduced a small amount of additional
error (probably due to overfitting) as the forecast horizon
grows. Therefore, we chose to add historical data for 1–4 hours
ahead wind speed correction only.

In order to display and analyze the performance of the cor-
rection models, we first divided the dataset by NWP-predicted
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Fig. 4. Influence of building additional model for high speed NWP data. (a) Standard correction model. (b) Comparison with additional high-speed model.
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Fig. 3. Comparison of forecast error of 3 models.

wind speed ŷt, that is Ds = {s−1 ≤ ŷt < s, s = 1, 2, ...}, then
calculated the RMSE of each subset Ds, and plotted the RMSE
value against s. As shown in Figure 4(a), the performance of
the correction models 1–24 is consistently good when s ≤ 10:
however, for higher wind speed the corrected results become
worse. On further analysis, it was noticed that humidity is
influential as wind speed increases, especially for s > 13, as
shown by Table III (compare with Table II).

TABLE III
ARD RESULTS ON HIGH-SPEED SUBSET.

Location Wind
speed

Wind di-
rection

Temperature Air
pressure

Humidity

Farm-G2 3.3159 0.0002 18.183 12.436 26.099

As a result, the high-speed subset is selected with a thresh-
old H = 13 m/s for Farm-J, and special correction model
A can be built with predicted wind speed, temperature and
humidity as inputs. By the same analysis process, the threshold
value is determined to be H = 12 m/s for Farm-G1, and

H = 13 m/s for Farm-G2. The correction results for the high-
speed subset are shown in Figure 4(b), which illustrates the
effectiveness of building model A for high speed data.

With the whole correction process, the corrected wind speed
has a much better test-set accuracy than the original NWP
wind-speed predictions, as shown in Table IV.

TABLE IV
SPEED FORECAST ERROR OF A TURBINE IN FARM-J.

MAE
Data RMSE(m/s) MAE(m/s) Improvement

NWP-speed 2.4160 1.8663 -
Corrected speed 1.6405 1.2399 33.56%

Since the generated wind power is limited to the installed
capacity C of a wind turbine by a controller, a censored GP is
used in this paper to build the wind power forecasting model.
The RMSE of predicted wind power from both censored and
standard GP models is calculated and the predictions with a
high corrected wind speed s is plotted in Figure 5, because
this is where the generated wind power might be censored. The
standard GP results include a threshold on the GP output at
capacity, but the GP can predict impossible values, whereas the
censored GP builds the constraint into the parameter learning
process. From the figure, we can clearly see that the censored
and standard GPs perform equally well at medium speed, but
as the wind speed grows, the difference becomes more obvious
and the censored GP is more accurate. The improvement in
accuracy at very high predicted wind speeds is because at those
speeds (provided the speed prediction is reasonably accurate),
the turbine output is always C and hence is easier to predict.

C. Comparative results

In this section we present the results of our power-prediction
framework and some benchmarks: the persistence model,
ARIMA method, and a multi-layer perceptron (MLP) neural
network. The persistence method simply uses the current value
as the forecast, which means that at time t, the prediction
ŷt+1 = ŷt+2 = · · · = ŷt+24 = yt. Since sometimes the wind
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Fig. 5. Power prediction accuracy for normal and censored GP.

power data may be invalid because of a turbine fault (invalid
data was excluded from the dataset at the pre-processing
stage), we use the current wind speed data in this model, and
calculate the wind power with the wind turbine curve. The
ARIMA method is a classical time series based model that
has been frequently applied to wind forecasting [7], and is
therefore picked as a benchmark.

MLP networks have been applied to short-term wind power
forecasting before, and have achieved a much better perfor-
mance than the persistence method [29], hence an MLP-based
model (MLP-CSpeed) which builds a relationship between
selected NWP features (using ARD) and wind power is chosen
for comparison. A 9-neuron hidden layer was chosen for
the MLP model, based on empirical cross-validation results
(model comparison on a validation set).
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Fig. 6. One-day-ahead wind power forecasting.

An example of one-day-ahead wind power forecasting for
one wind turbine is illustrated in Figure 6. The forecast
error is reasonably small for very-short term forecasting (1–
4 hours ahead). The figure clearly shows how the forecast

error increases with the forecast horizon, but the proposed
GP-CSpeed model still captures the shape of the actual power
time series, and has better performance than the ML model.

Our empirical results show that one well-trained forecast
model is also suitable for other turbines of the same type
located at the same wind farm: this represents a considerable
time saving in model development. The results of applying the
proposed model to the test datasets are shown in Tables V–VII.

TABLE V
POWER FORECAST ERROR OF FARM-G1 (NOMINAL POWER: 49.3MW).

Model RMSE
(MW)

NRMSE MAE
(MW)

NMAPE Improve-
ment1

P0.1

1-4h
P0.2

5-24h

Persistence 10.79 21.89% 7.49 15.19% - 55.91% 69.56%
ARIMA 10.70 21.71% 7.40 15.00% 1.22% 58.64% 68.89%
MLP 9.63 19.53% 7.04 14.28% 6.03% 37.27% 78.34%
GP-Direct % % 65.91% 78.72%
GP-CSpeed 8.74 17.72% 6.32 12.82% 15.64% 65.91% 81.49%

1. Improvement is calculated relative to the persistence method.

TABLE VI
POWER FORECAST ERROR OF FARM-G2 (NOMINAL POWER: 49.5MW).

Model RMSE
(kW)

NRMSE MAE
(kW)

NMAPE Improve-
ment2

P0.1

1-4h
P0.2

5-24h

Persistence 10.69 21.60% 7.69 15.52% - 61.99% 70.01%
ARIMA 10.50 21.21% 7.49 15.13% 2.51% 62.38% 70.82%
MLP 8.76 17.70% 6.86 13.86% 10.72% 37.09% 75.58%
GP-Direct % % 43.05% 77.85%
GP-CSpeed 8.55 17.28% 6.12 12.36% 20.37% 66.89% 74.55%

2. Same as 1.

TABLE VII
POWER FORECAST ERROR OF FARM-J (NOMINAL POWER: 100.5MW).

Model RMSE
(kW)

NRMSE MAE
(kW)

NMAPE Improve-
ment3

P0.1

1-4h
P0.2

5-24h

Persistence 27.01 26.87% 18.53 18.43% - 59.43% 62.67%
ARIMA 26.78 26.65% 18.13 18.03% 2.18% 60.89% 63.05%
MLP 17.16 17.07% 11.70 11.64% 36.85% 53.91% 78.08%
GP-Direct 17.16 17.07% 11.76 11.71% 36.48% 56.03% 78.62%
GP-CSpeed 15.42 15.34% 10.34 10.29% 44.21% 62.50% 78.82%

3. Same as 1.

The results of wind power forecasting are shown in Ta-
bles V–VII: we can analyze the performance more deeply
by plotting the error distribution as in Figure 7. It is clearly
shown that the proposed GP-CSpeed model presents the best
performance in 1–4 hour forecast horizons, and a less obvious
but still visible improvement in 5–24 hour horizons with a
larger percentage of points having NMAPE less than 10%.

As we can see from Tables V–VII, the proposed GP-CSpeed
model has better performance than the other models. In terms
of MAE, the improvement of accuracy is 15.64%, 20.37% and
44.21% for 3 datasets. If comparing to MLP-CSpeed model,
the improvement is 10.22% for dataset of Farm-G1, 10.79%
for Farm-G2, and 11.66% for Farm-J.

All the models were run on a single computer (Intel Core 2
Duo CPU, 2.93 GHz, 2 GB memory): the mean computational
cost for each model is listed in Table VIII.
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(b) 5–24 h forecast results

Fig. 7. Error distribution of Farm-G2.

TABLE VIII
AVERAGE COMPUTATIONAL COST.

Model MLP-CSpeed GP-Direct GP-CSpeed

Time 13.27s 83.64s 83.17s

D. Effectiveness of proposed model for small dataset

Since wind power is seen as one of the most important
carbon-free energy generation methods, many new wind farms
are being built [2]. During their initial operation it is hard
to obtain a significant quantity of historical data to build
accurate forecasting models. In this section, we investigate
the effectiveness of our GP method when there is little data.
First of all, to analyze the influence of training set size,
based on Farm-G2 dataset, various forecast results are obtained
by changing the length of the training set, while test set is
still 1 year long (from April 1st 2011 to April 1st 2012).
The forecasting accuracy of proposed GP-CSpeed model is
compared to MLP-CSpeed model in Figure 8.
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Fig. 8. Forecasting accuracy influenced by length of training set.

As shown in Figure 8, the prediction error of the GP-CSpeed

model is already quite low when there is only one month of
training set data. In addition, as the training set grows, the
GP-CSpeed model achieves a stable high performance quickly,
while the accuracy of the MLP-CSpeed model is still relatively
poor.

Then, to validate the performance of the proposed model
in a real-world application, a dataset from a newly built wind
farm was used to build a forecast model and obtain prediction
results. The newly built wind farm we focus on is located in
the coastal area of China where wind energy is abundant, and
there are plans to construct more wind farms in the region
in the near future. The data, including 2 and a half months’
NWP and SCADA data, is divided into a 45-day training set
and a 1-month test set. Note that one advantage of splitting the
power prediction problem into separate wind-forecasting and
power-prediction tasks is that the model mapping wind speed
to power output can be reused on new wind farms provided
the turbine is of a known type. The forecasting results are
contained in Table IX.

TABLE IX
WIND POWER FORECAST ERROR, FARM-R 1500KW TURBINE.

Model RMSE
(kW)

NRMSE MAE
(kW)

NMAPE Improve-
ment4

P0.1

1-4h
P0.2

5-24h

Persistence 447.74 0.2889 319.79 21.32% – 56.15% 56.50%
MLP-CSpeed 381.61 0.2462 272.19 18.14% 14.88% 36.88% 64.47%
GP-CSpeed 321.31 0.2073 225.04 15.00% 29.63% 47.84% 75.94%

4. Same as 1.

As shown in Table IX, despite of the limited quantity of
data, the proposed GP-CSpeed model still performs an accept-
able accuracy of forecast. This advantage is especially obvi-
ous compared with the MLP-CSpeed model with a 17.32%
improvement.

VI. CONCLUSION

Short-term wind power forecasting, which strongly impacts
the safety and economics of the electricity grid, is an im-
portant and challenging task, considering the uncontrollable
and stochastic nature of wind. Current research in this domain
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based on statistical models can be divided into two parts: fore-
casts several hours ahead using only historical data; predictions
dozens of hours ahead based on NWP data.

In this paper, we investigated a combination of numeric and
probabilistic models: a Gaussian Process (GP) combined with
a Numerical Weather Prediction (NWP) model was applied to
one-day-ahead wind power forecasting. Certain methods were
employed to improve the forecast accuracy: predicted wind
speed is firstly corrected by GP before it is used to forecast
wind power; as there is a defined limit on power generation of
wind turbine, a censored GP is applied to build speed-power
model; ARD is used to choose effective NWP variables as
inputs of each model; for 1–4 hour ahead forecasts, historical
data is added into modeling process; and a high wind-speed
subset is treated separately by building a single forecast model.

The simulation results shows that, compared to an MLP-
CSpeed model, the proposed model has around 10% to 12%
improvement of accuracy for the regular large datasets of
Farm-G and Farm-J, and hence the effectiveness and perfor-
mance of the GP-CSpeed model is proved. Furthermore, the
proposed GP-CSpeed model is especially effective when there
is limited training data, as it achieves an significant 17.32%
improvement for dataset from newly built Farm-R.
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